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Abstract

Alzheimer’s disease (AD) is a progressive, non-curable neurodegenerative disorder that
poses persistent challenges for early diagnosis due to its gradual onset and the difficulty
in distinguishing pathological changes from normal aging. Neuroimaging, particularly
MRI and PET, plays a key role in detection; however, limitations in data availability and
the complexity of early structural biomarkers constrain traditional diagnostic approaches.
This review investigates the use of generative models, specifically Generative Adversarial
Networks (GANs) and Diffusion Models, as emerging tools to address these challenges.
These models are capable of generating high-fidelity synthetic brain images, augmenting
datasets, and enhancing machine learning performance in classification tasks. The review
synthesizes findings across multiple studies, revealing that GAN-based models achieved
diagnostic accuracies up to 99.70%, with image quality metrics such as SSIM reaching
0.943 and PSNR up to 33.35 dB. Diffusion Models, though relatively new, demonstrated
strong performance with up to 92.3% accuracy and FID scores as low as 11.43. Integrating
generative models with convolutional neural networks (CNNs) and multimodal inputs
further improved diagnostic reliability. Despite these advancements, challenges remain,
including high computational demands, limited interpretability, and ethical concerns
regarding synthetic data. This review offers a comprehensive perspective to inform future
AI-driven research in early AD detection.

Keywords: Alzheimer’s disease; generative models; GAN; diffusion models; MCI; MRI

1. Introduction
Recent advancements in medical sciences and healthcare technologies have led to

remarkable progress in improved disease detection, early diagnosis, better therapeutic
interventions, and enhanced patient outcomes. These innovations have significantly con-
tributed to increased global life expectancy and better quality of life. As a result, the world
is experiencing a significant demographic shift, with the proportion of elderly individuals
in the global population steadily rising. According to the World Health Organization
(WHO), the number of individuals aged 60 years and older is expected to rise from 1 billion
in 2020 to 2.1 billion by 2050 [1]. This surge in the elderly population is accompanied by an
increased prevalence of age-related illnesses, particularly AD, which has emerged as one of
the most prevalent and debilitating neurodegenerative disorders worldwide.

Algorithms 2025, 18, 434 https://doi.org/10.3390/a18070434

https://doi.org/10.3390/a18070434
https://doi.org/10.3390/a18070434
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-2148-5786
https://doi.org/10.3390/a18070434
https://www.mdpi.com/article/10.3390/a18070434?type=check_update&version=2


Algorithms 2025, 18, 434 2 of 32

Alzheimer’s disease is the most common form of dementia worldwide, accounting
for approximately 60–80% of cases [2]. It is also recognized as a leading cause of disability
and dependence among older adults. It is estimated that more than 55 million people
globally are living with dementia, a number expected to rise to 78 million by 2030 and
139 million by 2050, largely driven by population aging [3]. As of 2025, Alzheimer’s disease
affects nearly 7.2 million adults aged 65 and older in the United States with projections
indicating it will nearly double to 13 million by 2050. Beyond its clinical progression, the
disease imposes a heavy emotional burden on families and caregivers, while generating
substantial healthcare and societal costs. Among older adults, Alzheimer’s is the fifth
leading cause of death preceded only by heart disease, cancer, stroke, and chronic lower
respiratory conditions underscoring its significance as a major public health concern [4].
It is a progressive, irreversible brain disorder characterized by memory loss, cognitive
dysfunction, reasoning, language, problem-solving abilities, and behavioral changes, which
gradually impair a person’s ability to perform everyday tasks. As it advances, patients
often require full-time care and medical support, placing an enormous emotional and
economic burden on families and healthcare systems.

The exact cause of AD still remains unknown. Factors like growing older, family
history, level of education, and daily habits are known to play a role. In addition, several
brain-related conditions can contribute to the development of dementia symptoms [5]. The
disease often begins with subtle symptoms such as difficulty recalling recent events and
gradually advances to severe memory loss, disorientation, and loss of speech and motor
skills. Pathologically, AD is linked to the accumulation of amyloid-beta plaques and tau
neurofibrillary tangles in the brain. These protein aggregates are believed to interfere with
neuron-to-neuron communication and trigger inflammation and cell death [6]. It initially
begins in the entorhinal cortex and hippocampus, critical regions for memory and learning,
and subsequently spreads to the cerebral cortex, affecting language, judgment, social
behavior, and motor functions [7]. These changes lead to a gradual decline in cognitive
function and behavioral disturbances.

Diagnosing Alzheimer’s in its early stages remains a significant challenge in clinical
practice. In its initial stages, symptoms include mild memory loss, difficulty in recalling
recent events, confusion, challenges in completing familiar tasks, language disturbances,
and mood or personality changes. These symptoms can be subtle and are often mistaken for
normal aging or other forms of dementia, resulting in many cases remaining undiagnosed
until the disease has significantly progressed, and irreversible brain damage has already
occurred. As the disease progresses, these symptoms worsen, severely impairing daily
functioning and quality of life. Thus, early and accurate diagnosis is essential not only
to initiate timely treatments that may slow the progression, but also to give patients and
families the opportunity to prepare, seek support, and improve quality of life.

Early detection of Alzheimer’s disease is critical for improving patient outcomes and
guiding timely interventions. Identifying AD at the preclinical stage allows for lifestyle
changes, pharmaceutical trials, and supportive care to be initiated when they are most
effective. Moreover, early diagnosis can alleviate uncertainty for patients and caregivers,
aid in planning, and reduce healthcare costs associated with late-stage care. Recent re-
search has emphasized the importance of biomarkers for the diagnosis and monitoring of
Alzheimer’s disease. Several biomarkers have been identified as indicators of AD, such as
changes in cerebrospinal fluid (CSF), blood-based biomarkers, and particularly neuroimag-
ing biomarkers. Brain imaging has emerged as a critical tool in Alzheimer’s research and
clinical diagnosis. Modalities like Magnetic Resonance Imaging (MRI), Positron Emission
Tomography (PET), and functional MRI (fMRI), and Diffusion Tensor Imaging (DTI) pro-
vide critical insights into structural and functional brain changes. Making these widely
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usable to detect structural and functional abnormalities associated with AD. These imaging
techniques provide valuable insights into brain atrophy, amyloid deposition, and neuronal
activity patterns, serving as non-invasive tools for early diagnosis [8]. Collectively, these
imaging modalities enable early-stage identification of pathological changes, often before
overt clinical symptoms emerge.

Despite their diagnostic value, neuroimaging data presents significant challenges.
High-dimensionality, inter-subject variability, limited availability of labeled data, and the
cost of image acquisition limit their broader use in population-scale screening. These chal-
lenges underscore the need for intelligent systems capable of extracting complex patterns
from high-dimensional imaging data. In recent years, generative artificial intelligence
(AI) has shown tremendous promise in tackling these limitations. Unlike traditional
discriminative models, generative models are capable of learning the underlying data
distribution to generate new, synthetic samples that are statistically similar to the original
data. Among the most, Generative Adversarial Networks (GANs) and Diffusion Models
have emerged as leading frameworks in medical image analysis. These models are capable
of generating high-quality synthetic medical images, which can be used to augment small
datasets, improve image resolution, and even translate one imaging modality to another
(e.g., MRI to PET).

GANs introduced by Goodfellow et al. in 2014 [9], with their adversarial architecture,
have been applied to a wide range of AD tasks including neuroimaging data augmenta-
tion, generating missing imaging modalities, enhancing image resolution, and modelling
disease progression. These applications help to overcome the common issue of data im-
balance, enhance resolution, and simulate realistic brain pathologies to improve model
generalization [10–12].

Most recently, Diffusion Models, a newer class of generative models based on a
stepwise denoising process that reconstructs clean high-fidelity synthetic image data from
random noise [13]. These models offer better training stability and high-quality images
which makes them suitable for Alzheimer’s disease imaging.

The integration of GANs and Diffusion Models into AD diagnostic pipelines is trans-
forming the landscape of early detection. By producing high-quality synthetic neuroimages,
enhancing data diversity, and improving model performance, GANs and diffusion models
enable more accurate and scalable diagnostic systems. Their ability to learn intricate pat-
terns in imaging data makes them a highly suitable diagnostic framework for Alzheimer’s
disease research and real-world clinical care.

This review paper aims to comprehensively analyze recent research applying GANs
and Diffusion Models to AD detection using neuroimaging. We summarize current method-
ologies, model architectures, applications, assess their performance metrics, strengths, limi-
tations, and clinical potential. Through these insights from recent studies, we aim to guide
researchers and practitioners on ongoing efforts at the intersection of AI innovation and
neurodegenerative disease diagnosis research. The rest of this review paper is structured
as follows. To introduce the essential background on AD, Sections 2 and 3 define the stages
of AD and exploring the most important neuroimaging modalities that are used for AD
diagnosis. Section 4 presents a comparative review of the available literature that apply
these generative models to AD diagnosis. It reviews different types of methods applied in
those reviewed papers, identified their key research challenges and gaps. It also includes
an evaluation of various performance metrics, with particular emphasis on experimental
results and diagnostic accuracy reported in the reviewed articles. Section 5 discusses the
most common datasets used in AD research. Sections 6 and 7 are devoted to describing
different types of GANs and Diffusion models, respectively. Finally, Section 8 summarizes
and discusses the study’s key findings, results, challenges, and potential future directions.
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2. Alzheimer’s Disease Stages
Alzheimer’s disease tends to progress slowly over many years, gradually affecting dif-

ferent regions of the human brain, causing memory loss, behavioral changes and hampering
the process of thinking. It starts with mild cognitive impairment (MCI), where individuals
experience noticeable memory issues that do not yet disrupt daily activities. Later on, it
may lead to AD, while not everyone with MCI develops AD. As the disease progresses,
the emotional and psychological impact both patients and caregivers, underscoring the
importance of strong mental health support throughout the journey [14]. Understanding
the stages of AD is essential for providing the required support. Alzheimer’s disease
typically progresses through five general stages [15]. It often begins with a Preclinical
Alzheimer’s disease stage. The second stage is called MCI. Which is divided into two types:
progressive MCI (pMCI) where a person with MCI will develop AD and stable MCI (sMCI)
indicate that it will not progress towards AD. The disease moves to a third stage called Mild
dementia (MD) in which patients develop memory issues that interfere with their daily
activities. The fourth stage is Moderate dementia (MoD). Finally, the fifth stage is called
Severe dementia due to Alzheimer’s disease. In this stage, the disease becomes severe and
full-time care becomes essential. Figure 1 shows the AD progression stages.

