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Abstract: We present a coupled finite element, Kalman filter approach to foresee impact-
induced delamination of layered composites when mechanical properties are partially un-
known. Since direct numerical simulations, which require all the constitutive parameters to
be assigned, cannot be run in such cases, an inverse problem is formulated to allow for mod-
eling as well as constitutive uncertainties. Upon space discretization through finite elements
and time integration through the explicit α−method, the resulting nonlinear stochastic state
model, wherein nonlinearities are due to delamination growth, is attacked with sigma-point
Kalman filtering. Comparison with experimental data available in the literature and concern-
ing inter-laminar failure of layered composites subject to low-velocity impacts, shows that the
proposed procedure leads to: an accurate description of the failure mode; converged estimates
of inter-laminar strength and toughness in good agreement with experimental data.

Keywords: layered composites; impact-induced delamination; Kalman filter; sigma-point
transformation

1. Introduction

Composite structures are often exposed to impact loadings during their life cycle [1]; this kind of
loading conditions may become a serious issue, since composites can be very sensitive to imperfections
beyond a critical threshold load. Depending on the impact energy, i.e. on the momentum of the impactor
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when it strikes the structural component, two different failure scenarios can be expected: (i) in case of
so-called low velocity (and, therefore, low energy) impacts, stress waves propagate inside the composite
leading to diffused damage processes that progressively decrease or even annihilate the residual strength
and stiffness of the structure; (ii) in case of high velocity (and, therefore, high energy) impacts, local
perforation of the laminate occurs, giving rise to very localized failure mechanisms. In the former
case the response of a laminated plate to the impact is characterized by forced vibrations of the whole
structure; in the latter case, the response of a plate and the damaging processes are very localized around
the impact location, and deformation modes of the structure as a whole are only marginally excited.

Having as a target the development of a real-time health monitoring (and, hopefully, control) strategy
for composite structures, in this work we focus on low velocity impact conditions. In such cases, the
aforementioned diffused degradation processes consist in inter-laminar debonding (i.e. delamination)
and intra-laminar damage, the latter being related to fibers failure, matrix cracking and fiber/matrix
decoherence. Typically, a major role is played by delamination; therefore, throughout the whole paper
we shall assume the laminae of the composite to behave elastically, while reduction of the structural
load-carrying capacity may occur only because of inter-laminar damage.

To simplify modeling, the small ratio between the thickness of each inter-laminar phase and the
thickness of the whole laminate is exploited by numerically treating inter-laminar phases as lumped
interfaces. The relevant constitutive laws locally link the tractions acting upon the surfaces of the two
adjacent layers to the displacement jump occurring across the interface, allowing for both opening and
sliding (or shear) deformation modes. This lumped interface formulation has to be considered as a
coarse grained description of the actual inter-phase behavior, as obtained via homogenization along the
thickness direction (i.e. in the direction perpendicular to the stacking plane); the displacement jump
thus accounts for both the elastic response of the inter-phase material and the possible discontinuity
in the displacement field due to micro-cracking. To model micro-cracking processes and the relevant
reduction of the inter-laminar strength, nonlinear constitutive laws are adopted; beyond the attainment
of peak tractions, delamination inception is modeled through a softening regime. Since inter-phase
materials are usually quasi-brittle, dissipative phenomena due to yielding can be disregarded. Moreover,
viscous and rate-dependent properties of the composite phases are not considered here; therefore, only
rate-independent constitutive laws will be adopted.

Within this framework, laminated plates are treated as a stacking sequence of laminae and interfaces.
This scheme, sometimes referred to as meso-scale modeling (see, e.g. [2]), was proved to furnish ac-
curate outcomes at the length scale of the whole laminate (also in terms of delamination prediction),
provided the interface constitutive laws are appropriately calibrated. Since they are typically formulated
on a pure phenomenological basis and contain several parameters to be tuned, this calibration task turns
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out to be difficult, also because of the lower dimensionality of interfaces (two-dimensional loci in a
three-dimensional setting) and because of shadowing effects due to the global laminate response, see
e.g. [3].

