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Abstract: Calls from 14 species of bat were classified to genus and species using 

discriminant function analysis (DFA), support vector machines (SVM) and ensembles of 

neural networks (ENN). Both SVMs and ENNs outperformed DFA for every species while 

ENNs (mean identification rate – 97%) consistently outperformed SVMs (mean 

identification rate – 87%). Correct classification rates produced by the ENNs varied from 

91% to 100%; calls from six species were correctly identified with 100% accuracy. Calls 

from the five species of Myotis, a genus whose species are considered difficult to distinguish 

acoustically, had correct identification rates that varied from 91 – 100%. Five parameters 

were most important for classifying calls correctly while seven others contributed little to 

classification performance.  
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1. Introduction 

Variability and similarity in the structure of echolocation calls produced by bats has hindered the 

development of acoustic species classification as a monitoring tool. Individual bats within a species 

may vary their echolocation calls with location [1], habitat [2], stage of foraging [3], and presence of 
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and proximity to conspecifics [4]. Call structure can vary by gender [5], and may also change as an 

individual bat ages [5-7]. Furthermore, the recording equipment used by researchers and the effects of 

the physical environment, for example frequency-dependent atmospheric attenuation, may introduce 

additional variability [6]. Individuals and species sharing a habitat or ecological niche may produce 

echolocation calls that are similar both temporally and spectrally to deal with similar sensorial 

challenges. 

One method that researchers employ to identify bats from their echolocation calls relies on 

subjective analysis of call structure, often supplemented by direct observation of the bat as it flies [8]. 

While such methods can provide results comparable to some computer-based machine learning 

techniques [9], they are of limited use where repeatable (over time and between researchers), 

quantifiable measures of species identity are required [10]. Removal of bias associated with researcher 

experience and enhancement of repeatability of results requires more objective quantifiable methods. 

Multivariate discriminant functions have been used to identify calls of bats recorded in south-east 

England and Italy for habitat-use assessment [11-12] while a decision tree was used to classify zero-

crossed echolocation call recordings from eight Australian species [13]. Neural networks have also 

been used to identify species of British bats flying over organic and conventional farms [14]. Finally, 

machine learning techniques commonly used in automated (human) speech recognition have been used 

to detect and classify calls from five North American bat species [15]. Although these methods allow 

satisfactory identification of several species, others are so similar that the development of new methods 

may be required to separate them. Convergence in call structure among species makes acoustic 

identification of Myotis bats especially challenging. 

In this study we aimed to test the ability of two classifiers, support vector machines (SVM) and 

ensembles of artificial neural networks (ENN), to classify the echolocation calls of bats with the hope 

that they would produce consistently high correct classification rates. A third technique, discriminant 

function analysis, was used as a benchmark against which the performance of these classifiers could be 

compared.  A relatively recent advance in machine learning techniques, SVMs work by creating 

separation boundaries between classes by training iteratively on a dataset. The separation boundaries 

between classes are modified for each case (in this study, a case is the parameters derived from a single 

call) in the dataset. Modifications are based on data points that lie on the boundary of each class, i.e., 

support vectors in the dataset [16]. SVMs have been used successfully for multi-dimensional 

classification tasks such as cancer tissue classification from microarray data [17]. They have also been 

applied in acoustic research for tasks such as classification of musical audio [18]. Ensembles use a 

group of classifiers and a voting system to decide on the classification of an input [19]. They work by 

presenting the inputs to each classifier within the ensemble and collating the results to reach a 

consensus classification. Provided the members of the ensemble have a classification rate greater than 

50%, the ensemble will achieve a higher classification rate than any one member alone [19]. 

Classifiers in an ensemble can also be arranged into a hierarchy where the ensemble input is initially 

classified into a number of general classes before being classified to a more detailed class. This allows 

members of the ensemble to be trained on specific tasks, rather than the entire classification task [20-

21]. Prudent selection of hierarchical classification branches can enhance overall classification 

performance.  
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Here we describe the ability of SVMs and ENNs to correctly classify 14 species of bats resident in 

the United Kingdom based on acoustic parameters measured automatically from echolocation calls 

recorded in the field. Using these techniques we achieved unprecedented high correct classification 

rates for all but three species found in the United Kingdom, including five species from the Myotis 

genus. 

2. Methods 

We used the recordings from a previously published study [21] as a source of calls to train and test 

the SVMs and ENNs; methods used for the collection, recording, digitization and selection of calls can 

be found in that paper. From these recordings we obtained a library of 713 search-phase echolocation 

calls from 14 species of bat resident in Britain (see Tables 2 and 4 for species and sample sizes, 

respectively). Only one call was used from each individual bat recorded.   

