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Abstract

Single-image super-resolution (SISR) plays a critical role in enhancing visual quality for real-
world applications, including industrial inspection and embedded vision systems. While
deep learning-based approaches have made significant progress in SR, existing lightweight
SR models often fail to accurately reconstruct high-frequency textures, especially under
complex degradation scenarios, resulting in blurry edges and structural artifacts. To
address this challenge, we propose a Dense Residual Fused Attention Network (DRFAN), a
novel lightweight hybrid architecture designed to enhance high-frequency texture recovery
in challenging degradation conditions. Moreover, by coupling convolutional layers and
attention mechanisms through gated interaction modules, the DRFAN enhances local
details and global dependencies with linear computational complexity, enabling the efficient
utilization of multi-level spatial information while effectively alleviating the loss of high-
frequency texture details. To evaluate its effectiveness, we conducted ×4 super-resolution
experiments on five public benchmarks. The DRFAN achieves the best performance
among all compared lightweight models. Visual comparisons show that the DRFAN
restores more accurate geometric structures, with up to +1.2 dB/+0.0281 SSIM gain over
SwinIR-S on Urban100 samples. Additionally, on a domain-specific rice grain dataset,
the DRFAN outperforms SwinIR-S by +0.19 dB in PSNR and +0.0015 in SSIM, restoring
clearer textures and grain boundaries essential for industrial quality inspection. The
proposed method provides a compelling balance between model complexity and image
reconstruction fidelity, making it well-suited for deployment in resource-constrained visual
systems and industrial applications.

Keywords: image super-resolution; hybrid attention mechanism; dense residual structure;
industrial visual inspection

1. Introduction
Single-image super-resolution (SISR) [1], a pivotal task in low-level computer vision,

focuses on reconstructing high-resolution images from their degraded low-resolution coun-
terparts by restoring missing texture details and improving visual fidelity. However, the
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inherent diversity in image styles and content often leads to varying degrees of informa-
tion degradation during reconstruction, particularly in preserving and enhancing intricate
spatial features. The proliferation of deep learning techniques has driven significant ad-
vancements in this domain, with numerous advanced SR approaches being developed to
address these reconstruction challenges.

Convolutional neural networks (CNNs) [2–10] are the earliest deep learning architec-
tures widely adopted in image processing. The CNN-based method has the characteristics
of inductive bias, including localized receptive fields, translation invariance, and hierarchi-
cal spatial representations. It can achieve robust performance even with limited training
data. CNN-based SISR models excel in capturing local features through these intrinsic
properties and weight-sharing mechanisms, thereby notably improving texture reconstruc-
tion in degraded images. Despite these strengths, they also inherit the limitation of CNNs
in capturing long-range dependencies, resulting in insufficient modeling of distant feature
relationships and inability to better enhance the overall image details.

Transformer [11] is celebrated for its robust capacity to model long-range dependen-
cies and has progressively emerged as a prominent research focus in computer vision.
Transformer-based SISR models [12–16] address the inherent limitation of CNNs in captur-
ing global dependencies by leveraging the self-attention mechanism to capture global de-
pendencies and model interactions across distant spatial positions. However, the quadratic
computational complexity O(N2) associated with the self-attention mechanism necessitates
considerably higher computational resources, particularly hindering the processing of
high-resolution images. To mitigate this challenge, researchers have introduced a window-
based self-attention mechanism [17]. This approach divides the input image into multiple
local windows for parallel computation to alleviate the complexity, while the incorpora-
tion of sliding window attention further augments the global modeling capacity. Despite
the fact that sliding window strategies further enhance inter-window communication, it
remains insufficient for comprehensively modeling long-range dependencies, ultimately
detracting from the quality of image reconstruction, especially in preserving fine-grained
structural coherence.

To overcome these challenges, researchers have progressively investigated several
innovative mechanisms, such as linear attention [18] and Mamba [19]. Linear attention
reformulates traditional self-attention by linearly decomposing the dot-product operations
between query (Q) and key (K) features, effectively reducing computational complexity
from O(N2) to O(N). While this approach mitigates computational overhead, it compro-
mises the model’s capacity to capture comprehensive global contextual dependencies,
resulting in unstable performance across diverse tasks and data distributions. Mamba,
an architecture derived from state space models [20–22], integrates the complementary
strengths of recurrent neural networks [23,24] and convolutional neural networks. This
hybridization preserves its ability to model long-range dependencies while achieving sub-
stantial computational efficiency gains. However, its multi-directional scanning strategy is
limited in non-autoregressive tasks, and issues such as local pixel forgetting and channel
redundancy impede its pixel-level accuracy in image super-resolution. The Mamba-like
linear attention (MLLA) model [25] addresses these limitations by establishing a theoretical
bridge between Mamba and linear attention, effectively combining the parallel processing
efficiency of linear attention with the adaptive feature selection capability of SSM. Operat-
ing at linear complexity O(N), MLLA selectively prioritizes critical detail features during
reconstruction. Crucially, it circumvents the recursive computation demands of SSM’s
forget gates, thereby eliminating a key bottleneck in high-resolution image processing.
This framework represents a paradigm shift, balancing computational tractability with
enhanced reconstruction precision.
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In order to solve the problem of image artifacts and contour blurring in the high-
frequency detail reconstruction of existing lightweight methods in complex degraded
scenes, this study proposes a novel hybrid architecture lightweight SR network designed to
enhance texture detail reconstruction while maintaining a low parameter count. The Dense
Residual Fused Attention Network (DRFAN) integrates the Mamba-like linear attention
(MLLA) module and Grid Attention Block (GAB) to synergize global contextual modeling
with localized feature refinement. Furthermore, it employs dense residual connections to
mitigate spatial information loss and channel redundancy in deep networks. Compared
with mainstream lightweight models, the DRFAN achieves substantial improvements in
reconstructing fine-grained details under constrained parameter budgets. The primary
contributions of this paper are as follows:

1. We propose the DRFAN, a novel lightweight SISR framework that innovatively inte-
grates the MLLA module and GAB into a unified hybrid architecture. This design en-
ables dynamic multi-scale feature selection through parallel processing mechanisms,
reduces channel redundancy, and establishes cross-layer global context modeling
pathways, ensuring robust global representation capabilities.

2. We introduce the GAB module to extend pixel interaction beyond local regions via a
hierarchical interaction strategy. By leveraging structural similarity priors between
image patches, it optimizes spatial information aggregation efficiency, significantly
enhancing the reconstruction of high-frequency textures and fine-grained details.

3. We design a tightly coupled residual framework to synergize the advantages of
convolutional local feature extraction, the long-range dependency modeling capability
of self-attention, and the efficient computational characteristics of Mamba. This
complementary feature fusion mechanism achieves the coordinated optimization of
these three core operations.

