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Abstract

With the growing popularity of ice sports, indoor ice sports venues are drawing an increas-
ing number of spectators. Maintaining comfort in spectator zones presents a significant
challenge for the operational scheduling of climate control systems, which integrate venti-
lation, heating, and dehumidification functions. To explore economic cost potential while
ensuring user comfort, this study proposes a demand response-integrated optimization
model for climate control systems. To enhance the model’s practicality and decision-making
efficiency, a two-stage optimization method combining multi-objective optimization algo-
rithms with the technique for order preference by similarity to an ideal solution (TOPSIS)
is proposed. In terms of algorithm comparison, the performance of three typical multi-
objective optimization algorithms—NSGA-II, standard MOEA/D, and Multi-Objective
Brown Bear Optimization (MOBBO)—is systematically evaluated. The results show that
NSGA-II demonstrates the best overall performance based on evaluation metrics including
runtime, HV, and IGD. Simulations conducted in China’s cold regions show that, under
comparable comfort levels, schedules incorporating dynamic tariffs are significantly more
economically efficient than those that do not. They reduce operating costs by 25.3%, 24.4%,
and 18.7% on typical summer, transitional, and winter days, respectively. Compared to
single-objective optimization approaches that focus solely on either comfort enhancement
or cost reduction, the proposed multi-objective model achieves a better balance between
user comfort and economic performance. This study not only provides an efficient and
sustainable solution for climate control scheduling in energy-intensive buildings such as ice
sports venues but also offers a valuable methodological reference for energy management
and optimization in similar settings.

Keywords: climate control systems; economic cost; thermal comfort; optimization; indoor
ice sports venues; demand response

1. Introduction
Ice sports venues have become an integral part of people’s lives as places for public

fitness, professional training, and competitions. Due to their unique functional attributes,
ice sports venues have stringent requirements for the ice surface and the surrounding
thermal and humidity environments, which are often maintained through climate sys-
tems [1,2]. Owing to the complex and large-scale structure of ice sports venues, their indoor
temperature and humidity are influenced by a wide range of factors. In addition, the spatial
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divisions within the venue are complex, including the near-ice space, the athlete competi-
tion areas, and the spectator areas, all of which are interconnected, and there are significant
differences in the thermal and humidity conditions across these different spaces [3,4]. To
meet the above requirements, the climate control system consists of 2–3 sets of independent
cold and heat source systems, which are used for ice refrigeration and dehumidification
of the ice zone and spectator zones. Specifically, the climate control system of ice sports
venues is composed of equipment such as ice-making units, dehumidification units, and
air conditioning units. The ice-making units maintain ice surface temperature control
requirements and ensure temperature uniformity through the circulation of appropriate
coolants or refrigerants. Dehumidification units, working in conjunction with supply and
return air terminals, regulate humidity parameters in the ice rink area to ensure that air
humidity meets the demand [5]. When auxiliary areas such as spectator stands are present,
ventilation systems with cooling functions and radiant heaters are typically installed to en-
sure essential thermal environmental conditions [6]. Due to differences in temperature and
humidity requirements and influencing factors between the ice surface and its surrounding
areas and the spectator stands in ice sports venues, inadequate temperature and humidity
control in the spectator area can negatively impact the audience experience. This, in turn,
may reduce venue attendance and further affect ticket revenue. However, operating at full
capacity also increases energy costs. Therefore, the regulation of the thermal and humidity
environment in the spectator area is crucial. For this reason, this study focuses on the
climate control of spectator stands in ice sports venues.

The operation of the climate control system is a crucial component of ice sports
venues [3]. This process also consumes a large amount of energy, resulting in high oper-
ating costs [7]. Therefore, it is of great significance to reasonably optimize the operation
scheduling of the climate control system of the ice sports venues to reduce energy consump-
tion, save costs, and promote stabilization of the indoor thermal and humidity environment.

In the optimization problem for the climate control system, the regulation strategies
have shifted from proposing operational plans based on traditional standard conditions to
dynamically and predictively formulating operational strategies. Deori considered uncer-
tainty in building occupancy [8], Rupali Jain considered uncertainty in electricity prices,
weather variations, and spectators in the room [9], Zhang considered occupancy data and
weather forecast data, and Bozchalui considered dynamic electricity prices [10,11]. Rahim
et al. proposed an innovative approach that integrates green roofs with atriums, demon-
strating significant energy-saving effects during both winter and summer operations. It can
be seen that the dynamic changes in electricity prices have become one of the important
considerations in predictive control [12]. As an option for peak load management, demand
response enables end users to manually or automatically reduce and shift their energy
consumption, achieving the goal of cost reduction [13–16]. It also helps energy suppliers
adjust load distribution to reduce peak demand and avoid exposing their infrastructure
to critical stress [17]. Since predictive control strategies help match supply and demand,
save energy, and reduce energy costs, this study considers dynamic electricity information,
weather variation information, and audience presence information. This approach con-
tributes to reasonably formulating the operational scheme for the climate control system in
the spectator stands.

In the field of equipment system operation research, studies can be classified into
single-objective and multi-objective approaches based on the number of optimization goals.
In single-objective research, Zahedi studied a CCHP system coupled with a thermal energy
storage tank, aiming to minimize the overall cost of fuel consumption, electricity purchase,
electricity sale revenue, and system operation [18]. Siroky investigated intermittently
heated radiant floor heating systems and proposed predictive control strategies, resulting
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in 10–12% energy savings during cold winter months compared to conventional control
approaches [19]. Gwerder studied the energy-saving effects of predictive Integrated Room
Automation (IRA), which maximizes the use of low-energy-cost actuators to maintain
comfort within the desired range while minimizing energy consumption [20]. Nagpal
proposed a co-optimization framework for minimizing energy costs and investigated the
climate control of buildings utilizing a shared set of heat pumps through economic model
predictive control [21]. Rupali Jain aimed to minimize electricity costs and discussed
equipment start–stop strategies under both real-time and fixed pricing schemes. The
results showed that shifting the operation of climate control equipment to periods of low
electricity prices can lead to significant cost savings [9]. In summary, the majority of
studies focus primarily on reducing energy consumption and minimizing energy costs as
separate objectives.

In the multi-objective optimization research, Zhang aimed to achieve two objectives:
minimizing energy consumption and stabilizing indoor temperature. To accomplish these
goals, he proposed a model predictive control-based optimal temperature controller for
air conditioning and mechanical ventilation systems in buildings [10]. Imandoust et al.
also investigated a similar solar-driven MED system, aiming to maximize net profit and
enhance unit production economy through system configuration optimization [22].

The thermal and humidity conditions in ice sports venues are complex, yet relatively
little consideration has been given to the development of equipment operation strategies.
Current research primarily focuses on operational strategies for ice sports venues from a
single-objective perspective, without considering them from a multi-objective approach [9].
Given that the stands accommodate a substantial number of spectators, ensuring occupant
comfort has become a primary objective. Additionally, cost and comfort are mutually
constraining goals. Therefore, this study takes spectator comfort and energy cost as its
objectives to achieve efficient and economical system operation. Furthermore, in the current
research on climate control systems for ice sports venues, most studies focus on minimizing
electrical energy costs, typically by optimizing the switching states of the climate control
system equipment. However, these studies often overlook other important factors such
as equipment startup and shutdown costs, operation and maintenance costs, and environ-
mental impact costs. Therefore, while some progress has been made in optimizing energy
costs, these studies fail to comprehensively reflect the overall benefits of the system.