To accurately predict the failure mode of layered composites subject to low velocity impacts and si-
multaneously calibrate interface constitutive laws, a coupled finite element (FE) Kalman filter approach
is here proposed. Upon space discretization (through displacement-based finite elements) and time in-
tegration (through the explicit α−method, in order to damp spurious high frequency oscillations in the
fully discretized solution), Kalman filtering is adopted to fully track the structural state in a stochastic
frame [4–6], exploiting system evolution to continuously improve estimates. Because of the nonlinear-
ities induced by inter-laminar softening, the customarily adopted extended Kalman filter (EKF) is not
able to provide robust state tracking and accurate estimations of inter-laminar properties like e.g. strength
and toughness [7]. We therefore attack the problem with the newly proposed sigma-point Kalman fil-
ter (SPKF) [8–10], which avoids the occurrence of unstable evolution of the estimates (see also [11]).
While the EKF linearizes the system evolution equations (through a Taylor series expansion of the rel-
evant mapping, thought to be analytic everywhere, arrested at first order) and accordingly updates the
statistics of the structural state, the SPKF samples the probability distribution of the state via an appro-
priately chosen set of sigma-points, which are then evolved according to the actual nonlinear system
dynamics to obtain the updated statistics of the state itself. Among alternative approaches to system
identification and, specifically, to model calibration, it is worth quoting here [12].

In this work the capability of the proposed FE-SPKF approach is assessed through comparison with
experimental data available in the literature and concerning failure of laminated plates subject to plane
impacts [13, 14]; in such tests, the composites are mainly stressed in the region surrounding the impact
location by dilatational waves propagating in the through-the-thickness direction and causing mode I
delamination. Outcomes show that the failure mode is always correctly captured, and estimated values
of inter-laminar strength and toughness well agree with available data.

Plane impact tests do not allow a complete calibration of the interface constitutive law, since only
model parameters relevant to mode I failure can be estimated. Anyway, forthcoming results show that
under very adverse conditions, as due to fast completion of the whole debonding process, the SPKF
proves to be robust and accurate; on the contrary, under similar conditions the EKF was shown in [7, 15]
to either diverge or provide biased estimates. An extensive assessment of the SPKF performance in
the presence of diffused damage/delamination patterns is beyond the scope of this paper and will be
presented in future works.

As far as notation is concerned, a matrix one will be adopted throughout, with uppercase and lower-
case bold symbols respectively denoting matrices and vectors. A superscript T will stand for transpose,
|2| will denote the norm of vector 2, and a superposed dot will represent time rates.

2. Forward problem: layered composite dynamics

Let us consider a layered body Ω, possessing a smooth outer boundary with unit outward normal m

(see Figure 1). Ω be crossed by nΓ non-intersecting surfaces, or interfaces Γj , j = 1, ..., nΓ. Even though
the local orientation nj of these interfaces may vary in Ω, for ease of notation we shall assume it to be
constant and equal to n along every Γj: interfaces are thus flat and parallel to each other.
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Figure 1. Notation adopted for layered bodies (here nΓ = 2).
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The equilibrium of Ω at time t is governed by:

CTσ + b̄ = %ü in Ω\Γ (1)

Nσ = −τ j on Γ+
j , Nσ = τ j on Γ−j , j = 1, ..., nΓ (2)

Mσ = τ̄ on Γτ (3)

where: Γ = ∪nΓ
j=1Γj; Γτ is the portion of the outer boundary of Ω where tractions τ̄ are assigned. Treating

each Γj as a locus where the displacement field u may suffer jumps (alike a crack), Γ+
j and Γ−j are the

two sides of Γj; these two sides can not be distinguished in the initial configuration (at t = 0) but, as
soon as delamination occurs, they experience a relative movement. In the above equations, according to
Voigt notation: σ is the stress vector; τ j is the traction vector acting along surface Γj; b̄ is the assigned
bulk load in Ω\Γ; % is the bulk mass density; ü is the acceleration field in Ω\Γ; C is the differential
compatibility operator; M and N are the matrices collecting the components of unit vectors m and n,
respectively.

Assuming linearized kinematics, compatibility reads:

ε = Cu in Ω\Γ (4)

[u]j = u

∣∣∣∣
Γ+

j

− u

∣∣∣∣
Γ−j

j = 1, ..., nΓ (5)
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Figure 2. Piecewise linear (PWL) and linear-exponential (L-E) effective traction-
displacement discontinuity relationships.

u = ū on Γu (6)

where: ε is the strain vector; ū is the assigned displacement along portion Γu of the outer boundary of
Ω; [u]j is the displacement discontinuity along surface Γj .