We used an automated algorithm implemented in Matlab (v7, Mathworks, Nattick, MA) to extract 

calls from the background noise and measure parameters. Prior to the extraction of a call, a 10th order 

Butterworth high-pass filter (cut-off frequency of 15 kHz) was applied to improve the signal-noise 

ratio. Extraction of a call from a recording began by finding the approximate centre of the echolocation 

call by applying a 100:1 moving average filter to the absolute value of the signal and finding the 

position of highest amplitude within the recording. The algorithm then iterated forward through the 

recording, calculating power spectra containing 256 data points (representing 5 s). The data were then 

zero-padded to 1024 points and a power spectrum of the same size was calculated. The algorithm 

iterated through the recording in steps of 6 points, giving 98% overlap between successive power 

spectra (final resolution 78 Hz). The power spectrum was then smoothed using a 20:1 moving average 

filter and normalised between 0 and 1. The algorithm would stop iterating through the recording if one 

of two criteria were met: 1) the frequency with highest energy of the power spectrum was more than 8 

kHz different from that of the previous iteration, or 2) the average signal to noise ratio of the 

normalised power spectrum exceeded a value of 0.01 (Equation 1). Both criteria were indicative of the 

algorithm reaching the end of a call and moving into the background noise. Once the algorithm found 

the end of the call, it repeated the search but this time moving from the point with highest energy in the 

call back towards its beginning. 

 

T 
Si  Si1

i 0

k1


k

                   (1) 

 

Equation 1: Calculation of the hill climbing threshold parameter for the noise estimation call 

isolation algorithm. The threshold parameter (T) is obtained dynamically for each given signal. (S = 

absolute value of the power spectrum data points, k = number of samples in the power spectrum). 

 

Using deterministic algorithms, twelve parameters were extracted automatically from each call. 

Five of these parameters: call duration (ms), frequency at the start of the call (kHz), frequency at the 

end of the call (kHz), frequency at half the duration of the call (kHz) and frequency at the maximum 
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energy of the call (kHz) have been used in previous studies [11, 21, 34], and are referred to here as the 

‘base’ parameters. Once isolated from the background signal, the call duration was measured by 

dividing the number of samples in the isolated call by the sample rate. Frequency at the start of the 

extracted call was obtained by taking a 1024-point power spectrum of the first 256 s of the call 

(resolution 3.9 kHz) and noting the frequency with most energy; the signal was zero padded to 1024 

samples before the FFT was applied. This procedure was repeated for the centre and final 256 s of the 

call to obtain the frequency at half the duration of the call and the frequency at the end of the call. The 

frequency with maximum energy was obtained by applying a FFT to the entire isolated call. As calls 

varied greatly in length, and therefore number of samples, each call was first zero padded to increase 

its length to the nearest power of two before the FFT was applied. The resulting power spectrum was 

then reduced to 1024-samples using a moving average filter and the frequency at the maximum energy 

of the call measured. 

The sixth call parameter estimated the rate of change (i.e. second order derivative) of the frequency-

time course of each call (RoC, expressed at kHz/ms2). The frequency-time course was calculated by 

measuring the frequency with peak amplitude from successive power spectra taken throughout the call. 

Each power spectrum was calculated from a zero-padded 1024-point FFT of successive 128 s 

portions of the call. Each successive power spectra overlapped the previous one by 80% (102.4 s) 

giving a resolution in the frequency-domain of 1.6 kHz. The frequency with maximum amplitude of 

each power spectrum was used to mark out the frequency-time course of the call. 

The seventh parameter was a standardised bandwidth measurement, taken from a normalised 

version of the power spectrum calculated to measure frequency with maximum energy of the call. 

Standardised bandwidth was defined and measured as the bandwidth of the call at 80% of the 

maximum amplitude. A high bandwidth measurement denotes a relatively broad spread of energy 

across the echolocation call while a low value energy focused into a narrow range of frequencies. 

The next four parameters measured the distribution of energy across an echolocation call. Each call 

was subjected to a Hilbert transform [35] and multiplied by its conjugate; the output was normalised 

between zero and one. The resulting signal was separated into four quartiles, and the sum of each 

quartile’s amplitude was divided by the sum of the signal’s total amplitude. This gave the energy each 

quartile contained expressed as a proportion of the call’s total energy. 

The final parameter was a discrete variable that categorised calls into one of three previously 

described types [36] and one devised by us: constant frequency (CF), frequency modulated (FM), 

quasi-constant frequency (QCF), and kinked (K). Kinked calls were characterised by having a sudden 

decrease in frequency in the final quarter of the call. This degree of frequency modulation was 

calculated by comparing the initial peak frequency, and the final peak frequency of the quarter. If the 

degree of modulation was above a threshold of 6 kHz, and the first quarter of the call did not contain a 

positive frequency modulation (indicative of a call from Rhinolophus sp.), then the echolocation call 

was classed as kinked. If a kink in the last part of the call was not present, the call was checked for 

constant frequencies. This was done by checking if the start and end frequency of the call were both 

less than the centre frequency of the call (indicative of a call from Rhinolophus sp.). If this category 

was rejected, the call was then tested for frequency modulation. FM calls were defined as having a 

relatively constant rate of change in frequency. Rate of change was calculated as the mean second-

order derivative of a 1st order polynomial fitted to the start, centre, and end frequencies of the call. 
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Calls whose rate of change was less than 0.2 were classified as FM. Calls not fitting any of the above 

categories were classified as being QCF. 

The extracted parameters were tested for normality in SPSS (SPSS Inc., Chicago IL) using a 

Shapiro-Wilk’s W test and were not normally distributed. Therefore all extracted parameters are 

expressed as medians ± interquartile ranges. For the purpose of comparison with other studies, the five 

base parameters were also summarised as mean ± one standard error (SE). 