Figure 1. Alzheimer’s disease progression stages.

3. Neuroimaging Modalities
Neuroimaging is an essential tool to understand, diagnose, and monitor AD in its early

stages. Data collected using different modalities varies in format, quality, and the type of
information it reveals each offering distinct insights into the brain’s anatomy and functional
activity. Neuroimaging can extract measurable indicators, or quantitative biomarkers,
that can identify specific neurological conditions and predict dementia [16]. With the
integration of artificial intelligence, these modalities become a vital diagnostic tool to
detect and predict the progress of AD. Application of different neuroimaging modalities to
support the diagnosis of Alzheimer’s disease is shown in Figure 2. In this section, different
neuroimaging modalities and their approaches towards AD diagnosis are discussed.
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Figure 2. Applications of Neuroimaging modalities in AD diagnosis.

3.1. Magnetic Resonance Imaging (MRI)

MRI is widely used regarded as one of the most reliable neuroimaging techniques
in Alzheimer’s research and clinical assessment due to its ability to reveal detailed brain
structures without invasive procedures. Its ability to produce high-resolution images makes
it especially useful in identifying brain atrophy particularly in areas like the hippocampus
and entorhinal cortex, which often show signs of shrinkage in the early stages of the
disease [17]. These structural insights help to differentiate Alzheimer’s disease from other
neurodegenerative conditions and to assess disease progression. Figure 3 [16] illustrates
MRI scans comparing healthy individuals and patients with AD, showcasing the visible
differences used in diagnosis.

Figure 3. MRI brain image of healthy and AD patients.

3.2. Functional Magnetic Resonance Imaging (fMRI)

Functional MRI (fMRI) is a non-invasive scan that shows the connectivity between
different areas of the brain by tracking changes in blood flow. In Alzheimer’s disease, it
often reveals early disruptions in brain networks like the Default Mode Network (DMN),
which is linked to memory and self-reflection. These functional changes can appear
before structural damage is visible, making fMRI a helpful tool for early detection [18].
Figure 4 [18] shows fMRI scans comparing healthy and AD-affected brains. It also helps
researchers understand how Alzheimer’s affects thinking and memory during mental tasks.
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Figure 4. fMRI brain image of healthy (top) and AD patients (bottom).

3.3. Positron Emission Tomography (PET)

Positron Emission Tomography (PET) is an imaging technique that uses small amounts
of radioactive tracers to create 2D or 3D images of the brain’s chemical activity. It is
especially useful for tracking things like blood flow, oxygen use, and glucose metabolism,
giving a clearer insight into how different brain regions function. PET scans can detect
early metabolic changes before major structural damage occurs, helping to identify the
AD at a progressive stage and monitor its advancement through measurable brain activity
patterns [16]. Figure 5 [16] shows PET imaging of an AD patient.

 

Figure 5. PET scan of an AD patient.

3.4. Fluorodeoxyglucose Positron Emission Tomography (FDG-PET)

FDG-PET monitors and identify reduced glucose metabolism in different brain re-
gions. By highlighting brains dysfunctionality, it can distinguish AD from other types of
dementia. Figure 6 [16] shows scanning patterns of dementia using FDG-PET imaging of
an AD patient.

 

Figure 6. FDG-PET scan of an AD patient.

3.5. Computed Tomography (CT)

CT scans are fast and widely available tools that help create 3D images of the
brain, making it helpful in the early evaluation of neurological conditions, including
suspected dementia. Though less detailed than MRI, it is still really helpful for checking
memory issues and ruling out other conditions like strokes or tumors that can mimic
Alzheimer’s symptoms.
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3.6. Diffusion Tensor Imaging (DTI)

It is a specialized form of MRI that captures the movement of water molecules within
brain tissue to reveal early structural changes related to Alzheimer’s disease [19]. It
generates three-dimensional tensor fields that reveal the direction and strength of water
diffusion. DTI makes it possible to reconstruct white matter tracts and evaluate the brain’s
structural connectivity and integrity. Key metrics like fractional anisotropy (FA) and
mean diffusivity (MD) are used to detect early signs of white matter damage [20]. Table 1
highlights different neuroimaging modalities used in Alzheimer’s diagnosis.

Table 1. Neuroimaging modalities in Alzheimer’s disease diagnosis.

Modality Type What It Detects Strengths Limitations

MRI Structural
Brain atrophy,

hippocampal and
cortical shrinkage

Non-invasive,
high-resolution, and

widely available.

Limited functional
insight, relatively

expensive

fMRI Functional
Brain activity and

connectivity between
regions.

Real-time brain
function

Sensitive to motion
and requires

complex analysis

PET Molecular
/Functional

Amyloid plaques,
tau proteins, glucose

metabolism

Identifies
biochemical changes
early, aids in staging

High cost, uses
radioactive tracers

FDG-PET Metabolic Imaging
Glucose metabolism,

hypometabolic
regions in AD

Detects early
metabolic

dysfunction in
AD-affected areas

Radiation exposure,
lower spatial

resolution than MRI

CT Structural
Structural

abnormalities,
bleeding or lesions

Fast, accessible in
emergency settings

Lower soft tissue
contrast than MRI,
less specific for AD

DTI Microstructural
White matter

integrity, neural
pathway disruptions

Subtle white matter
changes, supports

early diagnosis

Requires complex
processing,

susceptible to motion
and noise.

4. Background Study
4.1. Paper Selection Strategy

For this study the PRISMA (Preferred Reporting Items for Systematic Reviews and
Meta-Analyses) framework selection was followed. Figure 7 shows the PRISMA flow chart.
An extensive search was carried out using trusted academic databases, including IEEE
Xplore, PubMed, ScienceDirect, SpringerLink, Nature, and Google Scholar. The search
strategy combined keywords such as Alzheimer’s disease, early detection, Generative
Adversarial Networks, Diffusion Models, neuroimaging, and synthetic medical imaging,
among others. This helped capture a diverse range of studies relevant to the intersection of
artificial intelligence and Alzheimer’s diagnosis.
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Figure 7. PRISMA flow chart for study selection process.

4.2. Literature Review

This section provides a comprehensive synthesis of notable research articles from
2013 to 2025 highlighting generative models, particularly GANs and diffusion models,
in enhancing the early diagnosis of AD using various neuroimaging modalities. Table 2
highlights the medical image dataset being used in the research articles included in this. It
also provides the modality and total number of participants used in their study. Table 3
provides an explanation of the different methods used by the researchers and their per-
formance metrics according to the model used. Table 4 presents the models used in the
reviewed literature highlighting their key challenges and limitations.

Raj et al. [21] developed a network diffusion model to simulate the prion-like spread
of dementia across brain networks. By analyzing brain scans from healthy individuals,
they predicted where atrophy would appear in Alzheimer’s and frontotemporal dementia
patients and their predictions closely matched real MRI data. The model performed
impressively, with diagnostic accuracy exceeding an AUC of 0.90, even outperforming
traditional PCA methods. However, it relied on a static brain map and a small sample,
which may limit its flexibility.

Lee et al. [22] used an SVM-based method to detect early-stage Alzheimer’s by ana-
lyzing DTI brain scans, focusing on white matter integrity and fiber pathways especially
those linked to the thalamus. Their model achieved 100% accuracy, 100% sensitivity, and
100% specificity in both 10-fold cross-validation and independent testing. This highlights
its strong potential for distinguishing MCI from healthy aging. However, its dependence
on pre-defined seed regions and differences in imaging sources may limit generalizability.
Future improvements could include standardizing imaging protocols and incorporating
other biomarkers for broader clinical use.

Pan et al. [23] introduced a two-stage deep learning framework to improve Alzheimer’s
diagnosis using MRI and missing PET data. First, they used a 3D CycleGAN to synthesize
PET scans from corresponding MRIs. Then, they applied a multi-modal learning model
(LM3IL) to classify AD and predict MCI conversion. Tested on ADNI datasets, their method
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achieved strong performance 92.5% accuracy, 89.94% sensitivity, and 94.53% specificity
for AD vs. HC classification. The generated PET scans were visually realistic and had
a PSNR of 24.49. While effective, the method depends on careful image alignment and
patch extraction. Future work could explore more flexible, end-to-end models for better
generalization.

Han et al. [24] proposed an unsupervised GAN-based method to detect Alzheimer’s
disease by reconstructing MRI slice sequences using WGAN-GP with L1 loss. Trained on
healthy brain scans from the OASIS-3 dataset, the model identifies anomalies based on
reconstruction errors. It achieved AUCs of 0.780 (CDR 0.5), 0.833 (CDR 1), and 0.917 (CDR
2), effectively detecting early to advanced AD stages. The approach requires no labeled
pathological data, making it scalable, but it may overlook abnormalities outside selected
brain regions. Future work could explore full-brain coverage and multimodal data for
broader detection.