The core of multi-objective optimization methods lies in providing a moderate number
of Pareto solution sets of good quality within a limited computational time to support the
solution of complex decision problems. Evolutionary algorithms have been widely used in
the field of multi-objective optimization due to their superior search capability and low
computational burden [23]. Among them, the Non-dominated Sorting Genetic Algorithm
(NSGA-II), as a classical benchmark algorithm, combines the genetic algorithm with the
non-dominated sorting mechanism and is able to search the global Pareto frontier efficiently,
especially in large-scale problems, and has been proven to have a significant computational
advantage over commercial optimization tools. In addition, the standard MOEA/D algo-
rithm decomposes the multi-objective problem into multiple sub-problems through weight
vectors and utilizes the neighborhood structure and Tchebycheff aggregation method to
achieve a rigorous optimization process based on decomposition and neighborhood, which
is suitable for scenarios with obvious objective conflicts and clear problem structure [24].
In recent years, MOBBO (Multi-Objective Brown Bear Optimization), as an emerging group
intelligence algorithm, integrates the mechanisms of non-dominated sorting, external solu-
tion archiving, and brown bear foraging behavior and takes into account the ability of local
exploitation and global exploration, which has shown strong performance advantages in
high-dimensional and complex multi-objective engineering problems [25].
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Based on the above algorithms, three representative multi-objective optimization
algorithms, NSGA-II, MOEA/D, and MOBBO, are selected for comparative analysis to
systematically evaluate their applicability and differences in multi-objective scheduling
problems. These three algorithms have their own characteristics in terms of optimization
mechanism, search strategy, and solution set characteristics, which can comprehensively
cover the mainstream technical paths in multi-objective optimization, have strong represen-
tativeness and complementarity, and provide multi-dimensional technical support for the
solution of the multi-objective scheduling model in this study.

However, multi-objective optimization algorithms usually generate a large number of
candidate solutions while providing high-quality solution sets, which may lead to decision-
making difficulties. For this reason, this study further introduces the TOPSIS method [26],
which assists the decision-making in selecting the optimal solution by calculating the dis-
tances between each solution in the solution set and the ideal solution. The multi-objective
optimization algorithm fully ensures the diversity and global nature of the solution set,
while the TOPSIS method introduces an objective sorting logic in the solution set. The two-
stage optimization method improves the efficiency and practicability of optimal solution
selection. The synergistic mechanism of “diversified search + rational decision-making” not
only reduces the subjective intervention of manpower but also improves the operability and
relevance of the solution, which demonstrates the outstanding comprehensive advantages
in complex engineering optimization problems.

The innovations of this work are as follows:
• This study systematically integrates electricity, equipment start/stop, maintenance,

and environmental costs for the first time, moving beyond the traditional focus on energy
costs to achieve a more comprehensive optimization that considers equipment lifespan and
environmental impact.

• An innovative approach combining multi-objective optimization with TOPSIS de-
cision analysis is proposed, following a “search first, decide later” strategy. This greatly
enhances the model’s practicality and decision-making efficiency while incorporating
demand-side analysis.

• This study systematically compares three algorithms—NSGA-II, MOEA/D, and
MOBBO—assessing their suitability for ice rink climate control. It identifies the optimal
algorithm and introduces a demand-side response strategy under time-of-use tariffs to
reduce costs through load shifting and improve energy efficiency.

The remainder of this paper is organized as follows: Section 2 develops an approx-
imate physical model of the ice sports venue for the multi-objective optimization of its
climate control system. Section 3 presents a case study that compares three multi-objective
optimization algorithms, identifies the most suitable one, and analyzes the optimization re-
sults based on the selected method. Section 4 provides discussion, and Section 5 concludes
the paper.

2. Optimization Model
This study adopts a representative facility layout of an ice sports venue as the architec-

tural model, as developed in prior research [27]. The specific equipment layout is shown in
Figure 1 below.

This study focuses on the spectator stands of an ice sports venue. The climate control
system in this area comprises a ventilation system, a radiant heating system, and a dehu-
midifier. The ventilation unit provides fresh air while also delivering air at a regulated
temperature to help maintain thermal comfort in the spectator area. Meanwhile, the radiant
heaters assist with space heating, and the independent dehumidification system is respon-
sible for maintaining appropriate humidity levels. To ensure coordinated operation among



Algorithms 2025, 18, 446 5 of 28

these subsystems, an optimization model for operational strategy is developed, which
intelligently generates control commands based on the current system status to regulate
device operation and keep the indoor temperature and humidity within predefined limits.

Figure 1. An indoor ice rink facility layout.

The model design comprehensively considers weather conditions, electricity price
fluctuations, end-user preferences regarding equipment operation, and spectator schedules.
With advancements in weather forecasting technologies and electricity market mechanisms,
it is now feasible to obtain high-resolution weather predictions and real-time dynamic
pricing data over short time horizons. These external inputs provide anticipatory guidance
for system control [28].

Specifically, outdoor temperature, humidity and end-user preferences serve as bound-
ary conditions for thermal and moisture load calculations, enabling the model to forecast
future load variations and proactively adjust equipment scheduling. Time-varying electric-
ity prices are incorporated into the objective function as dynamic cost coefficients, guiding
equipment operation toward low-tariff periods to optimize electricity expenditure [29,30].
By integrating environmental signals with economic incentives, the proposed optimization
model not only improves the precision of indoor thermal–humidity regulation but also en-
hances the overall operational efficiency and economic performance of the system. Figure 2
primarily illustrates the relationship between the proposed optimization model and the
existing climate control system.

Figure 2. Overall architecture of the proposed optimization model and existing climate control system.

2.1. Objective Functions

Relevant studies have shown that reducing the energy consumption of building
operational equipment can compromise daily comfort. Many studies aim to minimize cost
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or carbon emissions while maintaining user comfort. This study focuses on indoor ice rinks,
aiming for both optimal comfort and cost efficiency, and explores climate control system
strategies to find a balance between cost savings and improved comfort [31,32].

2.1.1. Users’ Comfort in Spectator Stands Objective

The objective of the climate control system is to maintain the temperature and humidity
of the spectator seating area within an acceptable deviation range. Relevant studies have
shown that large fluctuations in indoor temperature and humidity can lead to thermal
discomfort for occupants [33]. Based on this, the thermal comfort of users in the spectator
seating area is expressed as follows:

F1 = min∑ t∈T

(
(θz(t)− θz,set)

2 + (wz(t)− wz,set)
2
)

(1)

where θz(t) is the ambient temperature of the spectator stands at time t (K). Z area represents
the spectator stands. θz, set is the set point temperature of the spectator stands (K). wz(t) is
the humidity of spectator stands at time t (kgH2O/kgair). wz,set is the set point humidity of
the spectator stands (kgH2O/kgair).

2.1.2. Economic Objective

The costs include operational costs and environmental costs. Operational costs cover
electricity expenses, startup and shutdown-related costs, and maintenance costs.

F2 = min(CECO + Csco) (2)

where CECO is operational cost and Csco is environmental cost. The operational cost (CECO)
is given as follows:

CECO = ∑t∈T(τCE(t)+τCOM(t) + τCSC(t)
)

(3)

where CE(t), CO(t), and CS(t) are cost of electricity consumption, maintenance, startup
and shutdown of machine in time period t, respectively [34].

CE(t) = Cven
E (t) + Cdh

E (t) + Cht
E (t) (4)

COM(t) = Cven
OM(t) + Cdh

OM(t) + Cht
OM(t) (5)

CSC(t) = Cven
SC (t) + Cdh

SC(t) + Cht
SC(t) (6)

where Cven
E (t), Cdh

E (t), and Cht
E (t) are electricity costs of ventilation system, dehumidifica-

tion, and radiant heating, respectively. Cven
OM(t), Cdh

OM(t), and Cht
OM(t) are maintenance costs

of ventilation system, dehumidification, and radiant heating, respectively. Cven
SC (t), Cdh

SC(t),
and Cht

SC(t) are startup and shutdown costs of the ventilation system, dehumidification,
and radiant heating, respectively.

