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Abstract

This paper proposes a lightweight DGNCA-Net insulator defect detection algorithm based
on improvements to the YOLOv11 framework, addressing the issues of high computational
complexity and low detection accuracy for small targets in machine vision-based insulator
defect detection methods. Firstly, to enhance the model’s ability to perceive multi-scale
targets while reducing computational overhead, a lightweight Ghost-backbone network
is designed. This network integrates the improved Ghost modules with the original
YOLOV11 backbone layers to improve feature extraction efficiency. Meanwhile, the original
C2PSA module is replaced with a CSPCA module incorporating Coordinate Attention,
thereby strengthening the model’s spatial awareness and target localization capabilities.
Secondly, to improve the detection accuracy of small insulator defects in complex scenes
and reduce redundant feature information, a DC-PUFPN neck network is constructed.
This network combines deformable convolutions with a progressive upsampling feature
pyramid structure to optimize the Neck part of YOLOv11, enabling efficient feature fu-
sion and information transfer, while retaining the original C3K2 module. Additionally,
a composite loss function combining Wise-IoUv3 and Focal Loss is adopted to further
accelerate model convergence and improve detection accuracy. Finally, the effectiveness
and advancement of the proposed DGNCA-Net algorithm in insulator defect detection
tasks are comprehensively validated through ablation studies, comparative experiments,
and visualization results.

Keywords: insulator defect detection; lightweight model; improved Ghost module;
Coordinate Attention; progressive upsampling feature pyramid

1. Introduction

As a critical component of power transmission lines, insulators play a key role in
ensuring safe isolation from grounded structures and maintaining the stable operation of
the power grid. However, due to harsh environmental conditions and natural weather
disasters such as strong winds, heavy rain, snow, and high temperatures, insulators are
prone to defects like self-explosion, string drop, damage, and flashover discharge. These
defects not only compromise the integrity of the insulators but can also lead to power
safety incidents [1-3]. Moreover, the complex environments where transmission lines are
located often feature diverse and cluttered backgrounds, including trees, buildings, and
utility poles, which further increase the difficulty of defect detection. Therefore, timely
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and accurate detection of defects in transmission line insulators is an essential measure for
ensuring the safety of the power system.

In the early stages, insulator defect detection relied on manual inspection, which was
not only labor-intensive and time-consuming but also lacked reliability in detection quality.
In recent years, with technological advancements, machine vision-based methods have
become the primary approach for insulator defect detection due to their high real-time
performance and accuracy [4-10]. For example, utilizing drone-captured images enables
the timely and precise identification of damaged insulators. Currently, the two mainstream
methods for machine vision-based insulator defect detection are the lightweight deep
learning model design [11-19] and feature extraction frameworks optimization [20-25].

Dahua Li et al. [11] proposed a LiteYOLO-ID insulator defect detection model with
strong generalization ability by designing a new lightweight convolution module ECA-
GhostNet-C2f and a neck network EGC PANet. Yanping Chen et al. [12] made lightweight
improvements to the backbone network Faster R-CNN, greatly reducing model parameters
and improving its detection accuracy. Zhibin Qiu et al. [13] used a MobileNet lightweight
convolutional neural network to optimize the YOLOv4 model structure, enhancing the
accuracy and speed of insulator defect detection. Zhong Cao et al. [14] introduced CAM
and CSO into the original YOLOv8m, improving detection accuracy and reducing model
parameters. Yang Lu et al. [15] designed a lightweight attention mechanism and introduced
GSConv and C3Ghost convolution modules to reduce redundant parameters in the model.
Yong Jiang et al. [16] adopted a new lightweight module C2f-RBE in the backbone architec-
ture, which replaces traditional bottlenecks with RepViTBlocks and significantly improves
detection efficiency and performance. Cong Liu et al. [17] integrated the Ghost module and
introduced C3Ghost as an alternative to the backbone network, proposing a lightweight de-
tection algorithm for multiple defects in insulators based on an improved YOLOv5s. Weiyu
Han et al. [18] improved the C2f module by introducing the SCConv module, thereby
enhancing the backbone network, reducing space and channel redundancy, and lowering
computational complexity and parameter count. Liangliang Wei et al. [19] proposed an
automatic detection method based on an improved lightweight YOLOv5s model and used
GIoU loss function, Mish activation function, and CBAM module to identify and locate
insulator defects.