Call parameters were classified to genus and species using three classification algorithms: DFA 

(quadratic with cross-validation), SVM, and ENN. DFA is relatively robust to deviations from 

normality, which are likely to reduce performance slightly [37]. Examination of the covariance 

matrices showed that they were heterogeneous and transformation of the data did not reduce 

heterogeneity, nor did it reduce deviation of the data from normality. Therefore, quadratic discriminant 

functions were calculated in all analyses [37], using untransformed data. The neural networks used in 

the ENN and the SVMs were trained on half of the dataset, and then tested on the remaining half to 

give an indication of classification performance on unseen data. DFA was carried out using SPSS and 

calls classified to genus and species. The SVM classifier was trained and tested using Matlab. The 

kernel functions of the support vector machines used a radial basis function with a gamma parameter 

ranging from 0.005 to 0.03 in steps of 0.005, from 0.03 to 0.1 in steps of 0.01, and from 0.1 to 0.5 in 

steps of 0.1. For each value of gamma, the support vector machine was reinitialised 20-times to 

increase the chance of obtaining an optimal classifier. A support vector machine was trained for every 

target case in the dataset (each genus, or species) to classify an instance as either belonging to that 

case, or not. All classifiers were then combined and categorised each echolocation call as either 

belonging to a specific class (genus or species), or not. A call was classified correctly only if a single 

support vector machine classified it, and that classification was correct.  

Neural networks were trained and tested using Matlab. Neural networks used a sigmoidal activation 

function and varied in learning rate, momentum, number of hidden layers, and number of neurons per 

hidden layer used (Table 1). Because overtraining can lead to a decrease in accuracy [38], each neural 

network configuration recorded its best epoch and associated weights. Once 2500 epochs had been 

completed, the weights of the best epoch were saved to file. The best epoch was identified as the one 

that produced the highest minimum accuracy over all targets, and then the highest average accuracy 

over all targets. When all permutations of architectures were exhausted, the top 50 performing neural 

networks were refined by retraining with randomly initialised weights 30 more times, as the values of 

the initial weights affect the accuracy of the neural network [39]. Performance was measured by 

sorting the networks first by highest minimum classification rate, and then highest average 

classification rate. Two types of ENNs were generated. The first utilized the top performing 21 neural 

networks (of the 50 retrained networks) trained to classify calls to species. The second type used a 

hierarchy of neural networks [21]. The first layer of the hierarchy used an ensemble of the top 21 

performing neural networks (of the 50 retrained networks trained to genus level) trained to classify 

calls only to genus. Within each genus, ensembles of 21 neural networks (of the 50 retrained networks 

trained for each species) were trained to classify calls only from species within a particular genus. 

The performance of the SVMs and ENNs were ranked first in order of minimum classification rate, 

and then by average classification rate. This prevented a classifier that performed poorly on one or two 
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genera or species to be selected over one that performed slightly worse on average, but better in 

general. 

Table 1. Ranges of values for neural network configuration. The top performing 50 

permutations of the parameters were refined to increase the probability of finding an 

optimal neural network by retraining with randomly initialised weights 30 times. 

Parameter Values 

Learning Rate 0.01, 0.02, 0.05, 0.08, 0.1, 0.2, 0.3, 0.4, 0.5 

Momentum 0.0, 0.1, 0.2, 0.3, 0.4, 0.5 

Hidden Layers 1, 2 

Neurons per hidden layer 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 

 

3. Results 

All parameters measured (Tables 2 and 3), except those from calls from Plecotus auritus, agreed 

with those already published for the same dataset [18]. The duration of P. auritus calls was 

approximately half that reported previously, and this may account for the higher center and end 

frequency measurements of this study. 

Discriminant function analysis classified calls to genus with an overall accuracy of 81% (Table 4). 

Calls of Rhinolophus were all correctly identified, and more than 90% of the calls from Pipistrellus, 

Myotis, and Barbastella were identified correctly. Discriminant function analysis identified correctly 

71% of the calls from Plecotus, which were mainly confused with Barbastella calls (21%). Calls from 

Nyctalus were identified with the lowest accuracy (58%) and were confused predominantly with calls 

from Eptesicus (37%).  

Discriminant function analysis correctly classified 73% of the calls to species (Table 5). Calls from 

both species of Rhinolophus were all classified correctly, and calls from Barbastella were classified 

with more than 90% accuracy. Calls from M. mystacinus were least accurately classified (42%), and 

were mainly misclassified as being from other Myotis species (28% of calls were confused as M. 

brandtii, 8% as M. daubentonii, and 8% as M. bechsteinii). Calls from N. leisleri were also poorly 

classified (45%) and were misclassified mostly as E. serotinus (33%). Just 56% of calls from E. 

serotinus were classified correctly, and were mainly misclassified as calls of N. leisleri.  