The body is assumed to be initially at rest, in an undeformed and unstressed state:

u0 = 0, u̇0 = 0 in Ω (7)

In case of low velocity impacts, dissipation due to intra-laminar damage is assumed to be negligible
when compared to that due to delamination. Hence, laminae are thought to behave elastically according
to:

σ = EΩε in Ω\Γ (8)

where EΩ is the elasticity matrix of the bulk.
As for inter-laminar phases, to be treated as lumped surfaces along which debonding is the result

of complex micro-scale damaging processes, a phenomenological coarse-grained modeling is adopted.
Strength reduction preceding delamination is governed by softening constitutive laws [3, 16–21], which
locally link tractions τ j (see Eq. 2) to the displacement jump [u]j (see Eq. 5). Since both opening/closing
(along n) and sliding (in the sj

1−sj
2 plane) discontinuities are expected to take place under general loading

conditions, interface kinematics is effectively represented by the displacement discontinuity [u] (in what
follows, for ease of notation, we shall drop subscript j), defined as [22–24]:

[u] =
√

[u]2n + κ2[u]2s (9)

where: [u]n = [u]Tn and [u]s = |[u]− [u]nn| are the opening and sliding displacement discontinu-
ities, respectively; κ is a coupling coefficient, which phenomenologically accounts for the local ongoing



Algorithms 2009, 2 813

mixed-mode damaging in the inter-laminar phase. The effective traction τ , work-conjugate to [u], reads
(see [22, 23]):

τ =

√
τ 2
n +

τ 2
s

κ2
(10)

where τn and τs are the normal and shear traction components.
Since quasi-brittle materials (like inter-phase resins) show a high ratio between compressive and

tensile strengths, inter-laminar damage in compression due to low velocity impacts can be disregarded.
On the other hand, under tensile stress pulses the response of inter-phase materials is characterized by
softening beyond the attainment of a peak traction. Two simple effective descriptions of this behavior
are here envisaged: a piecewise linear (PWL) law





τ = K[u] if [u] ≤ [u]e

τ = τM + Q ([u]− [u]e) if [u]e < [u] ≤ [u]U

τ = 0 if [u] > [u]U

(11)

and a linear-exponential (L-E) law




τ = K[u] if [u] ≤ [u]e

τ = τM exp (−ς([u]− [u]e)) if [u] > [u]e
(12)

In these cohesive-like envelopes: [u]e is the effective displacement discontinuity at the attainment of the
peak traction τM = K[u]e (elastic limit); K is the stiffness in the elastic regime; Q is the (negative) slope
of the softening branch in the PWL case; [u]U =

(
1− K

Q

)
[u]e is the effective displacement discontinuity

beyond which the interaction of opened crack faces is annihilated in the PWL case; ς defines the slope
of the softening branch in the L-E case. The two effective models (11) and (12) are compared, for

[u] > 0, in Figure 2 at assigned effective fracture toughness, or work of separation G =
∞∫
0

τ d[u]. It

is worth noting that, since the L-E law assumes the interaction between crack faces to continue up to
[u] →∞, delamination growth is modeled via a breakdown threshold; according to [25, 26], we assume
this interaction to suddenly vanish as soon as the current traction τ becomes smaller than a pre-defined
fraction (say 5-10 %) of the peak value τM .

To allow for irreversibility of the micro-mechanical damage processes, unloading from the tensile
envelope follows a radial path to the origin of the τ − [u] plane. In rate form, constitutive modeling for
interface Γj can thus be written:

τ̇ j = EΓ[u̇]j (13)

where EΓ is the interface tangent stiffness matrix. For additional details, readers are referred to [23, 24].
Upon space discretization via displacement-based finite elements, the weak form of the equilibrium

equations for the layered body reads:

Müh + KΩuh +

nΓ∑
j=1

Rj = F (14)
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where uh is the vector of nodal displacements. In (14) the mass matrix M, the bulk stiffness matrix KΩ,
the internal force vectors Rj , j = 1, ..., nΓ, and the external load vector F are respectively given by:

M =

∫

Ω\Γ

%ΦTΦ dΩ

KΩ =

∫

Ω\Γ

BT
ΩEΩBΩ dΩ

Rj =

∫

Γj

BT
Γj

τ j dΓj

F =

∫

Ω\Γ

ΦTb̄ dΩ +

∫

Γτ

ΦTτ̄ dΓτ

(15)

Here: Φ is the matrix of nodal shape functions; BΩ and BΓj
are, respectively, the compatibility matrices

for the bulk Ω\Γ and surface Γj [7, 27].
In the space-discretized formulation here above we have implicitly assumed that the displacement

field uh may be discontinuous only along inter-element boundaries. Smarter formulations [23, 28–
31] allow also for intra-element discontinuities by exploiting the partition of unity property of standard
nodal shape functions [32]; since delamination in layered continua occurs along the a-priori known inter-
laminar surfaces, the description of the discontinuity topology is simple and the aforementioned feature
of the smart (usually termed extended) finite element formulation is of no help.

We now need to adopt a time stepping scheme for (14), able to reduce to a minimum or even avoid
spurious high frequency oscillations of the velocity field in the fully-discretized solution. In [33] it
was shown that local corrective flux terms can be adopted to accurately track discontinuities in the
velocity field due to the propagation of stress wave fronts. Since this time stepping scheme is compu-
tationally expensive while our target is a low-cost scheme, a less expensive (and, indeed, less accurate)
explicit α−method is adopted [34, 35]. Having partitioned the time interval of interest according to
[t0 tN ] = ∪N−1

i=0 [ti ti+1], the solution of (14) at time ti+1 in terms of nodal displacements, velocities
and accelerations is obtained according to:

• prediction:

ũh
i+1 =uh

i + ∆t u̇h
i + ∆t2(

1

2
− β)üh

i (16)

˜̇uh
i+1 =u̇h

i + ∆t(1− γ)üh
i (17)

where ∆t = ti+1 − ti is the time step size;

• integration:

üh
i+1 = M−1

(
Fi+1+α − (1 + α)

(
Kũh

i+1 +
∑

j

R̃j
i+1

)
+ α

(
Kui +

∑
j

Rj
i

))
(18)

where: Fi+1+α = F(ti + (1 + α)∆t); Rj
i and R̃j

i+1 are respectively computed (see Equation 153)
adopting τ j,i = τ j([u

h
i ]j) and τ̃ j,i+1 = τ j([ũ

h
i+1]j);
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• correction:

uh
i+1 =ũh

i+1 + ∆t2β üh
i+1 (19)

u̇h
i+1 =˜̇uh

i+1 + ∆tγ üh
i+1 (20)

To get oscillations of small amplitude in the velocity field, the following values of the algorithmic param-
eters α, β and γ have been adopted: α = −0.3; β and γ finely tuned around values allowing second-order
accuracy in linear elastodynamics [36].

The time step size ∆t has been set so as to fulfill the Courant condition in the bulk. In case of growing
delamination, interface elements in the process zone (where damage is locally reducing the inter-laminar
strength and stiffness) need to be sized so as to accurately resolve the traction field; this requirement
is satisfied if the characteristic size of interface elements is a fraction (say 1

3
− 1

5
) of the process zone

length, estimated e.g. through Irwin’s law [37]. Since the surrounding FEs in the bulk are associated
to interface elements via matching grids, it turns out that inter-laminar strength and toughness, which
affect the process zone length, actually affect the time step size ∆t too; for details, readers are referred
to [38, 39].

3. Inverse problem: constrained sigma-point Kalman filter

In our study the inverse problem has to provide real-time forecasts of the delamination processes,
along with estimates of uncertain model parameters. Allowing for the above described explicit time
integration scheme, a state vector x gathering all the information on the evolving system is obtained by
joining the nodal displacement, velocity and acceleration vectors to a vector ϑ gathering model parame-
ters in need of calibration:

x =





uh

u̇h

üh

ϑ





(21)

Since laminate failure due to delamination is represented by displacement discontinuities arising along
the inter-laminar surfaces, vector x in (21) also provides the requested details of the failure mode. State
vectors shaped in this way, with model parameters explicitly accounted for, are typically adopted in
extended Kalman filtering [5, 40]. While the current structural state (here uh, u̇h and üh) is always
at least partially observed, model parameters to be calibrated can not be directly measured; by joining
structural and parameter vectors in x, state tracking can consistently enhance model calibration.