Zheng He et al. [20] integrated the Adaptive Feature Fusion (ASFF) module,
which enables the network to learn the relationships between different feature maps,
enhance semantic information, and improve the network’s ability to detect minor defects.
Qiang Zhang et al. [21] constructed the C3 Global Pool Fusion (C3-GPF) module, aiming
to enhance the focus on key data in the extraction and fusion stages of insulator defect
features. Chuang Gong et al. [22] enhanced the C2f structure of YOLOvVS8 and improved
its multi-scale feature extraction and multi-level feature fusion capabilities by integrating
the expansion direction residual module and heavy parameter module. Bao Liu et al. [23]
introduced spatially aware convolution in the task and structure dual decoupling head
regression branch, enhancing the ability to extract spatial feature information in both hor-
izontal and vertical directions. Zhongsheng Li et al. [24] replaced the traditional PANet
structure with a BiFPN-P feature fusion module to improve the extraction of shallow
features. Zhuye Xu et al. [25] proposed a new attention mechanism (MAP-CA) that effec-
tively integrates global and local feature information by combining mean pooling and max
pooling, achieving higher accuracy in insulator defect recognition.

Although the above studies have achieved valuable results, there are contradictions be-
tween model complexity and recognition accuracy in [11-19], and the manually optimized
feature extraction methods in [20-25] have limited generalization ability.
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Moreover, current mainstream object detection algorithms still face significant chal-
lenges in small object recognition. For instance, YOLOv5s only achieves a mAP of 21.5%
for small objects (area < 32 x 32) on the COCO dataset, which is substantially lower than its
performance on medium (44.6%) and large objects (56.2%) [26]. YOLO models often exhibit
low accuracy and sensitivity to background noise in small object detection, where deeper
networks may cause small object features to be lost or suppressed [27]. Since insulator
defects often appear in small sizes and concealed forms, existing methods struggle to bal-
ance detection accuracy and efficiency, particularly in scenarios with complex backgrounds
and low contrast. In light of this, this paper proposes an improved DGNCA-Net insulator
detection framework based on YOLOv11 [28], featuring a lightweight Ghost backbone as
its core backbone network. The primary contributions of this paper can be summarized
as follows.

(1) Deformable convolution (DC) with GhostNet combined in parallel with a 3 x 3 convo-
lution to form the Large-Kernel Deformable Ghost Parallel Convolution (LKDGPC)
module, which replaces original convolution layers in YOLOv11.

(2) A DGhost-C3K (DG-C3K) module is developed based on the Deformable Ghost
(DGhost) module to replace the original C3K2 module, aiming to improve feature
extraction efficiency and representation.

(38) A Cross Stage Partial Coordinate Attention (CSPCA) module is introduced to replace the
C2PAS module in the backbone’s final stage, enhancing object localization capabilities.

(4) A Progressive Upsampling Feature Pyramid Network (PUFPN) with deformable
convolution is proposed as a redesigned neck (DC-PUFPN), enabling better feature
fusion and improved detection of small insulator defects.

The structure of this article is organized as follows: Section 2 provides a comprehensive
introduction and analysis of the proposed model. Section 3 presents detailed quantitative
and qualitative experimental results, validates the effectiveness of each component through
ablation studies, and demonstrates the superiority and advanced performance of the
proposed model through comparative experiments. Finally, Section 4 concludes the article
and summarizes the main findings and key insights.

2. DGNCA-Net Insulator Defect Detection Model

YOLOV11 is a model based on the Cross Stage Partial Network (CSPNet) architecture,
with its core being the C3K2 module, which is an improved version of the C2F module
in YOLOVS. The backbone network and neck network adopt CNN and Path Aggregation
Network (PANet) structures, respectively. However, both the CNN model and the PANet
structure have shortcomings such as insufficient global feature extraction ability and
repeated feature fusion, resulting in low detection accuracy and excessive computational
redundancy. In light of this, this paper improves the feature extraction, feature fusion, and
loss function components based on the YOLOv11 framework, proposing an efficient and
lightweight DGNCA-NET insulator defect detection algorithm. The model framework is
shown in Figure 1:
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Figure 1. DGNCA-NET model framework.