We assessed the relative importance of each parameter to the DFA classification of calls using 

Wilks’ lamba values (Table 6). Parameters that score a lambda close to zero indicate a greater 

importance for species differentiation, whereas those that have a lambda close to one are less 

important. The most useful parameters for discriminanting between different species were the five base 

parameters, followed by the standardised bandwidth measurement, call type classification, and 

quarterly amplitude measurements. The spectrogram rate of change estimate was the least important 

parameter. A Kruskal-Wallis test was applied to each parameter to test if they were significantly 

different between species. After corrections for multiple comparisons, all parameters had a 2 value 

much greater than the critical value. 
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Table 2. Parameters measured from echolocation calls. Values are median ± IQR (Range). Call type values are stated as percentage of calls 

marked as quasi constant frequency (QCF), constant frequency (CF), frequency modulated (FM), and kinked (K).  Parameters are duration 

(ms), start frequency (Fstart, kHz), end frequency (Fend, kHz), center frequency (Fcenter, kHz), frequency with maximum energy (Emax, 

kHz), standardised bandwidth (SBW, kHz), Rate of change (kHz/ms2), and quartile amplitude (Q1 – Q4, % of total energy in call). 

Parameters presented here for Plecotus auritus should not be taken as indicative of the species. 

Species Duration FStart FEnd FCenter EMax SBW RoC Q1 Q2 Q3 Q4 Type 

Barbastella barbastellus 2.91±1.22 38.76±9.04 27.99±6.46 34.45±6.89 34.24±6.89 1.29±0.65 0.00±0.02 0.16±0.14 0.38±0.07 0.35±0.17 0.11±0.14 68.5% QCF, 6% CF, 

 (7.95) (23.26) (15.93) (18.95) (19.6) (1.72) (0.36) (0.81) (0.49) (0.48) (0.69) 8.5% FM, 17% K 

Eptesicus serotinus 6.83±3.83 64.45±8.78 26.37±4.39 34.67±5.18 33.20±5.20 2.58±2.17 0.01±0.04 0.07±0.14 0.36±0.13 0.37±0.20 0.14±0.11 84.21% QCF, 0% CF, 

 (18.25) (27.65) (22.46) (25.39) (24.19) (5.62) (0.3) (0.36) (0.62) (0.69) (0.34) 5.26% FM, 10.53% K 

Myotis bechsteinii 1.84±0.48 117.57±13.78 37.47±3.45 75.37±7.5 71.92±4.74 5.81±3.01 0.00±0.02 0.07±0.05 0.28±0.14 0.39±0.15 0.18±0.13 8% QCF, 0% CF, 

 (1.61) (52.54) (12.06) (23.26) (19.38) (14.21) (0.37) (0.32) (0.39) (0.56) (0.39) 92% FM, 0% K 

Myotis brandtii 4.15±1.19 106.93±10.01 31.13±7.39 60.06±7.8 53.96±3.36 5.49±2.81 0.01±0.08 0.03±0.03 0.16±0.10 0.53±0.07 0.27±0.1 60% QCF, 2% CF, 

 (3.61) (41.5) (22.95) (40.53) (34.48) (11.37) (1.66) (0.17) (0.4) (0.41) (0.74) 38% FM, 0% K 

Myotis daubentonii 2.72±1.28 87.86±6.89 31.87±4.31 56.42±4.31 55.13±6.24 3.23±3.66 0.00±0.01 0.10±0.13 0.31±0.13 0.34±0.12 0.21±0.09 8% QCF, 0% CF, 

 (2.54) (18.52) (12.49) (11.2) (18.73) (12.06) (0.09) (0.34) (0.38) (0.37) (0.38) 80% FM, 12% K 

Myotis mystacinus 2.64±0.83 106.2±19.28 33.16±8.66 63.79±9.4 54.32±7.87 4.39±3.78 0.02±0.04 0.02±0.04 0.13±0.14 0.39±0.26 0.41±0.25 36.11% QCF, 0% CF, 

 (3.57) (55.66) (24.51) (50.29) (31.56) (18.8) (0.92) (0.20) (0.91) (0.64) (0.74) 44.44% FM, 19.44% K 

Myotis nattereri 3.17±3.5 125.49±20.97 24.9±2.46 73.24±27.88 60.29±27.85 5.17±3.2 -0.03±0.06 0.01±0.02 0.13±0.11 0.45±0.17 0.38±0.23 34.94% QCF, 0% CF, 

 (6.37) (80.1) (25.63) (59.76) (64.15) (11.41) (1.09) (0.38) (0.49) (0.61) (0.83) 60.24% FM, 4.82% K 

Nyctalus leisleri 7.37±3.34 63.48±16.84 26.86±4.48 32.23±4.88 31.01±3.91 1.61±1.01 0.02±0.05 0.17±0.16 0.39±0.11 0.32±0.14 0.10±0.07 78.57% QCF, 1.19% CF, 

 (13.63) (57.63) (28.32) (24.11) (24.51) (5.67) (1.18) (0.71) (0.47) (0.58) (0.27) 3.57% FM, 16.67% K 

Nyctalus noctula 15.56±10.91 36.4±20.46 21.75±4.03 24.55±5.24 23.68±4.62 0.8±0.57 0.01±0.02 0.30±0.40 0.32±0.10 0.24±0.33 0.10±0.17 78.41% QCF, 3.41% CF, 

 (37.17) (45.93) (15.43) (19.74) (13.33) (2.5) (0.06) (0.9) (0.76) (0.57) (0.92) 5.68% FM,12.5% K 

Plecotus auritus 0.82±0.53 52.73±17.72 37.4±19.88 51.17±18.01 50.47±19.70 3.42±0.84 0.00±0.13 0.17±0.18 0.39±0.26 0.28±0.12 0.10±0.24 41.18% QCF, 17.65% CF, 
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Table 2. Cont. 

