
Algorithms 2009, 2, 953-972; doi:10.3390/a2030953

OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms

Article

Improving the Competitive Ratio of the Online OVSF Code
Assignment Problem∗

Shuichi Miyazaki 1 and Kazuya Okamoto 2,?

1 Academic Center for Computing and Media Studies, Kyoto University, Yoshida Honmachi, Sakyo-ku,
Kyoto 606-8501, Japan; E-mails: shuichi@media.kyoto-u.ac.jp

2 Graduate School of Informatics, Kyoto University, Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501,
Japan

? Author to whom correspondence should be addressed; E-mail: okia@kuis.kyoto-u.ac.jp

Received: 7 May 2009; in revised form: 14 July 2009 / Accepted: 14 July 2009 /
Published: 17 July 2009

Abstract: Online OVSF code assignment has an important application to wireless communi-
cations. Recently, this problem was formally modeled as an online problem, and performances
of online algorithms have been analyzed by the competitive analysis. The previous best upper
and lower bounds on the competitive ratio were 10 and 5/3, respectively. In this paper, we
improve them to 7 and 2, respectively. We also show that our analysis for the upper bound is
tight by giving an input sequence for which the competitive ratio of our algorithm is 7− ε for
an arbitrary constant ε > 0.

Keywords: online OVSF code assignment; online algorithm; competitive analysis

1. Introduction

Universal Mobile Telecommunication System (UMTS) [1, 2] is one of the third generation (3G) tech-
nologies, which is a mobile communication standard. UMTS uses a high-speed transmission protocol
Wideband Code Division Multiple Access (W-CDMA) as the primary mobile air interface. W-CDMA
is implemented based on Direct Sequence CDMA (DS-CDMA), which allows several users to commu-

∗A preliminary version of this paper was presented at the 19th International Symposium on Algorithms and Computation,
ISAAC 2008. This work was supported by KAKENHI 17700015, 19200001, and 20300028.

Algorithms 2009, 2 954

nicate simultaneously over a single communication channel. DS-CDMA utilizes Orthogonal Variable
Spreading Factor (OVSF) code to separate communications [3].

OVSF code is based on an OVSF code tree, which is a complete binary tree of height h. The leaves of
the OVSF code tree are of level 0 and parents of vertices of level ` (` = 0, . . . , h− 1) are of level ` + 1.
Therefore the level of the root is h. Figure 1 shows an OVSF code tree of height 4. (Ignore “c1, . . . , c4”
and shaded vertices for a while. We use them later.)

Figure 1. An OVSF code tree of hight 4.

Each vertex of level ` corresponds to a code of level `. In DS-CDMA, each communication uses a
code of the specific level. To avoid interference, we need to assign codes to vertices of an OVSF code
tree so that they are mutually orthogonal, namely, in any path from the root to a leaf of an OVSF code
tree, there is at most one assigned vertex. For example, consider the OVSF code tree given in Figure 1.
Let `(c) denote the level specified by a code c. Suppose that four requests for inserting codes c1, c2, c3,
and c4 such that `(c1) = 2, `(c2) = `(c3) = 1, `(c4) = 0 arrive in this order, and that they are assigned
as depicted in Figure 1. Then, a request for deleting c2 arrives and c2 is removed. Next, a request for
inserting c5 such that `(c5) = 3 arrives, but it cannot be assigned unless other codes are reassigned. If c4

is reassigned to one of the children of the vertex to which c2 was assigned, we can assign c5 to the right
vertex of level 3. In this case, we need 6 assignments (5 assignments and 1 reassignment). However, if
c2 has been assigned to a vertex in the right subtree of the root, and c4 has been assigned to a vertex in
the left subtree, then we need only 5 assignments.

Erlebach et al. [4] first modeled this problem as an online problem of minimizing the number of
assignments, called the online OVSF code assignment problem, and verified the efficiency of online
algorithms using competitive analysis. The competitive ratio of an online algorithm ALG is defined as
maxσ{EALG(σ)

EOPT (σ)
}, where EALG(σ) and EOPT (σ) are the costs of ALG and an optimal offline algorithm,

respectively, for a sequence σ of requests, and max is taken over all σ. For the online OVSF code
assignment problem, the number of assignments is regarded as a cost. If the competitive ratio of ALG is
at most α, we say that ALG is α-competitive. Erlebach et al. [4] developed a Θ(h)-competitive algorithm
(recall that h is the height of an OVSF code tree), and proved that the lower bound on the competitive
ratio of the problem is 1.5. Forišek et al. [5] developed a Θ(1)-competitive algorithm, but they did not
obtain a concrete constant. Chin, Ting, and Zhang [6] proposed algorithm LAZY by modifying the
algorithm of Erlebach et al. [4], and proved that the competitive ratio of LAZY is at most 10. Chin,
Ting, and Zhang [6] also showed that no online algorithm can be better than 5/3-competitive.

Algorithms 2009, 2 955

This problem also has an application in assigning subnets to users in computer network managements.
An IP address space can be divided into subnets, each of which is a fragment of the whole IP address
space consisting of a set of continuous IP addresses of size power of 2. This structure can be represented
as a complete binary tree, in exactly the same way as our problem. Usually, the sizes of subnets re-
quested by users depend on the number of computers they want to connect to the subnet, and the task of
system managers is to assign subnets to users so that no two assigned subnets overlap. Apparently, we
want to minimize the number of reassignments because a reassignment causes a large cost for updating
configurations of computers.

Our Contribution. In this paper, we improve both upper and lower bounds on the competitive ratio
of this problem, namely, we give a 7-competitive algorithm EXTENDED-LAZY, and show that no online
algorithm can be better than 2-competitive. We further show that our upper bound analysis is tight
by giving a sequence of requests for which the competitive ratio of EXTENDED-LAZY is 7 − ε for an
arbitrary constant ε > 0.

We briefly explain an idea of improving the upper bound. Erlebach et al. [4] defined the “compact-
ness” of assignments, and their algorithm keeps an assignment compact at any time. They proved that
serving a request, namely assigning (or removing) a code and modifying the assignment to keep it com-
pact, will cause at most one reassignment at each level, which leads to Θ(h)-competitiveness. Chin,
Ting, and Zhang [6] pointed out that always keeping assignments compact is too costly. Their algo-
rithm LAZY does not always keep compactness but makes assignments compact when it is necessary.
To achieve this relaxation, they defined a “tank”, which is a vertex that virtually contains a code of a
lower level. By exploiting the idea of tanks, they proved that the cost of serving each request is at most
5, which results in 10-competitiveness. Our algorithm, called EXTENDED-LAZY, follows this line. We
further relax the compactness by defining “semi-compactness”. We also use amortized cost analysis, and
prove that serving one insertion (deletion, respectively) and keeping the semi-compactness costs at most
4 (3, respectively). This gives a 7-competitiveness of EXTENDED-LAZY.

