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Abstract: Functional data, including one-dimensional curves and higher-dimensional
surfaces, have become increasingly prominent across scientific disciplines. They offer a
continuous perspective that captures subtle dynamics and richer structures compared to
discrete representations, thereby preserving essential information and facilitating the more
natural modeling of real-world phenomena, especially in sparse or irregularly sampled
settings. A key challenge lies in identifying low-dimensional representations and esti-
mating covariance structures that capture population statistics effectively. We propose
a novel Bayesian framework with a nonparametric kernel expansion and a sparse prior,
enabling the direct modeling of measured data and avoiding the artificial biases from
regridding. Our method, Bayesian scalable functional data analysis (BSFDA), automatically
selects both subspace dimensionalities and basis functions, reducing the computational
overhead through an efficient variational optimization strategy. We further propose a faster
approximate variant that maintains comparable accuracy but accelerates computations
significantly on large-scale datasets. Extensive simulation studies demonstrate that our
framework outperforms conventional techniques in covariance estimation and dimension-
ality selection, showing resilience to high dimensionality and irregular sampling. The
proposed methodology proves effective for multidimensional functional data and show-
cases practical applicability in biomedical and meteorological datasets. Overall, BSFDA
offers an adaptive, continuous, and scalable solution for modern functional data analysis
across diverse scientific domains.

Keywords: functional data analysis; principal component analysis; dimension reduction; sparse
Bayesian learning; variational Bayesian inference; nonparametric methods; model selection

1. Introduction
The emergence of big data across diverse fields, such as biomedicine, finance, and

physical modeling, has catalyzed the need for advanced analytical methodologies capable
of handling complex, high-dimensional datasets that conventional discrete data analysis
approaches cannot always process effectively. Such datasets often require analysis that
captures and interprets their continuous and potentially high-dimensional complexities—a
central promise of functional data analysis (FDA) [1,2]. Foundational work established FDA’s
capacity to treat each observation as an entire function [3], be it a curve, surface, or higher-
dimensional structure, thereby extracting richer insights than conventional discrete point
analyses. Over the past decade, FDA’s scope has widened significantly to accommodate
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high-dimensional applications, with theoretical and computational advances emerging
across various contexts [4,5].

A pivotal technique within FDA is functional principal component analysis (fPCA), which
serves as a dimension reduction tool similar to classical PCA and factor analysis. Unlike
classical PCA, however, fPCA operates, in principle, in an infinite-dimensional function
space to capture dominant modes of variation and reduce complexity [6]. Despite its
conceptual elegance, existing fPCA and similar FDA models often assume that data are
observed on a shared, finite grid, often relying on heuristic imputation or posterior es-
timation to handle any missing entries [7–9]. This assumption conveniently facilitates
the adoption of established linear algebraic methods but compromises the integrity of
FDA by introducing significant information loss and high-computational demands in
high-dimensional applications.

An ideal approach would represent each function at its naturally sampled measure-
ment points rather than forcing all observations onto a shared grid, thus preserving crucial
information and avoiding the need for heuristic resampling. This point is critical when
considering that, given only a finite number of data points, infinitely many functions can
interpolate these points, each reflecting different inductive biases about smoothness or
shape [10]. Conventional smoothing or regridding methods (e.g., polynomial interpolation)
introduce biases that may distort the underlying function’s actual behavior. In contrast,
we will achieve more accurate and unbiased predictions by concurrently updating the
function estimation and the population-level statistics governing the estimation, such as
those encoded in the covariance operator. Such an approach requires the direct modeling
of the function from its original measurement points, rather than imposing artificial grids.

To mitigate these limitations, several studies have proposed alternative strategies. For
instance, Ref. [3] developed a nonparametric technique for the estimation of the mean
and covariance for functional data under smoothness assumptions while also discussing a
continuous formulation and the necessary discretization in practical applications. In [11,12],
the authors extended fPCA to sparse and irregular longitudinal designs by smoothing the
covariance estimate and then discretizing. Nonetheless, classical discretization steps often
result in significant information loss and computational burdens.

As functional data’s size and complexity grew, researchers turned to flexible basis
expansions, including sinusoids (Fourier), wavelets, polynomials, and B-splines, for a
finite-dimensional representation of functional data that is convenient and accurate in
computation, avoiding the drawbacks of explicit approximation and resampling [2,13,14].
However, a core challenge remains in selecting a suitable model. For instance, researchers
must choose the number and form (e.g., smoothness), along with the dimensionality of
the representational subspace. In approximation, the placement of basis functions is also
essential. Evenly spaced nodes remain popular for their simplicity but may be subopti-
mal. Alternative node allocations may be better, such as Chebyshev nodes for superior
accuracy [15] or sparse grids to reduce the combinatorial growth of the computational
complexity [16].

Existing studies tend to rely on choosing the hyperparameters manually [6] or on cross-
validation [3,14,17], which are known to be computationally prohibitive. Others employ ap-
proximated cross-validation [13] or marginal likelihood [8], but these still require the exhaustive
testing of all candidate models. Methods with sparse Bayesian priors [7,18] for model selection
allow model selection with a single optimization. In [19,20], the authors use shrinkage or sparse
priors for data-adaptive basis selection to ensure minimal but effective sets of basis functions.
Notably, Ref. [21] proposed the Bayesian and Akaike information criteria, demonstrating
state-of-the-art performance in simulation studies for sparse and dense functional data.
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In addition, probabilistic FDA emerges as a sophisticated adaptation of probabilistic
methods tailored to incorporate the flexibility of latent variable models to manage func-
tional data. A Bayesian latent factor regression model (LFRM) [18], for example, extends
conventional regression to accommodate complex structures and dependencies in func-
tional data, providing a robust framework to handle the complexities inherent in functional
data. However, these Bayesian approaches are often limited by the computational demands
of Monte Carlo methods in high dimensions [8]. To address increasingly high-dimensional
FDA problems, recent efforts have emphasized scalability. For instance, Ref. [6] introduced
FDA for images with a fixed basis or grid. In [17], they further reduced the complexity in
2D fPCA via tensor product B-splines. Meanwhile, Ref. [22] applied a Bayesian framework
with basis expansion, adaptive regularization, and Gibbs sampling to 2D functional data
in the form of EEG studies on children with autism. Furthermore, Ref. [23] leveraged a
parsimonious basis representation and variational Bayes to achieve computational effi-
ciency, making it suitable for 3D brain imaging data. A Bayesian nonparametric model [24]
leverages variational inference for efficient computation in high-dimensional functional
time series and uses an Indian buffet process to automatically select latent factors. Nonethe-
less, it focuses on 1D functional observations with temporal dependencies and a common
sampling grid.

In parallel, the broader method of principal component analysis (PCA) remains a fun-
damental and effective tool. Classical PCA, rooted in eigendecomposition [25], effectively
extracts dominant modes of variation in many settings but does not inherently accom-
modate the probabilistic nature of real-world data and their inherent uncertainties. Thus,
Ref. [26] introduced probabilistic PCA (PPCA), which incorporates a probability distribution
to manage these uncertainties more effectively. PCA has since evolved to address missing
data [27], model selection [28], and complex data types [29]. In the context of functional
data, these concepts motivate new approaches that unify probabilistic methodologies, latent
factor models, and kernel expansions for continuous domains [1].

Within Bayesian machine learning, various priors have been proposed for sparse or
robust formulations of PCA. Specifically, sparse Bayesian learning (SBL) [30], with its mech-
anism automatic relevance determination (ARD) [31,32], has proven adept in promoting
parsimonious solutions [33]. SBL has emerged in Bayesian PCA [28], applying an iterative
method to evaluate the relevance of each component and select the internal dimensionality
by disregarding the redundant ones. In [34], the authors applied SBL to optimize the com-
bination of base kernels to enhance model performance. A matrix completion method [35]
uses ARD to select the factorization rank and dual graph priors to promote smoothness
along rows and columns for the effective interpolation of missing entries, although they
are more relaxed than a strict continuity constraint for FDA. These methods often exploit
variational techniques or accelerated optimization [36], thereby balancing model complex-
ity with computational tractability. In functional data contexts, where representations are
infinite-dimensional, SBL offers a compelling framework for advanced FDA methods by
efficiently handling sparse expansions and adaptively adjusting the model complexity.

In summary, despite these efforts to advance functional data analysis, several chal-
lenges persist. Existing methods often exhibit limitations in accuracy and efficiency
when sampling is sparse, automatic model selection is essential, and the dimensional-
ity is high [23]. Concurrently, probabilistic PCA and SBL frameworks illustrate powerful
strategies to incorporate versatility and adaptivity for such data complexities, while their
adaptation to FDA is still evolving. These gaps underscore the need for a robust, flexible,
and computationally feasible approach, unifying ideas from FDA, PPCA, and SBL, that
manages the continuous and high-dimensional nature of modern datasets.
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1.1. Contributions

This manuscript proposes a novel Bayesian framework for functional principal component
analysis that leverages nonparametric kernel expansions, sparse Bayesian learning for model
selection, and efficient variational inference (VI). We abbreviate the proposed method
as BSFDA (Bayesian scalable functional data analysis). (The code is available at https:
//github.com/WeeenZh/BSFDA, accessed on 21 March 2025). BSFDA addresses critical
gaps in existing FDA techniques with irregular sampling, high-dimensional scalability, and
the selection of both basis functions and principal components. Specifically, our approach
offers the following:

• Joint selection of optimum latent factors and sparse basis functions: This eliminates
constraints on parametric representation dimensionality, avoids information loss from
discretization, and extends naturally to higher dimensions or non-Euclidean spaces
through nonparametric kernel expansion. It further enhances the interpretability by
adaptively choosing the model complexity without testing multiple models separately.
We achieve these improvements using a Bayesian paradigm that provides robust and
accurate posterior estimates while supporting uncertainty quantification.

