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Abstract: Partial Least Squares (PLS) regression has been widely used to model the
relationship between predictors and responses. However, PLS may be limited in its capacity
to handle complex spectral data contaminated with significant noise and interferences. In
this paper, we propose a novel filter learning-based PLS (FPLS) model that integrates
an adaptive filter into the PLS framework. The FPLS model is designed to maximize the
covariance between the filtered spectral data and the response. This modification enables
FPLS to dynamically adapt to the characteristics of the data, thereby enhancing its feature
extraction and noise suppression capabilities. We have developed an efficient algorithm
to solve the FPLS optimization problem and provided theoretical analyses regarding
the convergence of the model, the prediction variance, and the relationships among the
objective functions of FPLS, PLS, and the filter length. Furthermore, we have derived
bounds for the Root Mean Squared Error of Prediction (RMSEP) and the Cosine Similarity
(CS) to evaluate model performance. Experimental results using spectral datasets from Corn,
Octane, Mango, and Soil Nitrogen show that the FPLS model outperforms PLS, OSCPLS,
VCPLS, PoPLS, LoPLS, DOSC, OPLS, MSC, SNV, SGFilter, and Lasso in terms of prediction
accuracy. The theoretical analyses align with the experimental results, emphasizing the
effectiveness and robustness of the FPLS model in managing complex spectral data.

Keywords: partial least squares; regression analysis; filter learning; content prediction

1. Introduction
In the field of Chemometrics, spectral analysis has been a cornerstone for both

qualitative and quantitative assessments of various compounds. Among the various
spectroscopic techniques, infrared (IR) spectroscopy stands out due to its non-destructive
nature, rapid analysis speed, and its ability to provide detailed chemical information.
However, the direct interpretation of IR spectra can be challenging due to the complex
overlap of absorption bands and the presence of noise. To address this issue, Partial
Least Squares (PLS) regression has been widely adopted for spectral data analysis, aiming
to establish a linear relationship between predictors and the response [1]. Despite its
popularity, PLS regression may suffer from overfitting and reduced predictive performance
when dealing with noisy or highly correlated spectral data. This limitation underscores
the need to develop more robust and adaptive models that can enhance the accuracy and
reliability of spectral-based predictions. The consequences of inaccurate predictions in
fields such as food quality control, environmental monitoring, and pharmaceutical analysis
can be significant. Therefore, refining spectral analysis techniques is crucial for advancing
the precision and applicability of Chemometrics models.
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Filtering techniques have traditionally been employed for preprocessing spectral
data, aiming to remove noise while enhancing the signal-to-noise ratio [2,3]. However,
the application of these filters is often conducted in an unsupervised manner, meaning
that they do not account for the ultimate goal of the analysis, which is to establish
accurate predictive models. This disconnect between the filtering process and the
subsequent regression analysis can potentially compromise the overall performance of the
model. To address this gap, this paper introduces a novel filter-based PLS regression model
that bridges the divide between data preprocessing and regression analysis. The proposed
model integrates the learning of filter parameters and PLS regression into a unified
framework, enabling a more efficient and effective analysis pipeline. By leveraging
supervised learning on samples, the model simultaneously optimizes both the filter
parameters and the PLS regression model, ensuring that the filtering process is aligned
with the ultimate goal of accurate prediction.

Previous research in this area has explored various modifications and extensions of PLS
regression to enhance its performance. Techniques such as Orthogonal Signal Correction
PLS (OSCPLS), Variance Constrained PLS (VCPLS), Powered PLS (PoPLS), Low-pass Filter
PLS (LoPLS), Direct Orthogonal Signal Correction (DOSC), Orthogonal Projection to Latent
Structures (OPLS), Multiplicative Scatter Correction (MSC), Standard Normal Variate (SNV)
transformation, and Savitzky–Golay Filtering (SGFilter) have been proposed to improve
PLS’s performance. These methods can be divided into four categories: Orthogonal Signal
Correction (OSC) Methods, Scatter Correction and Baseline Methods, Smoothing and
Filtering Methods, and PLS Variants. We summarize the pros and cons for these methods
and their areas of usage as follows:

1. Orthogonal Signal Correction (OSC) Methods: OSC-PLS removes spectral variance
orthogonal to the response variable Y before PLS modeling, enhancing model
interpretability by isolating Y-correlated signals and improving prediction accuracy
in multivariate calibration. Its iterative computation risks overfitting if Y-relevant
information is inadvertently discarded, making it suitable for NIR datasets dominated
by scatter effects but less ideal for resource-constrained applications. DOSC directly
computes Y-orthogonal components via least squares, offering simpler implementation
than OSC-PLS but potentially retaining residual noise correlated with Y. This approach
suits rapid preprocessing in high-throughput industrial screening. OPLS decomposes
X-variation into Y-correlated and orthogonal subspaces, preserving predictive power
while clarifying spectral feature attribution—particularly effective for wood chip NIR
analysis and metabolomics, though validation must prevent signal loss.

2. Scatter Correction and Baseline Methods: MSC corrects additive/scattering effects
by linear regression to a reference spectrum, effectively mitigating path-length
variations in diffuse reflectance powder analysis. Its performance hinges critically on
reference spectrum selection and struggles with nonlinear scattering. SNV applies
row-wise normalization (mean-centering and scaling), providing parameter-free
baseline stabilization for heterogeneous samples but attenuating Y-relevant amplitude
differences. Both methods prioritize physical artifact removal over chemical feature
enhancement.

3. Smoothing and Filtering Techniques: SG Filtering leverages polynomial convolution
for simultaneous noise reduction and derivative computation, resolving overlapping
peaks in IR/Raman spectra while preserving peak morphology. Optimal performance
requires careful tuning of window size and polynomial order. LoPLS integrates
low-pass frequency filtering into PLS to suppress high-frequency noise from portable
spectrometers, but may blur sharp spectral features critical for analyte identification.
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4. PLS Variants: VCPLS constrains PLS loadings to high-variance spectral regions,
reducing overfitting from low-variance noise in collinear datasets but risking omission
of subtle Y-correlated signals. PoPLS amplifies weak spectral features through the
exponentiation of loadings, enhancing trace analyte detection in complex matrices
like pharmaceuticals; however, arbitrary exponent selection may amplify artifacts.

Additionally, methods like Lasso regularization have been investigated to handle
high-dimensional data and prevent overfitting. While these approaches have shown
promise, they often rely on predefined transformations or regularization strategies that may
not fully adapt to the unique characteristics of each spectral dataset. Despite advancements
in spectral data analysis, several limitations persist in current research. Firstly, existing
methods often lack the flexibility to adapt to the specific noise patterns and spectral
complexities inherent in individual datasets. Secondly, the predictive performance of these
methods can degrade significantly when faced with substantial spectral overlap or high
noise levels. Furthermore, the theoretical foundations of some of these techniques are not
fully developed, making it challenging to rigorously assess their convergence properties
and prediction variances. These limitations can result in inaccurate predictions and reduced
reliability in practical applications, potentially compromising the integrity of analytical
results and decision-making processes.

The objective of this study is to develop and validate the FPLS model, which integrates
an adaptive filter within the PLS framework to improve the accuracy and robustness of
spectral-based predictions. By optimizing the filter parameters alongside the PLS regression
coefficients, the FPLS model aims to adaptively mitigate the effects of noise and spectral
overlap, thereby enhancing the predictive performance. The proposed model will be
evaluated through rigorous theoretical analysis and experimental validation using diverse
spectral datasets, including Corn, Octane, Mango, and Soil Nitrogen. The scope of this study
focuses on the enhancement of PLS regression through adaptive filtering techniques. We
summarize our main contributions of this study as follows:

1. Introduction of FPLS Model: We propose the filter learning-based Partial Least
Squares (FPLS) model, which incorporates an adaptive filter into the traditional
PLS framework. This innovation allows the model to adaptively learn the optimal
filter during training, thereby improving its ability to handle noisy data and extract
relevant features.

2. Algorithmic and Theoretical Advancements: A novel algorithm is developed to
solve the optimization problem posed by FPLS. Theoretical analysis confirms the
convergence properties of the model and establishes the equivalence of prediction
variances between FPLS and traditional PLS, ensuring stable predictive performance.
Through theoretical analysis, we elucidate the relationship between the filter length
and the original objective function, providing guidelines for selecting appropriate
filter length.

3. Bounds on Prediction Metrics: We explore the interplay between RMSEP and CS,
deriving theoretical upper and lower bounds for both metrics. This analysis offers a
deeper understanding of how changes in one metric affect the other, facilitating more
informed model evaluation.