Related Results. For the online OVSF code assignment problem, there have been some resource
augmentation models, namely, online algorithms are allowed to use more bandwidth than an optimal
offline algorithm: Erlebach et al. [4] developed a 4-competitive algorithm in which an online algorithm
can use a double-sized OVSF code tree. Chin, Zhang, and Zhu [7] developed a 5-competitive algorithm
that uses 1/8 extra bandwidth. Recently, Chan et al. [8] gave a 1-competitive online algorithm which uses
(h + 1)/2 trees and showed that there is no 1-competitive online algorithm that uses less than (h + 1)/2

trees. They also gave a 2-competitive algorithm with 3h/8 + 2 trees and an amortized (4/3 + α)-
competitive algorithm with (11/4 + 4/(3α)) trees, for any α where 0 < α ≤ 4/3.

In addition to theoretical analysis, Karakoc and Kavak [9] evaluated the performance of genetic algo-
rithm and simulated annealing by experiments.

Also, there have been several offline results. Minn and Siu [10] developed a greedy algorithm for
the problem of finding the minimum number of reassignments to modify the current assignment so that
the new code can be assigned, given a current assignment configuration of the tree and a new insertion
request. Moreover, Erlebach et al. [4] proved that this problem is NP-hard and developed a Θ(h)-
approximation algorithm. Erlebach, Jacob, and Tomamichel [11] proved that the problem of finding a

Algorithms 2009, 2 956

sequence of operations that minimizes the number of reassignments, given an OVSF code tree and a
whole sequence of requests, is NP-hard and gave an exponential-time algorithm.

2. Preliminaries

An instance of the online OVSF problem consists of an OVSF code tree of height h and a sequence
σ of requests. Each request is either an insertion or a deletion. An insertion ic specifies a code c. Upon
receiving an insertion ic, the task of an online algorithm is to assign c to one of the vertices of level `(c)

(i.e. the level specified by c) of the OVSF code tree, so that the orthogonality condition is not broken.
An online algorithm may also reassign other codes (already existing in the tree). A deletion dc specifies
a code c which was previously assigned and has still been assigned to the current OVSF code tree. When
a deletion dc arrives, the task of an online algorithm is to merely remove c from the tree (and similarly,
it may reassign other codes in the tree). Each assignment and reassignment causes a cost of one, but
removing a code causes no cost. Without loss of generality, we may assume that σ does not include an
insertion that cannot be assigned by any reassignment of the existing codes (in other words, the total
bandwidth of codes which should be assigned at any point never exceeds the capacity).

We define terminologies needed to give our algorithm, most of which are taken from [6]. Given an
assignment configuration, we say that vertex v is assignable if none of descendants, ancestors, or v itself
is assigned; in other words, a code can be assigned to v without breaking the orthogonality. We also
say that vertex v is dead if v or one of its descendants is assigned. In the example of Figure 2, shaded
vertices are assigned, vertices with pluses (+) are assignable, and vertices with stars (∗) are dead. Note
that assignable vertices are all non-dead. If all the assigned vertices are mutually orthogonal and, at any
level, all the left vertices (on the same level) to the rightmost dead vertex are dead, then the assignment
is called compact. For example, the assignment in Figure 2 is compact.

Figure 2. A compact assignment.

Next, we define statuses of levels. Level ` is said to be rich if a code of level ` can be assigned to
the leftmost non-dead vertex v at ` without reassigning other codes; in other words, v is assignable.
Otherwise, the level ` is said to be poor. For example, in the assignment of Figure 2, levels 0, 2, and 3
are rich and levels 1 and 4 are poor. A level ` is said to be locally rich if the rightmost assigned vertex is
the left child of its parent. For example, in Figure 2, only level 0 is locally rich. Note that in a compact
assignment, locally rich levels are always rich.

Algorithms 2009, 2 957

We introduce a tank, which is taken from [6]: Suppose that two codes c1 and c2 of level 0 arrive when
the current configuration is in Figure 2. We can assign c1 to the leftmost assignable vertex of level 0
with keeping the compactness. However, we cannot assign c2 with keeping the compactness unless we
reassign other codes. If c2 were a code of level 2, it could be assigned to the leftmost assignable vertex
of level 2 without breaking the compactness. The idea of a tank is to do this virtually. See Figure 3 for
example. The code c2 is assigned to x, but we consider as if it were assigned to y, and by doing so, we
regard the assignment compact. Formally, we virtually assign a code of level b to a vertex v of higher
level t (> b). In this case, v is called a tank and denoted tank[b, t]. Levels b and t are called the bottom
and the top of tank[b, t], respectively. We say that level ` (b ≤ ` ≤ t) belongs to tank[b, t]. Note that in
the definitions and proofs below, we regard y as “assigned” and x as “unassigned”.

Figure 3. A semi-compact assignment.

We also define the semi-compactness. An assignment is said to be semi-compact if the following five
conditions are satisfied: (i) All the assigned vertices are mutually orthogonal; (ii) All the left vertices of
the rightmost dead vertex are dead at each level; (iii) Each level belongs to at most one tank; (iv) Suppose
that there is a tank v(=tank[b, t]) at level t. Then level t contains at least one assigned vertex other than
v, and there is no dead vertex to the right of v at t; (v) Levels belonging to tanks are all poor except for
the top levels of tanks. Figure 3 shows an example of a semi-compact assignment.

3. Algorithm EXTENDED-LAZY

To give a complete description of EXTENDED-LAZY, we first define the following four functions [6].
Note that a single application of each function keeps the orthogonality, but may break the
semi-compactness. However, EXTENDED-LAZY combines functions so that the combination keeps the
semi-compactness.

• AppendRich(`, c): This function is available if the level of code c is less than or equal to ` (namely
`(c) ≤ `), and level ` is rich. It assigns c to the leftmost non-dead vertex at `. Note that if `(c) 6= `,
this function creates tank[`(c), `].

• AppendPoor(`, c): This function is available if `(c) ≤ ` and level ` is poor. It assigns code c to the
leftmost non-dead vertex v at `. If there is no such v, abort. Note that if `(c) 6= `, tank[`(c), `] is
created. Then, it releases a code assigned to a vertex in the path from v to the root and returns it.

Algorithms 2009, 2 958

(Such a code exists because ` was poor and v was non-dead. This code is unique because of the
orthogonality.)

• FreeTail(`): Release the code assigned to the rightmost assigned vertex at level `, and return it.

• AppendLeft(`, c): This function is available if `(c) = `. Assign code c to the leftmost assignable
vertex at level `.

Each of AppendRich, AppendPoor, and AppendLeft yields a cost of 1, and FreeTail does not yield a
cost.

Now, we are ready to describe EXTENDED-LAZY. Its behaviors on insertions and deletions are given
in Sects. 3.1. and 3.2., respectively. Executions of EXTENDED-LAZY is divided into several cases. In
the description of each case, we explain the behavior of EXTENDED-LAZY, and in addition, for the later
analysis, we will calculate the cost incurred and an upper bound on the increase in the number of locally
rich levels due to the operations.

3.1. Executions of EXTENDED-LAZY for insertions

As summarized in Figure 4, the behavior of EXTENDED-LAZY for an insertion ic is divided into six
cases based on the status of the level `(c).