4. Experimental results on multiple benchmark SR datasets demonstrate that the DR-
FAN shows significant advantages in SISR tasks and industrial inspection scenarios,
offering an efficient and reliable solution for practical applications.

To address the limitations of existing lightweight super-resolution methods in recon-
structing high-frequency textures under complex degradation, this study proposes several
key innovations. First, we introduce the DRFAN, a hybrid architecture that tightly couples
convolutional operations, Mamba-like linear attention, and a Grid Attention Block within a
dense residual framework. Second, we replace traditional Multi-Layer Perception layers in
attention modules with Spatial Gated Feedforward Networks (SGFNs), enhancing spatial
modeling capacity and reducing channel redundancy. Third, through the complementary
fusion of local, global, and sequential features, our design enables dynamic multi-scale
feature selection with strong generalization capabilities. These innovations collectively ad-
vance both the theoretical framework and practical deployment feasibility for high-fidelity
and efficient image super-resolution.

The remainder of this paper is organized as follows: Section 2 reviews related works
in lightweight and hybrid SR networks. Section 3 details the architecture of the proposed
DRFAN model. Section 4 presents experimental setup, evaluation metrics, and both quanti-
tative and qualitative results. Section 5 discusses the model’s characteristics, limitations,
and application scenarios. Section 6 concludes this study and outlines potential future work.

2. Related Work
2.1. Lightweight Single-Architecture Super-Resolution Network

In recent years, numerous studies have prioritized developing SR models that balance
performance and efficiency under such resource-constrained conditions. Conventional
approaches typically adopt single-architecture networks, which rely on monolithic ar-
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chitectures (CNN or Transformer) and attempt to achieve lightweight designs through
architectural refinements and component-level innovations.

In the early stages of research, scholars focused on lightweight design strategies for
convolutional neural networks. SRCNN [3] is the first CNN-based framework for single-
image super-resolution. FSRCNN [4] eliminated preprocessing-stage interpolation by
operating directly on low-resolution inputs, significantly accelerating training. VDSR [5]
and EDSR [6] both drew on the principles of residual learning to accelerate model con-
vergence and enhance training efficiency. The emergence of attention mechanisms has
partially alleviated the CNN’s receptive field limitations. RCAN [26] enhanced feature rep-
resentation by integrating residual channel attention. HAN [27] combined layer-wise and
channel–spatial attention to comprehensively model inter-feature dependencies, achiev-
ing notable performance gains. With the rise of vision Transformers [28], researchers
have begun integrating Transformer-based global modeling into lightweight SISR designs.
SwinIR [12] combined local feature modeling with global attention via a sliding-window
mechanism, reducing complexity while enhancing reconstruction fidelity.

While single-architecture SR networks offer simplicity and ease of optimization, rely-
ing on a singular technical approach can expose inherent limitations. These shortcomings
have paved the way for the development of hybrid architectures.

2.2. Lightweight Hybrid Architecture Super-Resolution Network

Hybrid architectures synergize multiple technical approaches. They employ strate-
gies that integrate local feature extraction with global dependency modeling, achieving
performance breakthroughs under lightweight constraints.

Early hybrid frameworks predominantly adopted CNN backbones augmented with
attention modules to enhance feature selectivity. For example, CBAM [29] fused channel
and spatial attention mechanisms to prioritize critical information in feature maps. SAN [30]
introduced second-order channel attention and non-locally enhanced residual groups to
concurrently capture long-range dependencies and local textures. LatticeNet [31] drew
inspiration from lattice filter theory, proposing lattice blocks with multi-scale attention
to amplify feature discriminability. As researchers began to recognize the limitations of
Transformers, researchers increasingly explore hybrid architectures combining CNNs and
Transformers. ESRT [14] reduced the computational complexity of self-attention by using
group-wise attention, which limited attention computation within local feature groups.
SAFMN [32] enhanced VIT blocks with a spatial adaptive feature modulation mechanism
for dynamic feature selection. The emergence of the Mamba architecture has provided
further solutions for SISR tasks. DVMSR [33] integrates Mamba with knowledge distillation
to optimize inference speed without sacrificing performance.

In addition, several recent studies explore hybrid frameworks combining Mamba and
Transformers to enhance low-level vision tasks. For example, Contrast [34] proposed a dual-
branch design integrating SSM and a vision Transformer for image restoration. MatIR [35]
introduced a Mamba–Transformer fusion model to balance expressiveness and efficiency.
In the SR domain, FAMSR [36] incorporated frequency priors into a Mamba-based network
to improve detail recovery in remote sensing images, while MPSI [37] leveraged pixel-wise
sequential interaction to enhance positional context modeling. MambaCSR [38] adopted
a dual-interleaved scan mechanism with Mamba to handle severe compression artifacts.
Although these models do not prioritize lightweight design, they highlight the growing
trend of combining convolution, attention, and structured state modeling.

Hybrid architectures now demonstrate clear superiority over single-paradigm ap-
proaches, emerging as a focal research area. In this context, we propose a dense residual
fusion architecture that effectively combines the advantages of convolutional operations, atten-
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tion mechanisms, and the Mamba architecture. This framework enables efficient multi-level
spatial information fusion and effectively mitigates high-frequency texture degradation.

3. Materials and Methods
The overall structure of the DRFAN is illustrated in Figure 1 and primarily comprises

three parts: shallow feature extraction, deep feature extraction, and image reconstruc-
tion. Specifically, the deep feature extraction module (referred to as the DRFG network)
is composed of multiple Mamba-like linear attention (MLLA) blocks, a Grid Attention
Block (GAB) [39], and residual structures. We will elaborate on these methods in the
following sections.

 

Figure 1. The overall architecture of DRFAN and the structure of DRFG. Each DRFG module
integrates multiple MLLA blocks for global context modeling and a GAB block for local grid attention.
Below, the MLLA and GAB modules and representative attention maps are visualized, highlighting
their respective receptive behaviors. The FWB module shown here adaptively reweights concatenated
multi-level features to reduce channel redundancy, helping to maintain compact and efficient feature
representations throughout the DRFG. To improve interpretability, we annotate the input and output
tensor shapes for each module (e.g., 3 × H × W, 180 × H × W, (H × W) × 180), clearly illustrating
the end-to-end data flow.