2.1. Large-Kernel Deformable Ghost Parallel Convolution Block

Traditional CNNs suffer from high computational redundancy and insufficient model
lightweighting during feature extraction, making it difficult to meet the efficiency re-
quirements of real-time detection tasks. Despite continuous advancements in exploring
lightweight network structures, the key challenge remains how to reduce the number of
parameters while maintaining or even enhancing feature representation capabilities.

Inspired by [29,30], this paper proposes an LKDGPC module (as shown in Figure 2)
that employs 31 x 31 large-kernel convolution and DGhost for dual-path feature extrac-
tion. LKDGPC feeds input features into two branches: One is a large-kernel convolution
with a large receptive field, which significantly enhances the network’s ability to capture
multi-scale contextual information. It addresses the limited receptive field of small-kernel
convolution layers, thereby improving the detection of insulator defects at various scales,
while also partially mitigating the optimization difficulties associated with increased model
depth. The other branch is a lightweight DGhost module that efficiently generates diverse
and rich local detail features through cheap linear operations, enhancing sensitivity to subtle
and small-scale defects while keeping computational cost low. Finally, the features from the
two branches are concatenated and fused, balancing broad spatial context with fine-grained
details. Moreover, the deformable convolution in the large-kernel branch dynamically
adjusts sampling positions, boosting the model’s adaptability to geometric transformations
and irregular shapes common in insulator defects. Compared to the replaced standard
convolutions, this architectural change not only improves multi-scale perception and local
feature extraction but also reduces overall parameter count and computational complexity,
leading to better detection accuracy and faster inference.

O 31x31 Y\
"\_ Conv /

y

A
o |—D— (o)

Concat

Figure 2. Large-Kernel Deformable Ghost Parallel Convolution Block.
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The DGhost module is an improved variant of the core component in GhostNet,
namely the Ghost module. The fundamental design philosophy of this module is to
generate informative and discriminative Ghost feature maps from the original feature maps
through a series of cheap linear operations, which significantly reduces computational cost
and parameter count while maintaining competitive performance.

As illustrated in Figure 3, the DGhost module integrates both standard convolution
and lightweight linear operations. Specifically, a portion of the input feature maps is first
processed through standard convolution to produce intrinsic features. The remaining
features are then generated by applying multiple cheap linear transformations to the
intrinsic ones. Finally, these two sets of features are concatenated to form the complete
output feature map. Compared to conventional convolutional operations, the DGhost
module enables more diverse and informative feature representations at a significantly
lower computational cost, thereby improving the inference efficiency and deployment
friendliness of the network.

DDconv

DDconv

1Xx1
Conv

input

output

DDconv

Figure 3. Deformable Ghost module.

On top of this, the DGhost module further modifies the original Ghost module by
introducing DC (as shown in Figure 4) into the original depthwise convolution, forming
a deformable depthwise convolution (DDConv). This enhancement allows the module to
better model geometric transformations and complex object structures. By dynamically

adapting the sampling locations, DC increases the spatial flexibility of the convolution
operation, thereby enabling the network to more effectively capture irregular object shapes
and deformations.

Nl P
= [\ /
1IN\

offsets

17
g
cffset field

input feature map output feature map

Figure 4. Deformable convolutional structure.
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For any point pg on the input feature map, the traditional convolution operation can
be expressed as follows:

y(po) =3, cr @(pn)x(po + pn) (1)

where w(pn) is the convolution kernel weight at this position, x(-) is the input feature
map, and p, represents the offset of each point in the convolution kernel relative to the
center point.

In DC, an additional offset Apy, is introduced for each point, the convolution operation
of DC can be expressed as follows:

y(po) =}, cr @(pn)x(po+ pn+ Apn) )

2.2. DGhost-C3K3 Block

The C3K2 module is a key component in the YOLOv11(as shown in Figure 5a). It
is an enhanced version based on the traditional C3 module, designed to improve feature
extraction capabilities. However, the convolutional kernel size in C3K2 is fixed, making
it difficult to capture large-scale or elongated insulator features and to model long-range
dependencies. Additionally, the standard convolution’s spatial sampling is too regular,
failing to dynamically align with irregular cracks, pits, and other deformations on the
insulator surface, which results in challenges in precisely locating tiny defects.