 (3.24) (26.27) (31.31) (35.64) (37.11) (4.57) (2.63) (0.46) (0.60) (0.40) (0.52) 41.18% FM, 0% K 

Pipistrellus pipistrellus 5.23±2.94 81.31±15.11 44.92±3.15 47.61±3.47 46.63±2.67 0.73±0.49 0.02±0.07 0.15±0.18 0.4±0.13 0.3±0.16 0.08±0.13 94.44% QCF, 0% CF, 

 (6.59) (58.24) (11.53) (6.44) (7.98) (1.45) (0.23) (0.46) (0.51) (0.56) (0.27) 0% FM, 5.56% K 

Pipistrellus pygmaeus 7.47±2.59 95.7±20.51 50.82±3.32 53.22±2.27 52.73±2.08 0.65±0.24 0.03±0.03 0.25±0.14 0.46±0.16 0.25±0.14 0±0.1 97.98% QCF, 0% CF, 

 (15.44) (61.52) (13.18) (10.91) (10.42) (2.58) (0.16) (0.84) (0.62) (0.51) (0.21) 0% FM, 2.02% K 

Rhinolophus ferrumequinum 55.93±20.69 67.4±2.37 63.95±3.66 82.69±0.43 82.26±0.27 0.43±0 -0.01±0.01 0.17±0.09 0.3±0.07 0.34±0.1 0.17±0.08 0% QCF, 100% CF, 

 (36.99) (8.61) (12.92) (2.15) (2.58) (0.22) (0.03) (0.43) (0.34) (0.36) (0.33) 0% FM, 0% K 

Rhinolophus hipposideros 45±10.46 93.88±3.42 91.31±4.88 111.82±1.46 111.57±0.98 0.49±0.06 -0.01±0.01 0.23±0.11 0.34±0.15 0.27±0.15 0.09±0.13 0% QCF, 97.3% CF 

 (43.94) (20.21) (25.94) (6.33) (6.14) (0.3) (0.02) (0.6) (0.54) (0.47) (0.62) 0% FM, 2.7% K 

 

Table 3. Base parameters measured from automatically extracted echolocation calls. Values are mean ± s.e.m. (CV). Parameters are duration 

(ms), start frequency (Fstart, kHz), end frequency (Fend, kHz), centre frequency (Fcentre, kHz), and frequency of maximum energy (Emax, 

kHz). Parameters presented here for Plecotus auritus should not be taken as indicative of the species. 

 

Species Duration Fstart Fend Fcenter Emax 

Barbastella barbastellus 3.17±0.77 39.19±0.85 28.6±0.79 35.84±0.72 35.63±0.74 

 (0.43) (0.14) (0.15) (0.12) (0.12) 

Eptesicus serotinus 7.44±1.25 63.26±0.8 28.18±0.92 35.03±0.88 33.88±0.82 

 (0.46) (0.1) (0.17) (0.15) (0.14) 

Myotis bechsteinii 1.9±0.28 115.25±1.13 37.95±0.45 74.24±0.67 71.52±0.58 

 (0.21) (0.11) (0.07) (0.08) (0.07) 

Myotis brandtii 3.99±0.46 106.9±0.83 33.16±0.93 61.53±0.95 55.16±0.84 

 (0.23) (0.08) (0.16) (0.12) (0.11) 

Myotis daubentonii 2.44±0.52 87.53±0.47 33.04±0.54 57.45±0.45 55.57±0.59 

 (0.33) (0.05) (0.09) (0.06) (0.08) 
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Myotis mystacinus 2.64±0.53 107.81±1.22 35.36±1.07 64.39±1.29 56.59±1.02 

 (0.32) (0.12) (0.18) (0.16) (0.14) 

Myotis nattereri 3.41±1.04 123.55±1.57 25.65±0.84 76.48±1.88 66.21±2.08 

 (0.56) (0.14) (0.17) (0.21) (0.26) 

Nyctalus leisleri 7.94±0.99 58.93±1.81 27.67±0.94 32.09±0.78 31.02±0.72 

 (0.35) (0.24) (0.18) (0.14) (0.13) 

Nyctalus noctula 17.34±1.92 38.94±1.96 21.94±0.7 25.21±0.77 24.3±0.65 

 (0.46) (0.31) (0.15) (0.15) (0.13) 

Plecotus auritus 1.12±0.72 58.87±1.25 40.47±1.65 51.43±1.48 51.28±1.53 

 (0.68) (0.16) (0.26) (0.21) (0.21) 

Pipistrellus pipistrellus 5.39±0.77 81.16±1.51 45.3±0.35 47.5±0.29 46.81±0.28 

 (0.33) (0.17) (0.05) (0.04) (0.04) 

Pipistrellus pygmaeus 7.56±0.95 93.47±1.45 51.2±0.37 53.34±0.26 52.79±0.25 

 (0.35) (0.15) (0.05) (0.04) (0.03) 

Rhinolophus ferrumequinum 51.35±1.76 67.47±0.25 64.92±0.4 82.54±0.06 82.22±0.06 

 (0.25) (0.03) (0.05) (0.01) (0.01) 

Rhinolophus hipposideros 42.58±1.52 94.49±0.39 92.33±0.66 111.36±0.14 111.06±0.13 

 (0.23) (0.04) (0.07) (0.01) (0.01) 
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Table 4. Correct identification rates of echolocation calls by DFA, SVM and ENN 

classifying to genus. Rates are rounded to the closest integer. 