3.1. Overall Architecture

Given a low-resolution image ILR ∈ RH×W×Cin , H, W, and Cin represent the height,
width, and number of channels of the input image, respectively. ILR is processed through
a 3 × 3 convolutional network that extracts basic visual features like edges, textures, and
colors, mapping it to a higher-dimensional feature space F0 ∈ RH×W×C; it can be formulated
as follows:

F0 = HSF(ILR), (1)

where HSF(·) denotes the shallow feature extraction network. C represents the number of
channels in the intermediate feature space F0 with C ≫ Cin. Subsequently, F0 is passed to
the deep feature extraction network, where it undergoes multiple Dense Residual Fused
Blocks to extend the shallow features into global structural and semantic levels, thus
enabling the learning of deeper high-level visual features FDF ∈ RH×W×C. The Dense
Residual Fused Block (DRFG) is composed of several Mamba-like linear attention blocks
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(MLABs), a Grid Attention Block (GAB) and residual connections. The computation process
can be formulated as follows:

FDF = HDF(F0), (2)

where HDF(·) denotes the deep feature extraction network, composed of N groups of
DRFGs and a 3 × 3 convolutional layer. The computation process of deep feature extraction
is formulated as follows:

Fi = HDRFBi (Fi−1), i = 1, 2, . . . , N, (3)

FDF = HConv(FN), (4)

where HDRFBi (·) represents each DRFG. F1, F2, . . ., Fi, as well as FDF are the intermediate
features extracted by the network. HConv(·) denotes a single 3× 3 convolutional layer. After
aggregating shallow features F0 and deep features FDF via a global residual connection, the
super-resolution image ISR ∈ RH×W×Cin is reconstructed by an upsampling operation. The
reconstruction process can be formalized as follows:

ISR = HRe(F0 + FDF), (5)

where HRe(·) denotes the image reconstruction function, consisting of 3 × 3 convolution
layers and a sub-pixel convolution layer.

3.2. Dense Residual Fused Group (DRFG)

Many studies have demonstrated promising performance in SISR tasks by leveraging
dense residual connections. This provides us with a valuable approach. Our approach repeat-
edly reuses intermediate feature maps across network stages while applying adaptive feature
weighting to suppress channel redundancy. This strategy not only expands the effective
receptive field but also enhances feature discriminability through hierarchical refinement.

Each DRFG integrates four MLLA modules and one GAB. The MLLA modules dy-
namically refine the model’s focus through adaptive feature selection, enabling multi-level
spatial information extraction via iterative feature reuse. This process progressively ex-
pands and enhances the effective receptive field while capturing rich contextual depen-
dencies. Subsequently, the GAB aggregates these multi-scale features while preserving
critical high-frequency details. These two modules will be described in detail in subsequent
sections. By integrating MLLA, GAB, and dense residual connections, our framework
dynamically adapts its focus regions based on global contextual inputs. This enables cross-
scale information integration, long-range dependency capture, and the adaptive fusion of
global-local features, achieving comprehensive feature extraction essential for high-fidelity
super-resolution. For an input feature map M, the computation process of each DRFG is
as follows:

Mj = FMLLA
(

FFWB
([

FMLLA(M), . . . , Mj−1
]))

, j = 1, 2, 3, 4, (6)

Foutput = FGAB(M4) + M, (7)

where [·] denotes the concatenation of multi-level features from preceding layers. FMLLA(·)
and FGAB(·) denotes each MLLA layer and FGAB(·) GAB layer, respectively. Here, M
denotes the input feature map to the DRFG block, which is passed via residual connection
to later stages (e.g., GAB) to enhance feature continuity and gradient propagation. It is not
a tunable parameter, but a reused intermediate representation. FFWB(·) represents a Feature
Weighted Block designed to suppress redundant information that accumulates during dense
concatenation. It consists of two parallel 1 × 1 convolutional layers, where one branch is
followed by a sigmoid activation. Their outputs are fused via element-wise multiplication
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to produce channel-wise adaptive weights. This effectively learns a relevance score for each
channel based on its contribution to the global context. Channels with lower activation
are likely to carry redundant or low-utility information and are therefore attenuated by
the learned gating weights. This process allows the network to maintain compact and
discriminative feature representations throughout the DRFG module.

3.3. Mamba-like Linear Attention (MLLA) Block
3.3.1. Unified SSM Gating and Linear Attention Framework

We draw upon the successful design of the MLLA mechanism, originally applied in
image classification, and extend it to SISR, as illustrated in Figure 2. MLLA fundamentally
integrates the complementary strengths of linear attention and Selective State Space Models
(SSMs), while systematically addressing the limitations of standard self-attention in terms
of scalability and temporal modeling.

 
Figure 2. The structure of MLLA block, including (a) MLLA, (b) Linear attention, and (c) SGFN.

Linear attention reformulates traditional self-attention by replacing the softmax nor-
malization with linear kernel approximations, reducing the complexity from O(N²) to
O(N). This enables efficient pairwise interaction modeling across long sequences, but lacks
mechanisms for adaptive memory control or forgetting.

hi =
∼
Ai
⊙

hi−1 + Bi

(
∆i
⊙

xi

)
, (8)

yi = Cihi/1 + D
⊙

xi, (9)

where hi is the internal hidden state at time step i;
∼
Ai acts as a forget gate, regulating how

much of the past state hi−1 is retained; ∆i serves as an input gate, determining the strength
of the current input xi; and D

⊙
xi provides a residual connection from input to output.

This gated recurrence can be conceptually aligned with the linear attention formulation:

Si = 1
⊙

Si−1 + K⊤
i

(
1
⊙

Vi

)
, (10)

yi =
QiSi
QiZi

+ 0
⊙

xi. (11)

In this form, Si serves as a memory accumulator, similar to the hidden state in Equa-
tion (8), and the unnormalized additive accumulation reflects the recursive nature of SSM.
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However, unlike SSM, linear attention typically lacks forgetting, gating, and residual
memory control.

MLLA bridges this gap by embedding the SSM’s gating logic into the linear attention

framework. Specifically, the forget gate
∼
Ai corresponds to a learnable decay that modulates

hi−1, similar to selective memory decay; the input gate ∆i modulates the contribution of
the current input xi, enhancing dynamic input selection; the residual connection D

⊙
xi

preserves low-level features, stabilizing gradient flow. The derivation of MLLA from SSM
is shown in Figure 3.

 
Figure 3. The derivation of MLLA from SSM. (a) Linear Attention. It replaces the traditional self-
attention with linear attention for efficiency, combined with a feed-forward network. (b) Mamba: It
introduces a structured state space (SSM) block and convolution for sequence modeling. (c) MLLA:
It integrates linear attention and convolution within the SSM framework to enhance local-global
feature extraction.

This unified structure enables efficient sequence modeling with explicit mechanisms
for structured forgetting and input integration—features absent in traditional linear atten-
tion. MLLA thus operates as a gated linear attention method, retaining the scalability of
attention while embedding SSM-like memory control, making it particularly suitable for
tasks like image super-resolution, where both local recurrence and long-range dependency
are essential.