Shin et al. [25] proposed GANDALF, a GAN-based model that combines MRI-to-PET
synthesis with AD classification using discriminator-adaptive loss fine-tuning. Trained
end-to-end on the ADNI dataset, it achieved 85.2% accuracy for AD/CN, 78.7% for
AD/MCI/CN (Precision: 0.83, Recall: 0.66), and 37.0% for AD/LMCI/EMCI/CN classifi-
cation. While it outperformed baseline methods in multi-class tasks, binary performance
was similar to CNN-only models. More advanced architecture and tuning could further
enhance results.

Islam and Zhang [26] designed a GAN-based approach to generate synthetic brain PET
images for different stages of Alzheimer’s disease Normal Control (NC), Mild Cognitive
Impairment (MCI), and Alzheimer’s Disease (AD). Using a Deep Convolutional GAN
(DCGAN), they trained the model on real PET scans from the ADNI dataset to produce
high-quality synthetic images. The generated images showed strong visual and statistical
similarity to real ones, achieving a PSNR of 32.83 and SSIM of 77.48. When used to train a
CNN classifier, these synthetic images improved classification accuracy by 10%, reaching
71.45%. Although promising, the method’s limitations include the need to train separate
models for each class and the reliance on 2D image slices.

Hu et al. [27] introduced a Bidirectional GAN to generate realistic brain PET images
from MR scans, aiming to preserve individual brain structure differences. Their model uses
a ResU-Net generator and ResNet-based encoder, combining adversarial, pixel-wise, and
perceptual losses for better image quality. Tested on 680 subjects from the ADNI dataset, it
achieved PSNR of 27.36, SSIM of 0.88, and improved AD vs. CN classification accuracy to
87.82%. While effective, the method could benefit from improved handling of latent vector
injection for finer image details.

To address the issue of class imbalance in Alzheimer’s datasets, Hu et al. [28] devel-
oped a DCGAN-based approach that generates synthetic PET images for underrepresented
AD cases. These generated images were added to the training set to balance the data, im-
proving the performance of a DenseNet-based classifier. As a result, classification accuracy
increased from 67% to 74%. The synthetic images were evaluated using MMD (1.78) and
SSIM (0.53), showing good diversity and realism. While effective, the method uses 2D
generation and manual filtering. Future work could involve 3D GANs and smarter sample
selection for better scalability.

Zhao et al. [29] presented a 3D Multi-Information GAN (mi-GAN) framework that
predicts Alzheimer’s Disease progression by generating future 3D brain MRI scans condi-
tioned on baseline scans and patient metadata (age, gender, education, and APOE status).
The model uses a 3D U-Net generator and DenseNet-based multi-class classifier optimized
with focal loss. Evaluated on the ADNI dataset, mi-GAN achieved a high SSIM of 0.943,
and the classifier reached 76.67% accuracy, with a pMCI vs. sMCI accuracy of 78.45%,
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outperforming previous cGAN and cross-entropy-based models. Limitations include less
accuracy in gray matter prediction and short-term progression. Future work could benefit
from improved gray matter modeling and broader clinical feature integration.

A novel unsupervised anomaly detection framework MADGAN was proposed by
Han et al. (2021) [30], that reconstructs multiple adjacent MRI slices to detect subtle brain
anomalies like Alzheimer’s disease (AD) and brain metastases. The model uses a self-
attention GAN architecture trained solely on healthy MRI slices to predict the next 3 slices
from the previous 3, comparing reconstruction loss to detect anomalies. The method
achieved promising AUCs for AD detection: 0.727 for early-stage (MCI) and 0.894 for
late-stage AD, and 0.921 for brain metastases, highlighting its effectiveness across different
disease types and stages. The key advantage of MADGAN lies in leveraging healthy
data only, mimicking a physician’s diagnostic intuition. However, the reconstruction
is less stable in texture consistency, especially for contrast-enhanced (T1c) images, and
detection performance can vary with SA module configurations. Future work could
involve enhancing attention mechanisms and exploring additional loss functions to improve
generalizability and lesion localization.

Table 2. Overview of medical imaging datasets and their modalities used in studies.

Reference Dataset Modality Total Number of Participants

[21]
ADNI-like MRI data (T1w),

Diffusion MRI of healthy
subjects

Structural MRI 18 AD, 18 bvFTD, 19 control: 14
healthy for connectome

[23] ADNI-1 and ADNI-2 MRI, PET ADNI-1: 821; ADNI-2: 636

[24] OASIS-3 MRI
Training: 408 subjects; Test: 113

healthy, 99 (CDR 0.5), 61 (CDR 1),
4 (CDR 2)

[25] ADNI MRI, PET 1033 (722 train, 104 val, 207 test)

[26] ADNI PET 411 PET scans (98 AD, 105 NC,
208 MCI)

[27] ADNI MRI, PET 680 subjects

[28] ADNI-1, ADNI-2 MRI, PET ADNI-1 (PET AD only), ADNI-2
(100 NC, 20 AD, 80 AD MRI-only)

[29] ADNI-GO, ADNI-2, OASIS 3D MRI 210 (mi-GAN), 603 (classifier), 48
(validation)

[30] OASIS-3, Internal dataset T1, T1c MRI 408 (T1), 135 (T1c healthy)

[31] ADNI, AIBL, NACC MRI (1.5-T and 3-T) ADNI: 151 (training), AIBL: 107,
NACC: 565

[32] ADNI-1, ADNI-2 MRI + PET ADNI-1: 821; ADNI-2: 534

[33] ADNI-1 T1 MRI 833 (221 AD, 297 MCI, 315 NC)

[34] ADNI (268 subjects) rs-fMRI + DTI 268

[35] ADNI (13,500 3D MRI images
after augmentation) 3D Structural MRI 138 (original), 13,500 (augmented

scans)

[36] ADNI (1732 scan-pairs, 873
subjects) MRI → Synthesized PET 873

[37] ADNI T1-weighted MRI 632 participants

[38] ADNI2 T1-weighted MRI 169 participants, 27,600 image
pairs
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Table 2. Cont.

Reference Dataset Modality Total Number of Participants

[39] Custom MRI dataset (Kaggle) T1-weighted Brain MRI 6400 images (approx.)

[40] ADNI2, NIFD (in-domain),
NACC (external) T1-weighted MRI 3319 MRI scans

[41] ADNI MRI and PET (multimodal) ~2400 (14,800 imaging sessions)

[42] ADNI (Discovery), SMC
(Practice)

T1-weighted MRI,
Demographics, Cognitive

scores
538 (ADNI) + 343 (SMC)

[43] ADNI T1-weighted MRI 362 (CN: 87, MCI: 211, AD: 64)

[44] ADNI1, ADNI3, AIBL 1.5 T & 3 T MRI ~168 for SR cohort, ~1517 for
classification

[45] ADNI T1-weighted MRI
6400 images across 4 stages

(Non-Demented, Very Mild, Mild,
Moderate Demented)

[46] ADNI Cognitive Features 819 participants (5013 records)

[47] ADNI, OASIS-3, Centiloid Low-res PET + MRI →
High-res PET

ADNI: 334; OASIS-3: 113;
Centiloid: 46

[48] ADNI MRI T1WI, FDG PET
(Synth.) 332 subjects, 1035 paired scans

[49] ADNI, OASIS, UK Biobank 3D T1-weighted MRI ADNI: 1188, OASIS: 600, UKB:
38,703

[50] Alzheimer MRI (6400 images) T1-weighted MRI Alzheimer: 6400 images

[51] OASIS-3 T1-weighted MRI 300 (100 AD, 100 MCI, 100 NC)

[52] ADNI-3, In-house Siemens ASL MRI (T1, M0,
CBF)

ADNI Siemens: 122; GE: 52;
In-house: 58

[53] ADNI MRI + Biospecimen (Aβ,
t-tau, p-tau) 50 subjects

[54] OASIS MRI 300 subjects (100 AD, 100 MCI,
100 NC)

[55] ADNI MRI 311 (AD: 65, MCI: 67, NC: 102,
cMCI: 77)

[56] ADNI Structural MRI → Aβ-PET,
Tau-PET (synthetic) 1274

[57] Kaggle MRI 6400 images (4 AD classes)

[58] ADNI sMRI, DTI, fMRI
(multimodal)

5 AD stages (NC, SMC, EMCI,
LMCI, AD)

Zhou et al. [31] explored GANs to enhance 1.5 T MRI scans into 3 T-like images (3-T*)
for Alzheimer’s classification using an FCN. These enhanced images not only looked better
based on quality scores (BRISQUE, NIQE), but also helped a deep learning model improve
its AD prediction accuracy boosting AUC from 0.907 to 0.932. However, the study was
limited by a small sample size and did not include MCI cases. Expanding the dataset and
refining the models could make this approach even more effective in future work.
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A hybrid deep learning model combining TPA-GAN and PT-DCN to generate missing
PET scans from MRI and classify Alzheimer’s disease is developed by Gao et al. (2022) [32].
Tested on ADNI-1/2, it achieved 90.7% accuracy (AUC 0.95) for AD vs. CN and 85.2%
accuracy (AUC 0.89) for pMCI vs. sMCI. Despite strong results, its reliance on PET-MRI
pairs and dataset-specific training limits generalizability. Future work could address this
with domain adaptation.