4. Experimental Results: Extensive experiments conducted on four diverse spectral
datasets—Corn, Octane, Mango, and Soil Nitrogen—demonstrate that FPLS achieves
superior prediction accuracy compared to existing methods. The consistency between
our theoretical findings and empirical results underscores the practical value of FPLS.

The remainder of this paper is organized as follows. In Section 2, we review related
work. In Section 3, we formulate the filter learning-based PLS model and provide an
efficient algorithm for solving the proposed model. Additionally, we present an analysis of
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convergence, bound, and variance. In Section 4, the experiments and analysis conducted
are provided. Finally, conclusions are drawn in Section 5.

2. Related Work
PLS regression is a statistical technique that differs from principal components

regression. Instead of identifying hyperplanes that maximize the variance between the
response and independent variables, PLS constructs a linear regression model by projecting
both the predictor and response variables into a new space. This projection results in a
bilinear factor model, as both the X (predictor) and Y (response) data are mapped to this
new space. A variant of PLS, known as PLS discriminant analysis (PLS-DA), is used when
the response variable is categorical.

PLS is used to explore the fundamental relationships between two matrices, X
and Y, by modeling the covariance structures in these spaces using a latent variable
approach. A PLS model aims to identify the multidimensional direction in the X space
that best explains the maximum multidimensional variance direction in the Y space. PLS
regression is particularly effective when the number of predictor variables exceeds the
number of observations, or when there is significant multicollinearity among the X
values. Standard regression would fail under these circumstances unless regularization is
applied [4–6]. Given the predictor and response matrices X ∈ Rn×m and Y ∈ Rn×p, PLS
iteratively repeats the following steps k times to find the directions w and c to maximize
covariance in input and output space, and then performs least squares regression on the
input score. The loadings are chosen so that the scores form an orthogonal basis, which is
achieved with deflation process. The model can be written as X = TPT + E, Y = UQT + F,
where T, U are score matrices and P, Q are loading matrices. A number of variants of PLS
exist for estimating the factor and loading matrices T, U, P and Q. Some PLS algorithms
are only appropriate for the case where Y is a column vector, while others deal with the
general case of a matrix Y. Algorithms also differ in whether they estimate the factor matrix
T as an orthogonal (that is, orthonormal) matrix or not [7–10]. The final prediction will be
the same for all these varieties of PLS, but the components will differ. PLS1 is a widely
used algorithm appropriate for the vector Y case [11]. It estimates T as an orthonormal
matrix. This algorithm features deflation of the matrix X, but deflation of the vector y is not
performed, as it is not necessary. Another extension of PLS regression, named L-PLS for its
L-shaped matrices, connects three related data blocks to improve predictability [12]. In brief,
a new Z matrix, with the same number of columns as the X matrix, is added to the PLS
regression analysis and may be suitable for including additional background information
on the interdependence of the predictor variables.

The performance of PLS is affected by the noise, and the approaches to address this
issue mainly include (1) calibrating the signal to remove components orthogonal to the
response; (2) preprocessing the model before performing PLS modeling; (3) establishing
probabilistic PLS models to estimate the impact of noise on model performance;
(4) employing kernel methods for nonlinear modeling of the signal; (5) building PLS
models on manifolds; and (6) adopting robust objective functions. The methods for
signal correction mainly include OSC [13], OPLS [14], DOSC [15], etc. The core of these
methods is to identify and remove the components in the predictor variables X that are
orthogonal to the response variable Y under certain constraint conditions, in order to
enhance the performance of the PLS model. Essentially, they assume that the noise in
the predictor variables is orthogonal to Y. If the orthogonality assumption does not
hold, then the effectiveness of these methods may not be ideal. Signal preprocessing
methods encompass low-pass filtering, MSC (Multiplicative Scatter Correction) [16],
SNV (Standard Normal Variate) [17], and SG Filter (Savitzky–Golay Filter) [18], among
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others. These methods, being unsupervised (non-data-driven), have limited potential
for enhancing model performance. Motivated by probabilistic PCA and probabilistic
curve-fitting, a new Probabilistic-PLSR (PPLSR) model is proposed and the Estimation
Maximization (EM) algorithm is employed to estimate the parameters [19]. By comparing
the results with those from traditional least squares (LS) methods and PLS, PPLSR is
shown to be more robust and accurate. This method assumes that the parameters are all
Gaussian-distributed, which makes it easier to solve. Data collected in modern industrial
processes often exhibit complex non-Gaussian and multimodal characteristics. In order to
address these problems, a robust mixture probabilistic PLS (RMPPLS) model-based soft
sensor is developed [20], where two different kinds of hidden variables are introduced in the
formulated model structure. The multivariate Laplace distribution is employed for robust
modeling, and a hybrid form of the probabilistic PLS model is adopted for multimodal
description. When the assumed distribution is consistent with the true distribution of
the data, the model will achieve good results; when it is not, the effect may not be
good. Roman Rosipal extends regularized least squares regression models by incorporating
the KPLS method [21]. The KPLS approach maps input data into a high-dimensional
feature space where a linear PLS model is constructed. Good generalization properties are
achieved by estimating regression coefficients appropriately and selecting a suitable kernel
function. Chen et al. [22] have analyzed the limitations of PLS in Euclidean spaces and
employ Riemannian optimization on manifolds for better numerical properties. The study
focuses on two types of manifolds: the generalized Stiefel manifold and the generalized
Grassmann manifold. Algorithms are developed for optimizing PLS models on these
manifolds, including SIMPLS with the generalized Grassmann manifolds (PLSRGGr)
and SIMPLS with product manifolds (PLSRGStO). Experimental results show that the
proposed models and algorithms are more robust and have better performance than
traditional methods in Euclidean space. Xie [23] have proposed Partial Least Trimmed
Squares Regression (PLTS) as a robust regression technique, focusing on addressing outliers
in the dataset. The PLTS model incorporates trimming methods to mitigate the influence
of outliers. The study demonstrates the application of PLTS on datasets such as fish and
biscuit, highlighting its effectiveness through comparisons with other methods. The results
showcase reduced error rates, particularly in the presence of outliers, demonstrating the
PLTS model’s robustness and accuracy in predictive modeling.

The existing methods for handling Partial Least Squares (PLS) regression exhibit
several limitations, including the following:

(1) Static Preprocessing Filtering: Traditional filtering approaches are often applied as a
preprocessing step before modeling. The limitation of this method lies in its reliance
on preset filter coefficients, which may not be optimal for all datasets or specific data
characteristics, potentially leading to suboptimal model performance.

(2) Sensitivity to Noise: Standard PLS models are highly sensitive to noise, especially
when dealing with complex, non-Gaussian, or multimodal data distributions. While
probabilistic PLS models attempt to mitigate this issue by assuming Gaussian-
distributed parameters, their effectiveness can diminish significantly if the actual
data distribution does not align with these assumptions.

(3) Lack of Adaptability: Many existing PLS extensions (e.g., kernel PLS, manifold-based
regression) enhance model robustness but lack flexibility in dynamically adapting
to different types of noise and selecting features that best represent the underlying
data structure. Instead of adjusting based on the intrinsic properties of the data, they
typically compute loading and score matrices under specific constraints.

(4) Over-Reliance on Assumptions: Some advanced methods heavily depend on specific
assumptions about data distribution or external variables, such as employing
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multivariate Laplace distributions for robust modeling [24]. If these assumptions
do not match reality, the model performance can suffer.

(5) Trade-off Between Interpretability and Predictivity: Improvements like Orthogonal
Partial Least Squares (OPLS) have enhanced the interpretability of PLS models but
have not directly improved their predictive power [25]. In some cases, enhancing one
aspect might come at the expense of the other.

(6) Challenges with Multimodal Data: For data collected from modern industrial
processes that exhibit complex, non-Gaussian, and multimodal characteristics, current
PLS models and their variants may struggle to adequately capture the intrinsic
structure of the data, leading to decreased prediction accuracy.

In conclusion, while existing methods provide valuable enhancements to PLS
regression, they face significant challenges, especially in handling high-dimensional,
noisy, and multimodal data. To address these issues, a novel PLS model that incorporates
adaptively learned filters is introduced. This approach dynamically adjusts during the
modeling process to better fit the data characteristics, thereby improving both the
robustness and predictive performance of the model. The proposed method is summarized
in Figure 1.
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Figure 1. Flow chart of the proposed method.