Figure 4. Execution of EXTENDED-LAZY for an insertion ic.

`(c) does not belong to a tank rich Case (1)
poor rich Case (2)

bottom of a tank Case (3)
belong to a tank top rich Case (4)

poor Case (5)
otherwise Case (6)

Case (1): The case that `(c) does not belong to a tank and is rich. Execute AppendRich(`(c), c). The
execution of this case costs 1 and the number of locally rich levels increases by at most one because only
`(c) changes its status.

Case (2): The case that `(c) does not belong to a tank and is poor. Furthermore, if we look at the higher
levels than `(c) in the order of `(c) + 1, `(c) + 2, . . . , h until we encounter a level that is rich or a bottom
of a tank, we encounter a rich level (say, the level t) before a bottom of a tank. In this case, execute
AppendRich(t, c). Note that the new tank[`(c), t] is created. This case costs 1 and the number of locally
rich levels increases by at most one since only level t changes its status.

Case (3): The same as Case (2), but when looking at higher levels, we encounter a bottom b of tank[b, t]
before we encounter a rich level. Since this case is a little bit complicated, we give an example in
Figure 5, in which `(c) = 0, b = 1, and t = 2. First, execute FreeTail(t) and receive the code c′ of level b

(because a level-b code was assigned to level t by exploiting a tank), and then execute AppendPoor(b, c′)
(note that b is poor by the condition (v) of semi-compactness)(Figure 5 1©). Next, receive another code
c′′ of level s. Note that there is an assigned vertex at t because of the condition (iv), and hence b < s ≤ t.

Algorithms 2009, 2 959

Then, using AppendRich(t, c′′), assign c′′ to the vertex which was tank[b, t], which creates the new
tank[s, t] if s 6= t (Figure 5 2©). Now, recall that the level b was poor, and hence c′ was assigned to a
left child. So, the level b is currently locally rich. We execute AppendRich(b, c) (Figure 5 3©). Note that
tank[`(c), b] is newly created. In this case, the cost incurred is 3, and the number of locally rich levels
does not change.

Figure 5. An execution of Case (3).

Case (4): The case that `(c) is the top of a tank and is rich. First, execute FreeTail(`(c)) and receive the
code c′ from the bottom of the tank. Then, execute AppendRich(`(c), c) and AppendRich(`(c), c′) in this
order. Intuitively speaking, we shift the top of the tank to the right, and assign c to the vertex which was
the tank. In this case, it costs 2 and similarly as Case (1), the number of locally rich levels increases by
at most one.

Case (5): The case that `(c) is the top of a tank, say tank[b, `(c)], and is poor. Execute FreeTail(`(c))
and receive the code c′ of level b from tank[b, `(c)], and execute AppendRich(`(c), c) to process c. Note
that `(c′) (= b) is poor because `(c′) was the bottom of tank[b, `(c)]. Also, note that b currently does
not belong to a tank. Hence our current task is to process c′ of level b where b does not belong to a tank
and is poor. So, according to the statuses of levels higher than b, we execute one of Cases (2) or (3).
Before going to Cases (2) or (3), the cost incurred is 1 and there is no change in the number of locally
rich levels. Hence, the total cost of the whole execution of this case can be obtained by adding one to
the cost incurred by the subsequently executed case (Cases (2) or (3)), and the change in the locally rich
levels is the same as that of the subsequently executed case.

Case (6): The case that `(c) belongs to tank[b, t] and is not the top of tank[b, t]. Execute FreeTail(t) and
receive the code c′ of level b from tank[b, t]. Then, execute AppendPoor(`(c), c) and receive a code c′′ of
level s. By a similar observation as Case (3), we can see that `(c) < s ≤ t. Then, assign c′′ to the vertex
which was tank[b, t] using AppendRich(t, c′′). (Note that tank[s, t] is created if s 6= t.) Since `(c) was
poor, c was assigned to a left child. Hence `(c) is currently locally rich. Execute AppendRich(`(c), c′),
which creates tank[b, `(c)] if `(c) 6= b. The execution of this case costs 3, and the number of locally rich
levels does not change.

Here we give one remark. Suppose that `(c) does not belong to a tank and is poor. Then, we look at
higher levels to see which of Cases (2) and (3) is executed. But, it may happen that we encounter neither
a rich level nor a bottom of a tank, namely there is no tank in upper levels and all the upper levels are
poor. We define this case as Case (7). However, we can prove the following lemma.

Algorithms 2009, 2 960

Lemma 1. If the semi-compactness is preserved and Case (7) occurs, then there is no configuration that
assigns all the current codes.

Proof. We define the bandwidth of a cade c as 2`(c) and the bandwidth of the OVSF code tree of hight h

as 2h. Suppose that the semi-compactness is preserved and Case (7) occurs when an insertion ic arrives.
We show that 2`(c), the bandwidth required by this request, exceeds the bandwidth of the tree not used
by the currently assigned codes.

First, we transform the semi-compact assignment to a compact assignment. We remove tanks from
the semi-compact assignment. Consider tank[b, t]. Release the code c̄ of level b from tank[b, t] tem-
porarily. Then, assign c̄ to the vertex v immediately right of the rightmost dead vertex at b. Because of
conditions (ii) and (v) of semi-compactness, b is poor and the path from v to the root includes exactly
one assigned vertex v′ at some level ` (` ≤ t). Release code c̄′ assigned to v′ and assign c̄′ to the vertex
v′′ immediately right of the rightmost dead vertex at `. By repeating the above operations, a code c̄′′

assigned to a vertex at level t is released. (c̄′′ exists because of condition (iv) of semi-compactness.) We
assign c̄′′ to the vertex which was tank[b, t].

We show that conditions of semi-compactness remain satisfied after the above operation. Condi-
tions (iii), (iv), and (v) remain satisfied for the levels which did not belong to tank[b, t] because no code
was released from nor assigned to these levels. Also, conditions (iii), (iv), and (v) remain satisfied for
levels which belonged to tank[b, t] because these conditions state on levels that belong to tanks but these
levels do not belong to a tank any more since tank[b, t] was removed. (This argument is used several
times in the later proofs.)

Condition (i) remains satisfied because once two codes overlap, the one, say c, at the higher level is
moved immediately. Suppose that c is moved from v1 to v2 in this step. Then, v1 becomes unassigned
but is still dead because one of its descendants is assigned. Also, v2 was the leftmost non-dead vertex at
level `(c). Hence, Condition (ii) remains satisfied.

If we do the above operation for each tank independently, the initial semi-compact assignment is
transformed to a semi-compact assignment with no tanks. By definition, a semi-compact assignment with
no tanks is a compact assignment. For example, the semi-compact assignment in Figure 3 is transformed
to the compact assignment in Figure 6.

Figure 6. Transformation from a semi-compact assignment to a compact assignment.