Yu et al. [33] proposed THS-GAN, a semi-supervised generative adversarial net-
work that introduces tensor-train decomposition and high-order pooling (GSP block)
for Alzheimer’s disease (AD) and mild cognitive impairment (MCI) classification from
T1-weighted MRI scans. Their framework improves over traditional GANs by using a
three-player cooperative game—generator, discriminator, and classifier—while tensor-train
layers reduce parameters and preserve brain structural information. Global second-order
pooling enhances discriminative feature representation. Trained on 833 ADNI MRI scans,
the model achieved an AUC of 95.92% for AD vs. NC, 88.72% for MCI vs. NC, and 85.35%
for AD vs. MCI, outperforming SS-GAN and triple-GAN baselines by a notable margin.
THS-GAN also proved more data-efficient, delivering strong results with fewer labeled
samples. Limitations include sensitivity to TT-rank tuning and GSP block positioning.

Pan and Wang [34] developed CT-GAN, an innovative deep learning model that
blends brain structure and function by combining DTI and rs-fMRI scans to improve
Alzheimer’s diagnosis. By using attention-based transformers and GANs, the model
effectively captured complex brain patterns and outperformed existing methods with
accuracies of 94.44% (AD vs. NC), 93.55% (LMCI vs. NC), and 92.68% (EMCI vs. NC). It
also highlighted key brain regions like the hippocampus and precuneus. However, the
study was limited by a small dataset and reliance on predefined brain regions.

Thota and Vasumathi [35] introduced WGANGP-DTL, a classification framework
combining Wasserstein GAN with Gradient Penalty and Deep Transfer Learning for
Alzheimer’s detection using 3D MRI scans. It uses WGANGP for data augmentation,
3DS-FCM for segmentation, Inception v3 for feature extraction, and a Deep Belief Network
for classification. Tested on 13,500 augmented images, the model achieved 99.70% accuracy,
99.09% sensitivity, and 99.82% specificity, outperforming other deep learning models. While
highly effective, the method depends on extensive preprocessing and fine-tuning.

Zhang et al. [36] introduced BPGAN, a 3D BicycleGAN-based model that synthesizes
PET scans from MRI to tackle missing modality issues in AD diagnosis. Trained on
1732 MRI-PET pairs, it outperformed existing methods with strong image quality (e.g.,
SSIM 0.7294) and boosted AD classification accuracy by 1–4%, reaching 85.03% on Dataset-
B. While effective, the model’s reliance on complex preprocessing and limited diagnostic
improvement suggest future work should explore adaptive ROI localization and broader
clinical use.

Yuan et al. [37] developed ReMiND, a diffusion model (DDPM)-based method to
generate missing 3D MRI scans in longitudinal Alzheimer’s studies. Using past or past-
and-future scans, it outperformed autoencoders and simple methods in preserving brain
structure, achieving SSIM of 0.895 and PSNR of 28.96 dB. However, it currently relies
on fixed scan intervals and only nearby timepoints. Future work could include multiple
timepoints and multimodal data for improved tracking of disease progression.

Huang et al. [38] proposed a wavelet-guided diffusion model to enhance low-
resolution MRI scans, aiming to improve Alzheimer’s diagnosis. Using a Wavelet U-Net
with DDPM, the model achieved SSIM of 0.8201, PSNR of 27.15, and FID of 13.15, also
improving classification accuracy. However, it is computationally intensive and limited to
T1-weighted MRIs. Future work could expand to multi-modal and longitudinal data for
broader clinical use.
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Boyapati et al. [39] introduced a deep learning approach that combines CNNs with
GANs to boost Alzheimer’s detection from MRI scans. By generating synthetic images
and using filters to enhance image quality, their method achieved a strong 96% accuracy
outperforming standard CNN models. Still, the study was limited by a small number of
real moderate AD cases and the lack of other imaging types like PET or fMRI.

Nguyen et al. [40] developed a deep learning method to distinguish AD, FTD, and
healthy individuals using structural MRI. By combining brain atrophy data with grading
maps from an ensemble of 3D U-Nets, their model achieved 86% accuracy and offered
interpretable results. While it generalized well to other datasets, it is resource-intensive
and limited to baseline MRI. Future work could include multi-modal and longitudinal data
to better track disease progression.

Uday Sekhar et al. [41] combined MRI and PET scans with GAN-generated synthetic
data to improve early Alzheimer’s detection. By training an ensemble of models, including
CNNs and LSTMs, they boosted diagnostic performance reaching an F1-score of 0.82 and an
AUC of 0.93. The study shows how combining real and synthetic data can enhance accuracy
and generalization. However, it was limited by a small number of real Alzheimer’s cases
and lacked testing on outside datasets. Future work could benefit from more diverse and
long-term data to better capture disease progression.

Table 3. Performance metrics of GAN-based methods and Diffusion Models used in the reviewed
literature.

Reference Technique/Method Model Results

[21] Network Diffusion Model Network eigenmode
diffusion model

Strong correlation between predicted
and actual atrophy maps; eigenmodes
accurately classified AD/bvFTD; ROC

AUC higher than PCA

[23] 3D CycleGAN + LM3IL
Two-stage: PET synthesis

(3D-cGAN) + classification
(LM3IL)

AD vs. HC—Accuracy: 92.5%,
Sensitivity: 89.94%, Specificity: 94.53%;

PSNR: 24.49 ± 3.46

[24] WGAN-GP + L1 loss (MRI
slice reconstruction)

WGAN-GP-based
unsupervised

reconstruction + anomaly
detection using L2 loss

AUC: 0.780 (CDR 0.5), 0.833 (CDR 1),
0.917 (CDR 2)

[25]

GANDALF: GAN with
discriminator-adaptive loss
for MRI-to-PET synthesis

and AD classification

GAN + Classifier
Binary (AD/CN): 85.2% Acc3-class:
78.7% Acc, F2: 0.69, Prec: 0.83, Rec:

0.664-class: 37.0% Acc

[26]
DCGAN to generate PET
images for NC, MCI, and

AD
DCGAN

PSNR: 32.83, SSIM: 77.48, CNN
classification accuracy improved to

71.45% with synthetic data

[27]

Bidirectional GAN with
ResU-Net generator,
ResNet-34 encoder,

PatchGAN discriminator

Bidirectional GAN
PSNR: 27.36, SSIM: 0.88; AD vs. CN
classification accuracy: 87.82% with

synthetic PET

[28]
DCGAN for PET synthesis

from noise; DenseNet
classifier for AD vs. NC

DCGAN + DenseNet Accuracy improved from 67% to 74%;
MMD: 1.78, SSIM: 0.53



Algorithms 2025, 18, 434 14 of 32

Table 3. Cont.

Reference Technique/Method Model Results

[29]

3D patch-based mi-GAN
with baseline MRI +

metadata; 3D DenseNet
with focal loss for

classification

mi-GAN + DenseNet
SSIM: 0.943, Multi-class Accuracy:
76.67%, pMCI vs. sMCI Accuracy:

78.45%

[30]

MADGAN: GAN with
multiple adjacent slice
reconstruction using

WGAN-GP + ℓ1 loss and
self-attention

7-SA MADGAN AUC for AD: 0.727 (MCI), 0.894 (late
AD); AUC for brain metastases: 0.921

[31]

Generative Adversarial
Network (GAN), Fully

Convolutional Network
(FCN)

GAN + FCN

Improved AD classification with
accuracy increases up to 5.5%. SNR,

BRISQUE, and NIQE metrics showed
significant image quality improvements.

[32]
TPA-GAN for PET

imputation, PT-DCN for
classification

TPA-GAN + PT-DCN
AD vs. CN: ACC 90.7%, SEN 91.2%, SPE

90.3%, F1 90.9%, AUC 0.95; pMCI vs.
sMCI: ACC 85.2%, AUC 0.89

[33]

THS-GAN: Tensor-train
semi-supervised GAN

with high-order pooling
and 3D-DenseNet

THS-GAN
AD vs. NC: AUC 95.92%, Acc 95.92%;
MCI vs. NC: AUC 88.72%, Acc 89.29%;
AD vs. MCI: AUC 85.35%, Acc 85.71%

[34]
CT-GAN with

Cross-Modal Transformer
and Bi-Attention

GAN + Transformer with
Bi-Attention

AD vs. NC: Acc = 94.44%, Sen = 93.33%,
Spe = 95.24%LMCI vs. NC: Acc =

93.55%, Sen = 90.0%, Spe = 95.24%EMCI
vs. NC: Acc = 92.68%, Sen = 90.48%, Spe

= 95.0%

[35]

WGANGP-DTL
(Wasserstein GAN with
Gradient Penalty + Deep
Transfer Learning using
Inception v3 and DBN)

WGANGP + Inception v3 +
DBN

Accuracy: 99.70% Sensitivity: 99.09%
Specificity: 99.82% F1-score: >99%

[36]
BPGAN (3D BicycleGAN

with Multiple Convolution
U-Net, Hybrid Loss)

3D BicycleGAN (BPGAN)
with MCU Generator

Dataset-A: MAE = 0.0318, PSNR = 26.92,
SSIM = 0.7294Dataset-B: MAE = 0.0396,
PSNR = 25.08, SSIM = 0.6646 Diagnosis
Acc = 85.03% (multi-class, MRI + Synth.

PET)

[37] ReMiND (Diffusion-based
MRI Imputation)

Denoising Diffusion
Probabilistic Model

(DDPM) with modified
U-Net

SSIM: 0.895, PSNR: 28.96; no
classification metrics reported

[38]
Wavelet-guided Denoising

Diffusion Probabilistic
Model (Wavelet Diffusion)

Wavelet Diffusion with
Wavelet U-Net

SSIM: 0.8201, PSNR: 27.15, FID: 13.15
(×4 scale); Recall ~90% (AD vs. NC);
improved classification performance

overall

[39]
CNN + GAN (DCGAN to
augment data; CNN for

classification)

CNN + DCGAN (data
augmentation)

Accuracy: 96% (with GAN), 69%
(without GAN); classification across 4

AD stages
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Table 3. Cont.