  Correct Classification Rate (%) 

Genus Calls DFA SVM ENN 

Barbastella 35 97 100 100 

Eptesicus 57 74 79 98 

Myotis 219 92 99 100 

Nyctalus 172 58 88 95 

Pipistrellus 34 96 91 97 

Plecotus 135 71 97 100 

Rhinolophus 61 100 98 100 

Mean  81 93 98 

 

Table 5. Correct identification rates of echolocation calls to species level achieved by 
DFA, SVM, ENN and hierarchical ensembles (Hier. Ensembles) of networks. Rates are 
rounded to the closest integer. 

  Correct Classification Rate (%) 

Species Calls DFA SVM ENN Hier. Ensembles 

B. barbastellus 35 97 97 100 100 

E. serotinus 57 56 75 98 98 

M. bechsteinii 25 88 88 100 100 

M. brandtii 50 68 80 94 98 

M. daubentonii 25 80 80 100 96 

M. mystacinus 36 42 64 97 97 

M. nattereri 83 71 94 99 100 

N. leisleri 84 45 71 91 88 

N. noctula 88 73 86 99 98 

P. auritus 34 62 94 97 97 

P. pipistrellus 36 81 92 100 100 

P. pygmaeus 99 80 99 100 100 

R. ferrumequinum 24 100 100 100 100 

R. hipposideros 37 100 97 100 100 

Mean  73 87 98 98 

 



Algorithms 2009, 2                     917         

 

 

Table 6. Comparison of Wilks' lambda values between this study (1) and a previous study 
[18] (2) for each call parameter used in the DFA to classify calls to genus and species. A 
lower Lambda indicates a higher importance of a parameter for classification. 

Parameter Genus(1) Genus(2) Species(1) Species(2)

End frequency 0.197 0.213 0.147 0.126 

Start frequency 0.035 0.221 0.153 0.139 

Centre frequency 0.514 0.214 0.153 0.147 

Duration 0.002 0.345 0.163 0.221 

Frequency of maximum energy 0.835 0.262 0.18 0.2 

Standardised Bandwidth 0.97  0.44  

Call type 1  0.505  

Quartile 4 1  0.551  

Quartile 2 1  0.579  

Quartile 1 1  0.64  

Quartile 3 1  0.699  

RoC 1  0.982  

 

Unlike DFA and artificial neural networks, the SVMs in this study did not have to classify a call as 

belonging to an output group and can leave it unclassified. The optimal (i.e. achieving the highest 

correct identification rate) SVM for classifying calls to genus had a correct classification rate of 93% 

(Table 4). All calls from Barbastella were correctly identified, and calls from Myotis, Pipistrellus, 

Plecotus, and Rhinolophus were all identified correctly with more than 90% accuracy. Calls from 

Eptesicus were classified relatively poorly (79%) and were most often confused with calls from 

Nyctalus species (16% of calls). Out of all calls, only one call from Rhinolophus was unclassified. The 

measured duration of this call was lower than the actual call duration (as determined by visual 

inspection of a spectrogram of the call), which caused the start frequency of the call to be measured 

higher than the expected value. The call type parameter also classed this call as kinked. 

The best SVM for classifying calls to species achieved an 87% correct classification rate (Table 5), 

with calls from R. ferrumequinum being classified correctly 100% of the time. Calls from B. 

barbastellus, M. nattereri, P. auritus, P. pipistrellus, P. pygmaeus, and R. hipposideros were all 

classified with greater than 90% accuracy. Calls from M. mystacinus were the least accurately 

identified with just 64% classified correctly. Calls from this species were misclassified as being from 

M. brandtii (17% of calls) and M. nattereri (8% of calls). Calls from N. leisleri were also identified 

poorly with 71% correct classification. Calls were misclassified as being from E. serotinus (11% of 

calls) and N. noctula (10% of calls). Eighty percent of calls from M. daubentonii were classified 

correctly while 16% were unable to be classified. A single call from R. hipposideros was unclassified. 

This was the same call that could not be classified by the support vector machine classifying calls to 

genus. 

All ENNs consisted of 21 neural networks, as there were sufficient networks that classified with 

greater than 50% accuracy. The ENN trained to classify calls to genus yielded a 98% correct 

classification rate (Table 4). Calls from Barbastella, Myotis, Pipistrellus, and Rhinolophus were all 
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classified with 100% accuracy. Calls from all other genera were classified with more than 90% 

accuracy. The lowest rate of correct classification was for calls from the genus Nyctalus (95%); which 

were confused with calls of Eptesicus. 