The ventilation system supplies air at a specified temperature and has a cooling unit.
When the outdoor temperature exceeds the setpoint of the ventilation system, the cooling
function is activated. When the outdoor temperature is below the setpoint, cooling is
not applied.

Cven
E (t) =

{
Qven
COP × Cele(t), θex(t) ≥ θven

z
Cele(t)× Pven × Sven(t), θex(t) < θven

z
(7)

Cdh
E (t) = Cele(t)× Pdh × Sdh(t) (8)

Cht
E (t) = Cele(t)× Pht × Sht(t) (9)
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where Qven is the cooling load provided by the ventilation system. COP is the coefficient
of performance of the ventilation system. Cele(t) is the electricity price at time t. Pven,
Pdh, and Pht are the power of the ventilation system, dehumidifier, and radiation heaters,
respectively (kW). Sven(t), Sdh(t), and Sht(t) are binary variables for controlling the on/off
state of the ventilation with a cooling unit, dehumidifier, and radiation heaters, respectively.

Cven
OM(t) = Com−ven(t)× Cven

E (t) (10)

Cdh
OM(t) = Com−dh(t)× Cdh

E (t) (11)

Cht
OM(t) = Com−ht(t)× Cht

E (t) (12)

where Com−ven(t), Com−dh(t), and Com−ht(t) are cost coefficients of maintenance of ventila-
tion, dehumidifier, and radiation heaters, respectively (CNY·kWh−1).

Cven
SC (t) = Csc−ven(t)× Cven

E (t) (13)

Cdh
SC(t) = Csc−dh(t)× Cdh

E (t) (14)

Cht
SC(t) = Csc−ht(t)× Cht

E (t) (15)

where Csc−ven(t), Csc−dh(t), and Csc−dh(t) are cost coefficients of startup and shutdown of
ventilation, dehumidifier, and radiation heaters, respectively (CNY·kWh−1). ∀t ∈ T. τ is a
time interval (this study took 1 h (h)).

Environmental costs are driven by energy consumption, which, in the context of ice
sports venues, primarily results from electricity usage. The most important emissions
considered in the power generation industry, due to their effects on the environment, are
SO2, CO2, and NOx, which are modeled technically by the polynomial functions for the
SO2 emission, an emitted pollution model in tons per MW for CO2, and an exponential
function for NOx emissions [35,36]. For the economic investigation of the adverse effects
of electric power systems activities on climate change, various mechanisms, including
penalties through carbon taxes or cap-and-trade systems, are used to mitigate gaseous
pollutant emissions. The carbon tax mechanisms are imposed in some European countries,
including Sweden (CAD 127/t) and Finland [37]. The taxes have been proposed in Canada
at the provincial level, in Quebec and British Columbia (CAD 15/ton (in 2009) to CAD
30/ton (in 2012), respectively) [38]. This study represents the cost of the environment by
constructing a CO2 model. The carbon allowance price in the Chinese carbon market is
stabilized at CNY 58/t CO2. Csco is given as follows:

Csco =
(
∑t∈T(τ CE(t)

)
·EF·Cco2 (16)

where EF is the carbon emission factor for electricity (kg CO2/kWh) and Cco2 is the
environmental cost of carbon emissions from electricity (CNY·kg CO2

−1).

2.2. Constraint
2.2.1. Humidity Constraints

The humidity throughout the entire ice rink is maintained at a consistent level over
a specified period of time. Since the humidity setpoint is measured based on relative
humidity, and the environmental humidity of ice sports venues is designed using the
parameter of relative humidity, while the measurement and adjustment of dehumidification
equipment are based on specific humidity, it is necessary to convert between specific
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humidity and relative humidity [39]. Constraints of indoor specific humidity are given
as follows:

wz(t) ≤ ϕmax
z

0.622 ∗ ezs(t)

Patm − ϕmax
z ∗ ezs(t)

(17)

where wz(t) is humidity at time t in the studied area (kgH2O/kgair). ∅max
z is the maximum

relative humidity setpoint in the studied area (%). Patm is atmospheric pressure (Pa). ezs(t)
is the intermediate coefficient of conversion of temperature, relative humidity, and specific
humidity. ezs(t) is given as follows:

ezs(t) = 6.112 ∗ e
17.67∗(θz(t)−273.15)

θz(t) (18)

where θz(t) is the temperature at time t in the studied area (K).

2.2.2. Temperature Constraints

The temperature in the spectator stands of ice sports venues must be maintained
within the specified range. Constraints of temperature in the spectator stands are given
as follows:

θl
z ≤ Qz(t) ≤ θu

z (19)

where θl
z and θu

z are the lower and upper limits of the temperature in the studied area,
respectively (K).

2.2.3. Equipment Operating Constraints

To ensure indoor air quality and meet the practical operational needs of equipment
in ice sports venues, this study incorporates a constraint into the optimization scheduling
model requiring the ventilation system to be activated at least once per day. The ventilation
system effectively replaces polluted indoor air accumulated from human activity and equip-
ment operation, reducing the concentration of carbon dioxide, volatile organic compounds,
and other harmful substances. This helps maintain a healthy indoor environment and
safeguards the health and safety of both athletes and spectators.

Sven(t) ≥ 1 (20)

2.3. Thermal Model

Due to the complex variations in temperature and humidity inside ice sports venues,
an approximate physical model is constructed for indoor humidity and temperature in
spectator stands of ice sports venues [9]. Due to the significant temperature difference
between the spectator area and the space above the ice surface, the spectator area is treated
as an independent thermal zone for study. The temperature in the spectator area varies
considerably with seasonal changes, ranging from 8 ◦C to 26 ◦C, while the temperature
above the ice surface remains around 16 ◦C at heights of 0.2 to 1.5 m and approximately
25 ◦C above 1.5 m. Given the need to maintain the spectator area’s temperature under
varying external conditions, it is reasonable to study it as an independent zone.

Based on the aforementioned building layout, dehumidification is not implemented
in a zoned manner. Therefore, the spectator area shares the same humidity level as
other zones.

2.3.1. Humidity Variation Model

(1) Calculation of Spectator Stands Humidity

Air humidity is influenced by the ventilation system through indoor and outdoor
air exchange, air infiltration, and audience respiration. Additionally, the operation of
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dehumidifiers can remove part of the humidity. The specific humidity variation model is
given as follows:

wz(t) = wz(t − 1) + wven(t) + wleak(t) + waud(t)− wdh(t) (21)

where wz(t − 1) is air humidity in the ice sports venue at time t − 1 (kgH2O/kgair). wven(t)
is the impact of the ventilation system on the humidity of the spectator stands (kgH2O/kgair).
wleak(t) is the effect of air infiltration on the humidity of the spectator stands (kgH2O/kgair).
waud(t) is the moisture generated by audience respiration (kgH2O/kgair). wdh(t) is the effect
of dehumidifier operation on the humidity of the spectator stands (kgH2O/kgair). The
impact of the ventilation system on humidity is calculated as follows:

wven(t) = Sven(t)τ

.
V × (wex(t)− wz(t − 1))

Vz
(22)

where
.