Allowing for modeling and measurement errors in a stochastic framework, the discretized state-space
model of the system within the time interval [ti ti+1] reads:





xi+1 = fi (xi) + vi

yi = Hxi + wi

(22)

where: yi is the observation vector, which collects measurables; vi and wi are the process and measure-
ment noises. These noises are assumed to be additive, uncorrelated white and Gaussian processes, with
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zero mean and time-invariant covariance matrices V and W [6, 40]. Because of inter-laminar strength
degradation, mapping fi turns out to be highly nonlinear; on the other hand, since either surface dis-
placements or velocities are measured during testing, the observation equation (222) shows up as a linear
relation between yi and xi (see Eq. 21).

Table 1. Sigma-point Kalman filter.

• Initialization at t0:

x̂0 =E[x0]

P0 =E[(x0 − x̂0) (x0 − x̂0)
T]

• At ti, for i = 0, ..., N

1. Prediction:

χ̂i,j =x̂i + ∆χi,j j = 0, ..., Nχ

χ̂−
i+1,j =fi(χ̂i,j)

x̂−i+1 =

Nχ∑
j=0

ωj χ̂
−
i+1,j

P−
i+1 =R−

i+1 + V

where

R−
i+1 =

Nχ∑
j=0

ω?
j

(
χ̂−

i+1,j − x̂−i+1

) (
χ̂−

i+1,j − x̂−i+1

)T

2. Correction:

x̂i =x̂−i + GU
i

(
yi −Hx̂−i

)

Pi =P−
i −GU

i HR−
i

where

GU
i =R−

i HT (
HR−

i HT + W
)−1

The mentioned nonlinearities of mapping fi cause estimates obtained through a standard EKF to be
affected by biases [41, 42]; to get accurate results, the recently proposed SPKF [8, 9, 43, 44] is instead
here adopted. While the EKF linearizes the mapping fi, the SPKF deterministically samples the proba-
bility distribution of x at time ti (i.e. at the beginning of the time step) through a set of properly chosen
sigma-points χ̂i,j, j = 0, ..., Nχ. These sigma-points are allowed to evolve according to the nonlinear
mapping fi; the statistics of x at time ti+1 (i.e. at the end of the time step) are then obtained through
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a weighted averaging procedure performed on the evolved sigma-points [8]. The filtering procedure is
detailed in Table 1, where E[2] represents the expected value of 2. In this scheme, the number Nχ of
sigma-points, terms ∆χi,j, and weights ωj and ω?

j need to be set so as to achieve maximum accuracy;
such issue is treated in Appendix A, where fundamental results are summarized.

In Kalman filtering it is usually assumed that all the state vector components are Gaussian variables;
hence, the relevant probability distributions cannot be compliant with physical side constraints (like, e.g.
positiveness of inter-laminar strength and toughness). In this work we do not aim to modify this filtering
frame with the adoption of alternative probability distributions; instead, we define terms ∆χi,j so that all
the sigma-points be compliant with the aforementioned side constraints (see Appendix A). Through this
procedure, which was proposed in [27], we can assure that all the sigma-points do not follow unphysical
paths in the state vector space. It is worth noting that this procedure plays a role only when the sigma-
points are well scattered around the mean x̂i (see the prediction phase in Table 1), i.e. mainly at the
beginning of filtering.

4. Failure assessment of laminates exposed to impacts

Figure 3. Impact on a 7-layer composite [13]: space-time diagram (the vertical dashed line
here represents the possibly debonding surface of a brittle, homogeneous material).

To assess the capability of the proposed FE-SPKF approach to provide accurate failure forecasts for
layered composites subject to low velocity impacts and to simultaneously calibrate the inter-laminar
constitutive laws, two experiments reported in the literature have been considered: an impact test on
a 7-layer composite plate (experiment FY06001 in [13]), and an impact test on a 11-layer composite
plate backed by another 11-layer composite plate (experiment 1 in [14]). In both cases, plane impacts
caused the propagation of compressive waves behind the impact location; upon reflection at the rear
surface of the plates, a spall-like failure governed by tensile tractions perpendicular to the inter-laminar
surfaces took place. Because of the experimental set-up, shear tractions do not play any role in the
failure events; in what follows, for ease of notation we therefore avoid using subscript n to denote (mode
I) opening/closing displacement discontinuities along interfaces.
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Figure 4. Impact on a 7-layer composite [13]: (a) comparison between experimental and
tracked free surface velocity records; (b-c) estimated values of inter-laminar openings [u]j ,
j = 1, ..., 6 (b: PWL law; c: L-E law).