Classification of calls to species achieved 98% accuracy (Table 5). Calls from B. barbastellus, M. 

bechsteinii, M. daubentonii, both Pipistrellus species and both Rhinolophus species were all classified 

with 100% accuracy. Calls from all other species were classified with more than 90% accuracy. Calls 

from N. leisleri were 91% classified correctly, and were misclassified as calls of E. serotinus (5%), and 

N. noctula (4%). 

The hierarchical ensemble of the best performing neural networks achieved an overall accuracy of 

98% (Table 5). Each ensemble of species classifiers within the Myotis, Nyctalus, Pipistrellus, and 

Rhinolophus genera consisted of 21 neural networks. Echolocation calls from B. barbastellus, M. 

bechsteinii, M. nattereri, P. pipistrellus, P. pygmaeus, R. ferrumequinum, and R. hipposideros were all 

classified with 100% accuracy. Echolocation calls from E. serotinus, M. brandtii, M. daubentonii, M. 

mystacinus, N. noctula and Pl. auritus were all classified with 90% accuracy or greater. Calls from N. 

leisleri were classified with the least accuracy (88%), and confused with calls from E. serotinus (12% 

of calls).  

4. Discussion 

Parameters measured from calls of P. auritus were different from those published using the same 

dataset [21]. This discrepancy likely resulted from a difference in the parameter measurement 

algorithm used in the two studies. In the previous study, when a jump in the frequency of the 

fundamental harmonic was detected, indicative of a switch in energy to a higher harmonic, the 

algorithm continued mapping the frequency-time course of the fundamental. In this study, such a jump 

would cause the call isolation algorithm to stop prematurely and return parameters representing only a 

part of the call. Regardless of the true values of call parameters, as long as values are measured 

consistently and differ from those of other species’ calls, then the classifiers will be able to correctly 

identify this species. Such was the case here with more than 95% of P. auritus calls classified 

correctly. However, parameters presented here should not be seen as accurately describing the calls of 

P. auritus. 

In addition to the five base parameters [21], this study extracted seven previously undescribed 

descriptors from the calls. Since the five base parameters measured from all but one species’ calls were 

in agreement with those published previously [21], the increase in classification performance can be 

attributed to either the new parameters or the new classification algorithms (ENNs and SVM). 

Although the DFA in this study misclassified more calls than the previous study [21], a DFA using 

only the five base parameters resulted in a classification rate for species and genus 1% and 4% lower 

respectively (Redgwell, unpubl. data) when compared with the DFA when 9 parameters were included. 

This suggests that although the new parameters do help increase correct identification rates, the use of 

new classification algorithms had a greater effect. 

To provide consistent objective call measurements, and prevent the user adding variation to 

echolocation call parameters by subjective measurement, all parameter extraction algorithms used in 

this study were deterministic and return the same result from the same echolocation call recording 
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regardless of the user. This is important when the classification techniques are trained on parameters 

extracted in a particular way with their own inherent biases. By using a common method of parameter 

extraction, the bias of parameter measurements remains the same as those parameters used to train the 

classifiers [22]. This consistency can increase the likelihood of obtaining an accurate classification of 

unseen calls [15].  

Although often used in classification of calls from echolocating bats, we chose to not use interpulse 

interval as an additional parameter because it relies on knowing that two adjacent calls in a signal are 

from the same individual. This would require classification of the calls before measuring the interpulse 

interval. An extension to the algorithms used in this study could potentially use this measurement as a 

confirmation or augmentation of classification. 

The classification of echolocation calls is a complex task. Recordings of echolocation calls are often 

only partially accurate representations of the original call produced by the bat [23]. A multitude of 

environmental factors can cause variability and distortion in call recordings [23]. Robust machine 

learning techniques tolerant of noisy datasets are therefore desirable. More established techniques such 

as DFA have been shown to perform relatively poorly when classifying the calls of some species of 

British bats [21]. However more recent machine learning techniques such as SVM, neural networks, 

and ENN have demonstrated superior performance on highly noisy datasets [17, 24-27]. Nevertheless, 

the performance of these classifiers still depends on both the quality and quantity of available data. 

The classification rates of calls achieved in this study using DFA was less accurate than those 

published previously [21]. While both studies used the same dataset, this study extracted the 

parameters from the calls using a different automated method, and this likely accounts for the 

disparity. Any extraction method is likely to contain biases that may cause parameters measured from 

different species or genera to overlap, resulting in already problematic genera or species becoming 

more so. Alternatively, features that may help to separate cryptic (sibling) species may become more 

apparent in the dataset when using alternate algorithms to extract parameters, and the value of these 

features may be enhanced by the use of more complex classification algorithms [17, 27]. 

The correct classification rates of this study exceed that of other studies that have attempted to 

classify bat echolocation calls. A study that used multivariate analysis to classify calls of bats in south-

west England was able to reliably identify the species of bat in 83% of 5519 bat passes [11] while a 

study on Swiss bats classified a wide range of species with varying degrees of accuracy using DFA and 

a synergetic pattern recognition algorithm [28]. Classification rates achieved by the Swiss study for 

species in common with the UK were 65% using DFA and 75% using synergetic pattern recognition 

(after filtering, with random selection). Previous research [21] using the same library of calls analysed 

in this study was able to achieve 79% correct classification rate using DFA and 87% using a neural 

network. 