The introduction of adaptive filters within PLS models marks a significant advancement
in addressing these challenges. By integrating adaptive filtering directly into the PLS
framework, this novel approach not only mitigates noise but also dynamically selects
features most relevant to the predictive task at hand. Unlike static preprocessing methods
where filters are applied prior to modeling, or probabilistic PLS models which assume
certain data distributions, the proposed model learns filters adaptively during the model’s
construction phase. This adaptive learning process optimizes filter parameters concurrently
with loading and score matrices, leading to enhanced suppression of noise, effective feature
selection, and ultimately superior model performance. The adaptability of the filters allows
for a more flexible and efficient handling of complex datasets, ensuring that the model
remains robust and accurate even in the presence of non-Gaussian and multimodal data
characteristics. Thus, embedding adaptive filters within PLS models represents a crucial
step forward in improving both the interpretability and predictivity of PLS models, setting
a new standard for handling high-dimensional and noisy data.
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3. Filter Learning-Based Partial Least Square (FPLS) Regression
and Algorithm

Assuming X ∈ Rn×m and Y ∈ Rn×p are centered predictor and response matrices,
the PLS model finds two direction vectors, w ∈ Rm×1 and c ∈ Rp×1, that satisfy [26]

max wTXTYc, s.t wTw = 1, cTc = 1 (1)

If X contains noise, the filter should be adaptively learned, and the proposed filter
PLS model can be expressed as

max wT(X ∗ h)TYc, s.t wTw = 1, cTc = 1, hTh = 1 (2)

where h ∈ R1×N represents the filter, and the convolution operation ∗ can be effectively
carried out using matrix multiplication.

X ∗ h = XH = X



h1 0 · · · 0
h2 h1 · · · 0
...

... · · · 0
hN hN−1 · · · 0
0 hN · · · 0
...

... · · · ...
0 0 · · · h1
...

... · · · ...
0 0 · · · hN



(3)

where H ∈ Rm×(m+1−N), XH ∈ Rn×(m+1−N). In this model, we can extend X to an
n × (m + N − 1) matrix with zero padding. Then, H can be defined as an R(m+N−1)×m

matrix. Alternatively, we can define w as an (m + 1 − N)× 1 vector. The proposed model
can be rewritten as

max wT(XH)TYc, s.t wTw = 1, cTc = 1,
N

∑
i=1

h2
i = 1 (4)

3.1. Algorithm

For matrix H, we have

H = h1



1 0 · · · 0
0 1 · · · 0
...

. . .
0 1
...
0 0 0 0


+ h2



0 0 · · · 0
1 0 · · · 0
...

. . .
0 0 · · · 1
...
0 0 0 0


+ hN



0 0 · · · 0
... · · ·
1 0 0 0
...

. . . · · · 0
0 0 1 0
0 0 0 1


=

N

∑
i=1

hiCi (5)

We ultimately rewrite the proposed model as

max wT

(
X

N

∑
i=1

hiCi

)T

Yc, s.t wTw = 1, cTc = 1,
N

∑
i=1

h2
i = 1 (6)
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Using Lagrange multiplier, we have

L = wT

(
X

N

∑
i=1

hiCi

)T

Yc − λ1(wTw − 1)− λ2(cTc − 1)− 1
2

λ3(hTh − 1) (7)

∂L
∂w

=

(
X

N

∑
i=1

hiCi

)T

Yc − 2λ1w = 0 (8)

∂L
∂c

= YT

(
X

N

∑
i=1

hiCi

)
w − 2λ2c = 0 (9)

∂L
∂hi

= wT(XCi)
TYc − λ3hi = 0 (10)

∂L
∂λ1

= −(wTw − 1) = 0 (11)

∂L
∂λ2

= −(cTc − 1) = 0 (12)

∂L
∂λ3

= −(hTh − 1) = 0 (13)

Multiply both sides of Equations (8) and (9) by wT and cT , respectively. According to
Equations (11) and (12), wTw = 1, cTc = 1; thus, we have

wT

(
X

N

∑
i=1

hiCi

)T

Yc = 2λ1 (14)

cTYT

(
X

N

∑
i=1

hiCi

)
w = 2λ2 (15)

A scalar is equal to its transpose; thus, wT

(
X

N

∑
i=1

hiCi

)T

Yc = cTYT

(
X

N

∑
i=1

hiCi

)
,

namely, 2λ1 = 2λ2 = η. Based on Equation (9), we can derive that YT
(

X ∑N
i=1 hiCi

)
w =

ηc. Substituting it into Equation (8) gives us the following:(
X

N

∑
i=1

hiCi

)T

YYT

(
X

N

∑
i=1

hiCi

)
w = η2w, (16)

Similarly, we have

YT

(
X

N

∑
i=1

hiCi

)(
X

N

∑
i=1

hiCi

)T

c = η2c (17)

According to (10),
N

∑
i=1

wT(XhiCi)
TYc − λ3h2

i = 0, namely
N

∑
i=1

wT(XhiCi)
TYc =

λ3

N

∑
i=1

h2
i = λ3. Thus, we have

hi =
wT(XCi)

TYc

wT

(
X

N

∑
i=1

hiCi

)T

Yc

(18)
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The proposed FPLS algorithm is shown in Algorithm 1.

Algorithm 1 FPLS
Input: Predictor matrix X ∈ Rn×m, response matrix Y ∈ Rn×p, initial filter h =
[h1, · · · , hN ] ∈ R1×N .
Step 1: Predictor matrix is calculated as XH, and then employ traditional PLS algorithm to
build the regression model, resulting in the acquisition of w and c;

Step 2: Updating i-th element of filter h to hi =
wT(XCi)

TYc

wT

X
N

∑
i=1

hiCi

T

Yc

, i = 1, · · · , N;

Step 3: Performing the deflation process;
Step 4: Repeat Step 1–3 t times and obtain wj, cj, hj = [h1j, · · · , hNj], j = 1, · · · , t;

3.2. Convergence Analysis

If c and h are fixed, we define Lw as

Lw(w, c, H) = wT

(
X

N

∑
i=1

hiCi

)T

Yc − λ1(wTw − 1) (19)

In the t-th step, we find wt that maximizes Lw(w, c, H) and in the (t + 1)-th step, we
can determine wt+1, such that

wT
t+1

(
X

N

∑
i=1

hiCi

)T

Yc ≥ wT
t

(
X

N

∑
i=1

hiCi

)T

Yc (20)

According to Equation (8), w =

(X
N

∑
i=1

hiCi

)T

Yc/2λ1

, then

(X
N

∑
i=1

hiCi

)T

Yc/2λ1

T(
X

N

∑
i=1

hiCi

)T

Yc ≥ wT
t+1

(
X

N

∑
i=1

hiCi

)T

Yc

≥ wT
t

(
X

N

∑
i=1

hiCi

)T

Yc (21)

Similarly, we have

w

(
X

N

∑
i=1

hiCi

)T

Y

(
YT

(
X

N

∑
i=1

hiCi

)
w/2λ2

)T

≥ wT

(
X

N

∑
i=1

hiCi

)T

Yct+1

≥ wT

(
X

N

∑
i=1

hiCi

)T

Yct (22)

wT

(
X

N

∑
i=1

(
wT(XCi)

TYc/2λ3

)
Ci

)T

Yc ≥ wT

(
X

N

∑
i=1

ht+1,iCi

)T

Yc

≥ wT

(
X

N

∑
i=1

ht,iCi

)T

Yc (23)
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3.3. Model Performance Analysis

It is difficult to directly analyze the model because it involves the eigenvalues and
eigenvectors of XTYYTX. In this section, for simplicity without losing generality, we
consider the PLS-one model. Suppose X = [xij] ∈ Rn×m, y = [y1, · · · , yn]

T , w =

[w1, · · · , wm]
T . The Lagrangian function is then constructed as

L = wTXTY − λ(wTw − 1) =
n

∑
i=1

yi

m

∑
j=1

xijwj − λ(wTw − 1) (24)

Calculating the partial derivative of L with respect to wi, we have

∂L
∂w1

=
n

∑
i=1

xi1yi − 2λw1 = 0, · · · ∂L
∂wm

=
n

∑
i=1

ximyi − 2λwm = 0 (25)

Thus,

wTXTY ∝ YTXXTY =
m

∑
i=1

(
n

∑
j=1

yjxji

)2

(26)

If a filter with length N is employed to filter X, without loss of generality, the first

term of ∑m
i=1

(
∑n

j=1 yjxji

)2
is equal to (y1(h1x11 + · · · +hN x1N) + · · · + yn(h1xn1 + · · · +

hN xnN))
2. The spectrum is usually smooth in a small neighborhood. If hi has the same sign

for all i = 1, · · · , N, then

max y1(h1x11 + · · ·+ hN x1N) = max y1

N

∑
i=1

hix11 =
√

Ny1x11 (27)

when hi =
1√
N

for all i = 1, 2, · · · , N. By appropriately choosing N, we can approximate

max wT(X ∗ h)TY as NwTXTY. Assuming max wTXTY > 0, we have 0 < wT(X ∗ h)TY <

NwTXTY, which can be rewritten as

0 <
wT(X ∗ h)TY

wTXTY
< N (28)

The closer the filter h coefficients are, the closer wT(X∗h)TY
wT XTY is to N.