Reference Technique/Method Model Results

[40]

Deep Grading +
Multi-layer Perceptron +

SVM Ensemble (Structure
Grading + Atrophy)

125 3D U-Nets + Ensemble
(MLP + SVM)

In-domain (3-class): Accuracy: 86.0%,
BACC: 84.7%, AUC: 93.8%, Sensitivity

(CN/AD/FTD): 89.6/83.2/81.3;
Out-of-domain: Accuracy: 87.1%, BACC:

81.6%, AUC: 91.6%, Sensitivity
(CN/AD/FTD): 89.6/76.9/78.4

[41]
GAN for synthetic MRI
generation + Ensemble
deep learning classifiers

GAN + CNN, LSTM,
Ensemble Networks

GAN results: Precision: 0.84, Recall: 0.76,
F1-score: 0.80, AUC-ROC: 0.91,

Proposed Ensemble: Precision: 0.85,
Recall: 0.79, F1-score: 0.82, AUC-ROC:

0.93

[42] Modified HexaGAN (Deep
Generative Framework)

Modified HexaGAN (GAN
+ Semi-supervised +

Imputation)

ADNI: AUROC 0.8609, Accuracy 0.8244,
F1-score 0.7596, Sensitivity 0.8415,

Specificity 0.8178; SMC: AUROC 0.9143,
Accuracy 0.8528, Sensitivity 0.9667,

Specificity 0.8286.

[43]
Conditional Diffusion

Model for Data
Augmentation

Conditional DDPM +
U-Net

Best result (Combine 900): Accuracy:
74.73%, Precision: 77.28%, Recall

(Sensitivity): 66.52%, F1-score: 0.6968,
AUC: 0.8590; Specificity: not reported

[44]

Latent Diffusion Model
(d3T*) for MRI

super-resolution +
DenseNet Siamese

Network for AD/MCI/NC
classification

Latent Diffusion-based SR
+ Siamese DenseNet

AD classification: Accuracy 92.3%,
AUROC 93.1%, F1-score 91.9%;

Significant improvement over 1.5 T and
c3T*; Comparable to real 3 T MRI

[45]

GAN-based data
augmentation + hybrid

CNN-InceptionV3 model
for multiclass AD

classification

GAN + Transfer Learning
(CNN + InceptionV3)

Accuracy: 90.91%; metrics like precision,
recall, and F1-score also reported high

performance

[46]
DeepCGAN (GAN +

BiGRU with Wasserstein
Loss)

Encoder–Decoder GAN
with BiGRU layers

Accuracy: 97.32%, Recall (Sensitivity):
95.43%, Precision: 95.31%, F1-Score:

95.61%, AUC: 99.51%

[47]
Latent Diffusion Model for

Resolution Recovery
(LDM-RR)

Latent Diffusion Model
(LDM-RR)

Recovery coefficient: 0.96; Longitudinal
p-value: 1.3 × 10−10; Cross-tracer

correlation: r = 0.9411; Harmonization
p = 0.0421

[48]
Diffusion-based multi-view

learning (one-way and
two-way synthesis)

U-NET-based Diffusion
Model with MLP Classifier

Accuracy: 82.19%, SSIM: 0.9380, PSNR:
26.47, Sensitivity: 95.19%, Specificity:

92.98%, Recall: 82.19%

[49]

Conditional DDPM and
LDM with counterfactual

generation and
DenseNet121 classifier

LDM + 3D DenseNet121
CNN

AUC: 0.870, F1-score: 0.760, Sensitivity:
0.889, Specificity: 0.837 (ADNI test set

after fine-tuning)

[50]

GANs, VAEs, Diffusion
(DDIM) models for MRI

generation +
DenseNet/ResNet

classifiers

DDIM (Diffusion Model) +
DenseNet

Accuracy: 80.84%, Precision: 86.06%,
Recall: 78.14%, F1-Score: 80.98%

(Alzheimer’s, DenseNet + DDIM)
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Table 3. Cont.

Reference Technique/Method Model Results

[51]
GAN-based data

generation + EfficientNet
for multistage classification

GAN for data
augmentation +

EfficientNet CNN

Accuracy: 88.67% (1:0), 87.17% (9:1),
82.50% (8:2), 80.17% (7:3);

Recall/Sensitivity/Specificity not
separately reported

[52]

Conditional Latent
Diffusion Model (LDM) for
M0 image synthesis from

Siemens PASL

Conditional LDM + ML
classifier

SSIM: 0.924, PSNR: 33.35, CBF error: 1.07
± 2.12 mL/100 g/min; AUC: 0.75
(Siemens), 0.90 (GE) in AD vs. CN

classification

[53]

Multi-modal conditional
diffusion model for

image-to-image translation
(prognosis prediction)

Conditional Diffusion
Model + U-Net PSNR: 31.99 dB, SSIM: 0.75, FID: 11.43

[54]

GAN for synthetic MRI
image generation +

EfficientNet for multi-stage
classification

GAN + EfficientNet
Validation accuracy improved from
78.48% to 85.11%, training accuracy

from 90.16% to 98.68% with GAN data

[55] Dual GAN + Pyramid
Attention + CNN

Dual GAN with Pyramid
Attention and CNN

Accuracy: 98.87%, Recall/Sensitivity:
95.67%, Specificity: 98.78%, Precision:

99.78%, F1-score: 99.67%

[56]

Prior-information-guided
residual diffusion model
with CLIP module and
intra-domain difference

loss

Residual Diffusion Model
with CLIP guidance

SSIM: 92.49% (Aβ), 91.44% (Tau); PSNR:
26.38 dB (Aβ), 27.78 dB (Tau); AUC:

90.74%, F1: 82.74% (Aβ); AUC: 90.02%,
F1: 76.67% (Tau)

[57]

Hybrid of Deep
Super-Resolution GAN
(DSR-GAN) for image

enhancement + CNN for
classification

DSR-GAN + CNN

Accuracy: 99.22%, Precision: 99.01%,
Recall: 99.01%, F1-score: 99.01%, AUC:

100%, PSNR: 29.30 dB, SSIM: 0.847,
MS-SSIM: 96.39%

[58]

Bidirectional Graph GAN
(BG-GAN) + Inner Graph
Convolution Network +

Balancer for stable
multimodal connectivity

generation

BG-GAN + InnerGCN
Accuracy > 96%, Precision/Recall/F1 ≈
0.98–1.00, synthetic data outperformed

real in classification

Hwang et al. (2023) [42] introduced a modified HexaGAN model to predict amyloid
positivity in cognitively normal individuals using MRI, cognitive scores, and demographic
data. Built to handle missing data and imbalanced classes, the model achieved strong
performance with AUROCs of 0.86 (ADNI) and 0.91 (clinical dataset). While promising, its
complexity and need for fine-tuning limit scalability. Future work could focus on adding
multi-modal and longitudinal data to boost clinical usefulness.

Yao et al. (2023) [43] introduced a conditional diffusion model to generate synthetic
MRI slices for Alzheimer’s diagnosis, helping to balance limited and uneven datasets. Using
diagnostic labels to guide image creation, the model improved classification performance
achieving 74.73% accuracy and an AUC of 0.8590, outperforming GAN-based methods.
However, it used a small, static dataset and lacked specificity reporting.
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Yoon et al. (2024) [44] introduced a diffusion-based MRI super-resolution model (d3T)
to enhance Alzheimer’s and MCI diagnosis by upgrading 1.5 T scans to 3 T quality. The
improved images boosted diagnostic accuracy to 92.3% and helped predict MCI-to-AD
conversion more reliably. While the results are promising, the model was tested only on
ADNI data and lacks validation on higher-resolution scans or multi-center datasets. Future
work could explore 3 T-to-7 T enhancement and integrate multi-modal imaging for broader
clinical use.

Tufail et al. (2024) [45] combined InceptionV3 with GANs to improve Alzheimer’s
diagnosis from MRI scans, especially in imbalanced datasets. By generating synthetic
images to boost underrepresented classes, their model achieved an AUC of 87% and
showed better accuracy for early-stage AD. However, it was limited to one dataset and
lacked multi-modal input. Future work should be tested on diverse datasets and include
other imaging types like PET for more reliable diagnosis.

Ali et al. (2024) [46] developed DeepCGAN, a deep learning model that uses cog-
nitive test data over time rather than brain scans to detect Alzheimer’s early. With a
BiGRU-enhanced GAN design and advanced loss functions, it achieved impressive results:
97.32% accuracy and a near-perfect AUC of 99.51%. While powerful, the model is complex
and resource-heavy. Future improvements could involve combining it with imaging data
or simplifying the architecture for easier clinical use.

Shah et al. (2024) [47] developed a latent diffusion model (LDM-RR) to boost the
clarity and accuracy of amyloid PET scans by generating high-resolution images using
paired low-res PET and MRI data. Trained in synthetic examples and tested across major
datasets like ADNI and OASIS-3, the model delivered strong results in a recovery coefficient
of 0.96, better detection of amyloid buildup over time (p = 1.3 × 10−10), and improved
consistency across different PET tracers (r = 0.9411, p = 0.0421). Though standard metrics
like accuracy and sensitivity were not detailed, the model clearly outperformed older
methods. Its main drawbacks are high computational demands and reliance on synthetic
data. The authors suggest future improvements like faster, self-supervised training and
broader real-world validation.

Chen et al. (2024) [48] introduced a diffusion-based method to generate FDG PET
scans from MRI T1 images for Alzheimer’s diagnosis. Their two-way diffusion approach
transforming MRI to PET via a diffusion and reconstruction process outperformed the
simpler one-way method, achieving 82.19% accuracy and high sensitivity (95.19%) and
specificity (92.98%). While effective, the method is computationally intensive. The authors
suggest that combining diffusion with other generative models like GANs could enhance
performance and efficiency.