(a)

(b)

(c)
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Figure 5. Impact on a 7-layer composite [13]: evolution in time of estimated inter-laminar
(a) strength τM and (b) toughness G.

(a)

(b)

As far as space discretization is concerned, owing to the major role played by dilatational waves
the full three-dimensional problem can be approached as a one-dimensional one featuring constrained
deformation in the plane perpendicular to the wave propagation direction. Accordingly, one-dimensional
meshes of constant strain elements have been adopted for the bulk; the characteristic size (length) of FEs
in the through-the-thickness direction was determined by a trade-off between accuracy requirements and
computational economy (leading to around 10 elements to discretize each lamina).

In the first experiment, each lamina was 1.37 mm in thickness, and was made of a balanced 5-harness
satin weave E-glass and LY564 epoxy. The overall wave speed in the through-the-thickness direction
was measured as 3.34 km/s, while the mass density was % = 1885 kg/m3; additional details and a
thorough discussion of the results from an experimental perspective can be found in [13]. The specimen
was stricken by a 12.5 mm thick aluminum impactor, flying at velocity v = 71 m/s, which led to
dynamic delamination. The free surface velocity profile u̇r was measured during the test with a velocity
interferometer for any reflector (VISAR).
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Figure 6. Impact on a 7-layer composite [13]: evolution in time of estimated inter-laminar
strength τM and toughness G, and of the relevant covariances (a: PWL law; b: L-E law). In
the plots the squares denote the common initial guess ϑ̂0, whereas the circles denote the final
estimates at time tN = 10 µs.

(a) (b)

The space-time diagram of this test is shown in Figure 3: in this diagram, wave reflection and disper-
sion due to the inter-laminar phases [45] have been neglected. Moreover, since failure is actually caused
by delamination, the possibly debonding surface highlighted in the diagram is here to be considered as a
reference one: even in the presence of wave dispersion, the actual failure of the laminate is expected to
occur close to this reference surface.

Figure 4 shows a comparison between the estimated and the experimentally observed free surface
velocity u̇r, and the time evolution of the tracked inter-laminar openings [u]j , j = 1, ..., 6; filter results are
shown for both linear and exponential softening models. Before t ≈ 7 µs information on the mechanical
properties of the failing inter-laminar surface are not filtered, since they are not yet available through
measurables in y (see Figure 3), and some discrepancies between experimental and numerical graphs of
u̇r are shown (see Figure 4(a)). Delamination is foreseen to occur along the third inter-laminar surface
away from the impact location; in fact, only [u]3 is diverging in Figures 4(b) and 4(c), while all the
other interface openings remain bounded. This latter outcome, which is independent of the shape of the
softening envelope, well agrees with the state-space diagram of Figure 3 once wave dispersion caused
by inter-laminar phases and other inner composite inhomogeneities is allowed for.

Previous results are accompanied by model calibration; in Figure 5 the time evolution of estimated
inter-laminar strength τM and toughness G are reported at varying initialization of ϑ within the domain:

Cϑ =





50 ≤ τM,0 ≤ 200 (MPa)

0.5 ≤ G0 ≤ 2.0 (N/mm)
(23)
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These estimates are not modified by the filter (apart from small fluctuations due to the stochastic en-
vironment) till the so-called pull back signal is processed at t ≈ 7 µs. Since [u]3 is already diverging
at that time (see Figure 4), the SPKF cannot obtain much information on the inter-laminar properties;
hence, depending on the initialization in x̂0, it sometimes happens that parameter estimates are eventu-
ally affected by biases. Anyway, it is worth noting that, under the same conditions, the standard EKF
is not able to provide results featuring the same degree of accuracy [7]. In fact, the average converged
estimates of τM are in good agreement with the tensile strength of 119.5 MPa reported in [13], while
final estimates of G well represent the behavior of this kind of composites. On the basis of the similar
accuracy in the calibration of the softening envelopes here considered, it can be said that the shape of the
softening regime does not play a major role in this kind of laminate failure.