For the proposed model shown in Equation (2), we adopt a similar approach for
analysis. The filtered X is defined as X′, where the term x′ij is given by ∑N

k=i hkx(i+k)j.
When N is relatively small, considering the smoothness in the neighborhood, we
approximately assume that ∑N

k=i hkx(i+k)j ≈ xij ∑N
k=i hk. When hk =

1√
N

for k = 1, 2, · · · , N,

xij ∑N
k=i hk obtains the maximum value

√
Nxij. Thus, X′ =

√
NX, X′TYYTX′w =(√

NX
)T

YYT
(√

NX
)

w = NXTYYTXw = λ f ilteredw. So, we have
λ f iltered

λ = N and,
similarly, we have

0 <
wT(X ∗ h)TYc

wTXTYc
< N (29)

Obviously, the vector w must differ before and after filtering, and the above analysis
is also approximate to a certain extent.

The prediction variance can be analyzed using probabilistic methods. Let u represent
a hidden variable; the relation between x and u is x = Pu + µx + ξ and y = Cu + µy + η,
where ξ and η represent Gaussian noise, satisfying ξ ∼ N(0, σ2

x I) and η ∼ N(0, σ2
y I),

respectively; µx and µy represent the mean vectors of X and Y, respectively; and P and C
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represent the transformation matrices for X and Y, respectively. The variance of prediction
distribution is Cσ2

x(PT P + σ2
x)

−1CT + σ2
y I, which is related to the inverse of matrix (PT P +

σ2
x I) [19]. Assuming x = [x1, x2, · · · , xm], the filtered vector x′ can be approximated as x′ =[
∑N

i=1 hixi, ∑N
i=1 hixi+1, · · · , ∑N

i=1 hixi+m−1

]
≈
[

x1 ∑N
i=1 hi, x2 ∑N

i=1 hi, · · · , xm ∑N
i=1 hi

]
, and

the approximate variance of x′ is given by ∑N
i=1 h2

i σ2
x I = σ2

x I. For example, in the
two-dimensional case, suppose P = [p1, p2; p3, p4] and C = [c1, c2]. Then, the variance
of prediction is

(c2
1 + c2

2)σ
4
x +

[
c2

1(p2
1 + p2

4) + c2
2(p2

1 + p2
3)
]
σ2

x + σ2
y

σ4
x + (p2

1 + p2
2 + p2

3 + p2
4)σ

2
x + (p1 p4 − p2 p3)2

≈ (c2
1 + c2

2) + {
[
c2

1(p2
1 + p2

4) + c2
2(p2

1 + p2
3)
]
− (c2

1 + c2
2)(p2

1 + p2
2 + p2

3 + p2
4)}σ−2

x

+(σ2
y − (c2

1 + c2
2)(p1 p4 − p2 p3)

2 − (p2
1 + p2

2 + p2
3 + p2

4){
[
c2

1(p2
1 + p2

4) + c2
2(p2

1 + p2
3)
]

−(c2
1 + c2

2)(p2
1 + p2

2 + p2
3 + p2

4)})σ−4
x (30)

If a filter with length N is employed, the filtered signal is approximately ∑N
i=1 hixi, thus

the variance is ∑N
i=1 h2

i σ2
x I = σ2

x I. Choosing an appropriate N can ensure that the prediction
variance of the proposed model is essentially consistent with that of PLS.

4. Experiment and Analysis
In this section, we compare the accuracy of the proposed and alternative methods

with four public datasets: Corn, Octane, Mango, and Soil Infrared Spectra datasets.
These databases are commonly employed to evaluate regression-based analysis. In our
experiments, the accuracy is calculated using Root Mean Squared Error of Prediction
(RMSEP). The experiments were implemented with a laptop with a 2.80 GHz i7 processor,
16.0 GB RAM and Win10 system. In our experiments, we compared our FPLS with
eight other methods: PLS [27], Orthogonal Signal Correction + PLS (OSCPLS) [13],
Variance Constrained PLS (VCPLS) [28], Powered PLS (PoPLS) [29], Low-pass Filter + PLS
(LoPLS), Direct Orthogonal Signal Correction + PLS (DOSC) [15], Orthogonal Projections
to Latent Structures (OPLS) [14], Multiplicative Signal Correction (MSC), Standard Normal
Variate (SNV), Savitzky–Golay (SG) Filtering, and Least Absolute Shrinkage and Selection
Operator (Lasso) [30]. In our experiments, we randomly selected 70% of the sample as the
training set, and the remaining 30% as the test set. We repeated the experiment 300 times.

In our experiment, OSCPLS, OPLS, DOSC, and VCPLS settings are accordance with
reference [28]. LoPLS is an unsupervised method, and thus, we specify the low-pass
filter as h =

[
1/

√
2, 1/

√
2
]
. The coefficients 1/

√
2 ensure that the filter preserves signal

energy without excessive amplification or attenuation. It smooths out high-frequency
noise while retaining low-frequency components of the signal, making it effective for
denoising. The filter is computationally efficient, using just two coefficients, which is
suitable for real-time processing. The equal weighting of current and previous samples
minimizes phase distortion.

In the theoretical analysis of FPLS, the local smoothness of the spectra was considered,

which means that the length of the filter could not be too long. As N increases, wT(X∗h)TYc
wT XTYc

gradually deviates from N, because smoothness of spectra cannot be guaranteed after N
increases, as shown in Figure 2. Thus, in our experiments, the range of length of filter was
set to [2, 3, 4]. The conclusions drawn from filter length selection on the Octane, Mango,
and soil datasets are consistent and will not be repeated here. The optimal number of
components for the FPLS was determined through 10-fold cross-validation. For the SGFilter
method, the order and frame length were also determined with 10-fold cross-validation.
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Figure 2. As the length of the filter increases, the ratio wT(X∗H)TYc
wT XTYc varies. Due to the inability to

satisfy the local smoothness of the spectral signal as the filter length increases, wT(X∗H)TYc
wT XTYc gradually

moves away from upper bond N. The response Y represents the values for moisture, oil, protein, and
starch, respectively.

We compared the performance of different models in terms of RMSEP on the testing
set. RMSEP is defined as the square root of the mean squared prediction error, which
measures the average magnitude of the errors between predicted and actual values.

RMSEP =

√
1
n

n

∑
i
(yi − ŷi)2 =

√
1
n

n

∑
i
(ŷi − yi)2 (31)

The prediction and response of the i-th observation are denoted as ŷi and yi, respectively.

The number of the test set is n. The variance of prediction is 1
n ∑n

i=1

(
ŷi − 1

n ∑n
i=1 ŷi

)2
.

We also compare the performance of different models in terms of Cosine Similarity
(CS) on the testing set. It is a commonly used method to measure the similarity between
two non-zero vectors.

CS(ŷ, y) =
yT ŷ

∥y∥∥ŷ∥ =
ŷTy

∥y∥∥ŷ∥ (32)

ŷ ∈ Rn×1 and y ∈ Rn×1 represent the predicted result and the reference, respectively. We
then discussed the range of CS when RMSEP is given, as well as the range of RMSEP when
CS is provided. For convenience of description, let RMSEP be denoted as α. According to
Equation (31), ŷ lies on a hypersphere centered at y with radius

√
nα. It is evident that the

minimum value of CS is
√

∥y∥2−nRMSEP2

∥y∥ . Therefore, the range of CS is

[
−1,−

√
∥y∥2 − nRMSEP2

∥y∥

]⋃[√∥y∥2 − nRMSEP2

∥y∥ , 1

]
(33)
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Similarly, we can analyze how the upper bound of RMSEP changes when CS

varies. CS(ŷ, y) = yT ŷ
∥y∥∥ŷ∥ ⇒ yT ŷ = CS∥y∥∥ŷ∥. Usually, CS is not equal to zero and,

assuming that ŷ = y + ∆y(∆y → 0), this means that ∥ŷ∥ ≈ ∥y∥
CS . We thus have

RMSEP2 =
∥y∥2 + ∥ŷ∥2 − 2yT ŷ

n
=

∥y∥2 + ∥ŷ∥2 − 2CS∥y∥∥ŷ∥
n

≤
∥y∥2 + ∥ŷ∥2 − 2CS ∥y∥∥ŷ∥

∥y∥+∥ŷ∥
n

(∥y∥+ ∥ŷ∥ ≥ 1)

=

∥y∥2 + ∥y∥2

CS2 − 2CS ∥y∥ ∥y∥
CS

∥y∥+ ∥y∥
CS

n
=

∥y∥2 + ∥y∥2

CS2 − 2 ∥y∥CS
CS+1

n

=
∥y∥2 + ∥y∥2

CS2 − 2 ∥y∥
1+ 1

CS

n
(34)

We note that
∥y∥2+

∥y∥2

CS2 −2 ∥y∥
1+ 1

CS
n decreases as CS increases.