• Scalability across domain dimensionality and data size: The proposed method uses
VI for faster computation compared to Markov chain Monte Carlo (MCMC) methods,
while still being accurate in terms of the estimation of the intrinsic dimensionality
and overall covariance structure. BSFDA reduces the overall computation by parti-
tioning the parameters into smaller update groups and introducing a slack variable
to further subdivide the weighting matrix (which is part of the kernel structure) into
even smaller parts [18], updating fewer blocks at a time and considering all model
options. Introducing a slack variable makes the optimization process more efficient by
separating different variable groups. This approach scales well with the data size and
works efficiently even with large, complex datasets. We demonstrate this on the 4D
global oceanic temperature dataset (ARGO), which consists of 127 million data points
spanning across the globe for 27 years, with depths of up to 200 m [37].

1.2. Outline

Together, these contributions position our work at the intersection of functional princi-
pal component analysis [1] and sparse Bayesian learning [30], enabling the robust, flexible,
and computationally feasible analysis of high-dimensional functional data. The remainder
of this paper is organized as follows. In Section 2, we describe the proposed Bayesian
functional PCA framework in detail, highlighting the nonparametric kernel expansions
and sparse Bayesian priors. Next, in Sections 3 and 4, we discuss the variational inference
procedure and the reduced active block updating step, illustrating how these techniques
jointly provide scalability and accuracy. In Section 5, we then present extensive empirical
studies demonstrating the factor selection accuracy, covariance operator estimation, and
performance in large-scale 4D applications. Finally, in Section 6, we conclude with a discus-
sion of potential extensions and open directions, emphasizing the broader implications of
our work for large-scale, high-dimensional functional data analysis.

2. Formulation
2.1. Generative Model

In conventional fPCA, the data are assumed to be samples of functions that are
elements of an appropriately smooth function space [1]. Using this assumption, data
samples acquired at discrete points are typically interpolated to the continuum using tools
such as splines, Fourier basis functions, or wavelets. In our work, we assume that the
functions yi : RM 7→ R are outcomes of an M-dimensional stochastic process. As in classical

https://github.com/WeeenZh/BSFDA
https://github.com/WeeenZh/BSFDA
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fPCA, we assume that yi is in a class of functions that can be approximated through a
truncated, finite expansion, which is a weighted summation of K kernel functions {ϕk}K

k=1:

yi(x) =
K

∑
k=1

wikϕk(x), (1)

with wik being random variables, ϕk(x) = K(x,Xk), K is the kernel function, and Xk is the
k-th location.

Thus, yi(x)s are realizations of a finite-dimensional stochastic process. Convention-
ally, the covariance operator of these functions is discretized, and the leading eigenfunc-
tions form the estimated principal component loadings, following the Karhunen–Loève
theorem [1]. By contrast, we establish a flexible Bayesian framework of fPCA following
the form of probabilistic PCA [26], where the principal subspace is identifiable up to an
arbitrary rotation and does not enforce the orthogonality of the loadings. Nevertheless, it
is straightforward to recover classical eigenfunctions from the final covariance estimation
over an arbitrary grid in this Bayesian framework.

The observed data are P independent, noisy samples of the functions {yi}P
i=1 at index

{Xi ∈ RNi×M}P
i=1, where Ni is the number of measured samples for the ith function yi

and Xin ∈ RM is the location of the nth measurement in the domain of the sample. The
observations are {Yi}P

i=1, where Yin = yi(Xin) + Ein, where Ein is white Gaussian noise of
variance σ2.

We also assume that the functions span a low-dimensional subspace of dimension
J << K. We model this stochastically by assuming that the weights, wi ∈ RK, are given by
wik = ∑J

j=1 ZijWjk + Z̄k, where W ∈ RJ×K are the principal component loading coefficients

and Zi ∈ RJ are standard normal variables [26]. This model is therefore

Yin =
K

∑
k=1

((
J

∑
j=1

(
ZijWjk

)
+ Z̄k

)
ϕk(Xin)

)
+ Ein = (ZiW + Z̄)Φi·n + Ein, (2)

where Φi·n = [ϕ1(Xin), . . . , ϕK(Xin)]
T are the evaluations of the basis functions at the n-th

index of the i-th sample function.
The choice of the kernel family usually benefits from knowledge of the dataset’s

characteristics, such as the periodicity or domain geometry. Our framework is flexible
across various kernel families, but we employ Gaussian kernels for both one-dimensional
and multidimensional data by default, with the initial length-scale selection carried out
through cross-validation, which will be refined through our sparse prior described below.
To avoid disproportionately favoring larger length scales, we normalize each kernel’s
scaling coefficient using its square integral over the observational domain.

2.2. Sparse Prior

For effective model selection, we introduce a sparse prior over the coefficients of
the basis functions [28]. The sparse prior in the proposed model is based on automatic
relevance detection (ARD) [28]. ARD evaluates the importance of a feature with a precision
parameter estimated from the data. The model uses {αj}J

j=1 and {βk}K
k=1 for the numbers

of components and basis functions, respectively, while η signifies the overall magnitude of
the mean coefficients:

Z̄k ∼ N (0, η−1β−1
k ), ∀k = 1 : K (3)

Wjk ∼ N (0, α−1
j β−1

k ), ∀j = 1 : J, k = 1 : K (4)
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In the model, αj, βk, η, σ−2 are all variables of precision parameters, coming naturally
with a conjugate prior of Gamma distribution that facilitates efficient posterior optimization.
The probabilistic graphical model is depicted in Figure 1. Setting a0, b0 to a small value
yields a vague Gamma prior that approximates a noninformative (Jeffreys-type) prior.

𝑌௜

𝑍௞ ∼ 𝒩ሺ0, 𝜂ିଵ𝛽௞ିଵሻ

𝑍௜ ∼ 𝒩ሺ0, 𝐼ሻ

 𝛼௝ ∼ Γሺ𝑎଴, 𝑏଴ሻ

𝛽௞ ∼ Γሺ𝑎଴, 𝑏଴ሻ

𝑊௝௞ ∼ 𝒩ሺ0,𝛼௝ିଵ𝛽௞ିଵሻ

𝜎ିଶ ∼ Γሺ𝑎଴, 𝑏଴ሻ

P

E௜ ∼ 𝒩ሺ0,𝜎ଶ𝐼ሻ

𝜂 ∼ Γሺ𝑎଴, 𝑏଴ሻ

𝜙ሺ⋅ሻ

𝑋௜

Φ௜

Full model

Figure 1. Probabilistic graphical model for the full model.

3. Methods
Based on the proposed formulation in Section 2, we estimate Pr[Θ|X, Y, a0, b0], the

posterior of the unobserved values Θ = {Z, W, Z̄, σ, α, β, η}. This inference gives the
point estimates of Θ and the posterior predictive distribution of new data. For notational
convenience, X, a0, and b0 are omitted.

Using Bayes’ theorem, Pr[Θ|Y] = Pr[Y|Θ]Pr[Θ]
Pr[Y] , but the exact posterior distribution is

intractable because the evidence Pr[Y] =
∫

Pr[Θ, Y]dΘ is intractable. Therefore, an ap-
proximate inference strategy is proposed. To facilitate this, we utilize variational inference
(VI) [38], choosing a surrogate density from a parameterized family, denoted as Q, to
approximate the posterior. Compared with classical methods such as Markov chain Monte
Carlo (MCMC) sampling, VI is typically faster [38]. In our experiments, VI is about 85 times
faster for the original Bayesian PCA formulation [28], as shown in Appendix F.2.