Algorithms 2009, 2 961

Since the levels `(c) and higher remain poor, there is no vertex of level `(c) which c can be assigned to
and the bandwidth which is not used at the levels `(c) and higher is 0. Then, we calculate the bandwidth
which is not used at the levels lower than `(c). We call the vertex v a free-root if v and its all the
children are assignable, and its parent is not assignable. Let T denote the set of free-roots. The non-used
bandwidth is the total bandwidth of the vertices of T . Each free-root should be the right child of its
parent. For, if a free-root is the left child of its parent p, the right child of p is also assignable because
of the compactness. Therefore, p is assignable, which contradicts the definition of free-root. Suppose
that there are more than one free-roots f and f ′ at the same level `, and suppose that f ′ lies to the right
of f . As discussed above, both f and f ′ are the right children of their parents. Since both f and f ′

are assignable (and non-dead), all vertices between them are non-dead because of the compactness. In
particular, the vertex f ′′ immediately left of f ′ is non-dead. Since f ′ is assignable and f ′′ is non-dead, the
parent p′ of f ′ and f ′′ has no assigned descendants. Moreover, since f ′ is assignable, p′ has no assigned
ancestors. Then p′ is assignable, which again contradicts the definition. Hence, in a compact assignment,
there is at most one free-root at each level. The total bandwidth is then at most 20 + 21 + · · · + 2`(c)−1,
which is smaller than 2`(c).

As we have mentioned previously, we excluded inputs in which the total bandwidth of all codes
which should be assigned exceeds the capacity. Hence, Case (7) does not occur if the semi-compactness
is preserved. (Actually, we do not have to exclude this case because our algorithm preserves the semi-
compactness and detects this situation, and in such a case, our algorithm can simply reject the insertion.)

The following lemma proves the correctness of EXTENDED-LAZY on insertions.

Lemma 2. EXTENDED-LAZY preserves the semi-compactness on insertions.

Proof. In order to prove this lemma, we have to show that the five conditions (i) through (v) of semi-
compactness are preserved after an insertion is served. It is relatively easy to show that (i) is preserved
because EXTENDED-LAZY uses only AppendRich, AppendPoor, and FreeTail, each of which preserves
the orthogonality even by a single application. So, we show that conditions (ii) through (v) are satisfied
after the execution of each of Cases (1) through (6), provided that (i) through (v) are satisfied before the
execution.
Case (1): It is not hard to see that conditions (iii) through (v) remain satisfied because no tank is created
or removed. We check that condition (ii) is satisfied for each group of levels [0, `(c)), `(c), and (`(c), h].
[0, `(c)): Condition (ii) remains satisfied because nothing changes.

`(c): Since we only append c to the leftmost non-dead vertex at `(c), condition (ii) remains satis-
fied.

(`(c), h]: Let v be the vertex to which the code c is assigned. Note that by AppendRich(`(c), c),
some of ancestors of v may turn from non-dead to dead. Suppose that vertex vs of level s

(s > `(c)) turned from non-dead to dead. Then, by the above observation, vs is an ancestor
of v. Next, let v′ be the vertex which is immediately left of v. Then, since v′ was dead,
vs is not an ancestor of v′. As a result, the ancestor of v′ at level s is the vertex, say v′s,
immediately left of vs, which implies that v′s was dead. Thus, condition (ii) remains satisfied
at any level.

Algorithms 2009, 2 962

Case (2): We can see that condition (ii) is satisfied by a similar discussion as Case (1). The tank
tank[`(c), t] is only the tank which is created in Case (2). Then, condition (iii) is satisfied because no
level from `(c) to t belonged to a tank. Since level t− 1 was poor and level t was rich, level t contained
at least one assinged vertex. Therefore, condition (iv) is satisfied. Also, condition (v) is satisfied because
the levels from `(c) to t− 1 were poor.
Case (3): We check that the four conditions (ii) through (v) are satisfied for each group of levels [0, `(c)),
[`(c), b), b, (b, s), s, (s, t), t, and (t, h]. (`(c), b, t, and s are defined in the description of Case (3).)
[0, `(c)): All the conditions remain satisfied because nothing changes.
[`(c), b): All the conditions remain satisfied by the same argument as Case (2).

b: We only append c′ and c to the leftmost two non-dead vertices. Hence, condition (ii) is
satisfied. Condition (iii) remains satisfied because tank[b, t] is removed and tank[`(c), b] is
created. Condition (iv) is satisfied because c′ is assigned to the vertex immediately right of
the vertex to which c is assigned. Also, condition (v) remains satisfied because b is the top
of tank[`(c), b].

(b, s): The tank tank[b, t] is removed and the statuses of some vertices may turn from non-dead to
dead. Since only tank[b, t] is removed, conditions (iii), (iv) and (v) remain satisfied. Also,
condition (ii) is satisfied by the same discussion as the case of levels (`(c), h] of Case (1).

s: The vertex v to which c′′ was assigned remains dead because c′ and c are assigned to descen-
dants of v. So, condition (ii) remains satisfied. Next, tank[b, t] is removed while tank[s, t]
is created. So, conditions (iii), (iv), and (v) also remain satisfied.

(s, t): The tank tank[b, t] is removed and tank[s, t] is created, but other things do not change.
Therefore, all the conditions remain satisfied.

t: The tank tank[b, t] is changed into tank[s, t] if s 6= t. In this case, nothing changes and hence
all the conditions remain satisfied. If s = t, tank[b, t] is removed and code c′′ is assigned
to the vertex which was tank[b, t]. In this case, the statuses of vertices of level t remain the
same. Therefore, all the conditions also remain satisfied.

(t, h]: All the conditions remain satisfied because nothing changes.
Case (4): By executing FreeTail(`(c)), receiving code c′, and executing AppendRich(`(c), c), only
tank[`(c′), `(c)] is removed but the statuses of all vertices remain the same. Hence, all the conditions
remain satisfied. Note that at this moment, the situation is the same as the situation just before Case (2)
is executed. Then, we can do the same argument as Case (2).
Case (5): Similar to Case (4), but this time, after executing FreeTail(`(c)), receiving code c′, and execut-
ing AppendRich(`(c), c), the situation is the same as the situation before Case (2) or Case (3) is executed.
So, the correctness follows from the same argument as Cases (2) and (3).
Case (6): Similarly as the proof of Case (3), we check conditions (ii) through (v) for each group of levels
[0, b), [b, `(c)), `(c), (`(c), s), s, (s, t), t, and (t, h]. To avoid lengthy description, however, we omit the
proof of this case.

3.2. Executions of EXTENDED-LAZY for deletions

Next, we describe executions of EXTENDED-LAZY for deletions. Similarly as Sec. 3.1., for a deletion
dc, there are eight cases depending on the status of level `(c) as summarized in Figure 7, each of which

Algorithms 2009, 2 963

will be explained in the following.
Case (I): The case that `(c) does not belong to a tank and is locally rich. Remove c. If c is the rightmost
dead vertex at `(c), do nothing. Otherwise, use FreeTail(`(c)) and receive a code c′ of level `(c). Then,
using AppendLeft(`(c), c′), assign c′ to the vertex to which c was assigned. Note that the vertex v which
was the rightmost dead vertex of level `(c) becomes non-dead after the above operations, which may
turn some dead vertices in the path from v to the root non-dead. As a result, an assignment may become
non-semi-compact. If the semi-compactness is broken, we use the operation REPAIR, which will be
explained later, to retrieve the semi-compactness. The cost of this case is either 1 or 0, and the number of
locally rich levels decreases by one without considering the effect of REPAIR. (We later estimate these
quantities considering the effect of REPAIR.)