V is the airflow rate of the ventilation system (m3/h). wex(t) is the humidity of the
incoming air, assuming the humidity of the air entering the ventilation system is the same
as that of the outside air (kgH2O/kgair). Vz is the volume of air in the studied area (m3).
wex(t) is given as follows:

wex(t) =
∅ex(t) ∗ 0.622 ∗ exs(t)

Patm − ∅ex(t) ∗ exs(t)
(23)

where ∅ex(t) is the relative humidity of the outside air at time t (%). exs(t) is the intermediate
coefficient of conversion of temperature, relative humidity, and specific humidity outside.
exs(t) is given as follows:

exs(t) = 6.112 ∗ e
17.67∗(θex(t)−273.15)

θex(t) (24)

where θex(t) is the temperature of the outside air at time t (K). The effect of air infiltration
on the humidity is given as follows:

wleak(t) = τ
V leak

z × (wex(t)− wz(t − 1))
Vz

(25)

where V leak
z is air leakage (m3/h). waud(t) is given as follows:

waud(t) =
Ns(t)× Nφg × τ

Vzρ
(26)

where Ns(t) is the occupancy rate of the venue (%). N is the total capacity of the ice sports
venue (persons). φ is the clustering coefficient. g is the hourly moisture emission per person
(kg/h). ρ is the air density (kgair/m3). wdh(t) is given as follows:

wdh(t) =
vz(t)Sdh(t)τ

Vzρ
(27)

where vZ(t) is the impact of dehumidifier operation on the moisture content of the air in
the studied area (kg/h). wice(t) is given as follows:

2.3.2. Temperature Variation Model

The temperature distribution inside ice sports venues is a complex phenomenon. To
simulate the temperature changes in the spectator stands, many factors are considered,
such as the ventilation system, the operation of radiant heating systems, heat loss through
walls, air leakage, lighting, audience-generated heat, and the impact of heat loads such as
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radiative heat transfer between different areas [40,41]. The temperature variation model is
given as follows:

θz(t) = θz(t − 1) + θht(t) + θen(t) + θven(t) + θlight(t) + θaud(t) + θre f (t) (28)

where θz(t) is the ambient temperature at time t (K). θz(t − 1) is the ambient temperature
at time t − 1 (K). θht(t) is the effect of radiant heating on temperature during an interval
(K). θen(t) is the effect of outdoor air heat conduction through the envelope on temperature
during an interval (K). θven(t) is the effect of cooling air conditioning operation on tem-
perature during an interval (K). θlight(t) is the effect of lighting on temperature during an
interval (K). θaud(t) is the effect of body heat dissipation on temperature during an interval
(K). θre f (t) is the effect of ice temperature through thermal radiation on temperature (K).
θht(t) is given as follows:

θht(t) =
PdhSht(t)τ × 3.6

mz × CZ
(29)

where mz is the mass of the air in the spectator stands (kg). CZ is the specific heat capacity
of air (commonly taken as 1.005 kJ/(kg·K)). mz is given as follows:

mz = V × ρ (30)

where V is the space volume (m3). ρ is the air density (kg/m3). θen(t) is given as follows:

θen(t) =
(
UA +

.
mCZ

)
(θex(t)− θz(t − 1))τ

mz × CZ
(31)

where U is the heat transfer coefficient of the building envelope (kW/(m2·K)). A is the
surface area of the building envelope (m2).

.
m is the air leakage flow rate (m3/h). θex(t) is

the outdoor air temperature at time t (K). θven(t) is given as follows:

θven(t) =
Qven × τ

mz × CZ
(32)

where Qven is the heat transferred by the ventilation system (K). Qven is given as follows:

Qven =
.
v × CZ × Sven(t)(θven

z − θz(t − 1)) (33)

where θven
z is the setpoint temperature for ventilation system (K).

.
v is the air mass flow rate

(kg/h). θlight(t) is given as follows:

θlight(t) =
Plight × τ

mz × CZ
(34)

where Plight is the total power of the light in the spectator stands (kW). θaud(t) is given
as follows:

θaud(t) =
qrad × Naud(t)× Nmax

mz × CZ
(35)

where qrad is the heat generated by indoor occupants (W/(h·Person)). Naud(t) is the
schedule of audience occupancy as a percentage (%). Nmax is the maximum capacity of the
audience (Person).

According to the Stefan–Boltzmann thermodynamic law, the total energy radiated per
unit area from the surface of a black body per unit time is proportional to the fourth power
of the black body’s thermodynamic temperature T. Thermal radiation originating from
the near-ice area, ceiling, and spectator stands contributes to the temperature rise in the
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spectator stands. To better calculate the thermal radiation between these areas, the near-ice
area is designated as zone X, the ceiling area as zone Y, and the spectator stands as zone
Z. The influence of the thermal radiation from the ice temperature on the temperature of
the spectator stands (zone Z) is calculated using shape factors (F) and surface radiation
quantities (Q). θre f (t) is given as follows:

θre f (t) =
(Ax,zFx,z(Q x − Qz) + Ay,zFy,z(Qy − Qz))× τ

mz × CZ
(36)

where Qx, Qy, and Qz are the radiative heat of the surfaces in zones X, Y, and Z, respectively.
Ax,z is the contact area between zones X and Z (m2). Ay,z is the contact area between zones
Y and Z (m2). Fx,z is the shape factor between zones X and Z. Fy,z is the shape factor between
zones Y and Z. Qx is given as follows:

Qx = ϵσθ4
x(t) (37)

where ϵ is the emissivity coefficient. σ is the proportional constant (kW/m2). θx(t) is the
temperature of zone X at time t (K). Fx,z is given as follows:

Fx,z =
1

Wx,zπ



Wx,ztan−1 1
Wx,zπ + Hx,ztan−1 1

Hx,zπ −
√

Hx,z
2 + Wx,z

2tan−1
√

1
Hx,z

2+Wx,z
2

+ 1
4


(1+Wx,z

2)(1+Hx,z
2)

1+Hx,z
2+Wx,z

2

[
Wx,z

2(1+Hx,z
2+Wx,z

2)
(1+Wx,z

2)(Wx,z
2+Hx,z

2)

]Wx,z
2

·
[

Hx,z
2(1+Hx,z

2+Wx,z
2)

(1+Hx,z
2)(Wx,z

2+Hx,z
2)

]Hx,z
2




(38)

where Wx,z is given as follows:

Wx,z =
wx,z

lx,z
(39)

and Hx,z is given as follows:

Hx,z =
hx,z

lx,z
(40)

where wx,z is the width of the vertical plane of the contact surface between zones X and
Z. lx,z and hx,z are the width and height of the contact surface of zone Z, respectively. The
schematic diagram is presented in Figure 3.

Figure 3. Geometric configuration diagram.

Fy,z, Wy,z, Hy,z, wy,z, ly,z, and hy,z are the same as those for the relationship between
zone Y and zone Z.

2.4. Solution Algorithm

The calculation and optimization processes are conducted on the Python 3.10 platform,
which is shown in Figure 4.
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2.4.1. Solution Procedure for Multi-Objective Optimization

In this work, three algorithms, NSGA-II, standard MOEA/D, and Brown Bear Op-
timization, are selected to solve the Climate Control Systems Scheduling for Indoor Ice
Sports Venues’ Spectator Zones problem.

• NSGA-II algorithm
The NSGA-II (Non-dominated Sorting Genetic Algorithm II), a widely used intel-

ligent optimization algorithm, is adopted to solve the Pareto frontier of the proposed
model [42–45]. The NSGA-II algorithm effectively identifies the optimal solution set, with
its core mechanism based on the selection and population update processes guided by
each individual’s non-dominated rank and crowding distance within the population. The
NSGA-II algorithm is characterized by its high efficiency and the use of an elitism strategy
to ensure the quality of solutions.

The main decision factors for selecting specific parameter values in the NSGA-II oper-
ation include population size, selection process, crossover probability, mutation probability,
and the number of iterations.

Step 1: Initialization. Generate initial populations. Each individual in the population
is a feasible operating scheme. The content of the scheme is the start and stop state of the
equipment on a time-by-time basis. Code each individual. Calculate the objective function
for each individual.