3.1. Variational Bayesian Inference

Variational inference optimizes Q by maximizing the lower bound L (minimizing the
KL divergence between the actual and surrogate distributions):

EQ
[

ln
Pr[Θ, Y]
Q(Θ)

]
= −KL(Q(Θ)||Pr[Θ|Y]) + ln Pr[Y] ∝ −KL(Q(Θ)||Pr[Θ|Y]). (5)

The mean field variational family is used for Q. It simplifies the optimization by
assuming that the surrogate posterior distributions are independent, allowing each variable
in the posterior to be optimized independently: QΘ = ∏iQΘi . The posterior for each
variable is chosen to be conjugate, further simplifying the optimization. Thus, the posteriors
of the component scores Z, the weighting matrix W, and the mean weights Z̄ are normal
distributions. Here, W is vectorized via vec (W) without altering its normality assumption.
Meanwhile, the posteriors of the precision variables of noise σ−2, components α, basis
functions β, and mean weights η are Gamma distributions:
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QZ(Z) = ∏
i
QZi (Zi) = ∏

i
N (Zi|µZi , ΣZi ) (6)

QW(W) = N (vec(W)|µvec (W), Σvec (W)) (7)

QZ̄(Z̄) = N (Z̄|µZ̄, ΣZ̄) (8)

Qσ(σ) = Γ(σ−2|aσ, bσ) (9)

Qα(α) = ∏
j
Qαj = ∏

j
Γ(αj|aαj , bαj) (10)

Qβ(β) = ∏
k
Qβk = ∏

k
Γ(βk|aβk , bβk ) (11)

Qη(η) = Γ(η, |aη , bη) (12)

Update Steps

In mean field approximation using the surrogate posterior QΘ = ∏iQΘi conditioned
on observations Y, the lower bound is maximized with respect to each unknown Θi. With
the conjugate prior, the optimal updates (denoted with “←”) make the moments of QΘi

equal to the moments conditioned on the remaining parts of QΘ [38]:

QΘi ←
exp

(
EQ/Θi

[ln(Pr[Y, Θ])]
)

∫
exp

(
EQ/Θi

[ln(Pr[Y, Θ])]
)

dΘi

(13)

From Equation (13), detailed update rules for each variable are presented subsequently,
and the derivations of these formulas are given in the Appendix part.

Updates for the parameters of the posterior for the precision of components
Qαj , ∀j = 1 : J:

aαj ← a0 +
K
2

, (14)

bαj ← b0 +
1
2

K

∑
k=1

EQ/αj
[W2

jkβk] = b0 +
1
2

K

∑
k=1

((
ΣWjk + µ2

Wjk

) aβk

bβk

)
, (15)

where Equation (14) calculates the corrected degrees of freedom and Equation (15) calcu-
lates the corrected sum of squares. As a0 and b0 approach 0, the expectation of precision αj,

which is EQαj
[αj] =

aαj
bαj

, is exactly the inverse of the empirical or sample variance.

Updates for the parameters of the posterior of the precision of the mean weightsQη:

aη ← a0 +
K
2

, (16)

bη ← b0 +
1
2

K

∑
k=1

EQ/η
[Z̄2

k βk ] = b0 +
1
2

K

∑
k=1

((
ΣZ̄ k + µZ̄

2
k

) aβk

bβk

)
(17)

Updates for the parameters of the posterior of the precision of basis functions
Qβk , ∀k = 1 : K :

aβk ← a0 +
J + 1

2
, (18)

bβk ← b0 +
1
2
EQ/βk

[Z̄2
k η +

J

∑
j=1

W2
jkαj]

= b0 +
1
2

((
ΣZ̄ kk + µZ̄

2
k

) aη

bη
+

J

∑
j=1

((
ΣWjk + µ2

Wjk

) aαj

bαj

))
(19)

Updates for the parameters of the posterior of the mean weights QZ̄:



Algorithms 2025, 18, 254 8 of 49

ΣZ̄ ←
(
EQ/Z̄

[
σ−2

P

∑
i=1

Ψi + η diag(β)

])−1

=

(
aσ

bσ

P

∑
i=1

Ψi +
aη

bη
diag(

a
b
)

)−1

, (20)

µZ̄ ←
(
EQ/Z̄

[
σ−2

] P

∑
i=1

(Yi −EQ/Z̄
[ZiW]Φi)ΦT

i

)
ΣZ̄ =

(
aσ

bσ

P

∑
i=1

(Yi − µZi µWΦi)ΦT
i

)
ΣZ̄ (21)

where diag(β) denotes the diagonal matrix with diagonal entries given by β. Equation (20)
indicates that the eigenvectors of ΣZ̄ are solely determined by the sum of Gram matrices
∑P

i=1 Ψi, where Ψi = ΦiΦT
i , while the eigenvalues of ΣZ̄ have a negative correlation with

the scale of ∑P
i=1 Ψi, the prior η diag(β), and data-dependent term σ−2. This is sensible

because, for instance, large noise would result in large uncertainty in Z̄. In Equation (21),
the data residuals, excluding the component scores, are projected into the K-dimensional
space through the inner product, with Φi and summed over all sample functions to calculate
the mean weights.

Updates for the parameters of the posterior of the weights QW :

Σvec (W) ← EQ/W

[
σ−2

P

∑
i=1

(
ΨT

i ⊗ (ZT
i Zi)

)
+ diag(β)⊗ diag(α)

]−1

=

(
aσ

bσ

P

∑
i=1

(
ΨT

i ⊗ (µZi
TµZi + ΣZi )

)
+ diag

( a
b

)
⊗ diag

( c
d

))−1

, (22)

µvec (W) ← EQ/W

[
−σ−2

P

∑
i=1

vec
((

Φi(ΦT
i Z̄T −YT

i )Zi

)T
)T
]

Σvec (W)

= − aσ

bσ

P

∑
i=1

vec
((

Φi(ΦT
i µZ̄

T −YT
i )µZi

)T
)T

Σvec (W) (23)

Equation (22) is similar to Equation (20), because it is correlated with Φi, its prior
diag(β) ⊗ diag(α), and data-dependent terms σ−2 and Zi. In Equation (23), the data
residual excluding the mean function is used to estimate the expectation of W.

Updates for the parameters of the posterior of the component scores QZi :

Hijk ← EQ/Zi
[WjΨiWT

k ] = Tr(EQ/Zi
[WT

k Wj]Ψi)

= Tr
((

Σ[Wk ,Wj ]
+ µT

[Wj ]
µ[Wk ]

)
Ψi

)
, ∀j = 1 : K, k = 1 : K, (24)

ΣZi ←
(
EQ/Zi

[σ−2WΨiWT + I]
)−1

= [
aσ

bσ
Hi + I]−1, (25)

µZi ← EQ/Zi
[σ−2(Yi − Z̄Φi)ΦT

i WT ]ΣZi =
aσ

bσ
(Yi − µZ̄Φi)ΦT

i (µW)TΣZi , (26)

where Hi is a temporary variable denoting the Gram matrix of weighted kernel functions
WΦi, and Σ[Wk ,Wj ]

denotes the covariance between WT
k and Wj in Q.

Updates for the parameters of the posterior of the noise Qσ:

aσ ← a0 +
1
2 ∑

i
Ni , (27)

bσ ← b0 +
1
2
EQ/σ

[
∑

i
||Yi − (ZiW + Z̄)Φi ||22

]

= b0 +
1
2 ∑

i
(YiYT

i − 2Yi
(
µZi µW Φi

)T − 2Yi(µZ̄Φi)
T + 2µZi µW Ψi(µZ̄)

T

+ Tr
((

ΣZ̄ + (µZ̄)
TµZ̄

)
Ψi

)
) +

1
2

vec(HT)
T ∑

i
vec
(

vec(Ψi) vec(ΣZi + µZi
TµZi )

T
)

, (28)
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where H is a temporary variable that is updated by

Hj+kM ← EQ/σ

[
vec(WkWj

T)T
]
= vec(Σ[Wk ,Wj ]

+ µT
[Wj ]

µ[Wk ]
)T , ∀j = 1 : K, k = 1 : K (29)

Nearly noninformative (vague) priors, i.e., with almost zero a0, b0, introduce an in-
herent identifiability ambiguity in our formulation—specifically, in the product of the
precision parameters α, β, and η (Equations (20) and (22)). In our model, scaling α and
η by a specific factor while inversely scaling β leaves the product (and hence the lower
bound in Equation (5) unchanged. This inherent ambiguity can lead α, β, and η to converge
to extreme values, thereby challenging the numerical stability during optimization. To
mitigate this issue, we adopt a heuristic constraint to ensure that the smallest values of
α and β remain within one order of magnitude of each other. Specifically, we enforce∣∣∣∣∣log

(
min(α)
min(β)

)
10

∣∣∣∣∣ ≤ 1. If an update to any αj or βk would violate this constraint, this particular

update is skipped, and the rest of the parameters remain updated. This strategy does
not alter the algorithm’s overall structure but stabilizes the optimization by preventing
unnecessary flexibility in the precision parameters.

3.2. Scalable Update Strategy

The scalability of our algorithm so far is primarily challenged by the need to optimize
the variational lower bound, L, over K basis functions. As indicated by Equation (22), the
time complexity is O

(
K6) (or, alternatively, O

(
K2P maxi(Ni)

)
, typically dominated by the

former), which becomes prohibitive when K is large. In practice, however, only a small
subset of these basis functions is necessary for an accurate representation—those with
non-negligible weights under our sparse prior.

To address this, we focus the updates on the subspace of active basis functions,
denoted as K(a), which comprises only those functions with non-negligible weights. The
remaining basis functions, whose influence is minimal, are held fixed during optimization.
Furthermore, the number of active principal components is noted as J(a) and set equal
to K(a), ensuring that the model spans the full range of possible ranks from 1 to K(a).
Consequently, we optimize Q(a) using updates derived with regard to the objective K(a)-
dimensional lower bound L(a) as an efficient surrogate of the full updates of Q with
regard to the full lower bound L, using only K(a) active basis functions. Meanwhile,
the active dimensionality of the model is adjusted dynamically during optimization by
activating or deactivating basis functions based on their precision parameters. For clarity,
variables associated with the active subspace are annotated with the superscript (a) (e.g.,
a(a)αj = a0 +

K(a)

2 versus aαj = a0 +
K
2 ).