Dhinagar et al. (2024) [49] developed an interpretable diffusion-based method to
generate 3D brain MRIs for Alzheimer’s diagnosis. Using DDPMs and Latent Diffusion
Models, they created realistic and even counterfactual scans imagining how an AD patient’s
brain might look if healthy. These synthetic images helped pre-train a 3D CNN, which
achieved strong results on the ADNI dataset (AUC 0.87, sensitivity 88.9%, specificity
83.7%) and generalized well to OASIS. Despite the high performance, the approach is
computationally heavy and may benefit from efficiency improvements and added clinical
data in the future.

Gajjar et al. (2024) [50] compared GANs, VAEs, and diffusion models (DDIMs) to
generate MRI scans for diagnosing Alzheimer’s and Parkinson’s diseases. Diffusion models
delivered the best results of 80.84% accuracy for Alzheimer’s and 92.42% for Parkinson’s
though they were slow to train. VAEs produced lower-quality images but still supported
decent classification. The study highlights the potential of generative models to boost diag-
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nostic accuracy with limited data, though future work should focus on making diffusion
models faster and more efficient for clinical use.

Wong et al. (2024) [51] tackled the challenge of limited MRI data in Alzheimer’s
research by using GANs to generate synthetic images. These were combined with real
scans to train an EfficientNet model for classifying AD, MCI, and NC stages. Even with less
real data, the model maintained strong accuracy up to 88.67% with full data and 80.17%
with just 70% real data. While GAN training had some stability issues and too much
synthetic data slightly hurt performance, the approach proved that GANs can effectively
boost diagnosis when data is scarce.

Shou et al. (2024) [52] addressed the issue of missing M0 calibration images in Siemens
ASL MRI scans, which was key for measuring brain blood flow in Alzheimer’s research
by using a conditional latent diffusion model to generate them. Their model produced
high-quality images (SSIM 0.924, PSNR ~33.35) and accurate CBF values, aligning well with
known disease patterns. It also showed solid classification performance, especially with
GE data (AUC up to 0.90). While the method helps bridge gaps across MRI vendors, it is
limited by data imbalances and the absence of ground truth in some datasets. Future work
could focus on the standardization and demographic adjustments to improve robustness.

Hwang et al. (2024) [53] created a multi-modal diffusion model to predict Alzheimer’s
progression by generating future MRI scans using early imaging and clinical biomarkers like
Aβ, t-tau, and p-tau. Their model outperformed GANs and image-only diffusion methods,
producing clearer, more detailed scans (PSNR 31.99, SSIM 0.75, FID 11.43). Adding clinical
data notably improved results. However, the study used only 50 subjects and did not
report diagnostic metrics like accuracy, suggesting the need for larger datasets and broader
clinical inputs to boost real-world impact.

Wong et al. (2025) [54] addressed the challenge of limited and imbalanced MRI data
for Alzheimer’s diagnosis by using GANs to generate synthetic brain images. Trained on
OASIS data, these images boosted the performance of an EfficientNet model classifying AD,
MCI, and NC stages. Accuracy rose from 78.48% to 85.11% when using entirely synthetic
data, though GAN training faced stability issues and some overfitting. The study shows
promise for GAN-based augmentation, with future work focusing on improving training
stability and exploring more robust GAN models.

Zhang and Wang (2024) [55] developed a dual GAN framework with pyramid atten-
tion and a CNN classifier to boost Alzheimer’s detection from MRI scans. Trained on ADNI
data, the model achieved outstanding results in 98.87% accuracy and a 99.67% F1-score far
outperforming standard CNNs. While powerful, its reliance on a single dataset and lack
of clinical interpretability limit real-world use. The authors recommend adding data like
cognitive scores or genetics and enhancing explainability to improve clinical relevance.

Ou et al. (2024) [56] introduced a diffusion model to generate Aβ and tau PET images
from MRI scans, aiming to reduce the cost and radiation of PET imaging in Alzheimer’s
diagnosis. Their method uses residual learning, prior info like age and gender, and a
novel loss function to boost image quality and modality distinction. Tested on 1274 ADNI
subjects, it outperformed other models in image quality (SSIM~92%) and achieved strong
biomarker classification results (AUC~90%). Though promising, it relies on accurate prior
data and high computing power. Future work will aim to improve efficiency and adapt the
model to diverse populations.
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Table 4. Overview of generative models used in literature to diagnose Alzheimer’s disease research
highlighting their key challenges and limitations.

Reference Dataset Model Challenges and Limitations

[21]
ADNI-like MRI data (T1w),
Diffusion MRI of healthy

subjects

Network eigenmode
diffusion model

Small sample size; no conventional ML
metrics (accuracy, F1); assumes static

connectivity; limited resolution in
tractography; noise in MRI volumetrics.

[23] ADNI-1 & ADNI-2
Two-stage: PET synthesis

(3D-cGAN) + classification
(LM3IL)

Requires accurate MRI–PET alignment;
patch-based learning may limit

generalization.

[24] OASIS-3

WGAN-GP-based
unsupervised

reconstruction + anomaly
detection using L2 loss

Region-limited detection
(hippocampus/amygdala); may miss

anomalies outside selected areas.

[25] ADNI GAN + Classifier
Binary classification was not better than
CNN-only models; requires more tuning

and architectural exploration.

[26] ADNI DCGAN
Trained separate GANs per class; used

2D slices only; lacks unified 3D
modeling approach.

[27] ADNI Bidirectional GAN
Limited fine detail in some outputs;

latent vector injection mechanism could
be improved for better synthesis.

[28] ADNI-1, ADNI-2 DCGAN + DenseNet
Used 2D image generation; manual

filtering of outputs; lacks 3D modeling
and automation.

[29] ADNI-GO, ADNI-2, OASIS mi-GAN + DenseNet

Lower performance on gray matter
prediction; limited short-term

progression prediction; improvement
possible with better feature modeling.

[30] OASIS-3, Internal dataset 7-SA MADGAN

Reconstruction instability on T1c scans;
limited generalization; fewer healthy
T1c scans; needs optimized attention

modules.

[31] ADNI, AIBL, NACC GAN + FCN
Small sample size for GAN training (151
participants). Limited to AD vs. normal

cognition (no MCI).

[32] ADNI-1, ADNI-2 TPA-GAN + PT-DCN
Requires paired modalities; model

trained/tested on ADNI-1/2
independently; limited generalization.

[33] ADNI-1 THS-GAN

Requires careful TT-rank tuning;
performance varies with GSP block

position; validation limited to ADNI
dataset.

[34] ADNI (268 subjects) GAN + Transformer with
Bi-Attention

Limited dataset size, dependency on
predefined ROIs, potential overfitting;

lacks validation on other
neurodegenerative disorders.

[35] ADNI (13,500 3D MRI
images after augmentation)

WGANGP + Inception v3 +
DBN

Heavy reliance on data augmentation,
complex pipeline requiring multiple

preprocessing and tuning steps.
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Table 4. Cont.

Reference Dataset Model Challenges and Limitations

[36] ADNI (1732 scan-pairs, 873
subjects)

3D BicycleGAN (BPGAN)
with MCU Generator

High preprocessing complexity,
marginal diagnostic gains, requires

broader validation and adaptive ROI
exploration.

[37] ADNI

Denoising Diffusion
Probabilistic Model

(DDPM) with modified
U-Net

Uses only adjacent timepoints; assumes
fixed intervals; no classification; no

sensitivity/specificity; computationally
intensive.

[38] ADNI2 Wavelet Diffusion with
Wavelet U-Net

High computational cost; limited to T1
MRI; does not incorporate multi-modal

data or longitudinal timepoints.

[39] Custom MRI dataset
(Kaggle)

CNN + DCGAN (data
augmentation)

Risk of overfitting due to small original
dataset; no reporting of

sensitivity/specificity; limited to image
data.

[40] ADNI2, NIFD (in-domain),
NACC (external)

125 3D U-Nets + Ensemble
(MLP + SVM)

High computational cost (393 M
parameters, 25.9 TFLOPs); inference
time ~1.6 s; only baseline MRI used;

limited by class imbalance and absence
of multimodal or longitudinal data.

[41] ADNI GAN + CNN, LSTM,
Ensemble Networks

Limited real Alzheimer’s samples;
reliance on synthetic augmentation;

needs more external validation and data
diversity.

[42] ADNI (Discovery), SMC
(Practice)

Modified HexaGAN (GAN
+ Semi-supervised +

Imputation)

High model complexity; requires
fine-tuning across datasets; limited to

MRI and tabular inputs.

[43] ADNI Conditional DDPM +
U-Net

Small dataset, imbalanced classes;
specificity not reported; limited to static

MRI slices; no multi-modal or
longitudinal data.

[44] DNI1, ADNI3, AIBL Latent Diffusion-based SR
+ Siamese DenseNet

High computational cost; needs
advanced infrastructure for training;

diffusion SR takes longer than
CNN-based methods.

[45] ADNI GAN + Transfer Learning
(CNN + InceptionV3)

Class imbalance still impacts
performance slightly; more detailed
metrics (sensitivity/specificity) not

reported.

[46] ADNI Encoder–Decoder GAN
with BiGRU layers

Computational complexity, GAN
training instability, underutilization of
multimodal data (e.g., neuroimaging).

[47] ADNI, OASIS-3, Centiloid Latent Diffusion Model
(LDM-RR)

High computational cost; trained on
synthetic data; limited interpretability;

real-time deployment needs
optimization.