RMSEP ≤

√
∥y∥2 + ∥y∥2

CS2 − 2 ∥y∥CS
1+CS

n
(35)

On the other hand,

∥y∥2 + ∥ŷ∥2 − 2CS∥y∥∥ŷ∥
n

≥ ∥y∥2 + ∥ŷ∥2 − 2CS∥y∥∥ŷ∥
n

∣∣∣∣
∥ŷ∥=CS∥y∥

=
∥y∥2(1 − CS2)

n
(36)

Therefore, we have

∥y∥2(1 − CS2)

n
≤ RMSEP ≤

√
∥y∥2 + ∥y∥2

CS2 − 2 ∥y∥CS
1+CS

n
(37)

If ∥y∥2 < nRMSEP2, CS ∈ [−1, 1]. At this moment,
√

nRMSEP − ∥y∥ < RMSEP <√
nRMSEP.

4.1. Corn Dataset Analysis

This set comprises 80 Corn samples, and the wavelength range is 1100–2498 nm with
2 nm intervals. Each spectrum is a 700-dimensional vector (http://www.eigenvector.com/
data/Corn/index.html (accessed on 13 January 2023)). In our experiments, the analysis
focuses on moisture, oil, protein, and starch. The corresponding ranges for each parameter
are as follows: moisture (9.377–10.993%), oil (3.088–3.832%), protein (7.654–9.711%),
and starch (62.826–66.472%). After obtaining the parameters, the spectra are filtered. Then,
the regression model is established using PLS. In the analysis of Corn data, the best
mean RMSEP and prediction variances of FPLS, PLS, OSCPLS, VCPLS, PoPLS, LoPLS,
DOSC, OPLS, MSC, SNV, SGFilter, and Lasso are presented in Table 1. The numbers
in parentheses next to RMSEP indicate the optimal number of components used in the
respective regression model.

According to Table 1, in moisture prediction, FPLS stands out with the lowest RMSEP
value of 0.0977, indicating its high accuracy in predicting moisture content. This method
also has a variance value of 0.0007, suggesting that its predictions are relatively stable
and consistent. In contrast, methods such as MSC and SNV have higher RMSEP values

http://www.eigenvector.com/data/Corn/index.html
http://www.eigenvector.com/data/Corn/index.html


Algorithms 2025, 18, 424 14 of 25

of 0.2179 and 0.2174, respectively, indicating that their predictions may be less accurate
compared to FPLS. Other methods, including PLS, OSCPLS, VCPLS, PoPLS, LoPLS, DOSC,
OPLS, SGFilter, and Lasso, have RMSEP values that range from 0.1498 to 0.1840. These
methods may have varying degrees of accuracy in predicting moisture content, depending
on the specific dataset and conditions used for evaluation. FPLS and PLS have the same
variance value of 0.0007, which is consistent with our previous analysis. According to
Table 1, the RMSEP and variance results of these methods for oil, protein, and starch
prediction are similar to the results of moisture. In conclusion, FPLS appears to be the best
method for predicting moisture content.

Table 1. Corn moisture, oil, protein, and starch prediction results in terms of RMSEP and variance.

Method
Moisture Oil Protein Starch

RMSEP Variance RMSEP Variance RMSEP Variance RMSEP Variance

FPLS 0.0977 (20) 0.0007 0.0601 (20) 0.0002 0.1069 (20) 0.0010 0.2521 (20) 0.0045
PLS 0.1516 (10) 0.0007 0.1026 (7) 0.0002 0.1583 (10) 0.0011 0.3929 (9) 0.0045

OSCPLS 0.1840 (1) 0.0006 0.1299 (1) 0.0003 0.1788 (2) 0.0012 0.5059 (4) 0.0152
VCPLS 0.1498 (1) 0.0003 0.1027 (1) 0.0002 0.1549 (1) 0.0004 0.3877 (2) 0.0021
PoPLS 0.1598 (7) 0.0012 0.1085 (6) 0.0003 0.1574 (8) 0.0018 0.4301 (9) 0.0058
LoPLS 0.1516 (10) 0.0007 0.2272 (7) 0.0002 0.1583 (10) 0.0011 0.3927 (9) 0.0045
DOSC 0.1837 (1) 0.0006 0.1297 (1) 0.0003 0.1788 (2) 0.0012 0.5057 (4) 0.0154
OPLS 0.1533 (9) 0.0015 0.1029 (6) 0.0003 0.1585 (9) 0.0024 0.3926 (8) 0.0121
MSC 0.2179 (7) 0.0009 0.1067 (7) 0.0017 0.1642 (9) 0.0012 0.3843 (9) 0.0314
SNV 0.2174 (11) 0.0009 0.1067 (7) 0.0017 0.1642 (9) 0.0012 0.3896 (9) 0.0317

SGFilter 0.1533 (10) 0.0012 0.1042 (8) 0.0003 0.1569 (9) 0.0019 0.3925 (9) 0.0353
Lasso 0.1545 (1) 0.0004 0.1123 (1) 0.0002 0.1629 (1) 0.0006 0.4290 (1) 0.0041

Figure 3a–d show that as the number of components increases, the RMSEP values for
moisture, oil, protein, and starch prediction decrease. Regarding Lasso, it differs from the
aforementioned methods; it is a variable selection method. In this figure, the horizontal axis
represents the number of random experiments conducted for Lasso. Among these methods,
FPLS exhibits a faster decline in RMSEP compared to other approaches. Furthermore,
beyond a certain number of components, the RMSEP of FPLS becomes significantly smaller
than that of other methods. Specifically, the number of components is observed to be 7 for
moisture prediction, 5 for oil, and 8 for both protein and starch. These figures also validate
the effectiveness of the FPLS method.

Figure 4a–d show the CS (Cosine Similarity) between the responses and predictions
for moisture, oil, protein, and starch with FPLS, PLS, OSCPLS, VCPLS, PoPLS, LoPLS,
DOSC, OPLS, MSC, SNV, SGFilter, and Lasso. The vertical axis represents the CS values. It
can be observed that among these algorithms, FPLS has the highest CS. Furthermore,
combining this with Table 1, it can be inferred that the RMSEP is small, and the CS between
the predicted values and responses is high, indicating that the model possesses excellent
predictive ability and generalization performance. Based on the analysis of Table 1, and
Figures 3 and 4, the proposed FPLS method outperforms PLS, OSCPLS, VCPLS, PoPLS,
LoPLS, DOSC, OPLS, MSC, SNV, SGFilter, and Lasso in terms of RMSEP for moisture, oil,
protein, and starch prediction.

The boundaries of RMSEP and CS in predictive experiments for moisture content were
analyzed, with the results presented in Table 2. According to this table, the boundaries
of RMSEP and CS align with Equations (33) and (37). Similar conclusions are also drawn
regarding the boundaries of RMSEP and CS in predictive experiments for oil, starch,
and protein; however, for brevity, these results are not listed here.
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Figure 3. RMSEP values for the prediction of moisture, oil, and protein content in Corn samples
using various methods, including FPLS, PLS, OSCPLS, VCPLS, PoPLS, LoPLS, DOSC, OPLS, MSC,
SNV, and SGFilter, with 1 to 20 components each.
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Figure 4. Cosine Similarity between prediction results and response in moisture, oil, protein,
and starch prediction using FPLS, PLS, OSCPLS, VCPLS, PoPLS, LoPLS, DOSC, OPLS, MSC, SNV,
SGFilter, and Lasso.

The magnitude responses of the learned filters in the Corn moisture analysis using
FPLS are shown in Figure 5. The maximum number of components is 20, resulting
in 20 deflation processes. Each time a deflation process is completed, a new filter is
learned. Consequently, a total of 20 filters are obtained. For simplicity, only the filters learned
from the deflation processes that resulted in the minimum RMSEP for moisture prediction
are depicted in Figure 5. From this figure, it can be observed that one of the learned
filter may be a low-pass, high-pass, band-pass, or band-stop filter. The characteristics of
the filter are obtained based on the training samples. In subsequent experiments, for the
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sake of simplicity, we will no longer present the magnitude–frequency response of the
learned filters.

Table 2. Upper and lower boundaries of RMSEP and CS. In this experiment on Corn moisture
prediction, the lower and upper bounds of RMSEP and the lower bound of CS are provided. In this
table, “Lower RMSEP” and “Upper RMSEP” denote the respective lower and upper boundaries of
RMSEP, while “Lower CS” signifies the lower boundary of CS.