3.2.1. Implicit Factorization

For notational clarity, we reorder the rows and columns of our parameter matrices to
separate active components from inactive ones. Specifically, we partition the matrices as
follows:

Zi =
(

ZiA ZiB

)
, Z̄ =

(
Z̄A Z̄B

)
, α =

(
αA αB

)
, β =

(
βA βB

)
,

W =

(
WA WB

WC WD

)
, Φi =

(
ΦiA

ΦiB,

)
(30)

Here, the subscript A denotes variables belonging to the active subspace (i.e., those
corresponding to K(a) basis functions), and B, C, and D denote the inactive components.
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Notably, the cross terms WB and WC involve both active and inactive components; these
are updated implicitly, as proven in the Appendix part.

Following the strategy in [39], a basis function is deemed inactive if its precision
exceeds a high threshold, i.e., αj > ϵ−1 and βk > ϵ−1 as ϵ→ 0. In the limit, the inactive basis
functions decouple from the active ones, leading to the following mean field factorization:

QW = QWAQWBQWCQWD (31)

QZ̄ = QZ̄A
QZ̄B

(32)

QZi = QZiAQZiB (33)

The factorization of α and β was already obtained in Equations (10) and (11). These
factorizations allow us to decouple the update for the active subspace with the proof
provided in the Appendix part.

It implies that only updates for QZiA ,QWA ,QWB ,QWC ,QZ̄A
,QαA ,QβA ,Qσ,Qη are re-

quired, as shown in Figure 2. This strategy reduces the computational complexity from

O(K6) to O(K(a)6
). Moreover, we initialize W as an identity matrix and set the active αA to

all ones and the inactive αB to infinite. In this way, we can initialize the remaining active
dimensions K(a), e.g., ZiA, using a modified, multi-instance version of a relevance vector
machine [30], which performs fast analytical maximum-likelihood updates, as detailed in
Appendix E in the Appendix part.
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𝒬ఈಲ

Closed loop

𝒬ௐಲ

𝒬ௐ಴𝒬ఈಲ

𝒬ఉಲ 𝒬௓ಲ

𝒬௓ಳ𝒬ఉಲ

𝒬ఎ

𝒬ௐಲ
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𝒬ௐಲ 𝒬௓ಲ
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Closed loop Closed loop

Figure 2. Diagrams of variational inference algorithm for all parameters. The top three diagrams
each have a closed loop and a closed-form overall transfer function.

3.2.2. Low-Dimensional Lower Bound

This section shows how to optimize these active surrogates, e.g., QZ̄A
, using updates

of Q(a) with regard to the K(a)-dimensional lower bound L(a), which ultimately optimizes
the full lower bound L. To distinguish between the two, we denote the active surrogate
posterior for the full model asQZ̄A

and that for the reduced K(a)-dimensional model asQ(a)
Z̄A

.

The active Gaussian surrogate posteriors are shared, e.g., QZ̄A
= Q(a)

Z̄A
= N (Z̄A|µZ̄ A, ΣZ̄ A).

This sharing implies that updatingQ(a) is equivalent to updatingQ, so we set the moments
of the active distributions of the full model to match those of the reduced model. However,
the surrogate posterior Gamma distributions differ between the two models. For exam-
ple, the update of EQ(a) [αA] depends solely on QWA , whereas EQ[αA] also incorporates a
cross term QWB corresponding to the remaining (K− K(a)) dimensions. This difference is
reflected in how the scale parameters depend on the number of active versus total basis
functions, as shown in Equations (14), (16) and (18). Nonetheless, we prove that, in the
limit ϵ→ 0, the fixed point of the K(a)-dimensional updates of the complete surrogate Q
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equals that of the reduced surrogate Q(a). Consequently, the updates for QαA ,QβA , and

Qη are derived directly from the expectations of the reduced model Q(a)
αA ,Q(a)

βA
,Q(a)

η :

EQ[αA]← EQ(a) [αA]⇔ bαj ←
aαj

a(a)αj

b(a)αj , ∀j ≤ J(a), (34)

EQ[βA]← EQ(a) [βA]⇔ bβk ←
aβk

bβk

b(a)βk
, ∀k ≤ K(a), (35)

EQ[η]← EQ(a) [η]⇔ bη ←
b(a)η

a(a)η

aη (36)

These update Equations (34)–(36) are proven to optimize L in Theorems A1 and A2 in
the Appendix part.

3.2.3. Heuristic for Activation of Basis Functions

The proposed method selects a relatively small set of basis functions from a potentially
extensive set of possibilities. The computational costs are mitigated by recognizing that
inactive basis functions do not interact with those that are active (with non-negligible
weights). The inactive components are removed in the final model and excluded from the
active subspace optimization. However, our method essentially optimizes over the full
space, and thus we have the algorithm allowing for the reactivation of inactive basis func-
tions to ensure optimization across the entire subspace. Due to computational constraints,
we consider functions for activation sequentially rather than all at once. Thus, we propose
Algorithm 1 to introduce unseen basis functions into the active set using a selective strategy
akin to the heuristic approach described in [39].

The algorithm selects the top function, ϕBk, from the inactive basis functions {ϕBk}k

by gauging their correlations with residuals and applying an angle-based threshold τang

relative to the subspace of ϕA. The correlation with residuals for ϕBk is measured by

∑i

(
ΦiBk(Yi −EQ(a) [ZiAWA + Z̄A]ΦiA)

T
)2

. The angle-based threshold ensures a mean-
ingful distinction from active functions. Next, the current active surrogate posterior is
expanded by a dimension for ˜ϕBk, initiating optimization from the numerical maximum
τmax. Postoptimization, the function is retained if it falls below τmax. Otherwise, the algo-
rithm terminates. Efficiently, in trial optimization, the approach replaces one function with
precision τmax, if present.

Algorithm 1 Search for new basis functions to activate

Sort inactive basis functions {ϕBk}k by correlation with residuals.
Filter through {ϕBk}k, selecting the most correlated one as ϕBk.
Copy current active surrogate Q(a)(Θ) posterior to Qk

(a)′(Θ).
Expand dimension in Qk

(a)′(Θ) for ϕBk.
Optimize Qk

(a)′(Θ) for three iterations using mean field approximation.
if expected precision is within threshold then
Q(a)(Θ)← Qk

(a)′(Θ).
end if

4. Faster Variant
To enhance the computational efficiency of our primary algorithm, we introduce a

faster variant, denoted as BSFDAFast. This approach leverages conditional independence
among the columns of W, enabling separate updates and thereby reducing the computa-
tional complexity. Similar strategies have been described in [18,28]. The model is defined
with an introduced variable ζi for the coefficient noise as follows:
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θi = ZiW + ζi, (37)

ζik ∼ N (0, ς2
kβ−1

k ). (38)

Similarly to the above, we assign a conjugate Gamma prior to the precision:

ς−2
k ∼ Γ(a0, b0). (39)

This formulation ensures that the columns of W are conditionally independent, allow-
ing the variational distribution to factorize as QW = ∏kQW·k , thereby facilitating separate

updates for each column. Consequently, the time complexity is reduced from O(K(a)6
)

to O(K(a)3
).

To align with the original model, it is necessary for ζ and the associated variance
parameters ς to approach zero. Having ς too high would allow the coefficient noise
to corrupt the signal, biasing the model toward underestimating the true signal levels,
particularly because this noise operates in the coefficient space where it introduces smooth,
correlated variation (low entropy, like signals), which is harder to eliminate than high-
frequency white noise (maximum entropy). Injecting the same amount of noise leads to the
unbiased estimation of the signals but increases the estimation variance. Conversely, as ς

decreases, the columns of W become dependent, violating the independence assumption
inherent in variational inference. This dependency degrades the approximation quality
and slows down the optimization process. Such dependency issues are well documented in
both the variational inference and MCMC literature—with recent efforts addressing them
via structured VI [38] or blocked/collapsed Gibbs sampling [40]. Empirical validations
of this noise impact are conducted with both BSFDAFast in Section 5.1 and with Bayesian
PCA [28] in Appendix F.2 in the Appendix part.

To balance the trade-off between the optimization speed and accuracy, we adopt
a strategy of gradually decreasing the values of ςk during the optimization iterations.
Specifically, we initialize ςk with a relatively large value and linearly decrease it from
10−2 to 10−5 over the first half of the iterations. After reaching 10−5, ςk is fixed for the
remaining iterations. This gradual reduction ensures that the algorithm initially maintains
its efficiency, with benefits from minimizing the interdependency among the columns of
W to accelerating convergence while later preserving the quality of the approximation by
preventing the noise from obscuring the signal components. We unify the scales by scaling
the basis functions so that Zi is standard normal and W is an identity matrix in initialization.
Empirical evaluations indicate that the strategy above is effective in most applications.

By implementing these modifications, BSFDAFast offers a practical solution that sub-
stantially accelerates the algorithm without a significant loss in accuracy, making it well
suited for large-scale, high-dimensional functional data analysis.

5. Results
The proposed method demonstrates its effectiveness through simulations and applica-

tions to observed datasets.