Figure 7. Execution of EXTENDED-LAZY for a deletion dc.

`(c) does not belong to a tank locally rich Case (I)
otherwise Case (II)

belong to a tank top locally rich Case (III)
otherwise Case (IV)

bottom the top is locally rich Case (V)
otherwise Case (VI)

otherwise the top is locally rich Case (VII)
otherwise Case (VIII)

Case (II): The case that `(c) does not belong to a tank and is not locally rich. EXTENDED-LAZY behaves
in exactly the same way as Case (I). Note that vertex v which was the rightmost dead vertex at level `(c)

becomes non-dead after the above operations, but v is a right child because `(c) was not locally rich.
Since the semi-compactness was satisfied before the execution, the vertex immediately left of v was (and
is) dead, which implies that the parent and hence all ancestors of v are still dead. Thus, we do not need
REPAIR in this case. It costs either 1 or 0, and the number of locally rich levels increases by one or
remains unchanged because `(c) may become locally rich.

Case (III): The case that `(c) belongs to tank[b, t], `(c) = t, and t is locally rich. First, remove c. Next,
execute FreeTail(t) and receive the code c′ of level b from tank[b, t]. If c was assigned to the vertex
immediately left of tank[b, t] at t, do nothing. Otherwise, using FreeTail(t), receive a code c′′ of level
t, and using AppendLeft(t, c′′), assign c′′ to the vertex to which c was assigned. We then find a level to
which we assign the code c′. Starting from level t, we see if the level contains at least one code, until we
reach level b + 1. Let ` be the first such level. Then execute AppendRich(`, c′), which creates tank[b, `].
If there is no such level ` between t and b + 1, execute AppendRich(b, c′). In this case, we may need
REPAIR. Without considering the effect of REPAIR, it costs either 1 or 2. If it costs 1, the number of
locally rich levels stays unchanged or decreases by one, and if it costs 2, the number of locally rich levels
decreases by one.

Case (IV): The case that `(c) belongs to tank[b, t], `(c) = t, and t is not locally rich. EXTENDED-LAZY

behaves in exactly the same way as Case (III). In this case, we do not need REPAIR by a similar obser-
vation as Case (II). It costs either 1 or 2, and the number of locally rich levels increases by one.

Algorithms 2009, 2 964

Case (V): The case that `(c) belongs to tank[b, t], `(c) = b, and t is locally rich. First, remove c. If c was
the code assigned to tank[b, t], stop here; otherwise, do the following: Execute FreeTail(t) and receive
the code c′ of level b from tank[b, t]. Then, using AppendLeft(b, c′), assign c′ to the vertex to which c

was assigned. In this case, we may need REPAIR because tank[b, t] becomes unassigned. The incurred
cost is 1 or 0, and the number of locally rich levels decreases by one without considering the effect of
REPAIR.

Case (VI): The case that `(c) belongs to tank[b, t], `(c) = b, and t is not locally rich. EXTENDED-LAZY

behaves in exactly the same way as Case (V). In this case, we do not need REPAIR for the same reason
as Case (II). The cost is 1 or 0, and the number of locally rich levels increases by one.

Case (VII): The case that `(c) belongs to tank[b, t], b < `(c) < t, and t is locally rich. First, remove
c. Next, execute FreeTail(t) and receive the code c′ of level b from tank[b, t]. If c was assigned to the
rightmost assigned vertex at `(c), do nothing. Otherwise, using FreeTail(`(c)), receive a code c′′ of level
`(c), and using AppendLeft(`(c), c′′), assign c′′ to the vertex to which c was assigned. We then find a
level to which we assign the request c′ in the same way as Case (III). Starting from level `(c), we see if
the level contains at least one code, until we reach level b + 1. Let ` be the first such level. Then execute
AppendRich(`, c′), which creates tank[b, `]. If there is no such level ` between `(c) and b + 1, execute
AppendRich(b, c′). In this case, we may need REPAIR. Without considering the effect of REPAIR, it
costs either 1 or 2. If it costs 1, the number of locally rich levels is unchanged or decreases by one, and
if it costs 2, the number of locally rich levels decreases by one.

Case (VIII): The case that `(c) belongs to tank[b, t], b < `(c) < t, and t is not locally rich.
EXTENDED-LAZY behaves in exactly the same way as Case (VII). In this case, we do not need REPAIR

for the same reason as Case (IV). The cost is 1 or 2. The number of locally rich levels increases by one
or two when the cost is 1, and by one when the cost is 2.

Recall that after executing Cases (I), (III), (V), or (VII), the OVSF code tree may not satisfy semi-
compactness. In such a case, however, there is only one level that breaks the conditions of semi-
compactness, and furthermore, there is only one broken condition, namely, either (ii) or (v). If (ii) is
broken at level `, level ` consists of, from left to right, a sequence of unassigned dead vertices up to some
point, one non-dead vertex v, a sequence of (at least one) assigned dead vertices, and a sequence of non-
dead vertices. Note that, if ` is a bottom of a tank tank[`, t], the last non-dead vertices include a leftmost
level-` descendant of tank[`, t] (which is non-dead by definition). This non-dead vertex v was called a
“hole” in [6]. We also use the same terminology here, and call level ` a hole-level. If (v) is broken at
level `, ` is a bottom of tank[`, t] and is rich. Furthermore, level ` consists of, from the leftmost vertex,
a sequence of one or more unassigned dead vertices, a sequence of one or more non-dead vertices, and
then the leftmost level-` descendant of tank[`, t]. We call level ` a rich-bottom-level. A level is called a
critical-level if it is a hole-level or a rich-bottom-level.

The idea of REPAIR is to resolve a critical-level one by one. When we remove a critical-level ` by
REPAIR, it may create another critical-level. However, we can prove that there arises at most one new
critical level, and its level is higher than `. Hence we can obtain a semi-compact assignment by applying
REPAIR at most h times.

We explain the operation REPAIR. If ` is a hole-level and ` is not a bottom of a tank, then we execute
FreeTail(`) so that we receive a code c and execute AppendLeft(`, c), i.e., we release the code c assigned

Algorithms 2009, 2 965

to the rightmost assigned vertex at level `, and reassign c to the hole to fill it. (See Figure 8.) In this case,
the cost of REPAIR is 1. If ` is locally rich, the number of locally rich levels decreases by one and at most
one critical-level may appear, which means that we may need to apply REPAIR once more. Otherwise,
the number of locally rich levels increases by one and a critical-level does not appear. If ` is a hole-level

Figure 8. REPAIR for a hole-level ` which is not a bottom of a tank.

and ` is a bottom of a tank v(=tank[`, t]), then there is a vertex u that is the leftmost level-` descendant
of v. Recall that the code virtually assigned to v is actually a code for level ` and is assigned to u. We
release this code c using FreeTail(t) and perform AppendLeft(`, c). (See Figure 9.) In this case, the cost
of REPAIR is 1. If t is locally rich, the number of locally rich levels decreases by one and at most one
critical-level may appear, which means that we may need to apply REPAIR once more. Otherwise, the
number of locally rich levels increases by one and a critical-level does not appear.