Method RMSEP CS Lower RMSEP Upper RMSEP Lower CS

FPLS 0.0977 0.9834 0.0052 0.5363 0.9691
PLS 0.1516 0.9343 0.0199 0.5531 0.9237

OSCPLS 0.1840 0.9347 0.0198 0.5529 0.8854
VCPLS 0.1498 0.8124 0.0533 0.6049 0.9256
PoPLS 0.1598 0.9576 0.0130 0.5448 0.9149
LoPLS 0.1516 0.9298 0.0212 0.5547 0.9237
DOSC 0.1837 0.9347 0.0198 0.5529 0.8858
OPLS 0.1533 0.9407 0.0180 0.5507 0.9219
MSC 0.2179 0.8760 0.0365 0.5758 0.8348
SNV 0.2174 0.8828 0.0346 0.5730 0.8356

SGFilter 0.1533 0.9344 0.0199 0.5530 0.9219
Lasso 0.1545 0.9344 0.0199 0.5530 0.9207
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Figure 5. The filters learned during one iteration when analyzing the moisture content in the Corn
dataset are depicted. The blue curve in the figure represents the magnitude frequency response of
the filter.

For moisture, oil, protein, and starch prediction, the initially learned filters for each
target are hmoisture = [−0.7164,−0.6611, 0.2228], hoil = [0.2190, 0.7080, 0.6714], hprotein =

[−0.1730,−0.9849], and hstarch = [−0.2478, 0.0498,−0.9675]. At this moment, wT(X∗hmoisture)
TY

wT XTY

= 1.3331 < N = 3, wT
i (X∗hoil)

TY
wT

j XTY
= 2.5484 < 3,

wT
i (X∗hprotein)

TY
wT

j XTY
= 1.3399 < 2, and

wT
i (X∗hstarch)

TY
wT

j XTY
= 1.3520 < 2 are all consistent with our previous analysis in Section 3.3. The

convergence behavior with respect to iteration numbers is presented in Figure 6, which
simultaneously demonstrates the correlation between the projections of test samples from
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both PLS and FPLS models onto the weight vector w and their corresponding moisture
content values.
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Figure 6. (a) wT(X ∗ h)TYc converges as iteration increases. (b) Correlation between the projection of
the test samples of PLS, FPLS models on vector w, and the moisture content.

4.2. Octane Dataset Analysis

This dataset contains 39 near-infrared spectra, which need to be modeled to predict the
content of Octane. The wavelength range is 1100–1550 nm with 2 nm intervals. The range
of Octane is 86.7–92.4%. We use the original spectra from the dataset for modeling and
analysis [31,32]. The best mean RMSEP values for FPLS, PLS, OSCPLS, VCPLS, PoPLS,
LoPLS, DOSC, OPLS, MSC, SNV, SGFilter, and Lasso are listed in Table 3. The numbers in
parentheses indicate the number of components. Table 3 also presents the upper and lower
bounds of RMSEP, as well as the lower bound of CS.

Table 3. Quantitative analysis results in terms of RMSEP, prediction variance, Lower and Upper
boundaries of RMSEP and lower boundary of CS. The proposed FPLS is compared to PLS, OSCPLS,
VCPLS, PoPLS, LoPLS, DOSC, OPLS, MSC, SNV, SGFilter, and Lasso using the Octane dataset.

Method
Octane

RMSEP Variance CS Lower RMSEP Upper RMSEP Lower CS

FPLS 0.0645 (16) 0.0165 0.9998 0.0015 2.7065 0.9994
PLS 0.0949 (3) 0.0166 0.9911 0.0796 2.2716 0.9894

OSCPLS 0.0883 (2) 0.0045 0.9910 0.0766 2.2711 0.9898
VCPLS 0.4435 (9) 0.0413 0.9798 0.4752 2.4115 0.9736
PoPLS 0.3036 (3) 0.0296 0.9477 0.4735 2.8059 0.9352
LoPLS 0.0950 (3) 0.0167 0.9899 0.0811 2.7219 0.9892
DOSC 0.0885 (2) 0.0043 0.9990 0.0766 2.2711 0.9898
OPLS 0.0949 (2) 0.0049 0.9988 0.0766 2.2711 0.9898
MSC 0.0843 (2) 0.0049 0.9995 0.0038 2.7065 0.9991
SNV 0.0945 (2) 0.0049 0.9994 0.0045 2.7065 0.9988

SGFilter 0.0853 (2) 0.0049 0.9990 0.0796 2.2716 0.9894
Lasso 0.4313 (1) 0.0354 0.9894 0.0796 2.2716 0.9750

Based on the RMSEP and variance values presented in Table 3, we found that FPLS
stands out with the lowest RMSEP value of 0.0645, indicating its exceptional predictive
accuracy. The moderate variance suggests stability in its predictions, despite the relatively
high number of components (15). PLS follows closely with a competitive RMSEP and
variance, making it a viable alternative. OSCPLS and VCPLS, while offering comparable
RMSEP values, exhibit higher variance, potentially indicating less stability. On the
other hand, methods like PoPLS and LoPLS offer lower variance but at a cost of
higher RMSEP values, suggesting a trade-off between stability and accuracy. DOSC

Figure 6. (a) wT(X ∗ h)TYc converges as iteration increases. (b) Correlation between the projection of
the test samples of PLS, FPLS models on vector w, and the moisture content.

4.2. Octane Dataset Analysis

This dataset contains 39 near-infrared spectra, which need to be modeled to predict the
content of Octane. The wavelength range is 1100–1550 nm with 2 nm intervals. The range
of Octane is 86.7–92.4%. We use the original spectra from the dataset for modeling and
analysis [31,32]. The best mean RMSEP values for FPLS, PLS, OSCPLS, VCPLS, PoPLS,
LoPLS, DOSC, OPLS, MSC, SNV, SGFilter, and Lasso are listed in Table 3. The numbers in
parentheses indicate the number of components. Table 3 also presents the upper and lower
bounds of RMSEP, as well as the lower bound of CS.

Table 3. Quantitative analysis results in terms of RMSEP, prediction variance, Lower and Upper
boundaries of RMSEP and lower boundary of CS. The proposed FPLS is compared to PLS, OSCPLS,
VCPLS, PoPLS, LoPLS, DOSC, OPLS, MSC, SNV, SGFilter, and Lasso using the Octane dataset.

Method
Octane

RMSEP Variance CS Lower RMSEP Upper RMSEP Lower CS

FPLS 0.0645 (16) 0.0165 0.9998 0.0015 2.7065 0.9994
PLS 0.0949 (3) 0.0166 0.9911 0.0796 2.2716 0.9894

OSCPLS 0.0883 (2) 0.0045 0.9910 0.0766 2.2711 0.9898
VCPLS 0.4435 (9) 0.0413 0.9798 0.4752 2.4115 0.9736
PoPLS 0.3036 (3) 0.0296 0.9477 0.4735 2.8059 0.9352
LoPLS 0.0950 (3) 0.0167 0.9899 0.0811 2.7219 0.9892
DOSC 0.0885 (2) 0.0043 0.9990 0.0766 2.2711 0.9898
OPLS 0.0949 (2) 0.0049 0.9988 0.0766 2.2711 0.9898
MSC 0.0843 (2) 0.0049 0.9995 0.0038 2.7065 0.9991
SNV 0.0945 (2) 0.0049 0.9994 0.0045 2.7065 0.9988

SGFilter 0.0853 (2) 0.0049 0.9990 0.0796 2.2716 0.9894
Lasso 0.4313 (1) 0.0354 0.9894 0.0796 2.2716 0.9750

Based on the RMSEP and variance values presented in Table 3, we found that FPLS
stands out with the lowest RMSEP value of 0.0645, indicating its exceptional predictive
accuracy. The moderate variance suggests stability in its predictions, despite the relatively
high number of components (15). PLS follows closely with a competitive RMSEP and
variance, making it a viable alternative. OSCPLS and VCPLS, while offering comparable
RMSEP values, exhibit higher variance, potentially indicating less stability. On the
other hand, methods like PoPLS and LoPLS offer lower variance but at a cost of
higher RMSEP values, suggesting a trade-off between stability and accuracy. DOSC
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and OPLS present intermediate RMSEP values with moderate variance, balancing both
aspects. MSC, SNV, and SGFilter, despite their simplicity, demonstrate competitive RMSEP
values with varying degrees of variance. Lasso, with its significantly higher RMSEP and
moderate variance, may not be the optimal choice for predictive accuracy. The number of
components for each method also plays a role, as more components can potentially increase
complexity and computational cost. The boundaries of RMSEP and CS are consistent with
Equations (33) and (37).