5.1. Simulation Results

In the simulations, we evaluate the functional data analysis performance in terms
of model selection, the estimated covariance accuracy, and extendability to multidimen-
sional domains.

The model selection metric is the accuracy in estimating the number of principal
components, which is the dimension of the compact subspace of signal variations. The
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configuration of the simulations in this section aligns with that established in [21], covering
various scenarios. The simulated datasets are derived from a latent generative model with
variables Zi with dimension r for the i-th sample function and noise corruption with a
standard deviation of σ: Yi = ∑r

j=1
(
Zij f j(Xi)

)
+ g(Xi) + Ei,Zij ∼ N (0, vj), Ej ∼ N (0, σ2 I),

where { f j}r
j=1 represent eigenfunctions, {vj}r

j=1 are the eigenvalues, and g : R 7→ R
signifies the mean function. Here, we consider five scenarios.

Scenario 1: Data generated with g = 5(x− 0.6)2, r = 3, v = (0.6, 0.3, 0.1), σ2 = 0.2,
f1(x) = 1, f2(x) =

√
2 sin(2πx), f3(x) =

√
2 cos(2πx). Here, v3 < σ2, i.e., the noise has

larger variance than the smallest signal.
Scenario 2: Similar to Scenario 1, but the third eigenfunction is replaced by a function

with higher frequencies f3(x) =
√

2 cos(4πx), and the principal component scores follow a
skewed Gaussian mixture model. Specifically, the j-th component score has a one-in-three
probability of following a N (2

√
vj/3, vj/3) distribution and a two-in-three probability of

following N (−
√

vj/3, vj), for j = 1, 2, 3.

Scenario 3: Data generated with g = 12.5(x− 0.5)2− 1.25, r = 3, v = (4, 2, 1), σ2 = 0.5,
f1(x) = 1, f2(x) =

√
2 cos(2πx), f3(x) =

√
2 sin(4πx).

Scenario 4: Same as Scenario 3, but the component scores are generated from a
Gaussian mixture model as in Scenario 2.

Scenario 5: Data from g = 12.5(x − 0.5)2 − 1.25, r = 6, v = (4, 3.5, 3, 2.5, 2, 1.5),
σ2 = 0.5, f1(x) = 1, f2k(x) =

√
2 sin(2kπx) for k = 1, 2, 3, f2k+1(x) =

√
2 cos(2kπx) for

k = 1, 2, j-th component score obeying N (0, vj).
In each scenario, the simulations produce 200 sample functions. We investigate three

cases with sparse, medium, and dense sampling by assigning the number of observations
per sample function Ni = {5, 10, 50}. Each case in each scenario is repeated 200 times.
The method’s performance is compared to that of fpca from [13], the AIC and BIC in the
2022 release of pace [11], the modified AIC and BIC in [21], and all the competing methods
in [21]. For fpca, we set the candidate numbers of basis functions as [8,10,15,20] and the
candidate dimensions of the process as [2,3,4,5] for Scenarios 1–4 and [4,5,6,7,8] for Scenario
5. The other parameters are all set to the defaults. Due to its consistent overestimation
of the true number of components—likely resulting from interference by correlated noise
and less sparse precision priors—we exclude LFRM [18] from further comparisons (see
Appendix F.1.1 in the Appendix part).

Each estimation uses 10 length scales of functions, which are selected using cross-
validation and k-means clustering. This adaptive strategy allows the algorithm to choose
distinct length scales at different locations of the definition domain, thereby accommodating
varying smoothness characteristics inherent in complex functional data—a level of flexibil-
ity that is not possible when using a regular grid that forces a single length scale across the
entire domain [18]. Sparse sampling in Scenario 5 uses five length scales to avoid overfitting.
Figure 3 shows the length scales and centers of the selected kernel basis functions for three
different numbers of sample points, Ni, in a random repetition of Scenario 5. The results
reveal that the selected length scales mainly concentrate around 0.07, with a few as high
as 0.35—suggesting that the lower length scales capture finer, high-frequency variations.
The higher length scales model the overall, lower-frequency quadratic mean structure and
the constant baseline component. Furthermore, the estimated density functions of the
selected length scales exhibit consistent patterns across the three sampling densities, and
the method selects 9, 11, and 12 basis functions, respectively, demonstrating the algorithm’s
adaptive fidelity and complexity based on the available observations. The Appendix part
showcases the uncertainty evaluation in Figure A2.
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Figure 3. Length scales and centers of selected kernel basis functions in a random repetition for three
different m values in Scenario 5.

Tables 1–5 show the results. The results for the first five methods are from [21].
Of 15 cases, the proposed BSFDA exhibits the highest accuracy in 12. In the other
three cases, the accuracy of BSFDA is comparable to the best result and is always above
0.950. BSFDAFast demonstrates performance comparable to that of BSFDA when applied to
medium-density and dense datasets with significantly higher efficiency, which we detail in
Figure 4. However, its efficacy diminishes with sparse data. This limitation arises because
the parameter ς can bias model estimation in scenarios with insufficient data evidence,
leading to an underestimation of the signal variance. Consequently, BSFDAFast tends to un-
derestimate the number of components, particularly those capturing nuanced variations, in
the presence of sparse observations. Nonetheless, with adequate data, BSFDAFast achieves
performance on par with that of the original model.

Table 1. Proportion of accurate estimations for Scenario 1 (r = 3).

Ni AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 0.000 0.580 0.380 0.410 0.735 0.650 0.880 0.645 0.995 0.015

10 0.000 0.980 0.670 0.955 0.985 0.880 0.920 0.645 1.000 0.910

50 0.000 1.000 0.830 1.000 1.000 1.000 1.000 0.890 0.980 0.945

Table 2. Proportion of accurate estimations for Scenario 2 (r = 3).

Ni AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 0.005 0.630 0.245 0.375 0.605 0.570 0.620 0.475 1.000 0.040

10 0.000 0.710 0.665 0.570 0.805 0.825 0.850 0.640 1.000 0.995

50 0.000 0.630 0.795 0.955 0.945 1.000 1.000 0.950 1.000 0.950

Table 3. Proportion of accurate estimations for Scenario 3 (r = 3).

Ni AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 0.005 0.720 0.325 0.640 0.590 0.320 0.400 0.450 0.995 0.945

10 0.000 0.580 0.770 0.965 0.665 0.740 0.755 0.440 0.995 1.000

50 0.000 1.000 0.775 1.000 1.000 1.000 1.000 0.765 0.980 0.920
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Table 4. Proportion of accurate estimations for Scenario 4 (r = 3).

Ni AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 0.015 0.710 0.410 0.640 0.560 0.515 0.575 0.370 1.000 0.975

10 0.000 0.830 0.775 0.920 0.900 0.750 0.760 0.350 0.995 0.990

50 0.000 0.945 0.835 1.000 1.000 1.000 1.000 0.730 0.950 0.935

Table 5. Proportion of accurate estimations for Scenario 5 (r = 6).

Ni AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 0.705 0.470 0.090 0.070 0.545 0.425 0.410 0.855 0.925 0.160

10 0.065 0.570 0.525 0.775 0.705 0.575 0.575 0.500 1.000 0.930

50 0.000 0.260 0.590 0.980 0.965 0.870 0.770 0.695 0.995 0.925

5.1.1. Mean Squared Error in Covariance Operator

The mean squared error across Xgrid, a grid of 1000 index points,

|| cov(Xgrid, Xgrid)− ˆcov(Xgrid, Xgrid)||2F
1000× 1000

,

where || · ||F is the Frobenius norm, measures the accuracy of the estimated covariance.
The quadratic measure of the error with the Frobenius norm for covariance estimators
has been used by [41]. The methods compared include fpca of [13], pace of [11] with the
AIC and BIC, and refund-sc of [12]. Only cases in Scenario 5 are used because of the time
constraints (e.g., refund-sc takes 6 h for 20 repetitions with 50 points in Scenario 5). As the
most challenging, Scenario 5 should provide the most compelling comparison. The results
in Table 6 demonstrate that the proposed method is comparable to the best work in terms
of the estimated covariance accuracy. Specifically, dense sampling becomes prohibitive
for refund-sc. The results highlight the benefit of continuous formulations, as seen in both
fpca and the proposed method, over the grid-based optimization in conventional methods.
BSFDAFast again performs comparably well when the data are adequate.

5.1.2. Multidimensional Functional Data Simulation

A simulation experiment with a 4D index set reveals the proposed method’s advan-
tages for high-dimensional data, where the gridding strategies of previous methods are
impractical. The settings are as follows, with a length scale ls = 0.33:

Zi ∼ N (0, I) ∈ R1×3 (40)

ϕ0(x) = (πl2
s )
−2 exp

(
−1

2

∥∥∥∥ x− [0.5, 0.5, 0.5, 0.5]
ls

∥∥∥∥2

2

)
(41)

ϕ1(x) = (πl2
s )
−2 exp

(
−1

2

∥∥∥∥ x− [0.4, 0.4, 0.4, 0.4]
ls

∥∥∥∥2

2

)
(42)

ϕ2(x) = (πl2
s )
−2 exp

(
−1

2

∥∥∥∥ x− [0.6, 0.6, 0.6, 0.6]
ls

∥∥∥∥2

2

)
(43)

yi(x) = Zi0 ∗
√

0.6 ∗ (ϕ0(x)− ϕ1(x)) + Zi1 ∗
√

0.3 ∗ ϕ1(x) + Zi2 ∗
√

0.4 ∗ ϕ2(x) (44)
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Table 6. Mean squared error of covariance ErrorCovFunc for Scenario 5 .