Despite the promising results of this study, the confusion between calls of species in the Myotis 

genus is well known [21, 28] and remains troublesome. This illustrates the difficulty of the task of 

separating calls having many dimensions of variability, and the perhaps unavoidable problem that 

some call recordings lack sufficient information to enable correct classification.  

Of the top five parameters measured, the most important for the separation of bats to genus in this 

study was duration, which was the least important parameter in the previous study [21] for 

classification to both genus and species. Previous Wilks’ lambda values [21] were all below 0.4, which 
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suggests that further parameters would be beneficial in separation of the classes. In this study, genus 

classification was done predominantly by duration, start frequency, end frequency and center 

frequency. Species classification was achieved mainly with the five base parameters. However, call 

type and the four quarter parameters also assisted. The rate of change parameter provided little 

assistance classifying species or genera. 

Our SVMs and ENNs outperformed hierarchical networks [21] and showed similar identification 

rates for non-Myotis species to those obtained using speech recognition algorithms [15]; the only other 

published study to use machine learning techniques to classify calls of bats. The SVM classifier 

achieved higher classification rates for most species and genera. The minimum classification rate 

achieved by the SVM at genus and species level was higher when compared with the neural networks 

[21] and overall, the SVMs performed marginally better for genus classification (~1%) and species 

classification (2%). Support vector machines will always find the global minimum of the configuration 

[29] unlike the other classifiers used in this study, since the classification algorithm is absent of local 

minima [30]. Application of the minimised function onto unseen data may be less effective than other 

techniques however [29], which is likely to explain why the ENNs performed better. Specifically, the 

SVM confused around 13% of calls from E. serotinus with calls from both species of Nyctalus, and 

about 25% of calls from Nyctalus species with E. serotinus. Up to 14% of calls from species within the 

Myotis genus were also confused with other Myotis species, or remained unclassified.  

ENNs trained to classify calls to genus and species performed well with both achieving correct 

classification rates exceeding 97%. All species and genera were classified with higher rates than the 

neural network trained in the previous study [21]. Importantly, the lowest correct classification rates 

achieved by the genus- and species-level networks were 95% and 91% respectively. Despite the 

hierarchical ENN containing classifiers trained for a more specific task, it produced a slightly lower 

overall classification rate. This contrasted with our expectation that classification rates would be 

increased by including classifiers in the ENN that were trained to classify calls belonging to a single 

genus, rather than classifiers trained to classify calls from all species. The initial weights and 

configuration parameters (learning rate, momentum constant, architecture etc) all predetermine the 

resulting classification abilities of a neural network [19]. We speculate that even with the extensive 

amount of network training we carried out, the optimal configuration was not obtained. Given the 

number of possible configurations of the neural networks, and the amount of time to train each 

network, we could not test all possible network configurations.  

The ENNs we trained used 21 neural networks and fortunately always provided a majority vote for 

a particular target. However, with 21 neural networks, it is possible to obtain a result where an input is 

classified as three separate species with equal votes. A simple work around for such a case would be to 

output the result as ambiguous. However, using a prime number of neural networks will always 

prevent a tie vote. 

Other studies that have used classification techniques such as neural networks or support vector 

machines have shown similar promise in other areas of biology. For example, hidden Markov models 

have been used to classify bird song elements from zebra finches and indigo buntings [31]. The task of 

bird song classification has similar complexity to bat call classification in that it requires a complex 

classifier to discriminate small differences between classes. The Markov model was able to classify 
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more than 90% of syllables from both bird species correctly, and in many cases, correct classification 

exceeded 95%.  

While the results from this study show promise for automated classification of bat calls, there are 

several caveats associated with this system. The calls in this study were all high quality recordings 

with relatively low amounts of background noise. In practice, field recording often produces many 

lower quality recordings that would confound the automated parameter extraction of this study and 

yield poor results. However, experienced researchers are unable to classify such poor quality 

recordings any better than automated algorithms [9]. This system is also biased towards high intensity 

calls, which are more likely to be recorded with higher quality than low intensity calls. Relatively quiet 

calls are also often recorded with underestimated bandwidth [23]. The difference in call intensity can 

be substantial; P. auritus produces echolocation calls as quiet as 76 dB peSPL at 10 cm [32], whereas 

Eptesicus bottae can produce calls with an intensity of 133 dB peSPL at 10 cm [33]. This highlights 

the system’s reliance on high quality recordings to accurately identify bat species. Systems have been 

developed that can better isolate calls from high-noise recordings [15]. However, information lost from 

calls due to atmospheric attenuation will remain lost to the researcher no matter what the recording 

equipment or field conditions. The system used in this study has only been applied to calls from the 

United Kingdom to date, and other species assemblages may present calls that are inseparable by this 

system due to similarity. Furthermore, the number of species in this study is relatively low and adding 

more species would significantly increase the complexity of the classification, and therefore impact the 

classification rates. 

The adoption of a quantitative approach to the identification of echolocation calls offers consistent 

and repeatable classification of unknown calls. In general, the ENN classifier approach provides a 

method to classify calls from a dataset that can encompass the strengths of a wide range of different 

classifiers, that is overall more robust to noise, and yielding more accurate classification. Classification 

rates of machine learning techniques should be quoted as the minimum classification rate (i.e. species 

with the lowest correct identification rate), since this is the most important value for researchers 

wishing to use an automated classifier.  
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