3.3.2. Computational Optimization and Spatial Gating Enhancement

MLLA overcomes Transformer’s computational bottlenecks in long-range dependency
modeling by unifying SSMs with linear attention. Through further model optimization,
MLLA not only enhances computational efficiency but also preserves strong modeling
capabilities, making it suitable for training on large-scale datasets and tackling complex
tasks. The computational workflow is formalized as follows:

F1 = σ(L(DwConv(x))), (12)

F2 = σ(L(x)), (13)

Fatten = LinearAttention(F1), (14)

Foutput = L(Fatten ⊙ F2), (15)

where x and DwConv(·) denote the raw features of the input sequence and depthwise
convolution, respectively. L(·) and σ(·) represent the linear transformation and SiLU
activation function, respectively. ⊙ represents the Hadamard (element-wise) product.

We replace the MLP layers in each MLLA module with a Spatial Gated Feedforward
Network [40], as illustrated in Figure 3c. The SGFN addresses the limited spatial modeling
capacity of conventional feedforward networks by incorporating a spatial gating mecha-
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nism that regulates channel-wise information flow. For an input feature X ∈ RH×W×C, the
SGFN operation is defined as follows:

X′ = σ
(

W1
p X
)

,
[
X′

1, X′
2
]
= X′, (16)

SGFN(X) = W2
p
(
X′

1 ⊙
(
WdX′

2
))

, (17)

where W1
p and W2

p denote the learnable weights of the first and second linear projection
layers, respectively. σ denotes the GELU activation function. Wd denotes the parameters
of the depthwise convolution layer. X′

1 , X′
2 ∈ RH×W× C′

2 , where C′ denotes the SGFN’s
hidden dimension.

Unlike conventional FFNs that apply uniform transformations across spatial dimen-
sions, the SGFN decouples spatial and channel processing. It introduces a spatial gating
mechanism and deep convolution to better capture nonlinear spatial information, reducing
channel redundancy in fully connected layers, thereby enhancing the model’s expressive
capacity. Specifically, the adaptive feature weighting implemented by the SGFN suppresses
channel redundancy by applying a depthwise convolution-based gating to one half of the
channel-split features. This allows the network to selectively retain informative channels
while filtering out less significant ones, especially those that contribute little to spatial
structure reconstruction. The remaining channels are directly bypassed and concatenated
with the gated features, enabling lightweight yet expressive aggregation.

It is worth noting that our use of the MLLA block represents a domain-level adaptation
rather than a direct reuse. Originally designed for image classification and long-sequence
modeling, MLLA has not been applied to the SISR task to the best of our knowledge. In this
work, we are the first to integrate MLLA into a lightweight super-resolution framework,
enabling efficient global context modeling for pixel-level restoration tasks. Furthermore,
we introduce an architectural refinement by replacing the conventional MLP component in
MLLA with a SGFN. This modification improves spatial feature selectivity and supports
more stable attention distribution under high-resolution inputs. Our ablation study in
Table 1 shows that the combination of this domain adaptation and structural enhancement
leads to consistent improvements in PSNR and SSIM across multiple datasets.

Table 1. Ablation experiments on SGFN and GAB, with the average PSNR/SSIM evaluated on
benchmark datasets under a ×4 scale factor. The best and second-best results are highlighted in red
and blue, respectively.

Model MLP SGFN GAB Params
(K)

Set5
PSNR (dB)

/SSIM

Set14
PSNR (dB)

/SSIM

BSD100
PSNR (dB)

/SSIM

Urban100
PSNR (dB)

/SSIM

Manga109
PSNR (dB)

/SSIM

A
√

1035 32.19/0.8944 28.58/0.7809 27.58/0.7362 25.95/0.7811 30.37/0.9064
B

√
1087 32.30/0.8959 28.67/0.7830 27.61/0.7374 26.14/0.7863 30.62/0.9089

C
√ √

952 32.16/0.8944 28.54/0.7806 27.56/0.7356 25.89/0.7789 30.34/0.9058
D

√ √
1057 32.30/0.8960 28.65/0.7831 27.63/0.7381 26.19/0.7882 30.67/0.9100

3.4. Grid Attention Block (GAB)
3.4.1. Local Attention Enhancement via GAB

The MLLA module demonstrates notable advantages in capturing global contextual
information, yet exhibits relative limitations in processing local features. To address this
deficiency, we integrate a self-attention mechanism into each DRFG for local feature en-
hancement. When Swin Transformer is applied to super-resolution tasks, its reliance on a
limited pixel range within local windows hinders its ability to fully leverage the image’s
self-similarity for reconstruction. So, we adopt an approach that bolsters long-range depen-
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dency modeling by utilizing the Grid Attention Block to expand the pixel interaction range,
as illustrated in Figure 4.

 

Figure 4. The structure of Grid Attention Block (GAB).

Specifically, the input feature map Fin ∈ RH×W×C is partitioned into K2 groups based
on an interval size K, each containing H

K × W
K patches. K controls the number of spatial

grid partitions, determining the granularity of localized attention. After performing a grid
shuffle to rearrange the feature map FG ∈ R

H
K ×W

K ×C, self-attention is computed within each
group. The computation process can be formulated as follows:

X̂ = So f tMax

(
GK⊤

d
+ B

)
V, (18)

Attention
(
Q, G, X̂

)
= So f tMax

(
QG⊤

d
+ B

)
X̂, (19)

where G ∈ R
H
K ×W

K ×C denotes the global interaction features. Q, K, V are obtained from
the feature map FG. X̂ represents intermediate features generated through self-attention
computation. The scalar d is a normalization factor used in scaled dot-product attention,
following common Transformer practice, and is typically set to the square root of the
feature dimension.

The GAB facilitates cross-region similarity modeling for enhanced image reconstruc-
tion while employing a post-normalization strategy to improve network training stability.
The GAB architecture comprises a grid-MSA layer and an SGFN layer. The computational
workflow of GAB is expressed as follows:

FM = LN(Grid − MSA(Fin)) + Fin, (20)

Fout = LN(SGFN(FM)) + FM, (21)

where Grid − MSA(·) denotes the Grid multi-head attention mechanism. LN(·) represents
Layer Normalization. Compared with Batch Normalization, Layer Normalization effec-
tively prevents undesirable impacts on image contrast and color characteristics during
model training.

3.4.2. Complexity Analysis and Efficiency Optimization

For the quadratic complexity problem existing in GAB, we have carried out some
optimization processing operations. And we conducted a computational complexity analy-
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sis on Swin Transformer and GAB. The Swin Transformer attention mechanism operates
within local windows of size M × M, leading to a complexity of the following:

Oswin = HWC + HWM2. (22)

By contrast, the proposed GAB computes attention over K2 grid groups, each contain-
ing H

K × W
K tokens. Its computational complexity is as follows:

OGAB = 2HWC +
H2W2

K2 . (23)

While GAB enables richer long-range interactions beyond the local window constraints
of the Swin Transformer, the quadratic term may raise concerns for high-resolution inputs.
To mitigate this, we introduce a Top-k token selection strategy within each group: before
applying attention, we select the most salient k ≪ H

K × W
K tokens based on activation

strength. This effectively reduces the complexity to approximately the following:

OTop−k GAB = HWC + HWk (24)

with k being a small constant, yielding linear complexity with respect to image size, and
making GAB applicable to high-resolution super-resolution tasks.