Ni AIC2022
PACE BIC2022

PACE fpca refund.sc BSFDA BSFDAFast

5 12.373 ± 4.026 12.377 ± 4.031 5.192 ± 6.166 8.833 ± 4.730 5.814 ± 3.535 10.292 ± 12.717

10 10.391 ± 2.521 10.391 ± 2.521 2.098 ± 1.425 5.314 ± 3.501 2.068 ± 1.427 2.656 ± 1.712

50 9.054 ± 1.683 9.054 ± 1.683 1.642 ± 1.240 N/A 1.638 ± 1.247 1.770 ± 1.275

The observations include additive noise with a sigma of 4.472 × 10−1. The cross-
validation selects a length scale of 0.405. The estimated noise sigma is 4.637 × 10−1. The
proposed method correctly estimates the number of principal components as three and
selects 31 basis functions. As shown in Figure 5, the eigenfunctions are correctly estimated.
In addition, the estimated mean function is zero, which is accurate.

, , ,

, , ,

Figure 4. Convergence plots for Scenario 5 in Yehua and the 4D simulation. The upper row displays
the covariance error against time, and the lower row illustrates the difference between the estimated
and true numbers of components.

Next, we present a convergence comparison between BSFDA and BSFDAFast under
four schedules for the coefficient noise ςk. Specifically, we compare the default diminishing
schedule from 10−2 to 10−5 with three fixed settings: 10−2, 10−3, and 10−5. We evaluate the
covariance error and the discrepancy between the estimated/true dimensionality in one
replicate of each sample density in Scenario 5 and the 4D simulation. For the 4D case, we
adopt a default initial ςk of 10−3. As illustrated in Figure 4, BSFDAFast achieves comparable
accuracy to BSFDA while converging significantly faster than BSFDA in terms of both
covariance errors and component estimation for medium and densely sampled data. In
the 4D case, BSFDAFast converges in covariance estimation after approximately 10,000 s
and in dimensionality after around 4000 s, compared to roughly 100,000 s and 13,000 s,
respectively, for BSFDA. However, for sparse data, BSFDAFast exhibits reduced estimation
accuracy and underestimates the number of components by one. A similar decline in
accuracy is observed in the 4D simulation when data sparsity is high. This limitation arises
because the introduction of coefficient noise ς biases the model toward eliminating signals
that are deemed insignificant. Moreover, when comparing the three fixed-ςk variants of
the fast algorithm, a clear trade-off emerges: a smaller ςk reduces the overall error but
slows down the optimization due to increased dependency among variables. These results
collectively demonstrate the effectiveness of our chosen ςk schedule in BSFDAFast, as it
balances both efficiency and accuracy.
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Figure 5. Cross-sectional visualization of eigenfunctions (eigenvalues) of the 4D simulation.

5.2. Results on Public Datasets

The proposed method’s practicality was validated with two application datasets, CD4
and wind speed measurements.

5.2.1. CD4

CD4 data, a classical form of functional data, have received attention in [1,11,13].
CD4 cell counts gauge the immune system’s response to human immunodeficiency virus
(HIV) infection, which leads to a progressive reduction in CD4 cell counts. The Multi-
center AIDS Cohort Study (MACS) [42] provided the CD4 data. This dataset consists of
CD4 percentages from 283 male human subjects that were HIV-positive, each with 1 to
14 repeated measurements over time in years. Subjects were scheduled for reevaluation at
least semiannually. However, missed visits caused the sparse and uneven distribution of
measurements. The proposed method used five length scales selected from cross-validation
and k-means clustering. Finally, the model selected nine basis functions. Figure 6 displays
the estimated mean function, eigenfunctions, and curves of the observations. The mean
function reflects the overall decreasing tendency with the progression of the disease. The
eigenfunctions are obtained by applying the singular value decomposition of the covariance
operator that is discretized (for visualization purposes only) with a grid of 50 evenly spaced
points over the whole timeline. The first eigenfunction is relatively flat and mainly captures
the subject-specific average magnitude of the CD4 counts, consistent with the findings
of [1,11,13]. The second eigenfunction captures the simple linear trend of the variations, as
described in [13]. The third eigenfunction captures the piece-wise linear time trend with a
breakpoint near 2.5 years from the baseline. Refs. [1,11] found similar eigenfunctions.

5.2.2. Wind Speed

The wind speed data, collected from 110 locations across Utah’s Salt Lake Valley,
range between 11 and 1440 measurements. The proposed method leverages 10 length
scales selected from cross-validation and k-means clustering. Figure 7 illustrates the
estimated mean function, curves of the observations, eigenfunctions, and covariance.
The horizontal axis represents the seconds starting from 12:00 AM Greenwich Mean Time
(GMT) on 15 June 2023, which corresponds to 6:00 PM in Salt Lake City. In Figure 7a, the
estimated mean function depicts two pronounced peaks observed approximately at 8:00 PM
and 6:00 AM, as well as two troughs around 12:00 AM and 12:00 PM. This pattern aligns with
the diurnal cycle, particularly highlighting the thermal activity associated with sunset and
sunrise. The peaks during sunset and sunrise are due to the interplay of topographical features,
which result in specific breezes, such as the land breeze near the Great Salt Lake and the
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distinct mountain and valley breezes. The troughs, on the other hand, reflect moments when
the atmosphere is at its most stable, with minimal thermal activity disrupting wind patterns.
The complexity of the data is distilled and represented using 12 descriptors with 17 basis
functions. As Figure 7b shows, the primary eigenfunction is relatively level, indicating that
the most significant variation is the location-specific average magnitude. Its profile echoes the
influence of sunrise and sunset observed in the mean function, with elevations around 7:00 PM
and 5:00 AM and subdued patterns during other times, indicative of similar atmospheric
stability. The estimated covariance in Figure 7c highlights variance peaks around 8 PM and
5 AM, as well as a strong correlation between these periods. This underscores the effects of
location-specific topographic factors on the wind speed.
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Figure 6. Outcomes from the proposed method applied to MACS CD4 datasets. (a) Estimated curves
for a random selection of nine sampled functions and the mean function. (b) Estimated eigenfunctions
(eigenvalues).

5.2.3. Modeling Large-Scale, Dynamic, Geospatial Data

Here, we demonstrate the scalability regarding both the size of the measurements and
the dimensionality of our framework. For this, we apply it to the ARGO dataset, which
consists of ocean temperature measurements from more than 4000 locations, at multiple
depths and time points [37]. ARGO is a nearly global observing system for the ocean
temperature, salinity, and other key variables via autonomous profiling floats. As of 2019,
ARGO has generated over 338 gigabytes of data from 15,231 floats [37]. We focused on
high-quality (“research” mode option in the database API) data from 1998 to 2024 for depths
between 0 and 200 m in the open-access snapshot of Argo GDAC of 9 November 2024 [43].
The number of measurement points per year varies widely—from 38,931 to over 11 million,
with 127 million in total. Figure 8 illustrates a global map of the sea surface temperature
measurements from February 2021, highlighting the dataset’s extensive spatial coverage.
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Figure 7. Outcomes from the proposed method applied to a wind speed dataset. (a) Estimated curves
for a random selection of 9 sampled functions (denoted by different colors) and the mean function.
(b) Estimated eigenfunctions (eigenvalues) denoted as EF. (c) Estimated covariance.
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Figure 8. Temperature measurements in February 2021 near the sea surface in the ARGO dataset.

In our modeling, each year’s data are treated as a single underlying function of four
variables: latitude, longitude (on the spherical Earth), depth, and intra-annual time (mod-
eled as a periodic variable). Note that the spatial data lie on a sphere and the time is a
circle, assuming the periodicity of the time of the year. Our approach models these mea-
surements holistically—without resorting to moving windows or submodeling—thereby
preserving the continuous nature of the data and enabling the extraction of meaningful
global, seasonal, and depth-dependent trends. Furthermore, the unique geospatial and
temporal structure of the ARGO data, with spatial coordinates on a sphere and time ex-
hibiting periodicity, necessitates specialized modeling techniques. Given that our model
is 4D, the 4D kernel is defined as a product of the following kernels, following the design
strategy for climatological data in [10]. The geospatial kernel on the sphere is a radial
basis function (RBF) on geodesic distances. To ensure periodicity, the temporal kernel is an

Exp-Sine-Squared k(x, x′) = exp
(
− 2 sin2(π|x−x′ |)

ls

)
, where ls is the length scale. For depth,

we use a Gaussian kernel.
The numeric data (excluding metadata) as input to the model were approximately

4 GB. For length scale selection, we used Gaussian process regression on a small subset of
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2000 randomly selected data in 2016 (medium size of measurements) for a cross-validated
RMSE, which we optimized with a grid search. The specific length scales were set as
follows: geodesic length scale of 2 × 103 km, depth length scale of 70 m, time length
scale of 3, and periodicity of 1. For evaluation, we held out 10% of the depth profiles (a
single round trip of a buoy from the surface to a depth at the same coordinate) from each
year as testing data, following [44]. The total training set contained roughly 114 million
points. Because the sample spacing was typically small relative to the selected length scales,
we applied agglomerative clustering to 10,000 randomly chosen index points, reducing
them to 2000 candidate basis functions. These candidate basis functions—precomputed for
efficiency—took roughly 1.7 TB of memory. Computations were performed with 24 threads
on a server equipped with 192 Intel® Xeon® Platinum 8360H CPUs @ 3.00 GHz and
3 TB RAM. Initialization was conducted using the modified RVM for 200 iterations for
initial basis functions, using stochastic optimization with a 1000 batch size per year. Then,
BSFDAFast was executed for 10,000 iterations, where the heuristic to include new bases also
used a 1000 batch size per year. With these computational strategies and heuristics, the
entire modeling process was completed in 15 .