Step 2: Fast Undominated Sorting. Sort all individuals as non-dominated and then
divide them into a number of Pareto ranks. Select the high rank as the current optimal
solution set. Calculate the crowding distance for each individual, which is used to maintain
population diversity.

Step 3: Select. The binary tournament selection (BTS) process is based on two key
factors: rank and crowding distance. The subsequent selection of parental individuals is
made for the purpose of crossover and mutation operations.

Step 4: Crossover and variation. The utilization of simulated binary crossover (SBX)
with polynomial variation facilitates the generation of a population of offspring. It is
imperative that all newly generated individuals satisfy the imposed constraints.

Figure 4. Flowchart of the Non-dominated Sort Genetic Algorithm with elitist strategy (NSGA-II).
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Step 5: Elite retention and population renewal. The subsequent step in the process is
the amalgamation of the parent and child populations. Subsequent to this, non-dominated
sorting should be performed on the newly formed population. It is recommended that
individuals with high Pareto rank and high crowding are retained in order to ensure
convergence and diversity.

Stage 6: Termination of the proceedings. Upon attaining the maximum permitted
number of iterations, the process is terminated. The final output is the set of non-dominated
solutions, i.e., the Pareto front of the optimal scheme solution. Specifically, (1) the popula-
tion size should not be set too large or too small. When it is set too small, it is difficult to
find the actual shortest path; when it is set too large, the computation time is longer and
the convergence tendency is accelerated, but it is easy to fall into the local optimal solution.
(2) The crossover probability determines the average number of individuals involved in
mating during the evolutionary process. If it is set too high, the algorithm becomes overly
random and may lose its search direction. If it is set too low, the convergence speed becomes
too slow. (3) The smaller the mutation probability is, the slower the convergence speed
becomes. The larger the mutation probability, the more genetic variation occurs. Mutation
has a destructive effect on the optimal solution. If the mutation probability is too large,
it may cause better search conditions to degrade into worse ones. (4) If the number of
iterations is too small, it is difficult to converge to the optimal solution. Increasing the
number of iterations can speed up the convergence, but if the number of iterations is too
high, it will be difficult to obtain the global optimal solution.

• Multi-Objective evolutionary algorithm based on Decomposition (MOEA/D)
The Multi-Objective evolutionary algorithm based on Decomposition (MOEA/D) uses

an aggregation function to generate a set of uniform weight vectors, through which the
multi-objective optimization problem is divided into a set of single-objective sub-problems,
and then updates the “bad solutions” in the neighborhood according to the value of the
aggregation function so as to ultimately find the optimal Pareto solution set [23]. The steps
are as follows:

Step 1: Initialization. Initialize the population and calculate the objective function
value. Generate a set of weight vectors and define neighborhoods (e.g., based on weight
distances or solution spaces) for each subproblem. Determine the ideal point (minimum
set of objective values).

Step 2: Subproblem co-optimization. For each subproblem (corresponding to a weight
vector), randomly select two solutions from the neighborhood and use DE or SBX+ variant
to generate child solutions. Evaluate and update the optimal solutions and ideal points
in the neighborhood according to aggregation functions (e.g., Tchebycheff, weighted sum)
as needed.

Step 3: Population update. Update the solutions in the neighborhood of all subprob-
lems after each generation.

Step 4: Judgment termination. Repeat steps 2–3 until the maximum number of
generations or function evaluations is satisfied.

• Multi-Objective Brown Bear Optimization (MOBBO)
MOBBO is a novel multi-objective optimization algorithm based on the foraging,

territory marking, and sniffing behavior of brown bears. The algorithm simulates the
natural strategy of “exploration-exploitation” balance in the foraging process of brown
bears and has the ability of both global search and local exploitation. In order to effectively
deal with the multi-objective optimization problem, MOBBO introduces the non-dominated
sorting and external archive strategies to dynamically maintain the optimal non-dominated
solution set and improve the diversity and balance of the solution set. With the help of
the ε-domination mechanism, the algorithm can effectively prevent the aggregation of
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solutions while ensuring the quality of the solution set, which is suitable for problems with
complex constraints and multi-objective engineering optimization.

Step 1: Initialization. Randomly generate the population and initialize the tread
markers, i.e., decision variables. Set the objective function, population size, range of design
variables, and termination criteria.

Step 2: Non-dominated sorting and profile initialization. Perform Pareto sorting
to identify non-dominated solutions and initialize the external archive. Filter the set of
solutions through the ε-domination mechanism to ensure that the solutions retained in the
external archive are distributed equally in the target space.

Step 3: Iterative evolution. In each iterative generation, sequentially perform tread-
marking behavior (alternating exploration and exploitation), sniffing behavior (local fine
search), and updating the nondominated ordering and external archive. After each step,
the better solution is retained by greedy selection.

(1) Footprint Scent Marking Behavior

Characteristic Gait Walking (First One-Third of Iterations)

Pnew
i,j,k = Pold

i,j,k −
(

θk · αi,j,k · Pold
i,j,k

)
(41)

θk =
Ct

Nt
(42)

where αi,j,k is a random number within the range; Ct is the current iteration number; and
Nt is total number of iterations.

Cautious Stepping Feature (From One-Third to Two-Thirds of Iterations)

Pnew
i,j,k = Pold

i,j,k + Fk ·
(

Pbest
j,k − Lk · Pworst

j,k

)
(43)

Fk = β1,k · θk (44)

Lk = round(1 + β2,k) (45)

where β1,k and β2,k are random numbers within the range [0, 1]; Fk is the step factor at the
k-th iteration; and Lk is the step size at the k-th iteration.

Twisting Footsteps Feature (Final One-Third of Iterations)

Pnew
i,j,k = Pold

i,j,k + ωi,k ·
(

Pbest
j,k −

∣∣∣Pold
i,j,k

∣∣∣)− ωi,k ·
(

Pworst
j,k −

∣∣∣Pold
i,j,k

∣∣∣) (46)

ωi,k = 2πθkγi,k (47)

where γi,k is a random number within the range [0, 1], and ωi,k is the twisting angular
velocity of the i-th individual at iteration k.

(2) Sniffing Behavior

The mathematical model of brown bear sniffing behavior is as follows:

Pnew
m,j,k =

 Pold
m,j,k + λj,k ·

(
Pold

m,j,k − Pold
n,j,k

)
, f
(

Pold
m,k

)
< f

(
Pold

n,k

)
Pnew

m,j,k = Pold
m,j,k + λj,k ·

(
Pold

n,j,k − Pold
m,j,k

)
, f
(

Pold
m,k

)
≥ f

(
Pold

n,k

) (48)

where λj,k is a random number within the range [0, 1].
Step 4: Termination and Output. Terminate when the maximum number of iterations

is reached or there is no improvement, and output the optimal Pareto solution set.
To comprehensively evaluate the performance of the multi-objective optimization

algorithms used in this study, three widely recognized performance metrics were selected:
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computational time, Hypervolume (HV), and Inverted Generational Distance (IGD) [46,47].
These metrics, respectively, assess the computational efficiency, the diversity and con-
vergence of the obtained solution sets, and the proximity of the solutions to the true
Pareto front.

The Hypervolume (HV) metric measures the volume of the objective space covered by
the obtained solutions and reflects both convergence and diversity. Its formula is defined
as follows:

HV = Lebesgue measure

(⋃
x∈P

[ f1(x), r1]× [ f2(x), r2]× . . . × [ fm(x), rm]

)
(49)

where P is the current set of non-dominated solutions (Pareto front); fi(x) is the value of
solution x in the i-th objective; r = (r1, r2, . . . , rm) is the reference point, usually chosen as
a worst-case point in the objective space; and m is the number of objectives. A larger HV
value indicates a better-performing solution set.