Although the underlying self-attention mechanism in GAB remains conceptually
unchanged, we refine its structure by replacing the conventional MLP with SGFN, and
further enhance its efficiency through the Top-k token selection scheme. These two en-
hancements work synergistically: SGFN improves local spatial reasoning, while Top-k
attention reduces redundancy and accelerates computation. As confirmed by the ablation
experiments in Table 1, GAB alone may slightly degrade performance due to overgener-
alized attention, but its effectiveness is fully restored when paired with SGFN and the
proposed Top-k optimization, demonstrating the importance of both selective interaction
and structural coupling.

4. Experiments
4.1. Datasets

Our model was trained from scratch using the DF2K dataset, comprising two estab-
lished components: DIV2K [41] and Flickr2K [41]. The DIV2K provides 800 high-quality
training images, while Flickr2K contributes 2650 images encompassing broader scene
diversity. To generate low-resolution image for training, we implement bicubic down-
sampling via MATLAB R2022b with scaling factors of ×4. Post-training evaluation was
conducted across five benchmark datasets for single-image super-resolution, including
Set5 [42], Set14 [43], BSD100 [44], Urban100 [45], and Manga109 [46]. This totals 328 images
used in each evaluation experiment.

To further highlight the effectiveness of our model, we also validated it using rice
images collected from a real processing environment. This domain-specific collection
contains 10 high-resolution rice images, each with a resolution of 4096 × 2160. The dataset
comprises images of polished round-grain rice, polished long-grain rice, and semi-polished
long-grain rice, among the semi-polished images including some substandard grains such
as broken rice and chalky rice. Although the number of images is limited, each image
contains hundreds to thousands of densely packed rice grains with significant intra-image
diversity. The grains often appear adhered or overlapping, forming complex texture
patterns that pose challenges for local structure reconstruction. Unlike public datasets with
diverse scenes and backgrounds, this dataset was acquired under controlled conditions
(uniform lighting, background, and camera settings), ensuring high consistency while
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preserving grain-level variability. To facilitate the execution of the SR task, each image
was partitioned into LR patches of size 512 × 240, ensuring smooth model operation
during testing.

Through experiments on these datasets, we have validated the superior performance
of our model across various scenarios.

4.2. Metrics

The evaluation metrics are the peak signal-to-noise ratio (PSNR) and the structural
similarity index (SSIM) [47], both computed on the Y channel in the converted YCbCr color
space. The PSNR measures the ratio between the image signal and noise, reflecting the
level of distortion introduced by image compression. The quality of image reconstruction
is assessed by comparing the differences between original and compressed images. The
higher PSNR value indicates better reconstruction quality.

The SSIM evaluates the similarity between two images by comparing their luminance,
contrast, and structure. Importantly, the SSIM emphasizes the structural information that
includes the spatial relationships among pixels, rather than merely the differences in pixel
values. SSIM values typically range from 0 to 1, with values closer to 1 indicating greater
similarity between the images. Compared to the PSNR, the SSIM better aligns with the
human visual perception of image quality.

4.3. Implementation Details

In our proposed model, the deep feature extraction network consists of six Dense
Residual Fused Groups. Each DRFG is composed of five MLLA modules, one GAB, and
residual connections. The number of heads is set to six, the input channel number C is
configured to sixty, the window size used in the GAB is sixteen, and the interaction interval
is set to four. All hyperparameters in our framework were selected through a grid search
on the DF2K training set. The selection aims to balance performance and efficiency under
lightweight constraints. While these settings work well on standard benchmarks, minor
adjustments may be necessary when transferring the model to datasets with significantly
different image characteristics.

4.4. Training Setting

All experiments were conducted on a single NVIDIA RTX 4080 GPU using PyTorch
2.1.2 as the primary deep learning framework. During training, the model was trained
with a patch size of 64 × 64 and a batch size of 32. Data augmentation was performed on
the input image patches via random horizontal flipping and rotation. The training process
spanned 500K iterations, during which the Adam optimizer was employed to minimize
the L1 loss function (β1 = 0.9, β2 = 0.999). The initial learning rate was set to 2 × 10−4 and
a multi-step learning scheduler was used, reducing the learning rate by half at 250K, 400K,
450K, and 475K iterations to achieve optimal training performance.

4.5. Ablation Study

To evaluate the effectiveness of individual components in the proposed DRFAN frame-
work, we conduct a series of ablation experiments focusing on three core modules: SGFN,
GAB, and the MLLA block. These experiments aim to quantify each module’s contribution
to performance and analyze how their interactions influence the model’s overall accuracy
and efficiency. All experiments are carried out under the same training settings, using ar-
chitectures with comparable parameter counts to ensure fair and meaningful comparisons.

We consider four model variants for ablation. Model A: a baseline architecture using
MLLA blocks with standard MLPs, without SGFN or GAB; Model B: replaces MLPs in
MLLA blocks with SGFN modules, preserving the overall structure; Model C: adds the
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GAB module to Model A while retaining MLPs; Model D (Proposed): integrates both SGFN
and GAB modules into the network.

To further enhance the efficiency of GAB and adapt it to lightweight settings, we
incorporate a Top-k token selection strategy within the GAB module. This mechanism
allows the model to focus attention computation on the most informative spatial regions,
thereby suppressing the quadratic complexity typically associated with attention maps
in GAB. The Top-k strategy enables sparse attention with minimal performance loss,
aligning with our design goal of achieving a favorable trade-off between accuracy and
computational efficiency.

Quantitative results of these four model variants are presented in Table 1, with evalua-
tions conducted on five standard super-resolution benchmarks under a fixed ×4 upscal-
ing factor.

(1) Efficacy of SGFN Module

As shown in Table 1, Model B consistently outperforms the baseline Model A across all
datasets, with only a slight increase in parameter count. The most notable gain is observed
on Urban100, where the PSNR improves from 25.95 dB to 26.14 dB and the SSIM improves
by 0.0052. This highlights the SGFN’s strength in structured feature generation and its
ability to better capture local geometric and textural patterns. The substitution of MLP
with the SGFN proves beneficial in dense residual contexts, reducing channel redundancy
and enhancing representational capacity.