The proposed approach selected 163 effective basis functions and condensed them
into 16 principle components. The final model occupied merely 50 MB of storage. The
interpolation yielded a root mean square error (RMSE) of 1.95 and an R2 of 94.2% on
the testing data, reflecting a reasonable balance between global dimension reduction and
fidelity. The estimated white noise level was also 1.95, indicating that the training data
adequately covered the underlying variability in the ARGO observations, and the final
model was reasonably generalizable.

Figure 9 presents 2D visualizations of geospatial interpolations at three depths (in
decibars, roughly meters) and a specific time (29 May 2021) around 1° S and 30° W, each
with three views. We have chosen one measurement as the central point, denoted by the
red circle, and selected a narrow window (±1 decibar, ±1 day) around this center. The cyan
and fuchsia circles represent training and testing data, respectively, within this window.
Their sizes indicate the distance along the unplotted dimensions (depth and time here),
reflecting variations in these dimensions. The visualizations show that the temperatures
are warmer near the equator and decrease with depth. The match between the interpolated
values and actual measurements demonstrates consistency in capturing broad spatial and
vertical variations.

Figure 10 complements this by illustrating interpolation in the depth–time slices
while holding the geospatial coordinates fixed, focusing on mixed layer characteristics.
The “mixed layer” refers to a region of nearly uniform temperature, which is crucial in
understanding thermodynamic potential and nutrient cycling [45]. Here, the plot uses a
window of 50 km to include actual measurements, and the circle sizes denote the geodesic
distance from the chosen center.

We plot every fifth measurement vertically to reduce overlap and improve the clarity.
Figure 10a uses the same center point, 1° S and 30° W, as in Figure 9, exhibiting a shallow
mixed layer with pronounced vertical gradients. In contrast, Figure 10b adopts a center
at a higher latitude, 49° N and 29° W, where the model reveals a deeper mixed layer. The
temperature here remains relatively stable below the surface. The dominant variations are
cyclic seasonal changes, which are warmer near the surface around September. As is shown,
the vertical sequence of the center and the nearby testing sequence match the interpolation
closely. These results confirm that the mid-latitudes exhibit a stronger seasonal cycle [45]
and that BSFDAFast accurately approximates the actual measurements.
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Figure 9. Geodesic interpolation from BSFDAFast vs. actual ARGO global oceanic measurements at 1,
200, and 300 decibars, at 1° S and 30° W, on May 29. Measurements are represented by circles, with
the filling color indicating the temperature. Circle sizes show distance in depth and time from the
central point.

To our knowledge, this is the first time that the ARGO dataset has been modeled in a
full 4D principal component model, with the correct domain topology. We incorporate the
entire period of 27 years, rather than shorter spans (e.g., 2004–2008 or 2007–2016) [44,46,47].
Instead of segmenting the dataset into localized spatiotemporal windows, we process the
entire 4D domain (latitude, longitude, depth, and intra-annual time) in a single holistic
framework. Previous studies were typically tailored to ARGO datasets and handled each
depth, month, or spatial region separately, restricting the correlation estimates to limited
windows (e.g., 1000 km and three months) while excluding data with large offsets [44,47].
In addition, they required repeated on-demand model fitting, which can hinder scalability.
Our kernel-based framework, by contrast, is broadly applicable to general functional data,
only requiring kernel definitions for the domain. Although global dimension reduction
inevitably introduces some residual noise, the kernel-based design is extensible to finer
spacing or multiple length scales if higher precision is needed. Furthermore, inference with
our model is simply the evaluation of the active 163 active basis functions weighted by the
16 principal components. Interpolation over a 300 × 300 grid only takes about two seconds.
By contrast, previous methods with Gaussian process regression require a weighted sum of
all measured data within a certain window. The parametric representations also facilitate
straightforward derivative and integration calculations, which are essential in investigating
ocean temperature stratification and heat content [44]. In summary, the ARGO dataset
provides an ideal testbed for our method, as it captures the dynamic behavior of high-
dimensional geospatial data in a continuous framework. A more comprehensive study
of ARGO was beyond this study’s scope. Nonetheless, the results here confirm the clear
advantages of the proposed method for large-scale, high-dimensional functional data.
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Figure 10. Depth–time interpolation from BSFDAFast vs. actual ARGO global oceanic measurements
at two sites focusing on mixed layer behavior. Measurements are represented by circles (green for
training and pink for testing data), with the filling color indicating the temperature. Circle sizes show
distance in geodesic space from the central point (denoted as red circles). (a) Shallow mixed layers at
1° S and 30° W. (b) Deep mixed layers at 49° N and 29° W.

6. Discussion and Conclusions
This paper proposes BSFDA, a novel framework for functional data analysis with

irregular sampling, integrating model selection and scalability in one unique, coherent,
and effective algorithm. Our extensive empirical studies, including both simulations and
real-world applications, show that BSFDA offers superior covariance estimation accuracy
with remarkable efficiency.

In terms of accuracy, our method excels in model selection, consistently achieving top-
tier performance. The accuracy of the covariance operator estimation also rivals that of the
best existing methodologies in the field. This shows that our approach can not only handle
large and complex datasets but also ensure high accuracy and precision in the results that it
produces. Our method’s superiority compared to existing techniques is expected owing to
the inherent iterative nature of data smoothing and covariance estimation in our approach.

In terms of scalability, our method demonstrates linear growth in time complexity
with the size of the dataset, and, impressively, the computations are executed in a small,
K(a)-dimensional subspace. This property ensures that, as the datasets grow larger and
more complex, the performance of our model remains robust and efficient. Additionally,
we introduce a faster variant, BSFDAFast, which performs similarly to BSFDA on medium
and dense datasets with a significantly reduced computational cost. This leap in efficiency
enabled the full 4D functional modeling, for the first time, of a large-scale oceanic tem-
perature dataset across 27 years (ARGO) [37]. Although BSFDAFast can underestimate the
signal strength under very sparse sampling, the vanilla BSFDA effectively complements
and alleviates this issue.

Although the proposed framework proves effective in various real-world scenarios,
it relies on the specific scheduling of coefficient noise levels. This schedule transitions
from a faster, more biased model to a slower, less biased one, balancing the convergence
speed against the estimation accuracy. Whereas empirical tests validate its advantages,
there remain exploratory directions for further enhancement. For instance, the proper
incorporation of structured variational inference or injection of artificial, compensatory
noise in the observations could enable fast inference with reduced bias at the same time.
However, it is necessary to address the increased complexity in optimization and variance
in the estimation. Additionally, variational inference based on mean field approximations
may underestimate the posterior variance, which is acceptable in many tasks [38] but leaves
an open question when the independence assumptions are severely violated. Moreover,
variational inference prioritizes computational efficiency over strict theoretical optimal-
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ity [23,38], and the inherent infinite-dimensionality of fPCA further complicates any formal
asymptotic analysis, even though our empirical studies demonstrate decreasing errors as
the sampling density increases.

Looking ahead, it would be interesting to explore how extensions of regular PCA, such
as simplified PCA and robust PCA [25], can be integrated within our proposed framework.
Domains such as finance, in particular, include large-time-series datasets that often contain more
outliers. These extensions will enhance the flexibility and robustness of our method, further
improving its adaptability to various data conditions. In addition, we see potential in examining
the extensions of functional PCA, such as time warping, dynamics, and manifold learning [1].
In particular, shape analysis emerges as a direct application of time warping. Such extensions
would push the boundaries of what our proposed method could achieve, potentially enabling it
to handle an even wider array of data structures and complexities.

In conclusion, our research findings affirm the proposed framework’s effectiveness and
adaptability in advanced functional data analysis. Nonetheless, the method’s potential remains
broad, and future work promises to widen its scope and refine its performance. By unifying
sparse Bayesian learning, kernel-based expansions, and efficient variational inference, BSFDA
offers a powerful foundation for large-scale, high-dimensional FDA challenges.
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Appendix A. System of Notation
Table A1 summarizes the notation used in Sections 2 and 4, providing a reference for

the derivations. All vectors in the table are represented as row vectors.

Table A1. Symbol definitions in formulation.