Bottle
Neck

Bottle
Neck

Bottle DGhost

Neck Module
‘C) Concat ‘C) Concat
v v
Conv Conv
(a) C3K2 block (b) DGhost-C3K block

Figure 5. Comparison between C3K3 and DGhost-C3K.

In light of this, this paper proposes a DG-C3K3 module (as shown in Figure 5b), which
replaces the bottleneck in the original C3K2 with a DGhost module. This architectural
change brings several concrete advantages. First, by integrating deformable convolution
within the DGhost module, the DG-C3K3 can dynamically adjust sampling positions based
on the insulator surface texture, enabling more flexible spatial sampling that better aligns
with irregular cracks, concave—-convex edges, and other complex geometric deformations.
This flexibility overcomes the fixed, rigid sampling grid of the original C3K2, improving
the network’s ability to precisely capture fine-grained defect features. Second, the Ghost
mechanism inside the DGhost module efficiently generates diverse and informative feature
maps through inexpensive linear transformations, which enhances feature richness and dis-
crimination without a large computational burden. Although the inclusion of deformable
convolution slightly increases the parameter count, the Ghost mechanism compensates by
significantly reducing redundant computations in feature generation. Overall, this replace-
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ment enhances the module’s adaptability to irregular defect shapes, improves multi-scale
and long-range feature representation, and achieves substantial performance gains with
only minimal computational overhead.

2.3. Cross Stage Partial Coordinate Attention Block

In the YOLOvV11 model, as the network depth increases, deep feature extraction faces
challenges such as information loss and insufficient semantic representation. The attention
mechanism in the original C2PSA module (as shown in Figure 6a) has limited capability in
fusing spatial positional information and channel features, making it difficult to effectively
capture fine-grained structures and long-range dependencies of the target. This results in
imprecise deep feature representations, thereby affecting the model’s detection performance
in complex scenarios.

To address this issue, this paper replaces the Pyramid Split Attention mechanism in the
C2PSA module with Coordinate Attention and proposes a new set of CSPCA modules (as
shown in Figure 6b) to enhance the model’s ability to capture and represent deep semantic
features more effectively.

CA Block
CA Block

CA Block

C) Concat <> Concat
Conv Conv
(a) C2PSA block (b) CSPCA block

Figure 6. Comparison between C2PSA and CSPCA.

The CA block (as shown in Figure 7a) consists of convolution and a Coordinate
Attention (CA) module, achieving feature enhancement through feature concatenation
and residual connections. The coordinate attention mechanism first applies channel-wise
attention weighting to the input features, followed by spatial coordinate-aware optimization
to refine feature representation. Finally, it fuses the refined features with the original ones to
improve the model’s ability to capture both the target’s location and semantic information.

The Coordinate Attention block (as shown in Figure 7b) is based on a residual structure.
It first performs average pooling along the horizontal and vertical directions to capture long-
range spatial dependencies. The pooled features are then concatenated and passed through
a series of operations including convolution, normalization, and non-linear activation to
generate attention weights for both horizontal and vertical directions. These weights are
finally fused with the residual branch to produce the output. By decoupling attention along
the horizontal and vertical dimensions, the module can precisely locate the target’s row
and column positions, effectively enhancing feature extraction for insulators of various
scales and poses, while also reducing computational redundancy.
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Figure 7. CA block and Coordinate Attention block.