(2) Efficacy of GAB Module

The ablation results in Table 1 show that adding the GAB alone (Model C) slightly
degrades performance compared to the baseline (Model A), suggesting that the GAB’s effec-
tiveness depends on its integration strategy rather than any inherent flaw. As a grid-based
attention mechanism, the GAB introduces patch partitioning and spatial reordering, which
may misalign with standard MLP processing, especially under lightweight constraints.

When the GAB is combined with the SGFN (Model D), the network achieves the
best overall performance. This improvement stems from the SGFN’s ability to provide
structured spatial gating, which complements the GAB by maintaining local consistency
and guiding feature fusion after attention redistribution.

These findings highlight that the synergy between the GAB and SGFN is crucial—
the SGFN not only stabilizes the attention pathway but also enables the GAB to operate
effectively within a lightweight architecture. We have revised the manuscript to reflect this
context-dependent relationship more accurately.

(3) Qualitative Analysis and Error Map Visualization

To visually support the above observations, we present super-resolution results from
models A–D on the Urban100 dataset (e.g., img_005 and img_076) in Figure 5. As seen in
the visual comparison, Model D yields sharper edges, clearer line structures, and a better
preservation of fine textures compared to the other variants.

Additionally, we include error maps in Figure 6 to highlight pixel-wise differences
from the ground truth. These maps confirm that Model D minimizes reconstruction errors
in structurally complex regions, especially near edges and intersections. In contrast, Models
A and C display more dispersed and higher-magnitude error zones. The error maps thus
serve as strong visual evidence for the improved accuracy and structure fidelity achieved
by combining the SGFN and GAB.
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Figure 5. Visual validation of the ablation experiments. Visual comparisons of different models on
Urban100 (×4): img_005 and img_076.

 
Figure 6. Error map visualizations of img_005 and img_076 from Urban100 at ×4 magnification,
where red and blue represent positive and negative deviations, respectively, and white indicates
minimal error. Model D (ours) produces the least perceptual distortion, especially along edges and
repetitive patterns.

4.6. Benchmark Comparisons on Public Datasets
4.6.1. Quantitative Analysis

To evaluate the effectiveness of our algorithm, we conduct comprehensive ×4 super-
resolution comparisons between the DRFAN and other mainstream lightweight super-
resolution models (with a total parameter count of less than 2M) on five benchmark test
datasets, including SRCNN [3], FSRCNN [4], VDSR [5], EDSR-baseline [6], CARN [7],



Algorithms 2025, 18, 454 15 of 24

IMDN [8], RFDN [9], LatticeNet [31], LAPAR-A [48], EMASRN [49], SMSR [50], De-
FiAN [51], ShuffleMixer [52], SAFMN [32], DIPNet [53], GASSL-B [54], and DVMSR [33].
Their results are shown in Table 2.

Table 2. Quantitative comparisons on benchmark datasets under a ×4 scale factor, where the best
and second-best results are highlighted in red and blue, respectively. FLOPs is calculated with a
1280 × 720 GT image.

Methods Params
(K) FLOPs (G)

Set5
PSNR (dB)/

SSIM

Set14
PSNR (dB)/

SSIM

BSD100
PSNR (dB)/

SSIM

Urban100
PSNR (dB)/

SSIM

Manga109
PSNR (dB)/

SSIM

SRCNN [3] 57 52.7 30.48/0.8628 27.49/0.7503 26.90/0.7101 24.52/0.7221 27.66/0.8505
FSRCNN [4] 12 4.6 30.71/0.8657 27.59/0.7535 26.98/0.7150 24.62/0.7280 27.90/0.8517

VDSR [5] 665 612.6 31.35/0.8838 28.01/0.7674 27.29/0.7251 25.18/0.7524 28.83/0.8809
EDSR-baseline [6] 1518 114.0 32.09/0.8938 28.58/0.7813 27.57/0.7357 26.04/0.7849 30.35/0.9067

CARN [7] 1592 90.9 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 -/-
IMDN [8] 715 40.9 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.45/0.9075
RFDN [9] 550 23.9 32.24/0.8952 28.61/0.7819 27.57/0.7360 26.11/0.7858 30.58/0.9089

LatticeNet [31] 777 43.6 32.18/0.8943 28.61/0.7812 27.57/0.7355 26.14/0.7844 30.54/0.9075
LAPAR-A [48] 659 94.0 32.15/0.8944 28.61/0.7818 27.61/0.7366 26.14/0.7871 30.42/0.9074
EMASRN [49] 546 - 32.17/0.8948 28.57/0.7809 27.55/0.7351 26.01/0.7938 30.41/0.9076

SMSR [50] 1006 57.2 32.12/0.8932 28.55/0.7808 27.55/0.7351 26.11/0.7868 -/-
DeFiAN [51] 1065 12.8 32.16/0.8942 28.63/0.7810 27.58/0.7363 26.10/0.7862 30.59/0.9084

ShuffleMixer [52] 411 28.0 32.21/0.8953 28.66/0.7827 27.61/0.7366 26.08/0.7835 30.65/0.9093
SAFMN [32] 240 14.0 32.18/0.8949 28.60/0.7813 27.58/0.7359 25.97/0.7809 30.43/0.9063
DIPNet [53] 543 72.97 32.20/0.8950 28.58/0.7811 27.59/0.7364 26.16/0.7879 30.53/0.9087
DVMSR [33] 424 19.67 32.19/0.8955 28.61/0.7823 27.58/0.7379 26.03/0.7838 30.48/0.9084

GASSL-B [54] 694 39.9 32.17/0.8950 28.66/0.7835 27.62/0.7377 26.16/0.7888 30.70/0.9100
DRFAN (ours) 1057 65.1 32.30/0.8960 28.65/0.7831 27.63/0.7381 26.19/0.7882 30.67/0.9100

The experimental results indicate that our model achieves superior performance across
all evaluation metrics, demonstrating particular strength in reconstructing high-frequency
details under complex degradation scenarios. Specifically, compared to the runner-up models
on the Set5, BSD100, Urban100, and Manga109 test datasets, our model improves PSNR/SSIM
by 0.06 dB/0.0005, 0.02 dB/0.0002, 0.03 dB/0.0003, and 0.02 dB/0.0007, respectively.

We further analyze the computational efficiency of the DRFAN by comparing the
parameter count and FLOPs with mainstream lightweight super-resolution models, as
shown in Table 2. The DRFAN achieves consistently competitive or superior performance
across most benchmark datasets, with a relatively moderate computational footprint of
1057K parameters and 65.1G FLOPs. While the DRFAN outperforms models like RFDN
(550K, 23.9G) and IMDN (715K, 40.9G) in PSNR and SSIM, it also delivers comparable or
better reconstruction quality than highly compact models such as SAFMN (240K, 14.0G)
and DVMSR (424K, 19.67G), though at the cost of higher complexity. In particular, although
GASSL-B surpasses the DRFAN in PSNR by a narrow margin on Set14 and Manga109,
the DRFAN still maintains the best SSIM scores on all five benchmarks. Overall, these
results highlight that the DRFAN achieves a favorable trade-off between reconstruction
accuracy and computational demand, making it suitable for high-fidelity SR tasks under
constrained resources.
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4.6.2. Qualitative Experiments

We perform visual comparisons of our method with CARN, IMDN, SwinIR-S, Shuf-
fleMixer, and SAFMN on the Urban100 dataset under a ×4 scaling factor, with detailed
visualizations for samples img_011, img_024, and img_092 presented in Figure 7.