To provide further insights into the performance of the FE-SPKF approach, Figure 6 shows an ex-
ample of the time evolution of estimated model parameters along with the relevant statistical dispersion
(here represented through error bars) around the expected values. Because of the aforementioned fast
opening of the only decohering inter-laminar surface, entries in the covariance matrix P are not enhanced
much by the SPKF.

Figure 7. Impact on a 11+11-layer composite [14]: space-time diagram (the vertical dashed
line here represents the possibly debonding surface of a brittle, homogeneous material).

In the second experiment a glass fiber reinforced plastic (GRP) specimen, 7.02 mm thick, was backed
by a 6.91 mm thick GRP plate. The overall wave speed in the through-the-thickness direction of the
plates amounted to 3.19 km/s, and the mass density was % = 1867 kg/m3 [14]. The specimen was
stricken by a 5-layer GRP flyer, 2.96 mm in thickness and flying at velocity v = 85 m/s, which caused
dynamic delamination. During the test the free surface velocity profile was again measured via a VISAR.
The reference space-time diagram is depicted in Figure 7; it is here shown that, because of the test set-up,
release waves interact causing delamination inside the back plate.

Results of the FE-SPKF approach are reported in Figure 8 in terms of comparison between experi-
mental and tracked free surface velocity u̇r, and in terms of estimated displacement jumps along all the
inter-laminar surfaces of the back plate (sequence starting at the specimen/back plate contact surface).
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Figure 8. Impact on a 11+11-layer composite [14]: (a) comparison between experimental
and tracked free surface velocity records; (b) estimated values of inter-laminar openings [u]j ,
j = 1, ..., 10.

(a)

(b)

Tracking capabilities turn out again to be independent of the interface law: in Figure 8 discrepancies
due to the shape of the softening regime cannot be detected. Such results have been obtained for any
initialization values of τM and G inside the domain:

Cϑ =





25 ≤ τM,0 ≤ 100 (MPa)

0.1 ≤ G0 ≤ 0.6 (N/mm)
(24)

Delamination is foreseen to take place along the 7-th inter-laminar surface, in good agreement with the
space-time diagram of Figure 7 and with the results of [7, 14]. As for model calibration, outcomes are
qualitatively similar to those reported for the previous test in terms of accuracy and convergence of the
estimates.
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5. Concluding remarks

In this paper we have proposed a finite element, sigma-point Kalman filter approach to the failure
assessment of layered composites subject to low velocity impacts. Since under such loading conditions
the damage and energy dissipation are mainly linked to the propagation of inter-laminar cracks (delam-
ination), softening interface constitutive laws have been adopted to locally link the tractions transmit-
ted between adjacent laminae to the opening/sliding displacement discontinuities occurring across the
debonding surfaces.

To track in real time the whole state of the laminate and predict failure, a Kalman filter has been
adopted. The filter has also allowed to calibrate the interface constitutive laws, whose parameters can be
difficult to estimate due to the lower dimensionality of the inter-laminar surfaces. To properly deal with
the nonlinearities induced by strength degradation phenomena, the sigma-point version of the Kalman
filter has been implemented: this filter was already proved to be robust in highly nonlinear regimes, and
to furnish more accurate outcomes than the customarily used extended Kalman filter (see [27, 35]).

Through analysis of failures induced by plane waves propagating in the through-the-thickness direc-
tion of stricken laminates, it has been shown that debonding events are accurately tracked by the offered
procedure. Furthermore, inter-laminar strength and toughness, which have been assumed unknown in
the simulations, turned out to be accurately estimated.

In future works, to track and monitor diffused damage/delamination events, even featuring more
complicated patterns than those here investigated, order reduction techniques will be coupled to the
present methodology; this coupling will allow to get closer to the design of health monitoring systems for
complex heterogeneous structures, able to detect in real time possible strength degradation phenomena
induced by loading and environment.

A Sigma-point transformation

In this Appendix we summarize the fundamentals of sigma-point transformation, with focus on its
performance in representing the probability distribution of a random variable vector undergoing a non-
linear transformation [8, 9].