Figure 7 shows that the mean RMSEP of Octane prediction varies with an increasing
number of components. Among these methods, FPLS exhibits a faster decline in RMSEP
compared to other approaches. Furthermore, beyond a certain number of components,
the RMSEP of FPLS becomes significantly smaller than that of other methods. Specifically,
the number of components is observed to be 3 for Octane prediction. This figure also
validates the effectiveness of the proposed FPLS model.

2 4 6 8 10 12 14 16

Number of Latent Variables

0

0.5

1

1.5

2

2.5

3

R
M

S
E

P

FPLS
PLS
OSCPLS
VCPLS
PoPLS
LoPLS

Dosc
OPLS
MSC
SNV
SGFilter
Lasso

Figure 7. RMSEP values of Octane prediction using FPLS, PLS, OSCPLS, VCPLS, PoPLS, LoPLS,
DOSC, OPLS, MSC, SNV, and SGFilter models with 1–16 components. Lasso is different from the
previous methods. It is a feature selection method. The horizontal axis in the RMSEP graph represents
the number of random experiments for Lasso.

Prediction variance of FPLS is essentially consistent with that of PLS, which is
consistent with our analysis in Section 3.3. For the first filter learned for FPLS, hoctane =

[−0.0765,−0.1345,−0.9879]; thus, wT(X∗hoctane)
TY

wT XTY = 71.1576/50.4151 = 1.4114 < 3, which is
consistent with our previous analysis.

4.3. Mango Dataset

This dataset contains 58 near-infrared spectroscopic data, which are used to develop
prediction models to determine vitamin C (VC) and total acidity (TA) of intact mango
fruits (https://data.mendeley.com/datasets/ph57ynng46/1 (accessed on 11 November
2023)). The range of the parameter are as follows: VC (189.72–772.77) and TA (28.93–35.66).
The figures indicate milligrams per 100 g of fresh mass. The best RMSEP and prediction
variance of FPLS, PLS, OSCPLS, VCPLS, PoPLS, LoPLS, DOSC, OPLS, MSC, SNV, SGFilter,
and Lasso are listed in Table 4. Meanwhile, this table also provides the boundaries for
RMSEP and CS.

Based on the RMSEP and variance data presented in Table 4, in TA prediction, FPLS
exhibits the lowest RMSEP value of 0.2731 with a variance of 0.0191, suggesting excellent
predictive performance and stability. The relatively high number of components (10) may
have contributed to its accuracy. On the other hand, models like OSCPLS, VCPLS, DOSC,

https://data.mendeley.com/datasets/ph57ynng46/1
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and Lasso have higher RMSEP values, indicating poorer predictive accuracy. For instance,
Lasso has the highest RMSEP of 0.5035 with a variance of 0.0074, despite using only
1 component. This suggests that the model may be overfitting or not capturing the
underlying patterns in the data well. Models such as PLS, PoPLS, LoPLS, OPLS, MSC,
SNV, and SGFilter lie somewhere in the middle, with RMSEP values ranging from
0.3825 to 0.4433. Their variances are also relatively low, indicating that these models
are somewhat stable in their predictions. The number of components used in these models
varies, suggesting that the optimal number of components may depend on the specific
characteristics of the data and the model. FPLS stands out as the top-performing model in
TA prediction, while Lasso needs further improvement to achieve better predictive accuracy.

Table 4. Quantitative analysis results in terms of RMSEP and RMSEP bounds. The proposed FPLS
compared to PLS, OSCPLS, VCPLS, PoPLS, LoPLS DOSC, OPLS, MSC, SNV, SGFilter, and Lasso
using the Mango dataset.

Method
Total Acidity Vitamin C

RMSEP Variance Lower
RMSEP

Upper
RMSEP RMSEP Variance Lower

RMSEP
Upper

RMSEP

FPLS 0.2731 (10) 0.0191 0.2310 1.7415 0.6988 (10) 0.0196 0.5006 2.1907
PLS 0.4328 (5) 0.0239 0.3696 1.8053 1.1015 (5) 0.0248 0.9996 2.4569

OSCPLS 0.4837 (2) 0.0004 0.3832 1.8122 1.2581 (3) 0.0753 0.9129 2.3978
VCPLS 0.4912 (8) 0.0043 0.3248 1.7831 1.3499 (1) 0.1033 1.1249 2.5569
PoPLS 0.4396 (10) 0.0081 0.4225 1.8334 1.1491 (4) 0.0141 1.2111 2.6385
LoPLS 0.4332 (5) 0.0239 0.4222 1.8333 1.1023 (5) 0.0248 1.0504 2.4951
DOSC 0.4818 (2) 0.0025 0.3832 1.8122 1.2568 (3) 0.0743 0.9129 2.3978
OPLS 0.4433 (4) 0.0013 0.3615 1.8011 1.0847 (4) 0.0167 1.0376 2.4852
MSC 0.3825 (6) 0.0014 0.3841 1.6631 1.0797 (6) 0.0192 0.5573 2.2137
SNV 0.3829 (6) 0.0014 0.3844 1.6632 1.0820 (6) 0.0194 0.5573 2.2137

SGFilter 0.4201 (5) 0.0014 0.3696 1.8053 1.0969 (7) 0.0186 1.0002 2.4573
Lasso 0.5035 (1) 0.0074 0.3696 1.8053 1.2863 (1) 0.0488 1.0002 2.4573

In VC prediction, FPLS also exhibits a relatively low RMSEP value of 0.6988 with a
variance of 0.0196, suggesting good predictive performance and stability. The use of 10
components may have contributed to its ability to capture more of the underlying patterns
in the data. Models like OSCPLS, VCPLS, and Lasso have higher RMSEP values, indicating
poorer predictive accuracy. For instance, Lasso has the highest RMSEP of 1.2863 with a
variance of 0.0488, which may be due to its use of only 1 component, limiting its ability to
model complex patterns. Models such as PLS, PoPLS, LoPLS, OPLS, MSC, SNV, and SGFilter
lie somewhere in the middle, with RMSEP values ranging from around 1.08 to 1.10. Their
variances are also relatively low, indicating that these models are somewhat stable in their
predictions. The number of components used in these models varies, suggesting that the
optimal number may depend on the specific characteristics of the data and the problem
being addressed.

Figure 8a,b show mean RMSEP for the TA and VC varying with the increasing
number of components, respectively. Among these methods, FPLS exhibits a faster
decline in RMSEP compared to other approaches. Furthermore, beyond a certain number
of components, the RMSEP of FPLS becomes significantly smaller than that of other
methods. Specifically, the number of components is observed to be 4 for TA prediction and
3 for VC. These figures also validate the effectiveness of the FPLS method.
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Figure 8. RMSEP values of the TA and VC prediction using FPLS, PLS, OSCPLS, VCPLS, PoPLS,
LoPLS, DOSC, OPLS, MSC, SNV, and SGFilter models with 1–10 components. Lasso is different from
the previous methods. It is a feature selection method. The horizontal axis in the figure represents the
number of random experiments for Lasso.

Figure 9 depicts the CS plot of the predicted values for TA and VC. The data in
the figure indicate that CS and its lower bound satisfy Equation (33). Considering the
correlation between prediction and target, it is evident that the FPLS model proposed in
this paper yields the best predictive results.
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Figure 9. CS plot of TA and VC prediction using FPLS, PLS, OSCPLS, VCPLS, PoPLS, LoPLS, DOSC,
OPLS, MSC, SNV, SGFilter, and Lasso. The horizontal axis represents methods, while the vertical axis
represents CS and its lower bound.

According to Table 4 and Figures 8 and 9, the proposed FPLS outperforms PLS,
OSCPLS, VCPLS, PoPLS, LoPLS, DOSC, OPLS, MSC, SNV, SGFilter, and Lasso in terms
of RMSEP for TA and VC prediction. The first filters learned for Mango TA and VC
analysis are hTA = [−0.0630, 0.5889, 0.8057] and hVC = [−0.4626,−0.8547,−0.2355]; thus,
wT(X∗hTA)

TY
wT XTY = 1.7297 < 3 and wT(X∗hVC)

TY
wT XTY = 2.4060 < 3, which are consistent with our

previous analysis.
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4.4. Soil Available Nitrogen Dataset

At the Yesheng Gongmi planting base in Wuzhong City, Ningxia, 75 soil samples were
collected from plot 2 (954 mu, 1 mu ≈ 0.1647 acres) (https://www.scidb.cn/en/detail?
dataSetId=93899ccb63054b5fb663c010d88892c8&version=V1 (accessed on 2 December
2023)). After removing impurities, the collected soil samples were allowed to air-dry
naturally. The dried soil samples were then manually ground and sieved using a 60-mesh
sieve, according to the requirements of the analysis project. The soil samples were sealed in
self-sealing bags and uniformly numbered [33]. This experiment aims to predict the Soil
Available Nitrogen content, which ranges from 39.48 to 86.73 (mg/kg).