The Inverted Generational Distance (IGD) metric evaluates the proximity and diversity
of the obtained solutions with respect to the true Pareto front. Its formula is given by:

IGD(P, P∗) =
1

|P∗|∑v∈P∗ min
u∈P

d(u, v) (50)

where P is the obtained non-dominated solution set; P∗ is the true or reference Pareto-
optimal solution set; d(u, v) denotes the Euclidean distance between solutions u and v; and
|P∗| is the number of solutions in the reference set. A smaller IGD value indicates better
convergence and distribution of the solution set.

2.4.2. A TOPSIS-Based Method for Optimal Selection

The TOPSIS method, also known as the approximate ideal solution ranking method, is
a typical Multi-Criteria Decision-Making (MCDM) approach [48–50]. By applying the multi-
objective optimization algorithm, the Pareto solution set of the problem can be obtained,
and then TOPSIS is used to filter out the optimal solution. The multi-objective optimization
algorithm fully explores the solution space to ensure the diversity and global nature of the
solution set, while TOPSIS introduces a clear sorting logic in the solution set to make the
screening process of optimal solutions clearer and more efficient, which not only avoids the
nuisance of manual subjective selection but also improves the decision-making utility of
the solution. The steps are as follows:

Step 1: The total number of alternative schemes is n. Moreover, there are m elements
in the scheme. The alternative schemes are represented in matrix format. xij denotes the
attribute of the i-th scheme under the criterion Cj, with incomparable units.

Ai =

x11, . . . . . . x1j, . . . . . . x1m

xi1, . . . . . . xij, . . . . . . xim

xn1, . . . . . . xnj, . . . . . . xnm

 i = 1, 2, . . . . . . , n; j = 1, 2, . . . . . . , m (51)

Step 2: Normalize xij to ensure consistency. The normalization rules are as follows:
For benefit criteria (the larger the value, the better):

uij =
xij − min

{
xij
}

max
{

xij
}
− min

{
xij
} (52)
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where uij is the normalized value of xij; max
{

xij
}

is the maximum value of xij across
all alternatives for the criterion Cj; and min

{
xij
}

is the minimum value of xij across all
alternatives for the criterion Cj.

For cost criteria (the smaller the value, the better) the following expression is derived:

uij =
max

{
xij
}
− xij

max
{

xij
}
− min

{
xij
} (53)

Step 3: Normalize the matrix by processing each element as a vector. The normalization
is performed as follows:

rij =
uij√

∑n
i=1 uij

2
(54)

Step 4: To calculate the weighted normalized decision matrix, apply the weights wj to
each element of the normalized matrix. The elements of the weighted normalized decision
matrix are calculated as follows:

zij = wjuij (55)

Step 5: Identify the ideal solution and anti-ideal solution as follows:

A+ =
{

z+1 , z+2 , . . . , z+j , . . . , z+m
}
= {max zi1, max zi2, . . . , max zim} (56)

A− =
{

z−1 , z−2 , . . . , z−j , . . . , z−m
}
= {min zi1, min zi2, . . . , min zim} (57)

Step 6: Calculate Euclidean distances between each alternative and ideal and anti-
ideal solution.

D+
i =

√
∑n

j=1

(
zij − z+j

)2
(58)

D−
i =

√
∑n

j=1

(
zij − z−j

)2
(59)

Step 7: Calculate the distance to the ideal solution for each alternative.

D+
i =

D−
i

D+
i + D−

i
(60)

The scheme with the largest ideal proximity value represents the optimal scheme,
specifically referring to the optimal operational equipment scheme for the climate control
system in ice sports venues.

3. Case Study
3.1. Case Description

To verify the effectiveness and applicability of the multi-objective optimization method,
a simulation was conducted on an ice hockey arena in a cold region of China. The arena
features an ice surface area of 1800 square meters, measuring 30 m in width and 60 m in
length, and is equipped with 6 rows of bleachers. It serves as a training facility and includes
205 spectator seats. Parameters are given in Table 1.
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Table 1. Parameter of the equipment and ice sports venue.

Parameter Value Unit Parameter Value Unit

θz,set

288.15 (Winter);
291.15 (Transition season)

293.15 (Summer)
K U 0.00044 kW/(m2·K)

wz,set 0.0845 kgH2O/kgair A 1937.49 m2

Pven 200 kW
.

m 193.452 kg/h
Pdh 70 kW

.
v 1225 kg/h

Pht 176 kW qrad 0.18 kW/(h·Person)
τ 1 h Naud 205 Person

∅max
z

70 (Summer);
60 (Transition season, Winter) % ϵ 1 -

.
V 60 kg/s σ 0.00567 kW/m2

Vleak
z 157.92 m3/h θx(0) 279.15 K
N 261 Person θy(0) 293.15 K

φ 0.92 - θz(0)
288.15 (Winter,

Transition season);
293.15 (Summer)

K

g 0.391 kg/h wz(0) 0.0745 kgH2O/kgair

ρ 1.225 kg/m3 θven
z

293.15 (Summer)
283.15 (Winter)

285.15 (Transition
season)

K

vZ(t) 120 kg/h Com−ven(t) 0.0045 CNY·kWh−1

K 0.828 kg/m2·h Com−dh(t) 0.0105 CNY·kWh−1

Aice 1800 m2 Com−ht(t) 0.0037 CNY·kWh−1

Xa 0.0189 kgH2O/kgair Csc−ven(t) 0.0024 CNY·kWh−1

Xi 0.00245 kgH2O/kgair Csc−dh(t) 0.0058 CNY·kWh−1

Tice 268.15 K Csc−dh(t) 0.0065 CNY·kWh−1

θl
z

281.15 (Winter)
283.15 (Transition season);

285.15 (Summer)
K EF 0.5688 CO2·kWh−1

θu
z

291.15 (Winter),
293.15 (Transition season);

299.15 (Summer)
K Cco2 0.058 CNY·kg CO2

CZ 1.005 kJ/(kg·K) COP 3

3.2. Data Source of Weather and Electricity Price

To simulate the running state of equipment in ice sports venues based on outdoor
climatic conditions, it is essential to select suitable hourly meteorological parameters. Given
the stochastic nature of meteorological conditions, using weather data from a specific year
to calculate the model may lead to results that lack representativeness. To ensure the results
reflect long-term climatic characteristics, typical year meteorological data are chosen for the
calculations [51]. Data were obtained from https://climate.onebuilding.org (accessed on
14 July 2025), where climate data are regularly updated, validated, and subjected to quality
checks. The validation process is primarily based on the 2021 ASHRAE Handbook. This
data source has been widely applied in numerous studies.

For this research, typical days of summer, winter, and transitional seasons in cold
regions are selected for simulation. Apart from winter and summer, this study follows
previous research by combining spring and autumn into a single transitional season for
analysis. The outdoor ambient temperature and relative humidity of the three typical days
are shown in Figure 5. During typical summer days, ambient conditions are characterized
by high temperatures and elevated humidity levels. In contrast, transitional seasons exhibit
moderate temperature and humidity conditions, while typical winter days are marked by
both low temperatures and low humidity.

https://climate.onebuilding.org
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Figure 5. Outdoor temperature and relative humidity of typical days: (a) Outdoor temperature;
(b) Outdoor relative humidity.

Based on the optimization models as shown in Equation (4), the technical input
parameters are given in Table 2.

Table 2. Electricity tariffs of the grid.