Let x be a Gaussian random vector, with mean x̂i and covariance Pi at time ti. If x undergoes an
analytic, nonlinear transformation fi within the time interval [ti ti+1], its expected value at time ti+1

reads:

x̂−i+1 = E[x−i+1] = fi(x̂i) +
∞∑

n=1

1

n!
E

[
Dn,i

∆x

]
(25)

where:

Dn,i
∆x ≡

(
Nx∑

`=1

∂fi
∂x`

∣∣∣∣
x=x̂i

(x` − x̂i,`)

)n

(26)

Nx being the dimension of x. The relevant error covariance matrix is:

P−
i+1 =E

[(
xi+1 − x̂−i+1

) (
xi+1 − x̂−i+1

)T
]

=
∞∑

n=1

∞∑
m=1

1

n!

1

m!

(
E

[
Dn,i

∆x Dm,iT
∆x

]
− E

[
Dn,i

∆x

]
E

[
Dm,iT

∆x

]) (27)
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Through the sigma-point transformation, the probability distribution of x at time ti is sampled via a
set of sigma-points χ̂i,j scattered around x̂i according to (see Table 1):





∆χi,0 = 0

∆χi,k = +ψ
√

Pi 1k k = 1, ..., Nχ

2

∆χ
i,

Nχ
2

+k
= −ψ

√
Pi 1k

(28)

where: ψ is a scaling factor to be determined;
√

Pi is the square root of the (positive definite) covariance
matrix Pi; 1k is a unit vector pointing towards the k−th component of the state vector in the relevant
space, whose role in (28) is to sample the k−th column of matrix

√
Pi; Nχ = 2Nx.

Information conveyed by the evolved sigma-points are merged at time ti+1 via a weighted averaging
scheme, according to:

x̂−i+1,SPT =

Nχ∑
j=0

ωj χ̂
−
i+1,j

=

(
Nχ∑
j=0

ωj

)
fi(x̂i) +

∞∑
n=1

1

n!

(
Nχ∑
j=0

ωj D
n,i
∆χi,j

) (29)

and:

P−
i+1,SPT =

Nχ∑
j=0

ω?
j

(
χ̂−

i+1,j − x̂−i+1,SPT

) (
χ̂−

i+1,j − x̂−i+1,SPT

)T

=

Nχ∑
j=0

ω?
j

∞∑
n=1

∞∑
m=1

1

n!

1

m!

(
Dn,i

∆χi,j
−

Nχ∑
r=0

ωr D
n,i
∆χi,r

)(
Dm,i

∆χi,j
−

Nχ∑
s=0

ωs D
m,i
∆χi,s

)T (30)

where:

Dn,i
∆χi,j

≡
(

Nx∑

`=1

∂fi
∂x`

∣∣∣∣
x=x̂i

∆χi,j`

)n

(31)

Weights ωj in (29) can be determined by matching the series expansions (25) and (29) up to third
order; by assuming ωj = ω for j = 1, ..., Nχ this requirement results in:





ω0 + Nχω = 1

2ψ2ω = 1
(32)

To also set the value of the scaling factor ψ, a further condition needs to be established. Usually, it is
suggested to match the diagonal entries of the fourth order terms in (25) and (29): this leads to ψ =

√
3.

In [27], partially exploiting the features of the so-called scaled sigma-point transformation [46], we
proposed to adaptively set ψ so as to always fulfill the physical constraints:

ϑm ≤ ϑ ≤ ϑM (33)
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where ϑm and ϑM are, respectively, the minimum and maximum (if applicable) allowed values of model
parameters. These side constraints need to be fulfilled by all the sigma-points χ̂i,j: for j = 0, conditions
(33) are automatically satisfied; for j = 1, ..., Nχ, conditions (33) are satisfied if:

ψ ≤ min

{
ϑ̂` − ϑm

`

a`
k

ϑM
` − ϑ̂`

a`
k

}
, k = 1, ...,

Nχ

2
; ` = 1, ..., Nϑ (34)

where: ak = Bϑ

√
Pi 1k; Bϑ is a Boolean matrix, defined as ϑ = Bϑx; Nϑ is the dimension of vector ϑ.

Weights ω?
j in (30) are set by first letting ω?

j = ωj = ω for j = 1, ..., Nχ. Value of ω?
0 is then obtained

by matching the fourth order terms involving D2,i
3 D2,iT

3 in (27) and (30), thus getting ω?
0 = 4− Nχ

ψ2 − ψ2

[27].
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