 
Figure 7. Visual comparisons between our method and mainstream SR methods on the Urban100
(×4): img_011, img_024, and img_092.

In terms of reconstructing image texture details, the advantages of our method are
clearly evident across these images. For instance, in the image generated by our algorithm
(img_011), the PSNR/SSIM metrics improved by 1.2 dB/0.0281 compared to SwinIR-
S. The lines in our result appear notably straighter, whereas those generated by other
methods tend to be more distorted. A similar observation can be made for img_024. In
the case of img_092, our algorithm achieves PSNR and SSIM improvements of 0.31 and
0.0084 compared to SwinIR-S, respectively. The horizontal and vertical lines by our model
are closer to the original image, in contrast to other methods that convert originally vertical
lines into slanted ones. These experimental results demonstrate that our model is capable of
more comprehensively and accurately restoring high-frequency texture details in complex
degradation scenarios, while also effectively suppressing artifacts and distortions.

To further visualize structural reconstruction accuracy, we provide corresponding
error maps in Figure 8. These maps show the pixel-wise absolute differences between the
predicted SR images and ground truth. As seen in the error maps, the DRFAN produces
minimal red zones, especially along edges and fine structures, indicating superior detail
restoration with reduced pixel-wise error compared to other methods.
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Figure 8. Error map visualization for Urban100 samples corresponding to Figure 7. DRFAN exhibits
the least red region, demonstrating enhanced pixel-level accuracy and structural consistency.

4.6.3. Parameter Analysis

To assess the lightweight nature of our model, We benchmarked the DRFAN against
12 mainstream SR methods on the Urban100 dataset under ×4 scaling. The compared meth-
ods include IMDN, RFDN, LatticeNet, LAPAR-A, EMASRN, SMSR, DeFiAN, ShuffleMixer,
SAFMN, DIPNet, GASSL-B, and DVMSR. As depicted in Figure 9, the DRFAN achieves
the highest PSNR with minimal parameter growth, outperforming existing methods by
0.03–0.22 dB while maintaining a competitive model size.

Figure 9. Visual comparisons of PSNR and parameter count between our model and mainstream SR
models on the Urban100 dataset under a ×4 scale factor.
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4.7. Comparative Experiments on Rice Grain Dataset
4.7.1. Quantitative Analysis

To further evaluate the deployability of our model in resource-constrained scenar-
ios, we conducted a quantitative assessment of inference efficiency across all compared
lightweight SR models. The comparison models include CARN [7], IMDN [8], SAFMN [32],
ShuffleMixer [52], and SwinIR-S [12]. All tests were carried out under a ×4 scale factor
using weight files pretrained on public datasets to ensure fairness. Table 3 summarizes not
only the PSNR/SSIM and FLOPs but also the average inference time (in milliseconds) per
1280 × 720 rice image on a single NVIDIA RTX 4080 GPU.

Table 3. Quantitative comparisons on the rice dataset under a ×4 scale factor, with the best and
second-best results indicated in red and blue, respectively. FLOPs and inference time are calculated
with a 1280 × 720 GT image.

Scale Methods Params (K) PSNR
(dB)/SSIM

Inference
Time (ms)

×4

CARN [7] 1592 34.91/0.8370 57.7
IMDN [8] 715 36.54/0.8944 26.0

SAFMN [32] 240 37.65/0.9122 8.9
ShuffleMixer [52] 411 37.86/0.9137 17.8

SwinIR-S [12] 897 37.90/0.9150 31.5
DRFAN (ours) 1057 38.09/0.9165 41.3

As shown in Table 3, DRFAN achieves a PSNR of 38.09 dB and an SSIM of 0.9165,
surpassing all baseline models in reconstruction accuracy. In terms of computational cost,
the DRFAN maintains a reasonable balance with 1057K parameters and 65.1G FLOPs. Its
inference time of 41.3 ms is higher than those of ultra-fast models such as SAFMN (8.9 ms)
and ShuffleMixer (17.8 ms), but this trade-off yields significantly better reconstruction
quality. Compared to SwinIR-S, the DRFAN offers improved accuracy (+0.19 dB PSNR,
+0.0015 SSIM), with only a modest increase in runtime (41.3 ms vs. 31.5 ms).

These results demonstrate that the DRFAN achieves a favorable balance between
performance and efficiency, making it a promising solution for industrial inspection systems
where image fidelity is critical but computational resources may be limited.

4.7.2. Qualitative Experiments

To further validate the reconstruction performance of our model on various rice images,
we selected several typical rice samples for visual comparison analysis. As illustrated in
Figure 10, our model is capable of restoring the contours of rice grains more clearly while
preserving more texture details. In comparison with other lightweight methods, our model
exhibits a distinct advantage in reconstructing rice grain details. For example, as shown in
Figure 11, the rice grain edges reconstructed by CARN, IMDN, and ShuffleMixer appear
rather blurry, whereas our model accurately restores the surface texture of the rice grains,
yielding superior overall visual quality. Our model accurately reconstructs surface textures,
providing superior visual fidelity. These high-quality reconstructions establish a reliable
feature foundation for downstream tasks such as rice variety identification and processing
quality inspection.
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Figure 10. Enhancement results of our model on rice images from an actual processing environment.

Figure 11. Visual comparisons between our model and mainstream SR models on the rice dataset
(×4).

4.7.3. Statistical Validation

To address the concern of statistical significance with a small sample size, we conducted
patch-level significance testing using the Wilcoxon signed-rank test. Each of the 10 high-
resolution rice images was partitioned into multiple non-overlapping patches (512 × 240),
resulting in a total of 40 low-resolution test samples. We compared the PSNR and SSIM values
of our proposed DRFAN model against representative lightweight baselines.

As shown in Table 4, the p-values for both PSNR and SSIM are less than 0.01 in all
comparisons, confirming that the DRFAN’s superiority is statistically significant. This
indicates that even with a small dataset, the performance gains of the DRFAN are consis-
tent and reliable, confirming that its superiority in dense-grain texture reconstruction is
not incidental.

Table 4. Statistical significance tests (Wilcoxon signed-rank test) between DRFAN and other models
on the rice dataset.