Figure 9. REPAIR for a hole-level ` which is a bottom of a tank v.

Finally, if ` is a rich-bottom-level, then we will do the same operation, namely, release the code c

from the tank, and execute AppendLeft(`, c). (See Figure 10.) In this case, the cost of REPAIR is 1. If
t is locally rich, the number of locally rich levels decreases by one and at most one critical-level may
appear, which means that we may need to apply REPAIR once more. Otherwise, the number of locally
rich levels increases by one and a critical-level does not appear.

Figure 10. REPAIR for a rich-bottom-level `.

Lemma 3. EXTENDED-LAZY preserves the semi-compactness on deletions.

Proof. Similarly as Lemma 2, we will check that the five conditions (i) through (v) of semi-compactness
are preserved for each application of Cases (II), (IV), (VI), and (VIII). For Cases (I), (III), (V), and (VII),

Algorithms 2009, 2 966

at most one critical-level may appear but the five conditions (i) through (v) must be preserved at all other
levels. We also need to verify these facts for REPAIR, but this can be done similarly, and we will omit it
here. It is relatively easy to show that condition (i) is preserved because removing codes, and applying
AppendRich, AppendPoor, FreeTail, and AppendLeft preserve the orthogonality. So, in the following,
we will check conditions (ii) through (v). Similarly as Cases (1) and (3) in the proof of Lemma 2, we
check conditions for each group of levels.
Case (I):
[0, `(c)): Nothing changes. Thus, all the conditions remain satisfied.

`(c): Only the rightmost assigned vertex turns unassigned by removing c, and applying
FreeTail(`(c)) and AppendLeft(`(c), c′). Therefore, condition (ii) remains satisfied. Since
`(c) does not belong to any tank, conditions (iii), (iv), and (v) also remain satisfied.

(`(c), h]: Conditions (iii) and (iv) remain satisfied because no tank is removed or created. In the
following, we show that there is at most one level that breaks the conditions (ii) or (v).
Since the rightmost dead vertex v at level `(c) turns non-dead and v is the left child of its
parent v′, v′ turns from dead to non-dead. Also, if v′ was the rightmost dead vertex at level
`(c) + 1 and is the left child of its parent v′′, v′′ turns from dead to non-dead. Otherwise, v′′

remains dead. In this way, we can apply the same argument to the upper levels. Then there
is a level `∗ such that one vertex turns from dead to non-dead at each level from `(c) to `∗,
and nothing changes at levels `∗ + 1 or higher. Clearly, levels `∗ + 1 or higher do not break
the conditions. Also, we can see that both conditions (ii) and (v) are satisfied at any level in
[`(c), `∗) as follows: Consider a level ` ∈ [`(c), `∗) and suppose that v′′′ at level ` turns from
dead to non-dead. Condition (ii) is satisfied at ` because v′′′ was the rightmost dead vertex at
`. Condition (v) is also satisfied for the following reason: v′′′ was the rightmost dead vertex
at ` and is the left child of its parent, so ` was locally rich. Since condition (v) was satisfied
before the application of Case (I), ` must not belong to a tank. So, the conditions can be
broken only at `∗. Let ṽ be the vertex at `∗ that turns from dead to non-dead. Note that if (ii)
is broken, ṽ was not the rightmost dead vertex, while if (v) is broken, ṽ was the rightmost
dead vertex (since `∗ turns from poor to rich), namely, `∗ cannot break both (ii) and (v). This
completes the proof.

Case (II):
[0, `(c)]: All the conditions are satisfied by the same argument as Case (I).
(`(c), h]: Since v is a right child and its sibling remains dead, the parent of v remains dead. So, the

statuses of all vertices remain the same. Thus, all the conditions remain satisfied.
Case (III):

[0, b): Nothing changes and so all the conditions remain satisfied.
[b, `): The tank tank[b, t] is removed and tank[b, `] is created. However, nothing changes except

for the tanks. Thus, all the conditions remain satisfied.
`: If ` = t, tank[b, t] is moved to the vertex immediately left of tank[b, t]. Thus, conditions (ii),

(iii), and (v) remain satisfied. Also, condition (iv) remains satisfied, because there is at least
one assigned vertex except for tank[b, t] at t. If ` 6= t, c′ is assigned to the vertex to the right
of the rightmost dead vertex which is also assigned and tank[b, `] is created. Hence, condi-
tions (ii) and (iv) remain satisfied. Also, condition (iii) remains satisfied because tank[b, t]

Algorithms 2009, 2 967

is removed and tank[b, `] is created. Since ` is the top of tank[b, `], condition (v) also remain
satisfied

(`, t): Only tank[b, t] is removed. Therefore, all the conditions remain satisfied.

t: We have already proven above the case of ` = t. Otherwise, tank[b, t] is removed and the
rightmost assigned vertex v turns unassigned. Since levels [`, t) were poor, there was an as-
signed ancestor of the leftmost non-dead vertices at levels [`, t). The assigned ancestor was v

because there were no assigned vertices at levels (`, t). Hence, v remains dead. Condition (ii)
remains satisfied because only the rightmost dead vertex turns non-dead. Conditions (iii),
(iv), and (v) also remain satisfied because tank[b, t] is removed.

(t, h]: We can use the same argument as the proof for levels (`(c), h] of Case (I).
Case (IV):

[0, t]: All the conditions remain satisfied by the same discussion as Case (III).
(t, h]: The parent of tank[b, t] remains dead because tank[b, t] is a right child and its sibling remains

dead as we proved in the proof of Case (III). So, the statuses of all vertices remain the same.
Thus, all the conditions remain satisfied.

Case (V):
[0, b): Nothing changes and so all the conditions remain satisfied.
[b, t): Only tank[b, t] is removed and all the conditions remain satisfied.

t: The tank tank[b, t] is removed and the rightmost dead vertex, which was tank[b, t], turns
non-dead. Condition (ii) remains satisfied because only the rightmost dead vertex turns
non-dead. Also conditions (iii), (iv), and (v) remain satisfied because tank[b, t] is removed.

(t, h]: We can use the same argument as the proof for level (`(c), h] of Case (I).
Case (VI):

[0, t]: All the conditions remain satisfied by the same discussion as Case (V).
(t, h]: Since tank[b, t] is a right child and its sibling remains dead, the parent of tank[b, t] remains

dead. So, the statuses of all vertices remain the same. Thus, all the conditions remain
satisfied.

Case (VII):
[0, b): Nothing changes and so all the conditions remain satisfied.