Time Period Time Electricity Tariffs (CNY/kWh)

Peak 10:00–13:00, 17:00–22:00 1.71
Flat 7:00–10:00, 13:00–17:00, and 22:00–23:00 1.00

Valley 23:00–24:00, 0:00–7:00 0.36

3.3. Results
3.3.1. Pareto Frontiers

In order to comprehensively evaluate the performance of different multi-objective
optimization algorithms, three commonly used evaluation metrics, namely, computation
time, Hypervolume (HV), and Inverted Generational Distance (IGD), are selected for com-
parative analysis in this work. Among them, the computation time reflects the operation
efficiency of the algorithm; HV measures the breadth and diversity of the distribution of
the solution set, and the larger value represents the better quality of the solution set; and
IGD measures the proximity between the solution set and the theoretical optimal solution,
and the smaller value indicates the better convergence of the solution set.

The comparison results of the three multi-objective optimization algorithms NSGA-II,
MOEA/D, and MOBBO in terms of computation time, Hypervolume (HV), and Inverted
Generational Distance (IGD) are shown in Table 3. In terms of computation time, MOEA/D
has the highest running efficiency of 86.21 s, which is better than NSGA-II (295.85 s) and
MOBBO (237,860.78 s). However, in terms of solution set diversity and convergence, NSGA-
II performs the most outstandingly, with an HV value of 6946.8083, which is significantly
better than the other algorithms, showing excellent solution set expansion capability, while
the lowest IGD value (10.4241) indicates its excellent convergence characteristics in terms
of approaching the optimal frontier.

Table 3. Comparison of performance metrics (time, HV, IGD) among NSGA-II, MOEA/D, and
MOBBO algorithms.

Metrics NSGA-II MOEA/D MOBBO

Time 295.85 s 86.21 s 237,860.78 s
HV 6946.8083 506.7154 4567.56
IGD 10.4241 161.1774 62.13
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Considering computational efficiency, solution set diversity, and convergence, NSGA-
II is finally selected as the optimal solution algorithm in this work. Although its computa-
tion time is slightly higher than that of MOEA/D, NSGA-II has obvious advantages in the
quality of the solution set and convergence, which are the core indexes of multi-objective
optimization, and it is more suitable for the application of optimal scheduling of the ice
rink climate control system in this study. In this study, the initial population size was
set to 200 and the number of iterations to 1000. These parameters were carefully selected
based on multiple rounds of testing and tuning. The results showed that this configura-
tion strikes an appropriate balance between solution quality and computational efficiency.
It ensures sufficient convergence of the optimization process while effectively control-
ling the computational time, thus avoiding both premature convergence and excessive
computational cost.

Figure 6 shows the Pareto front obtained under typical temperature and humidity
conditions by applying the NSGA-II algorithm [52].

Figure 6. Pareto optimal chart of three typical days: (a) typical day in summer; (b) typical day in
transitional season; and (c) typical day in winter.

Figure 6 illustrates the best Pareto fronts for multi-objective optimization of the opera-
tion of the ventilation, dehumidification, and radiant heating equipment for the spectator
stand of an ice sports arena under typical days in summer, transitional seasons, and winter.
On each Pareto frontier, the single-objective optimal solutions are specifically denoted
as points A and B, while the multi-objective compromise solution is marked as point C.
Among them, schemes A and B represent extreme scenarios: Scheme A achieves the highest
level of thermal comfort at the expense of the highest cost, whereas Scheme B minimizes
economic expenditure but yields relatively lower comfort. Across all three typical days,
a clear trade-off relationship between comfort and cost is observed—enhancing indoor
thermal comfort inevitably leads to increased equipment operation costs.

Table 4 presents the scheduling objectives under three optimization scenarios: max-
imum comfort, minimum cost, and the compromise solution selected using the TOPSIS
method. As shown, on three typical days, when the indoor environment was optimized
to the maximum comfort level, the operating cost exceeded the optimal cost value by at
least 28.5%. On the contrary, when the operating costs were reduced to the minimum, the
changes in temperature and humidity increased by at least 35.13% respectively compared
to their respective optimal comfort levels, which was detrimental to the economic benefits
of maintaining the system’s operation. In contrast, the multi-objective optimization model
achieves a balanced performance: although its economic cost and comfort are slightly infe-
rior to those of the single-objective optimal solutions, it effectively harmonizes operational
economy with indoor environmental comfort.
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Table 4. Economic cost and thermal comfort of different optimizations.

Objective Maximum Comfort Minimum Cost TOPSIS
F1 F2 F1 F2 F1 F2

Typical day in summer 24.02 1298.7 32.46 837.86 29.21 954.56
Typical day in

transition season 10.92 565.34 22.68 327.98 13.75 481.32

Typical day in winter 13.52 1528.33 29.87 1189.40 21.22 1297.45

Compared with the model optimized solely for users’ comfort, the multi-objective
optimization model improves economic performance under typical summer, transitional,
and winter conditions by 26.5%, 14.9%, and 15.1%, respectively. In contrast, compared
with the cost-optimal model, it reduces spectators’ discomfort under the same three typical
conditions by 10.0%, 39.3%, and 28.9%, respectively. Therefore, the multi-objective opti-
mization model demonstrates a superior ability to balance economic efficiency and users’
comfort, outperforming single-objective models under varying climatic scenarios.

3.3.2. Optimal Scheduling Results Analysis

Figure 7 illustrates the power scheduling of the system under three scenarios: max-
imum comfort, minimum cost, and multi-objective optimization. Under extremely hot
and humid weather conditions, in order to maintain user comfort, the ventilation system
operates at nearly full power, while the radiant heating system remains largely inactive.
The primary variation in climate control system load arises from the operation of the
dehumidification and ventilation systems.

 

Figure 7. Optimized scheduling results of a typical day in summer: (a) single-objective optimization
(F1); (b) single-objective optimization (F2); and (c) multi-objective optimization.

As shown in Figure 7a, user comfort is maintained at the highest level, with the
dehumidification system operating continuously throughout the day. To ensure comfort,
this scenario maintains high ventilation rates and strict humidity control at all times,
reflecting a tightly constrained operational logic that leads to a significant increase in
overall power demand and system operating costs.

In contrast, Figure 7b shows that the dehumidification system is activated only during
13:00–15:00 and 17:00–18:00. This scenario clearly prioritizes economic efficiency by reduc-
ing the duration of dehumidification, thereby lowering operating costs at the expense of
user comfort.

Figure 7c presents the power scheduling under the multi-objective optimization sce-
nario. Compared to Figure 7a, dehumidification operation is reduced during certain
morning hours, resulting in a shorter total dehumidification duration. Compared to
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Figure 7b, however, dehumidification is increased in several time periods, leading to a
longer total operating time. This indicates that the multi-objective strategy effectively
balances comfort and cost.

The scheduling results of a typical day in a transitional season are shown in Figure 8.
Under moderate outdoor temperature and relative humidity conditions, ventilation and
radiant heaters are activated to maintain user comfort, while the dehumidification system
remains inactive.

 

Figure 8. Optimized scheduling results of a typical day in a transitional season: (a) single-objective
optimization (F1); (b) single-objective optimization (F2); and (c) multi-objective optimization.

As shown in Figure 8a, the radiant heaters operate during seven time intervals through-
out the day (00:00–01:00, 02:00–03:00, 05:00–06:00, 08:00–09:00, 13:00–14:00, 20:00–21:00, and
22:00–23:00), while the ventilation system runs only in the evening from 21:00 to 24:00.

In contrast, Figure 8b shows radiant heating activated during four intervals (01:00–02:00,
07:00–08:00, 19:00–20:00, and 21:00–22:00), with ventilation limited to the afternoon period
from 15:00 to 17:00. This scenario clearly prioritizes economic efficiency by reducing
the operation time of both radiant heating and ventilation, thereby lowering costs at the
expense of user comfort.

Figure 8c illustrates the power scheduling under the multi-objective optimization sce-
nario. Compared to scenario A, both the durations of radiant heating and dehumidification
operations are reduced. In contrast, compared to scenario B, the operation times for both
radiant heating and dehumidification are increased, with dehumidification strategically
scheduled during peak load periods.