Comparison Metric p-Value Significance (p < 0.01)

DRFAN vs. CARN
PSNR 0 Yes
SSIM 0.00195 Yes

DRFAN vs. IMDN
PSNR 0 Yes
SSIM 0.00195 Yes

DRFAN vs. SAFMN
PSNR 0 Yes
SSIM 0.00195 Yes

DRFAN vs. ShuffleMixer
PSNR 0 Yes
SSIM 0.00195 Yes

DRFAN vs. SwinIR-S
PSNR 0 Yes
SSIM 0.00195 Yes
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Additionally, we present box plots in Figure 12 to visualize the distribution of PSNR
scores across models. These results validate the robustness of our method in restoring
fine-grained textures under industrial conditions, despite the relatively limited number of
source images.

Figure 12. Box plot comparison of PSNR results for different lightweight SR models on the rice
dataset. Red lines show the median PSNR of each model.

5. Discussion
This section reflects on the strengths, challenges, and application prospects of the

proposed DRFAN model.

5.1. Efficiency–Accuracy Trade-Off and Linear Complexity Advantage

The DRFAN achieves competitive or superior PSNR and SSIM performance on multi-
ple benchmarks with 1057K parameters and 65.1G FLOPs. Compared to other lightweight
models, it demonstrates a strong capability to reconstruct high-frequency details while
maintaining a lightweight footprint. The DRFAN leverages the MLLA module to achieve
linear computational complexity O(N). This contrasts with subquadratic Transformer vari-
ants such as LongViT and BigBird, which attempt to lower the attention cost to O(NlogN)

or O
(

N
√

N
)

through window partitioning, local/global token sparsification, or memory
token compression. While effective in reducing computational load, these designs often
rely on heuristics that may degrade fine-grained texture recovery—especially critical for
pixel-level tasks like super-resolution.

The DRFAN’s use of MLLA enables efficient global feature modeling with minimal
loss in local detail precision. This design offers a practical balance between computational
tractability and visual quality, though we acknowledge that further empirical comparisons
with subquadratic Transformers are warranted to more precisely quantify this trade-off
under diverse workloads.

5.2. Limitations on Scalability to Higher Magnification

While the DRFAN achieves strong performance under the ×4 super-resolution setting,
its current architecture is not explicitly optimized for higher scaling factors such as ×6 or
×8. Preliminary experiments indicate noticeable quality degradation at such magnifica-
tion levels due to the increasing semantic gap between low-resolution inputs and their
high-resolution counterparts. This is a known challenge in SR models, especially under
lightweight constraints.
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To address this, future extensions of DRFAN may incorporate progressive upscaling
strategies, such as cascaded SR stages, or use degradation-aware modules to modulate
reconstruction paths adaptively. These methods can help bridge the semantic gap and
preserve consistency across extreme scaling conditions.

5.3. Generalization to Motion Blur and Real-World Degradations

The DRFAN is currently trained using bicubic-downsampled data, which do not fully
represent real-world degradations such as motion blur, sensor noise, or defocus. When
applied to motion-blurred images, the DRFAN exhibits a decline in edge sharpness and
structural continuity. This limits its applicability in dynamic or handheld imaging scenarios.

To improve robustness, we plan to incorporate synthetic degradation kernels (e.g., mo-
tion blur simulation) and possibly adopt domain adaptation techniques to fine-tune the
DRFAN on real degraded images without requiring a paired ground truth. This direction
is essential for broader deployment in uncontrolled visual environments.

5.4. Embedded Deployability and Future Evaluation

One of the core motivations behind the DRFAN is its deployability in resource-
constrained platforms such as embedded vision systems, mobile devices, and industrial
edge modules. With only 1057K parameters and 65.1G FLOPs, the DRFAN meets the gen-
eral efficiency requirements of embedded hardware. Our current evaluations show that it
runs smoothly on high-end GPUs, but deployment on mobile SoCs (e.g., ARM-based NPUs,
NVIDIA Jetson, or Huawei Ascend Lite) has not yet been quantitatively benchmarked.

In future work, we plan to evaluate the DRFAN’s runtime latency, power consumption,
and memory footprint on embedded platforms. We will then explore optimizations such as
quantization, weight pruning, or TensorRT/NPU acceleration for low-precision inference.
Finally, we will assess its real-time capability with practical image streams from industrial
cameras. These steps will help further validate the DRFAN’s real-world usability and
pave the way for integration into automated inspection systems, portable grain analysis
terminals, and low-bandwidth visual transmission modules.

5.5. Broader Industrial Applicability and Future Dataset Expansion

While the DRFAN demonstrates strong performance on standard benchmarks and
the rice grain dataset, we acknowledge that the current industrial validation is limited to a
relatively small and domain-specific dataset. To ensure broader applicability, especially in
other manufacturing or quality inspection scenarios, it is necessary to evaluate the DRFAN
on additional real-world datasets with higher visual complexity, such as printed circuit
board (PCB) defects, fabric flaw detection, or pharmaceutical packaging.

These tasks often involve subtle, high-frequency anomalies embedded within repeti-
tive backgrounds—conditions where super-resolution models must balance texture fidelity
with robustness to noise. We plan to expand our evaluations to such datasets in future
work. Additionally, to mitigate domain-specific overfitting, we will explore unsupervised
domain adaptation and multi-domain training strategies, enabling the model to generalize
across varying types of industrial image degradations.

By extending the DRFAN to diverse industrial tasks, we aim to enhance its value as a
universal lightweight SR backbone for embedded inspection systems across agriculture,
electronics, and manufacturing sectors.

6. Conclusions
This paper proposes the DRFAN, a novel hybrid architecture for single-image super-

resolution, comprising three core components: shallow feature extraction, deep feature
refinement, and image reconstruction. By integrating the Mamba-like linear attention
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(MLLA) module and Grid Attention Block (GAB), we synergize the local sensitivity of
depthwise convolutions, the long-range dependency modeling of self-attention, and the
sequential evolution properties of SSMs through a gated coupling mechanism. A hierarchi-
cal grid interaction strategy dynamically allocates weights based on structural similarity
priors between image patches, extending the effective receptive field to non-local regions
and enhancing texture reconstruction. Experimental results demonstrate that the DRFAN
outperforms existing methods on several benchmark datasets, validating its effectiveness
in SISR tasks. Additionally, tests in actual rice processing and inspection scenarios show
that our method can effectively enhance the contours and texture details of small rice grain
targets, confirming its significant engineering application value. In future work, we aim
to further improve the scalability of the DRFAN to support higher magnification factors
(e.g., ×6, ×8) and enhance its robustness under real-world degradations such as motion
blur and sensor noise. Additionally, the proposed lightweight design shows great potential
for deployment in edge devices and intelligent agricultural systems, such as real-time rice
quality assessment in milling lines or embedded inspection tools in mobile platforms.
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