[b, `(c)]: We can use the same argument as the proof for levels [b, t] of Case (III).
[`(c), t): Only tank[b, t] is removed and all the conditions remain satisfied.

t: The tank tank[b, t] is removed and the rightmost dead vertex, which was tank[b, t], turns
non-dead. Condition (ii) remains satisfied because only the rightmost dead vertex turns
non-dead. Also conditions (iii), (iv), and (v) remain satisfied because tank[b, t] is removed.

(t, h]: We can do the same argument as the proof for level (`(c), h] of Case (I).
Case (VIII):

[0, t]: All the conditions remain satisfied by the same discussion as Case (VII).
(t, h]: The statuses of all vertices remain the same by the same discussion as Case (VI).

Algorithms 2009, 2 968

4. Competitive Analyses of EXTENDED-LAZY

First, we estimate the cost and the increase in the number of locally rich levels incurred by applications
of REPAIR. By a single application of REPAIR, the cost of 1 is incurred and the number of locally rich
levels increases or decreases by one. In case that the number of locally rich levels increases by one,
the resulting OVSF code tree is semi-compact. On the other hand, if the number of locally rich levels
decreases by one, the resulting OVSF code tree may not be semi-compact and we may need one more
application of REPAIR. Hence, if REPAIR is executed k times, then the total cost of k is incurred, and
the number of locally rich levels decreases by k − 2 or k. (In the case of k = 1, “decreases by k − 2”
means “increases by one”.)

Table 1. The costs and increases in the number of locally rich levels for each execution of
EXTENDED-LAZY.

Case (1) (2) (3) (4) (5) (6)
Cost 1 1 3 2 2 4 3

Increase ≤ 1 ≤ 1 0 ≤ 1 ≤ 1 0 0

Case (I) (II) (III) (IV) (V) (VI) (VII) (VIII)
Cost ≤ k + 1 ≤ 1 k + 1 k + 2 ≤ 2 ≤ k + 1 ≤ 1 k + 1 k + 2 1 2

Increase ≤ −k + 1 ≤ 1 ≤ −k + 2 ≤ −k + 1 1 ≤ −k + 1 1 ≤ −k + 2 ≤ −k + 1 ≤ 2 1

Then, we estimate the cost and the increase in the number of locally rich levels for each of the cases
(1) through (6) and (I) through (VIII) of EXTENDED-LAZY. From the observations of Sects. 3.1. and
3.2., and the above observation on REPAIR, these quantities can be calculated as in Table 1. There are two
values in Case (5): Left and right values correspond to the cases where Cases (2) and (3), respectively,
are executed after Case (5). There are also two values in Cases (III), (VII), and (VIII) corresponding to
behaviors of EXTENDED-LAZY. In the lower table, k denotes the number of applications of REPAIR.
One can see that, from the upper table, the sum of the cost and the increase in the number of locally
rich levels is at most 4 for serving an insertion. This occurs when EXTENDED-LAZY executes Case (5)
followed by Case (3). Similarly, by the lower table, the sum of the cost and the increase in the number
of locally rich levels for serving one deletion is at most 3, which occurs in Cases (III), (IV), (VII), and
(VIII).

Now, we are ready to calculate the competitive ratio of EXTENDED-LAZY. For an arbitrary input
sequence σ, let I and D be the sets of insertions and deletions in σ, respectively. It is easy to see that
the cost of an optimal offline algorithm is at least |I| because each insertion incurs a cost of 1 in any
algorithm. We then estimate the cost of EXTENDED-LAZY. For i ∈ I and d ∈ D, let ei and ed be the
costs of EXTENDED-LAZY for serving i and d, respectively. The cost of EXTENDED-LAZY for σ is then
∑

i∈I ei +
∑

d∈D ed. Also, for i ∈ I and d ∈ D, let qi and qd be the increases in the number of locally
rich levels caused by EXTENDED-LAZY in serving i and d, respectively. Define Q to be the number of
locally rich levels in the OVSF code tree at the end of the sequence σ. Then, Q =

∑
i∈I qi +

∑
d∈D qd

Algorithms 2009, 2 969

since there is no locally rich level at the beginning. The cost of EXTENDED-LAZY for σ is

∑

i∈I

ei +
∑

d∈D

ed ≤ ∑

i∈I

ei +
∑

d∈D

ed + Q

=
∑

i∈I

(ei + qi) +
∑

d∈D

(ed + qd)

≤ ∑

i∈I

4 +
∑

d∈D

3 (1)

= 4|I|+ 3|D|
≤ 7|I|. (2)

(1) is due to the above analysis, and (2) is due to the fact that |D| ≤ |I| since for each deletion, there
must be a preceding insertion corresponding to it. Now, the following theorem is immediate from the
above inequality.

Theorem 1. The competitive ratio of EXTENDED-LAZY is at most 7.

Next, we give a lower bound on the competitive ratio of EXTENDED-LAZY.

Theorem 2. The competitive ratio of EXTENDED-LAZY is at least 7− ε for any positive constant ε.

Proof. Consider an OVSF code tree of height h (h ≥ 5). The number of leaves n is 2h. First, we give
following requests in this order (which we call the initialization sequence): n/4 insertions of level-0
codes, an insertion of a level-1 code, an insertion of a level-0 code, an insertion of a level-i code for
i = 2, 3, . . . , h − 2 (h − 3 insertions in total), and an insertion of a level-2 code. Note that after the
initialization sequence, two tanks (tank[0, 1] and tank[2, h − 2]) are created at the (n/4 + 2)-th and
the final request, respectively. EXTENDED-LAZY can serve each insertion with cost 1, thus the cost of
EXTENDED-LAZY is n/4 + h. Note that the cost of an optimal offline algorithm OPT is also n/4 + h.

Next, we consider the I-sequence, which is defined as the sequence of h−4 insertions of level-i codes
for i = 1, . . . , h−4 (in the increasing order of i). When the I-sequence is given to EXTENDED-LAZY after
the initialization sequence, EXTENDED-LAZY executes Case (5) followed by Case (3) for every insertion
in the I-sequence. We then define the D-sequence. It consists of the h−4 deletions of level-i codes for i =

h− 4, . . . , 1 (in the decreasing order of i). Here, each deletion requires to remove the code which is as-
signed to the leftmost vertex among all assigned vertices in the corresponding level. If the D-sequence is
given to EXTENDED-LAZY subsequently to the I-sequence, then EXTENDED-LAZY executes Case (VIII)
for each deletion in the D-sequence. Finally, we define the T-sequence which consists of two requests;
the former is a deletion of a level-2 code, which requires to remove the code assigned to the leftmost
assigned vertex of level 2, and the latter is an insertion of a level-2 code. For each of the T-sequence,
given after the D-sequence, EXTENDED-LAZY executes Cases (I) and (2), respectively. It should be
noted that, for EXTENDED-LAZY, the configuration of the OVSF code tree at this moment is the same
as the one immediately after processing the initialization sequence.