[48] ADNI U-NET-based Diffusion
Model with MLP Classifier

One-way synthesis introduces
variability; computational intensity;

requires improvement in generalization
and speed.
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Table 4. Cont.

Reference Dataset Model Challenges and Limitations

[49] ADNI, OASIS, UK Biobank LDM + 3D DenseNet121
CNN

High computational cost, requires
careful fine-tuning, limited by

resolution/memory constraints.

[50] Alzheimer MRI (6400
images)

DDIM (Diffusion Model) +
DenseNet

Diffusion models are computationally
intensive; VAE had low image quality;
fine-tuning reduced accuracy in some

cases; computational cost vs.
performance tradeoff.

[51] OASIS-3
GAN for data

augmentation +
EfficientNet CNN

GAN training instability; performance
drop when synthetic data exceeds real
data; no separate sensitivity/specificity

metrics reported.

[52] ADNI-3, In-house Conditional LDM + ML
classifier

No ground truth M0 for Siemens data;
SNR difference between PASL/pCASL;

class imbalance; vendor variability.

[53] ADNI Conditional Diffusion
Model + U-Net

Small sample size; no classification
metrics reported; requires broader
validation with more diverse data.

[54] OASIS GAN + EfficientNet

GAN training instability; overfitting in
CNN; limited dataset size; scope to
explore alternate GAN models for

robustness.

[55] ADNI Dual GAN with Pyramid
Attention and CNN

Dependent on ADNI dataset quality;
generalization affected by population

diversity; limited interpretability;
reliance on image features for AD

detection.

[56] ADNI Residual Diffusion Model
with CLIP guidance

Dependent on accurate prior info (e.g.,
age, gender); high computational cost;

needs optimization for broader
demographic generalization.

[57] Kaggle DSR-GAN + CNN

High computational complexity; SR
trained on only 1700 images;

generalizability and real-time scalability
remain open challenges.

[58] ADNI BG-GAN + InnerGCN

Difficulty in precise structure-function
mapping due to fMRI variability;

biological coordination model can be
improved.

A hybrid model combining Deep Super-Resolution GAN (DSR-GAN) with a CNN
to classify Alzheimer’s into four stages using MRI scans is presented by Oraby et al.
(2025) [57]. The GAN enhanced image clarity, helping the CNN achieve high accuracy of
99.22% with nearly perfect precision, recall, F1-score (all ~99%), and an AUC of 100%. The
super-resolution also improved image quality (PSNR 29.30, SSIM 0.847). Despite its strong
results, the model requires heavy computation and has limited scalability. Future work
should expand datasets, including other imaging types like PET, and add explainability to
support clinical use.
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Zhou et al. (2025) [58] developed BG-GAN, a generative model that captures relation-
ships between brain structure (sMRI/DTI) and function (fMRI) for Alzheimer’s diagnosis.
The model combines a Bidirectional Graph GAN, Inner Graph Convolutional Network
(InnerGCN), and a Balancer module to stabilize training and improve data generation.
Trained on the ADNI dataset across five subject categories, Normal Control (NC), Subjective
Memory Complaint (SMC), Early Mild Cognitive Impairment (EMCI), Late MCI (LMCI),
and Alzheimer’s Disease (AD). Results showed that BG-GAN outperformed baseline GCN,
GAE, and GAT models, achieving classification accuracy above 96%, with precision, recall,
and F1-scores nearing 0.98–1.00 on multi-modal inputs. Interestingly, synthetic data gener-
ated by BG-GAN even yielded better classification performance than real empirical data,
indicating the effectiveness of the generative modeling approach. However, challenges
remain in fully capturing structural-functional brain mappings due to fMRI variability.
The authors recommend integrating more biologically grounded coordination models and
testing applicability across other brain disorders.

5. Dataset
Alzheimer’s Disease Neuroimaging Initiative (ADNI): It is one of the most trusted and

widely used datasets in Alzheimer’s research. Started in 2003 across 50 sites in the U.S. and
Canada and led by Dr. Michael W. Weiner. Over the years, the study has expanded through
phases ADNI-1, ADNI-2, and ADNI-3 and includes adults aged 55 to 90 [59]. Each dataset
offers a wide range of imaging modalities including sMRI, fMRI, PET and FDG PET. ADNI-
1 consists of 95 patients with Alzheimer’s disease (AD), 206 with mild cognitive impairment
(MCI), and 102 cognitively normal (NC) controls. Meanwhile, the ADNI-3 cohort expands
with 122 AD patients, 387 individuals with MCI, and 605 healthy controls [44].

Open Access Series of Imaging Studies (OASIS): Most widely used, open-access
neuroimaging dataset designed to support dementia and aging research. It includes three
versions: OASIS-1 features 434 cross-sectional MRI scans from 416 individuals; OASIS-2
provides 373 longitudinal MRIs from 150 older adults; and OASIS-3, the largest, offers over
2000 MRI and PET scans from 1098 participants aged 42 to 96 [51]. The dataset is ideal for
studying brain aging, disease progression, and cognitive decline.

Kaggle: It is a popular online platform that hosts a publicly available MRI dataset
for dementia classification, widely used in AI research. This dataset includes a total of
6400 MRI scans, labeled across four classes: 3200 Non-Demented (ND), 2240 Very Mild
Demented (VMD), 896 Mild Demented (MD), and 64 Moderate Demented (MoD) cases [57].

Minimal Interval Resonance Imaging in Alzheimer’s Disease (MIRIAD): The dataset
was designed to study brain changes in Alzheimer’s disease over short periods. It includes
708 T1-weighted MRI scans collected from 69 older adults 46 with mild-to-moderate
Alzheimer’s and 23 healthy controls. All scans were performed using the same machine
and technician, helping to ensure consistency in the data [60]. Participants were grouped
based on their MMSE scores, making it easier to track how brain structure differs between
healthy aging and Alzheimer’s.

Australian Imaging, Biomarkers and Lifestyle Study of Aging (AIBL): AIBL is a
longitudinal study based in Australia, involving over 1100 participants aged 60 and above,
recruited from cities such as Melbourne and Perth. It includes healthy controls, MCI,
and AD patients. It provides MRI, PET, blood biomarkers, genetic data, and cognitive
assessments. The dataset is especially useful for studying early detection and how lifestyle
and biological factors contribute to Alzheimer’s progression [44].
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6. Generative Adversarial Networks (GANs)
Originally introduced by Goodfellow et al. [9], they have become increasingly popular

in medical imaging research, especially for diseases like Alzheimer’s where data can be
limited. A typical GAN framework involves two neural networks: a generator that tries
to produce realistic synthetic images from random noise, and a discriminator that tries to
tell the difference between real and fake images. These two networks train together in a
competitive setup, which can be expressed with the following objective function:

min
G

max
D

V(D, G) = Ex∼pdata(x) [log D(x)] + Ez∼pz(z) [log(1 − D(G(z)))] (1)

In Equation (1) G is the generator network that maps noise z to synthetic data, D is
discriminator network, x is real image from the true data distribution pdata(x), z represents
latent noise vector drawn from prior pz(z). D(x) discriminator’s probability estimate that x
is real, G(z) generator’s synthetic output.

Over time, this basic idea has evolved into several powerful variants, each designed
to solve specific challenges in medical imaging. In this section, we highlighted some of
the most relevant GAN models used in Alzheimer’s disease research. A standard GAN
architecture has been illustrated in Figure 8.

 

Figure 8. GAN architecture.

6.1. Deep Convolutional Gan (DCGAN)

DCGAN [61] replaces traditional fully connected layers with convolutional ones,
allowing it to better capture spatial features in images. This model is especially useful for
generating realistic-looking synthetic MRI scans and addressing the instability of the basic
GAN. In Alzheimer’s studies, researchers have used DCGAN to generate more training
data, which helps improve the performance of diagnostic models, especially when real
data is scarce.

G(z) = tanh(W4· ReLU(W3· ReLU(W2· ReLU(W1z)))) (2)

Here, G(z) output of the generator given noise input z. W1, W2, W3, W4 : weight
matrices for each transposed convolutional layer. ReLU is the activation function and tanh
hyperbolic tangent activation function.

6.2. Conditional Gan (CGAN)

Unlike standard GANs, CGAN [62] allows you to guide the image generation process
using extra information such as disease stage, diagnosis label, or other metadata. This
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is incredibly helpful when you want to generate images specific to the early, mild, or
advanced stages of Alzheimer’s. The training objective is adjusted accordingly:

min
G

max
D

V(D, G) = Ex∼pdata(x) [log D(x|y)] + Ez∼pz(z) [1−log(D(G(z|y)))] (3)

This label conditioning makes it possible to create highly relevant training data for
classification models. In Equation (3) D(x|y) is the discriminator output and G(z|y) is the
generator output conditioned on y.

6.3. CycleGAN

CycleGAN [63] is a great option when you have two different imaging modalities (like
MRI and PET scans) but no matched pairs. It learns to translate images from one domain to
another and back again using a cycle-consistency loss. This ensures that an MRI converted
into a PET image and then back again still resembles the original MRI:

Lcyc(G, F) = Ex[∥F(G(x))− x∥1] + Ey[∥G(F(y))− y∥1] (4)

This technique is especially useful in Alzheimer’s research to enrich data when multi-
modal data alignment is not possible. Lcyc(G, F) is cycle-consistency loss used to enforce
bijective mappings between two domains. Here generator G maps data from X to Y domain.
F(G(x)) reconstructed image in domain X after translating x to Y via G, then back via F.
G(F(y)) reconstructed image in domain Y after translating y to X via F, then back via G.
Ex and Ey are real sample from source domain X and domain Y.