2.4. DC-PUFPN Block

The neck network of YOLOv11 adopts the PANet structure, which has the drawback
of using a static weight fusion strategy for feature fusion, lacking dynamic adaptability.
This makes it difficult to adjust the feature fusion strategy according to the input content,
leading to being unsuitable for small-object detection tasks. Meanwhile, PANet repeatedly
performs feature fusion, generating a large amount of redundant information and increasing
computational overhead. This paper proposes a PUFPN structure (see Figure 8), which
adopts a unidirectional, progressive upsampling fusion strategy to reduce redundant
processing. By orderly controlling the number of upsampling operations, the structure
effectively reduces computational redundancy and memory consumption. The fused
features at each scale are directly fed into the corresponding detection head, avoiding
feature contamination caused by repeated transmission. This structure enables accurate
recognition of targets at different scales in insulator images.

input

7[ Neck block Head |

Upsample Concat

Backbon { Neck block Head |

Upsample Concat

4.[ Neck block
Upsample Concat]
_.l Neck block
| _J

Figure 8. Progressive upsampling feature pyramid network.

Head |

[ [ [ 1

Head |

In addition, the PUFPN structure employs the Adaptive Spatial Feature Fusion (ASFF)
module (see Figure 9a) for feature fusion. Building on this, this paper introduces further im-
provements by drawing inspiration from the optimization strategies used in the Backbone
network. Specifically, the standard convolution layers in the ASFF module are replaced
with DC, resulting in the proposed Deformable Adaptive Spatial Feature Fusion (DASFF)
module (see Figure 9b), which enhances the network’s ability to model spatial structures.
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Figure 9. Comparison between ASFF and DASFF.

2.5. Loss Function

The CIoU loss function commonly used in YOLO series algorithms has certain lim-
itations when addressing challenges such as small objects, complex backgrounds, and
class imbalance. Insulator defect detection is a typical small-object detection task often
set in cluttered environments. Moreover, variations in lighting conditions, aerial shooting
distances, and camera angles can lead to significant differences in image quality, resulting in
an imbalance between low-quality and high-quality samples. These factors further degrade
the accuracy and robustness of insulator defect detection in real-world applications.

To improve the network’s convergence speed and detection accuracy, this paper
proposes a combined loss function that integrates Wise-loUv3 and Focal Loss [31]. Wise-
IoUv3 uses a dynamic non-monotonic focusing mechanism to adaptively weight anchor
boxes based on quality, reducing low-quality interference and improving localization. Focal
Loss mitigates class imbalance by focusing on hard samples. Together, they jointly optimize
regression and classification, enhancing overall performance and training stability.

Wise-IoUv3 is an improved bounding box regression loss function that introduces
a dynamic non-monotonic focusing mechanism to intelligently assess anchor quality and
dynamically adjust gradient allocation. This reduces the negative impact of low-quality
anchors during training, enhances the model’s focus on medium-quality anchors, and
improves overall detection performance. The expression for the non-monotonic focusing
Wise-IoUv3 loss function is as follows:

(u— ugt)2 + (v — vgt)2

(2452 X Liou ®3)

L A
Wiollv3 = W X exp

where A = i’”“ is the outlier adjustment factor, which represents the quality of the anchor
box, while A € [0,+). &, u are model learning parameters, (u,v) are the predicted
box center coordinates, and (ugt, vgt) are the ground truth box center coordinates. Sy, Sy,
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represents the size of the minimum bounding box; the superscript * indicates that S;, and
Sy, are detached from the computation graph. Ly, is the generalized IoU loss, used to
evaluate and optimize the matching degree between predicted bounding boxes and ground
truth bounding boxes. Focal Loss helps handle class imbalance by focusing training
on hard-to-classify examples and reducing the impact of easy ones, improving model
performance on difficult samples. The expression for the Focal Loss function is as follows:

Lrocat = —a¢(1 — p1)P* log(pr) (4)

where «; is the class balancing factor, B; stands for the focusing factor, and p; is the predicted
probability of the model for a certain class.

The combination of Wise-loUv3 and Focal can enhance the model’s convergence speed,
focus on small targets, and select low-quality samples, thereby improving the model’s
generalization performance. The loss function designed in this paper is as follows:

1
Floss = 771 exp(—kt +b)

1
Lwiouws + (1 1 +exp(_kt+b))LFocal (5)

where k, b are hyper-parameters controlling weight dynamics, t denotes the number
1

TTexp(—FFTD) is the adaptive weight for the regression—

of epochs during training, and
classification balance.

3. Results and Analysis
3.1. Experimental Preparation

Experimental Environment: The experiment was conducted locally, and the experi-
mental environment is shown in Table 1.