The complete sequence is as follows: We first give the initialization sequence. Then, we repeat k

times the concatenation of I-sequence, D-sequence, and T-sequence. Careful calculation shows that the
cost of EXTENDED-LAZY for each concatenation is k(7h− 26), while the cost of an optimal offline

Algorithms 2009, 2 970

algorithm OPT is k(h − 3). Hence, the ratio between the costs of EXTENDED-LAZY and OPT is
n/4+h+k(7h−26)
n/4+h+k(h−3)

= 7 − 3n/2+6h+5k
n/4+h+k(h−3)

. Note that 3n/2 + 6h + 5k and n/4 + h + k(h − 3) are posi-

tive because h ≥ 5 and k > 0. Now, if h and k go infinity, 3n/2+6h+5k
n/4+h+k(h−3)

becomes smaller than any
positive constant ε.

5. A Lower Bound

Theorem 3. For any positive constant ε, there is no (2− ε)-competitive online algorithm for the online
OVSF code assignment problem.

Proof. Consider an OVSF code tree of height h (where h is even), namely, the number of leaves are
n = 2h. First, an adversary gives n insertions of level-0 codes so that the vertices of level 0 are fully
assigned, by which, an arbitrary online algorithm incurs the cost of n. Then, depending on the assignment
of the online algorithm, the adversary requires to remove one code from each subtree rooted at a vertex
of level h/2. (Hereafter, we simply say “subtree” to mean a subtree of this size.) Since there are

√
n

such subtrees, the adversary gives
√

n deletions in total. Next, the adversary gives an insertion ic1 of a
level-h/2 code. To assign c1, the online algorithm has to make one of subtrees empty by reassignments,
for which the cost of at least

√
n− 1 is required.

Again, depending on the behavior of the online algorithm, the adversary requires to remove
√

n codes
of level 0 uniformly from each subtree except for the subtree to which c1 is assigned. Here, “uniformly”
means that the numbers of removed codes for any pair of subtrees differ by at most 1; in the current
case, the adversary requires to remove two codes from one subtree, and one code from each of the other√

n − 2 subtrees. Subsequently, the adversary gives an insertion ic2 of a level-h/2 code. Similarly as
above, the online algorithm requires at least

√
n− 2 reassignments to assign c2.

The adversary repeats the same operation
√

n rounds, where one round consists of
√

n deletions to
remove codes of level 0 uniformly from subtrees, and one insertion of a level-h/2 code. Eventually, all
initial codes of level 0 are removed, and the final OVSF code tree contains

√
n codes of level h/2.

The total cost of the online algorithm is at least

n +
√

n +

√
n∑

i=1

(
√

n− d
√

n√
n + 1− i

e) = n +
√

n +

√
n∑

i=1

(
√

n− d
√

n

i
e)

= 2n +
√

n−
√

n∑

i=1

d
√

n

i
e

> 2n +
√

n−
√

n∑

i=1

(

√
n

i
+ 1)

= 2n−
√

n∑

i=1

√
n

i

= 2n−√n(log
√

n + (

√
n∑

i=1

1

i
− log

√
n)).

Algorithms 2009, 2 971

On the other hand, the cost of an optimal offline algorithm is n+
√

n since it does not need reassignment.
Hence, the competitive ratio is at least

2n−√n(log
√

n + (
∑√

n
i=1

1
i
− log

√
n))

n +
√

n
= 2−

√
n(log

√
n + 2 + (

∑√
n

i=1
1
i
− log

√
n))

n +
√

n
.

Since limn→∞(
∑√

n
i=1

1
i
− log

√
n) = γ (γ ' 0.577) is the Euler’s constant, the term

√
n(log

√
n+2+(

∑√
n

i=1
1
i
−log

√
n))

n+
√

n
becomes smaller than any positive constant ε as n goes infinity.

6. Conclusion

We proposed a new online algorithm for the OVSF code assignment problem. We proved that it is
7-competitive, improving the previous bound of 10, and we showed that our analysis is tight by giving an
input sequence for which the competitive ratio of our algorithm is 7− ε for an arbitrary constant ε > 0.
We also improved the lower bound from 5/3 to 2. The upper bound is now improved to 6 by Chin, Ting,
and Zhang [12]. However, the gap between upper and lower bounds is still large and it is an interesting
future work to narrow it.

References

1. Holma, H.; Toskala, A. WCDMA for UMTS; Wiley: New York, NY, USA, 2001.
2. Laiho, J.; Wacker, A.; Novosad, T. Radio Network Planning and Optimisation for UMTS; Wiley:

New York, NY, USA, 2002.
3. Adachi, F.; Sawahashi, M.; Okawa, K. Tree-structured generation of orthogonal spreading codes

with different lengths for forward link of DS-CDMA mobile radio. Electronics Letters 1997, 33,
27–28.

4. Erlebach, T.; Jacob, R.; Mihaľák, M.; Nunkesser, M.; Szabó, G.; Widmayer, P. An algorithmic view
on OVSF code assignment. Algorithmica 2007, 47, 269–298.

5. Forišek, M.; Katreniak, B.; Katreniaková, J.; Královič, R.; Koutný, V.; Pardubská, D.; Plachetka,
T.; Rovan, B. Online bandwidth allocation. Proc. of The 16th Annual European Symposium on
Algorithms (ESA) 2007, LNCS 4698, 546–557.

6. Chin, F.Y.L.; Ting, H.F.; Zhang, Y. A constant-competitive algorithm for online OVSF code assign-
ment. Proc. of The 18th International Symposium on Algorithms and Computation (ISAAC) 2007,
LNCS 4835, 452–463.

7. Chin, F.Y.L.; Zhang, Y.; Zhu, H. Online OVSF code assignment with resource augmentation.
Proc. of The 3rd International Conference on Algorithmic Aspects in Information and Manage-
ment (AAIM) 2007, LNCS 4508, 191–200.

8. Chan, J.W.; Chin, F.Y.L.; Ting, H.F.; Zhang, Y. Online Tree Node Assignment with Resource Aug-
mentation. Proc. of The 15th International Computing and Combinatorics Conference (COCOON)
2009, LNCS 5609, 358–367.

9. Karakoc, M.; Kavak, A. Stochastic Methods for Dynamic OVSF Code Assignment in 3G Networks
Proc. of The 4th International Symposium on Stochastic Algorithms: Foundations and Applications
(SAGA) 2007, LNCS 4665, 142–153.

Algorithms 2009, 2 972

10. Minn, T.; Siu, K.Y. Dynamic assignment of orthogonal variable-spreading-factor codes in W-
CDMA. IEEE Journal on Selected Areas in Communications 2000, 18, 1429–1440.

11. Erlebach, T.; Jacob, R.; Tomamichel, M. Algorithmische Aspekte von OVSF code assignment mit
Schwerpunkt auf offline code assignment. Student thesis as ETH Zürich.

12. Chin, F.Y.L.; Ting, H.F.; Zhang, Y. Constant-Competitive Tree Node Assignment. manuscript.

c© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland.
This article is an open-access article distributed under the terms and conditions of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by/3.0/).

	Introduction
	Preliminaries
	Algorithm Extended-Lazy
	Executions of Extended-Lazy for insertions
	Executions of Extended-Lazy for deletions

	Competitive Analyses of Extended-Lazy
	A Lower Bound
	Conclusion