6.4. StyleGAN

StyleGAN [64] introduces a different approach by adding “style” control at different
layers of the generator. This allows researchers to manipulate specific features in the
generated images like shape, contrast, or structure more independently. Although not as
widely adopted yet in Alzheimer’s work, StyleGAN’s ability to generate detailed, high-
resolution images opens up exciting possibilities for creating realistic brain scans that
capture subtle disease characteristics.

w = f (z); x = g(w, A) (5)

where f is the mapping network that refines the input noise, and g is the synthesis network
modulated by styles A.

6.5. Wasserstein GAN (WGAN)

One of the common issues with traditional GANs is instability during training, which
often results in mode collapse or non-converging models. To address these issues, [65]
introduced the Wasserstein GAN (WGAN), which replaces the JS divergence with the Earth
Mover (EM) or Wasserstein-1 distance. This change provides more meaningful gradients,
improving both convergence and training stability. WGAN is also relatively simple to
implement and offers better control over training dynamics, helps generate more reliable
and realistic brain scans. The drawback of WGAN is its slow optimization compared to
traditional GANs.

Figure 9 Illustrates the similarities and relationships between various GANs (DCGAN,
CGAN, CycleGAN, StyleGAN, WGAN) and Diffusion Models (conditional DDPMs, CDM,
LDM, SGMS).
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Figure 9. Similarities among various GANs and Diffusion model architectures.

7. Diffusion Models
Recent advancements in generative modeling have introduced Diffusion models as a

powerful generative framework capable of learning complex data distributions, especially
for their application in neurodegenerative disease diagnosis such as Alzheimer’s Disease
(AD), where limited labeled data often hinders robust model development. These models
show great promise in generating realistic synthetic neuroimages, enhancing diagnostic
prediction, and simulating disease progression over time. Diffusion models work by
gradually adding Gaussian noise to clean data over some time steps through a forward
diffusion process and then learning to reverse this process to recover or generate clean data.
Figure 10 illustrates the typical architecture of the diffusion model.

Figure 10. Diffusion Model architecture.
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7.1. Denoising Diffusion Probabilistic Models (DDPM)

DDPMs, introduced by Ho et al. (2020) [13], are based on a Markovian forward process
where Gaussian noise is incrementally added to input data over several time steps. The
process is defined as:

q(xt | xt−1) = N
(

xt;
√
{1 − βt},xt−1, βt I

)
(6)

where q(xt | xt−1) is the forward diffusion process that gradually adds noise. N is gaussian
distribution. xt−1, xt are data sample at time steps t − 1 and t, respectively. βt is predefined
variance schedule at time step t and I is identity matrix.

After that the model performs a reverse denoising process using a neural network
trained to recover the original data.

pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) (7)

where pθ(xt−1 | xt) is the reverse denoising distribution parameterized by neural network
θ, xt is noisy image at diffusion step t and xt−1 denoised image one step backward. µθ(xt, t)
and Σθ(xt, t) represents predicted mean of the denoised sample and predicted variance at
step t − 1, respectively.

7.2. Convolutional Diffusion Models (CDM)

CDM incorporates auxiliary variables such as cognitive test scores, genetic risk factors,
or biomarker concentrations into the denoising process. The study by [53] used this model
to predict future MRI degeneration patterns using baseline imaging alongside cerebrospinal
fluid metrics like Aβ, total tau, and phosphorylated tau.

7.3. Latentl Diffusion Models (LDM)

To reduce computational demands and handle large high-resolution data efficiently,
Latent diffusion models compressed the image before applying the diffusion process.
Instead of working directly on the high-resolution data, these models encode input images
into a lower-dimensional representation and then decode the final result back into a full
image. This makes efficient training and faster inference while retaining key structural
details. Researchers have found these models particularly helpful when working with
large-scale imaging studies [49].

7.4. Score-Based Generative Models (SGMS)

Score-based diffusion models, also referred to as score-matching networks, adopt a
different generative approach. Instead of learning to denoise step-by-step, they estimate
the direction in which the data density increases, essentially learning the gradient of the
data’s log-probability and using this information to reconstruct clean images from noisy
ones. New samples are generated using Langevin dynamics [66]:

xt−1 = xt +
ϵ

2
∇xlog pt(xt) +

√
ϵz (8)

In Equation (8) xt is the noisy sample at time step t, xt−1 is the updated sample at
time step t − 1. ϵ is the step size or learning rate for Langevin dynamics. pt(xt) is data
distribution at time t and ∇xlog pt(xt) is the score function. Z is the gaussian noise. Score-
based methods have been explored for cleaning up noisy MRI scans or recovering missing
parts of an image, especially in situations where image quality is affected by movement or
poor scanner settings.
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Figure 11 demonstrates the key differences among these models by comparing criteria
such as input conditions, data domain, training dynamics, and output fidelity.

 

Figure 11. Key differences between GAN and Diffusion Models.

8. Discussion and Conclusions
Alzheimer’s disease (AD) remains one of the most complex and difficult neurode-

generative disorders to diagnose, especially during its early stages when intervention can
be most impactful. Accurate and timely detection is crucial, as early diagnosis allows
clinicians to initiate therapeutic strategies that can slow disease progression, preserve cog-
nitive function, and improve patients’ quality of life. This review underscores the emerging
potential of generative artificial intelligence (AI), particularly generative models such as
Generative Adversarial Networks (GANs) and Diffusion Models as a powerful comple-
ment to conventional neuroimaging analysis in the quest for early-stage detection. By
synthesizing high-quality brain images, these models not only help overcome the challenge
of limited datasets but also enhance feature extraction capabilities. This enables down-
stream classifiers to detect subtler neurodegenerative patterns that might be overlooked by
traditional techniques.

One major challenge in Alzheimer’s diagnosis is the lack of high-quality, labeled
neuroimaging data. Generative models help overcome this by producing synthetic MRI
and PET scans that closely mimic real ones, enhancing data diversity and improving
diagnostic accuracy. Some studies even reported up to 99.7% accuracy with GANs and high-
quality metrics from Diffusion Models (e.g., SSIM > 0.92, PSNR > 30 dB). Unlike traditional
reviews that just list ML models, this paper focuses on how generative approaches like
DCGAN, CycleGAN, WGAN, and conditional DDPMs actively enhance early detection by
augmenting data, capturing disease patterns, and modeling progression.

Generative models stand out for their ability to integrate diverse data types like MRI,
PET scans, and CSF biomarkers, offering a fuller view of Alzheimer’s progression. When
combined with CNNs, these models do not just aid diagnosis they elevate it. But there is a
trade-off to consider. While these models often deliver excellent results, they can be hard to
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interpret due to a lack of transparency. In clinical settings, trust matters, and clinicians need
to understand how a model reaches its decision. Unfortunately, most GANs and diffusion
models still operate like black boxes. Coupled with their high computational demands,
these limitations currently hinder their widespread adoption in clinical practice. Many
DCGAN-based studies (e.g., [26,28]) generate 2D slices only, losing volumetric context
and cross-slice biomarkers. Implementing 3D GAN architectures (e.g., 3D-CycleGAN [23],
3D-BicycleGAN [36]) or spatio-temporal diffusion models are recommended to preserve
full brain topology.

Even though the research landscape is promising, not all findings are consistent. Mod-
els trained on datasets like ADNI often struggle when tested on others like OASIS, raising
concerns about generalizability. GAN classifiers fine-tuned on ADNI drop 10–15% accuracy
on OASIS or AIBL, likely due to scanner/vendor differences. Domain adaptation methods,
such as adversarial feature alignment or style-transfer approaches (e.g., Cycle GAN-based
harmonization), along with fine-tuning using small subsets from target datasets, can help
overcome these domain discrepancies. In some cases, adding synthetic images did not
improve accuracy much, especially when the generated data lacked diversity or detail.
DCGAN outputs often collapse to a few modes, leading to overfitting when used for
augmentation [26,28]. Strategies such as using WGAN-GP or Spectral Normalization to
stabilize training, enforce latent-space regularization, or switch to diffusion models which
naturally sample diverse modes could mitigate these problems. Another challenge is
validation. Metrics like SSIM and PSNR measure image quality, but they do not guaran-
tee medical accuracy. Many studies still lack clinical validation through expert reviews
or pathology comparisons, making it hard to assess their real-world utility. Fewer than
20% of reviewed papers report radiologist or neuropathologist agreement on synthetic
images. Future research should incorporate double-blind reader studies where experts rate
synthetic vs. real scans, and correlate GAN/diffusion outputs with biomarker levels or
longitudinal outcomes.

To bridge the remaining gaps, future work should prioritize the development of more
interpretable and adaptable generative architectures. Which could make generative models
even more effective and easier to use. Transfer learning is one promising strategy. By
fine-tuning models that were trained on large datasets, researchers can adapt them to new
patient groups or imaging modalities with relatively little data. Integrating explainable AI
(XAI) methodologies, including Grad-CAM, SHAP or visualization tools, to help clinicians
understand and trust what the model is doing.

Emerging approaches like federated learning allow hospitals to train models col-
laboratively without sharing patient data, preserving privacy. Graph-based generative
models (e.g., BG-GAN) also show promise in capturing the complex progression of
Alzheimer’s. Together, these advances could make generative tools more accurate, scalable,
and clinically trustworthy.

Through a comprehensive critical evaluation of the strengths and limitations of current
generative methods, this review advances the state of the art by not merely summarizing
existing work, but clearly outlining targeted recommendations and directions for future
research. It offers a solid framework for developing next-generation diagnostic tools that
are not only accurate and efficient but also interpretable, clinically practical, and ethically
responsible. In doing so, it bridges technical innovation with the broader goal of enhancing
early diagnosis and long-term care for individuals living with Alzheimer’s disease.
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