Table 1. Experimental environment.

Python Pytorch CUDA
CPU GPU System Version Version Version
NVIDIA
i513600kf  GeForce U;’rgf 3.12 26 12.8
RTX3090 )

Experimental Data: To improve the model’s generalization ability, the transmis-
sion line insulator defect dataset used in this paper consists of two parts, with a total of
4648 images. The dataset is randomly split into training, validation, and testing sets in
a 7:2:1 ratio. The first part is a self-built dataset containing 3800 insulator images sized
640 x 640 pixels. As shown in Figure 10, these images were captured across different re-
gions using drones and cameras, then stitched to form composites with multiple insulators.
This enhances data diversity and complexity. The dataset includes various environmen-
tal conditions and viewpoints, reflecting real-world challenges such as lighting changes,
occlusions, and complex backgrounds. The second part is the CPLID public dataset [5],
which contains 848 images of insulators. These images include complete insulator string
images from real-world scenarios. The dataset used in this paper not only contains subtle
defect features of the insulators but also includes complex backgrounds found in real-world
environments, thus the experimental results can better reflect the quality of insulator defect
detection in real environments.
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Figure 10. Images of the dataset.

The model’s training hyperparameters are shown in Table 2.

Table 2. Hyperparameter setting.

Input Learning .. Weight Number of
. Momentum  Optimizer Decay .
Image Size Rate . Iterations
Coefficient
640 x 640 0.001 0.937 AdamW 0.0005 600

3.2. Evaluation Metrics

In this paper, the model’s detection performance is evaluated using metrics such
as precision (P), recall (R), and Mean Average Precision (mAP), and the mathematical
expressions are as follows:

TP

P=TpFp ©)
TP

R=TrrEN @
1 n

mAP = - ;APi 8)

1
AP = / P(R)dR )

0

where TP represents the number of true positives correctly identified as positive, FP
represents the number of false positives incorrectly identified as positive, and FN denotes
the number of false negatives incorrectly identified as negative. AP is the Average Precision
for a single class, calculated as the area under the precision-recall (TP) curve. mAP is the
mean value across all classes, with higher values indicating better model precision.

3.3. Ablation Experiment

To verify the advantages of the proposed DGNCA-Net model in insulator defect detec-
tion, an ablation experiment is conducted based on the YOLOv11 model. The experimental
results are shown in Table 3.

Table 3. Results of ablation study.

Biﬂgztne DC-PUFPN Lioss P% R% mAP50%
- ] - 86.52 74.89 81.67
v ; - 88.37 76.12 82.25
- v - 88.14 76.41 8257
; - v 87.21 76.53 82.04
v v - 89.92 77.85 83.95
v - v 90.74 78.41 84.32
- v v 90.18 78.16 84.17
v v v 91.07 79.21 85.46
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The model was trained using the same training data and hyperparameter settings.
After 600 epochs, the evaluation metrics P, R, and mAP were calculated on the same test
set. Based on the results from the eight experimental groups mentioned above, it can be
clearly observed that the progressive integration of the Ghost-Backbone, DC-PUFPN, and
Lioss components significantly improves model performance. Starting from the baseline,
the individual addition of Ghost-Backbone, DC-PUFPN, and Lj, led to steady increases in
P, R, and mAP. When combining any two of these modules, the performance continued to
improve, demonstrating their complementary effects. Finally, the complete integration of
all three modules resulted in the highest performance, with P, R, and m AP reaching 91.07%,
79.21%, and 85.46%, respectively. Compared to the baseline, this reflects improvements of
4.55%, 4.32%, and 3.79%. These results confirm that the proposed DGNCA-Net achieves
a substantial cumulative gain in detection accuracy through the joint contribution of
each component.

3.4. Comparative Experiments

To comprehensively evaluate the superiority of the proposed DGNCA-Net model in
terms of model size, computational complexity, and insulator defect detection accuracy,
a comparison was made with four different defect detection models under the same dataset
and hardware environment. The compared deep learning models and the comparison
results are shown in Table 4 and Figure 11.

Table 4. Comparative experimental results of different models.