The best mean RMSEP and corresponding prediction variances of FPLS, PLS, OSCPLS,
VCPLS, PoPLS, LoPLS, DOSC, OPLS, MSC, SNV, SGFilter, and Lasso are listed in
Table 5. The figure in parentheses indicates the corresponding number of components
when the RMSEP reaches its minimum value.

Table 5. Quantitative analysis results in terms of prediction variance, RMSEP—including its lower
and upper bounds—as well as CS and its lower bound. The proposed FPLS is compared to PLS,
OSCPLS, VCPLS, PoPLS, LoPLS, DOSC, OPLS, MSC, SNV, SGFilter, and Lasso using the Soil Available
Nitrogen dataset.

Method
Nitrogen

RMSEP Variance CS Lower RMSEP Upper RMSEP Lower CS

FPLS 4.2388 (18) 0.5872 0.9667 2.8807 9.5146 0.9506
PLS 6.0781 (7) 0.7593 0.9561 3.7772 9.5697 0.9283

OSCPLS 7.4131 (1) 1.0854 0.9356 5.4830 9.6807 0.9118
VCPLS 8.0386 (1) 0.9987 0.9364 5.4172 9.6763 0.9040
PoPLS 6.4054 (5) 0.7488 0.9410 5.0373 9.6509 0.9243
LoPLS 5.9168 (6) 0.7523 0.9427 4.8964 9.6416 0.9303
DOLS 7.4078 (1) 1.0842 0.9306 5.8935 9.7087 0.9119
OPLS 6.0622 (6) 1.2427 0.9330 5.6967 9.6953 0.9285
MSC 6.1594 (7) 0.6804 0.9331 5.6885 9.6947 0.9273
SNV 6.1596 (7) 0.6798 0.9331 5.6885 9.6947 0.9273

SGFilter 6.0766 (7) 0.7792 0.9212 6.6591 9.7624 0.9284
Lasso 8.6914 (1) 1.5812 0.9212 6.6591 9.7624 0.8958

According to Table 5, FPLS exhibits a relatively low RMSEP value of 4.2388 with
a variance of 0.5872, suggesting good predictive performance and stability. The use of
18 components may have contributed to its ability to capture more of the underlying
patterns in the data. On the other hand, models like OSCPLS, VCPLS, DOLS, and Lasso
have higher RMSEP values, indicating poorer predictive accuracy. For instance, Lasso
has the highest RMSEP of 8.6914 with a variance of 1.5812, which may be due to its use
of only 1 component, limiting its ability to model complex patterns in the data. Models
such as PLS, PoPLS, LoPLS, OPLS, MSC, SNV, and SGFilter lie somewhere in the middle,
with RMSEP values ranging from around 6.06 to 6.16. Their variances are also relatively
low, indicating that these models are somewhat stable in their predictions. The number of
components used in these models varies, suggesting that the optimal number may depend
on the specific characteristics of the data and the problem being addressed. This table also
provides the boundaries of RMSEP and CS, which are consistent with our analysis at the
beginning of Section 2.

Figure 10 shows the nitrogen mean RMSEP varying with the number of components.
Among these methods, FPLS exhibits a faster decline in RMSEP compared to other
approaches. Furthermore, beyond a certain number of components, the RMSEP of FPLS
becomes significantly smaller than that of other methods. Specifically, for FPLS, the optimal

https://www.scidb.cn/en/detail?dataSetId=93899ccb63054b5fb663c010d88892c8&version=V1
https://www.scidb.cn/en/detail?dataSetId=93899ccb63054b5fb663c010d88892c8&version=V1
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number of components is observed to be 6. The curves in this figure also validate the
effectiveness of the FPLS method in achieving accurate soil nitrogen predictions.
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Figure 10. RMSEP values of the prediction using FPLS, PLS, OSCPLS, VCPLS, PoPLS, LoPLS, DOSC,
OPLS, MSC, SNV, and SGFilter models with 1–18 components. Lasso is different from the previous
methods. It is a feature selection method. The horizontal axis in the figure represents the number of
random experiments for Lasso.

According to Table 5 and Figure 10, the proposed FPLS outperforms PLS, OSCPLS,
VCPLS, PoPLS, LoPLS, DOSC, OPLS, MSC, SNV, SGFilter, and Lasso on nitrogen prediction
in terms of RMSEP. The first filter learned for soil nitrogen concentration prediction is

hnitr = [−0.5452, 0.1408,−0.7170,−0.4110]; thus, wT(X∗hnitr)
TY

wT XTY = 2.3275 < 4, which is
consistent with our analysis in Section 3.3.

To verify the robustness of the algorithm, we added 0.01 watts of Gaussian
noise to both the training and testing datasets before constructing the models for
analysis. The results are shown in Figure 11.
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Figure 11. Experimental results with noise.
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5. Conclusions
This study proposes a new Partial Least Squares regression model, FPLS. This model

integrates filter learning and traditional PLS models into a single model. It can adaptively
learn the parameters of the filter and PLS, improving the effectiveness of the filter. At the
same time, we briefly analyze the convergence of the model, the bounds of the objective
function, and the variance of the prediction distribution. Experiments on four datasets, Corn,
Octane, Mango and Soil, verify the effectiveness, convergence, and bounds of the objective
function of the model. Future work will primarily encompass the following aspects:

• Further exploration of the relationship between filter length and wT(X∗h)TYc
wT XTYc . In

Figure 2, we pointed out its connection with local smoothness, and consequently

chose filter lengths of 2, 3, and 4. Actually, as the length increases, wT(X∗h)TYc
wT XTYc exhibits a

distinct regularity as shown in Figure 12a. Further in-depth research will be conducted
on this issue.

• Utilizing trigonometric functions to transform the constraint condition ∥w∥2 =

1. Define w1 = cos θ1, w2 = sin θ1 cos θ2, w3 = sin θ1 sin θ2 cos θ3, · · · , wn−1 =

sin θ1 sin θ2 . . . sin θn−2 cos θn−1, wn = sin θ1 sin θ2 . . . sin θn−2 sin θn−1. In this way,
we obtain a framework that utilizes neural networks to compute with orthogonal
constraints, as shown in Figure 12b. Whether this network is equivalent to the BP
network with 2-norm constraint requires further research.

• Utilizing a dilated filter to achieve multi-scale feature extraction. The filter can

be generalized to h =

h1, 0, · · · , 0︸ ︷︷ ︸
m

, h2, 0, · · · , 0︸ ︷︷ ︸
m

, · · · , hn

. What is the relationship

between this network and existing neural networks? This is an open question.

∑

𝑥1

𝑥2

⋮
𝑥3

𝑥𝑛

𝑐𝑜𝑠𝜃1

𝑠𝑖𝑛𝜃1𝑐𝑜𝑠𝜃2

𝑠𝑖𝑛𝜃1sin𝜃2𝑐𝑜𝑠𝜃3

𝑠𝑖𝑛𝜃1sin𝜃2…sin 𝜃𝑛−2 𝑐𝑜𝑠𝜃𝑛−1

∑

𝑦1

𝑦2

⋮
𝑦3

𝑦𝑛

𝑐𝑜𝑠𝛼1

𝑠𝑖𝑛𝛼1𝑐𝑜𝑠𝛼2

𝑠𝑖𝑛𝛼1sin𝛼2𝑐𝑜𝑠𝛼3

𝑠𝑖𝑛𝛼1sin𝛼2…sin𝛼𝑛−2 𝑐𝑜𝑠𝛼𝑛−1

𝐿𝑜𝑠𝑠

(a) (b)

Figure 12. Issues that require further research. (a) Relationship between wT(X∗h)TYc
wT XTYc and filter length;

(b) a potential network structure.
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Abbreviations
The following abbreviations are used in this manuscript:

CS Cosine Similarity
DOSC Direct Orthogonal Signal Correction
FPLS Filter Learning-Based Partial Least Squares
LoPLS Low-pass Filter PLS
MSC Multiplicative Scatter Correction
OPLS Orthogonal Projection to Latent Structures
OSCPLS Orthogonal Signal Correction PLS
PLS Partial Least Squares
PoPLS Powered PLS
RMSEP Root Mean Squared Error of Prediction
SGFilter Savitzky–Golay Filtering
SNV Standard Normal Variate
VCPLS Variance Constrained PLS
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