The scheduling results of a typical day in winter are shown in Figure 9. As shown in
Figure 9a, the radiant heating system operates frequently throughout the day with frequent
start–stop cycles to maintain user comfort, serving as the primary source of electrical load.
The dehumidification system is activated only at 00:00–1:00, while the ventilation system
operates during the evening from 20:00 to 22:00.

In Figure 9b, the radiant heating system operates less frequently than in scenario
A and avoids operation during peak electricity pricing periods. The ventilation system
runs only briefly during the early morning and at 17:00–18:00 in the afternoon, while the
dehumidification system remains inactive.

Figure 9c presents the power scheduling under the multi-objective optimization sce-
nario. Compared to scenario A, it reduces the operation time of both radiant heating and
dehumidification in certain time periods. Compared to scenario B, it increases dehumidifi-
cation activity and includes radiant heating during peak load periods, indicating a more
balanced approach to economic cost and comfort.
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Figure 9. Optimized scheduling results of a typical day in winter: (a) single-objective optimization
(F1); (b) single-objective optimization (F2); and (c) multi-objective optimization.

3.3.3. Demand-Side Response Analysis

As shown in Figure 10, multi-objective optimization incurs lower costs under time-
of-use electricity pricing compared to fixed-rate pricing under the same comfort level. By
incorporating demand-side response and optimizing the scheduling of the climate control
system based on dynamic electricity pricing, the operational costs are significantly reduced
compared to optimization under fixed pricing. Specifically, the dynamic pricing-based
model achieves cost reductions of 25.3% on typical summer days, 24.4% during transitional
seasons, and 18.7% on typical winter days. Moreover, the electricity costs are reduced by
27.4%, 25.5%, and 20.6%, respectively. By shifting equipment operation to periods with
lower electricity prices, overall costs can be effectively reduced.

 

Figure 10. Comparison of electricity cost and other costs under fixed-rate and time-of-use pricing for
typical summer, transition season, and winter days.

4. Discussion
In the field of building energy optimization, multi-objective optimization methods

have been widely applied to climate control systems in various energy-intensive buildings.
Current research primarily focuses on minimizing energy consumption and operational
costs while ensuring indoor thermal comfort. With the continuous refinement of en-
ergy pricing mechanisms, the integration of demand response strategies has become a
research hotspot. In particular, under time-of-use electricity pricing, increasing attention
has been paid to the adaptability of optimization models and their capability for precise
scheduling. Moreover, an increasing number of optimization studies targeting different
types of buildings—such as office buildings, hospitals, residential complexes, and sports
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venues—have emerged, providing valuable theoretical foundations and technical references
for this study.

This work systematically compared the performance differences in three typical multi-
objective optimization algorithms—NSGA-II, MOEA/D, and MOBBO—in the climate
control scheduling of ice sports venues. The results show that MOEA/D demonstrates
outstanding computational efficiency, making it suitable for scenarios with high time con-
straints; however, it has certain limitations in solution diversity and convergence. Although
the MOBBO algorithm exhibits good search balance and solution coverage, performing
well in complex and non-convex problems, its high computational cost limits its practical
application. In contrast, NSGA-II delivers the best performance in solution quality, combin-
ing strong global search capability with excellent solution diversity, effectively approaching
the optimal Pareto front. It is particularly well-suited for scheduling problems that re-
quire high solution quality and optimization performance. Considering solution quality,
algorithm stability, and practical application needs, NSGA-II was ultimately selected as
the core algorithm for climate control optimization in ice sports venues, as it achieved
high-quality optimization results and demonstrated the robustness and applicability of the
optimization framework.

The multi-objective optimization model can better meet the comprehensive require-
ments of the climate control system for the operating economy as well as spectator comfort
than single-objective optimization. Compared with the model optimized solely for users’
comfort, the multi-objective optimization model improves economic performance under
typical summer, transitional, and winter conditions by 26.5%, 14.9%, and 15.1%, respectively.
In contrast, compared with the cost-optimal model, it reduces spectators’ discomfort under
the same three typical conditions by 10.0%, 39.3%, and 28.9%, respectively. Furthermore,
with the integration of demand response strategies under time-of-use electricity pricing, op-
erational costs are effectively reduced through reasonable load shifting. Operational costs
can be significantly reduced by 25.3%, 24.4%, and 18.7% in summer, transitional, and winter
conditions, respectively. These results not only verify the optimization capability of the
NSGA-II-TOPSIS model but also demonstrate its practical application potential in energy-
intensive venues like ice sports arenas, providing a replicable optimization approach and
methodological framework for energy scheduling and management in similar settings.

The optimization results of this work exhibit strong consistency with several existing
studies. Hosamo et al. proposed a BIM-GLSSVM-NSGA-II framework to optimize both
building energy consumption and indoor thermal comfort, which shares similar objectives
with this study [53]. Chen focused on minimizing carbon emissions, thermal comfort,
and the total comprehensive cost of buildings [54]. Kampelis applied a genetic algorithm
combined with demand response strategies to the HVAC system of a nearly zero-energy
industrial building to balance daily energy costs and thermal comfort. Through simula-
tions of the Leaf Lab industrial building within the Leaf Community smart microgrid in
Marche, Italy, this study reported energy savings ranging from 10.4% to 25%, cost savings
ranging from 9.9% to 25%, and a slight reduction in thermal comfort [55]. Xue et al. (2022)
conducted a dual-objective optimization of lifecycle cost (LCC) and lifecycle CO2 emissions
(LCCO2) for low-energy residential buildings in severe cold climates during the design
phase. Compared with the initial design schemes, the optimized results achieved a reduc-
tion of 10.9% to 18.9% in lifecycle cost and a decrease of 13.5% to 22.4% in LCCO2 [56].
Despite differences in application scenarios, these studies align closely with this research
in terms of balancing energy savings and comfort, constructing multi-objective optimiza-
tion frameworks, and incorporating dynamic electricity pricing response mechanisms,
providing strong support for the scientific validity and practical applicability of this work.
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Although this work has achieved promising results in the multi-objective optimization
scheduling of ice sports venues, several limitations remain. This study considers a specific
type of ventilation system and does not account for systems that recover heat from the
refrigeration unit. It also does not evaluate the model’s performance under uncertain condi-
tions such as weather fluctuations and varying crowd flow. Future research could develop a
more comprehensive and detailed ventilation system model that incorporates heat recovery
from the refrigeration system. In addition, the impact of multiple uncertainties on spectator
zone climate comfort and system operating costs should be further investigated.

5. Conclusions
For the climate control system incorporating ventilation, dehumidification, and radiant

heaters, this study developed a multi-objective optimization scheduling model that balances
both economic performance and spectator comfort in combination with demand response
strategies. The performance of three typical algorithms—NSGA-II, standard MOEA/D,
and Multi-Objective Brown Bear Optimization (MOBBO)—was systematically compared.
Due to its superior performance in terms of solution diversity and convergence, NSGA-II is
adopted to address the problem in this study. The model employs NSGA-II to generate
a Pareto solution set and then applies the TOPSIS method to select the optimal solution.
Simulation results for summer, winter, and transitional seasons in cold regions show that
compared to single-objective optimization approaches that focus solely on either comfort
enhancement or cost reduction, the proposed multi-objective model achieves a better
balance between user comfort and economic performance.

A two-stage optimization approach combining multi-objective optimization and de-
cision analysis was developed. This method effectively enhances the practicality and
operability of the model, providing an efficient and sustainable scheduling optimiza-
tion solution for climate control systems in energy-intensive buildings such as ice sports
venues. It also offers valuable insights for addressing energy management challenges in
similar scenarios.
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