Model P% R% mAP50% Parameters (M) GFLOPs
DGNCA-Net 91.07 79.21 85.46 2.88 3.97
YOLO-PowerLite [32] 78.35 70.12 74.21 1.73 5.60
YOLO-HF [33] 80.20 70.61 74.36 6.59 31.5
YOLOvS8n [34] 86.12 75.16 82.60 3.15 4.43
YOLOvV7 [35] 84.51 74.52 80.91 36.9 104.7
YOLOv7-tiny [35] 82.13 76.29 78.84 6.20 3.50

In addition to evaluating the model’s accuracy in insulator defect detection using P, R,
and mAP, we introduce two additional metrics: the number of parameters and GFLOPs,
to comprehensively assess the model’s scale and computational complexity. The number
of parameters represents the total count of trainable weights in the model—higher values
indicate a more complex structure. A lower GFLOPs value signifies reduced computational
complexity and lighter computational load.

Based on the comparative results of P, R, and mAP, the proposed DGNCA-Net algo-
rithm outperforms models such as YOLO-PowerLite, YOLO-HE, YOLOv8n, YOLOV7, and
YOLOv7-tiny in defect detection accuracy, while maintaining a smaller parameter size. This
reflects a well-balanced design between lightweight architecture and detection performance.
In achieving higher accuracy, DGNCA-Net also significantly reduces the number of param-
eters and computational overhead, making it more suitable for deployment on resource-
constrained edge devices or in real-time scenarios. Therefore, DGNCA-Net not only ensures
reliable detection performance but also demonstrates excellent efficiency and adaptability,
offering a more practical and effective solution for real-world engineering applications.
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Figure 11. Model performance comparison.

3.5. Visualization Comparison Experiment

To further verify the superiority of the proposed algorithm, the visual comparison
results of insulator defect detection between the algorithm proposed in this study, the
YOLOV11 algorithm, and the algorithms listed in Table 4 are presented in Figure 12.

Based on the results presented in Figure 12 and Table 5, the proposed DGNCA-Net
demonstrates superior detection performance compared to other mainstream models. It
is the only model that achieves zero missed detections across all categories. In contrast,
other models such as YOLOv11 and YOLO-PowerLite exhibit significantly higher total
missed cases, with 12 and 19, respectively. Even lightweight detectors like YOLOv8-n
and YOLOv7-tiny show total misses of 8 and 9. These results highlight the robustness
and reliability of DGNCA-Net, especially in accurately identifying challenging defect
types. Overall, the findings confirm that DGNCA-Net offers substantial improvements
in detection completeness and is highly suitable for real-world insulator defect detection
scenarios where precision is critical.

Table 5. Missing cases by category and total number per model.

Model Normal Flashover Broken Total Miss
Ground Truth 19 19 10 -
YOLOv11 19 10 7 12
YOLO-PowerLite 19 7 3 19
YOLO-HF 19 10 8 11
YOLOvV8-n 19 15 6 8
YOLOv7-n 19 13 5 11
YOLOV7-tiny 19 14 6 9
DGNCA-Net 19 19 10 0
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Figure 12. Visualization results comparison.
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4. Conclusions

This paper proposes a lightweight insulator defect detection algorithm, DGNCA-Net,
based on the YOLOv11 framework. By integrating an improved Ghost-based backbone,
the DC-PUFPN neck network, and a refined loss function, the model effectively enhances
both detection accuracy and computational efficiency for multi-scale small target defects
in insulators. The research offers a lightweight and high-precision solution for power line
inspections, significantly reducing manual inspection costs and safety risks, and holds
important practical value for improving the intelligence level of power grid operation and
maintenance. Although the proposed method demonstrates excellent detection perfor-
mance, there are still some challenges to be addressed in real-world applications: (1) under
extreme weather conditions (e.g., strong backlighting, rain, or snow), image quality signifi-
cantly degrades, which affects the model’s detection accuracy and stability. (2) In cluttered
backgrounds or scenarios where insulators are densely arranged, target overlap and occlu-
sion may occur, hindering accurate localization and identification of defects. Future work
will focus on enhancing the model’s adaptability to complex environments and improving
its robustness against image noise and interference in extreme scenarios, in order to further
increase its practicality.
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