Symbol Meaning

yi i-th sample function
x ∈ RM One M-dimension index
M Dimension of the index set
K Number of all basis functions
J Number of all components
P Number of sample functions
Ni Number of measurements of the i-th sample function
Xi ∈ RNi×M Index set of the i-th sample function
Yi ∈ RNi Measurement of the i-th sample function
Zi ∈ RJ Component scores of the i-th sample function
Z̄ ∈ RK Coefficients of basis functions in the mean function
Ei ∈ RNi Measurement errors of the i-th sample function
W ∈ RJ×K Weighing matrix of basis functions in the eigenfunctions
Wj· ∈ RK, WT

·k ∈ RJ j-th row and k-th column of W
K Kernel function
αj Scale parameter of Wj· (j-th component)
βk Scale parameter of W·k (k-th basis function)

https://rdrr.io/cran/timereg/man/cd4.html
https://rdrr.io/cran/timereg/man/cd4.html
https://www.seanoe.org/data/00311/42182/
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Table A1. Cont.

Symbol Meaning

σ The standard deviation of measurement errors
η The communal scale parameter of Z̄
{ϕk : RM → R}K

k=1 The union of all the centered kernel functions
Φikj = ϕk(Xij·) ∈ R The value of centered kernel function ϕk at Xij·
θi ∈ RK The coefficients of the i-th sample function
ζi ∈ RK The coefficient noise of the i-th sample function
ςk The scale parameter of the k-th coefficient noise

Table A2 summarizes the notation used in Section 3.

Table A2. Notation used in formulating the optimization.

Symbol Meaning

Θ All latent variables
Q· The surrogate posterior distribution of variable ·
Q/· The joint surrogate posterior distribution of all variables except ·
µ·, Σ· The mean and covariance of · in Q, e.g., µvec (W) ∈ RJK , Σvec (W) ∈ RJK×JK

a·, b· The shape and rate parameters of Q·, e.g., aβk
, bβk

EQ[·] The expectation of variable · over density Q
L The lower bound of surrogate posterior Q with K basis functions
Ψi The Gram matrix of the kernel functions for the i-th sample function, ΦiΦT

i
K(a), K(e) The number of active/effective basis functions
J(a), J(e) The number of active/effective components
Pi The log likelihood of Yi in a multisample relevance vector machine
Ci The covariance of Yi in a multisample relevance vector machine
Si The posterior covariance of Zi in a multisample relevance vector machine
PZi The log likelihood of (Yi, Zi) in a multisample relevance vector machine
ϵ→ 0 The infinitesimal number
τ· The threshold/tolerance of ·

Appendix B. Variational Update Formulae
As defined in Section 2, we consider the following priors and conditional distributions:

Pr[Y|Z, W, Z̄, σ] = ∏
i
N
(

Yi|(ZiW + Z̄)Φi, σ2 I
)

(A1)

Pr[Z] = ∏
i
N (Zi|0, I) (A2)

Pr[W|α, β] = ∏
j,k
N (Wjk|0, α−1

j β−1
k ) (A3)

Pr[Z̄] = ∏
k
N (Z̄k|0, η−1β−1

k ) (A4)

Pr[σ]Pr[α]Pr[β]Pr[η] = Γ(σ−2|a0, b0)
J

∏
j=1

Γ(αj|a0, b0)
K

∏
k=1

Γ(βk|a0, b0)Γ(η|a0, b0) (A5)

For brevity, the joint posterior is shown with the vague Gamma prior parameters a0,
b0, and the observation index X omitted:

Pr[Z, W, Z̄, σ, α, β, η|X, Y, a0, b0] = Pr[Z, W, Z̄, σ, α, β, η|Y]
= Pr[Z, W, Z̄, σ, α, β, η, Y](Pr[Y])−1

∝ Pr[Z, W, Z̄, σ, α, β, η, Y]

= Pr[Y|Z, W, Z̄, σ]Pr[Z]Pr[W|α, β]Pr[Z̄|η, β]Pr[σ]Pr[α]Pr[β]Pr[η] (A6)
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Derivation of Equations (14) and (15)
According to Equation (13) and the posterior in Equation (A6), the update formulae

for the surrogate distribution Qαj are

Qαj ←
exp (EQ/αj

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/αj

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dαj

∝ exp (EQ/αj
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])]) ∝ exp (EQ/αj

[ln (Pr[W|α, β]Pr[α])])

∝ exp

(
EQ/αj

[
−1

2

K

∑
k=1

(
− ln (αj) + W2

jkαjβk

)
+
(
(a0 − 1) ln αj − b0αj

)])

∝ exp

((
K
2
+ a0 − 1

)
ln (αj)− αj

(
1
2

K

∑
k=1

EQ/αj

[(
W2

jkβk

)]
+ b0

))
(A7)

where we have omitted terms of which αj is conditionally independent. By definition,

Qαj = exp
(

ln(Γ(αj|aαj , bαj))
)
= exp

ln

 b
aαj
αj

Γ(aαj)
α

aαj−1

j exp (−bαj αj)


∝ exp

(
(aαj − 1) ln αj − bαj αj

)
(A8)

By equating Equations (A7) and (A8), the updates for Qαj are

aαj ←
K
2
+ a0 (A9)

bαj ←
1
2

K

∑
k=1

EQ/αj

[(
W2

jkβk

)]
+ b0 (A10)

Derivation of Equations (16) and (17)
According to Equation (13) and the posterior Equation (A6), the update formulae for

Qη are

Qη ←
exp (EQ/η

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/η

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dη

∝ exp (EQ/η [ln (Pr[Z, W, Z̄, σ, α, β, η, Y])]) ∝ exp (EQ/η [ln (Pr[Z̄|η, β]Pr[η])])

∝ exp

(
EQ/η

[
−1

2

K

∑
k=1

(
− ln (η) + Z̄2

k ηβk

)
+ ((a0 − 1) ln η − b0η)

])

∝ exp

((
K
2
+ a0 − 1

)
ln (η)− η

(
1
2

K

∑
k=1

EQ/η

[(
Z̄2

k βk

)]
+ b0

))
(A11)

where we have omitted terms of which η is conditionally independent. By definition,

Qη = exp
(
ln(Γ(η|aη , bη))

)
= exp

(
ln
(

bη
aη

Γ(aη)
ηaη−1 exp (−bηη)

))
∝ exp

(
(aη − 1) ln η − bηη

)
(A12)

By equating Equations (A11) and (A12), the updates for Qη are

aη ←
K
2
+ a0 (A13)

bη ←
1
2

K

∑
k=1

EQ/η

[(
Z̄2

k βk

)]
+ b0 (A14)
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Derivation of Equations (18) and (19)
According to Equation (13) and the posterior Equation (A6), the update formulae for

Qβk are

Qβk ←
exp (EQ/βk

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/βk

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dβk

∝ exp (EQ/βk
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])

∝ exp (EQ/βk
[ln (Pr[W·k |α, βk ]Pr[Z̄k |η, βk ]Pr[β])])

∝ exp

(
EQ/βk

[
− 1

2

J

∑
j=1

(
− ln(αj βk) + W2

jkαjβk

)

− 1
2

(
− ln(ηβk) + Z̄2

k ηβk

)
+ (a0 − 1) ln βk − b0βk

])

∝ exp

((
J + 1

2
+ a0 − 1

)
ln (βk)−

βk

(
1
2

(
EQ/βk

[(
Z̄2

k η
)]

+
J

∑
j=1

EQ/βk

[(
W2

jkαj

)])
+ b0

))
(A15)

where we have omitted terms of which βk is conditionally independent. By definition,

Qβk = exp
(
ln(Γ(βk|aβk , bβk ))

)
= exp

ln

 b
aβk
βk

Γ(aβk )
η

aβk
−1 exp (−bβk η)


∝ exp

(
(aβk − 1) ln η − bβk η

)
(A16)

By equating Equations (A15) and (A16), the updates for Qη are

aβk ←
J + 1

2
+ a0 (A17)

bβk ←
1
2

(
EQ/βk

[(
Z̄2

k η
)]

+
J

∑
j=1

EQ/βk

[(
W2

jkαj

)])
+ b0 (A18)

Derivation of Equations (20) and (21)
According to Equations (13) and the posterior Equation (A6), the update formulae for

QZ̄ are

QZ̄ ←
exp (EQ/Z̄

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/Z̄

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dZ̄

∝ exp (EQ/Z̄
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])

∝ exp (EQ/Z̄
[ln (Pr[Y|Z, W, Z̄, σ]Pr[Z̄|η, β])])

∝ exp

(
EQ/Z̄

[
− 1

2

P

∑
i=1

(
Ni ln(2πσ2) + σ−2||Y− (ZiW + Z̄)Φi||22

)
−

1
2

K

∑
k=1

(
− ln (2πηβk) + Z̄2

k ηβk

)])

∝ exp

(
− 1

2

(
Z̄EQ/Z̄

[
σ−2

P

∑
i=1

Ψi + η diag(β)

]
Z̄T−

2EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiW]Φi)ΦT

i Z̄T

))
(A19)
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where we have omitted terms of which Z̄ is conditionally independent. By definition,

QZ̄ = exp(ln(N (Z̄|µZ̄, ΣZ̄))) = exp
(
−1

2

(
ln |2πΣZ̄|+ (Z̄− µZ̄)ΣZ̄

−1(Z̄− µZ̄)
T
))

∝ exp
(
−1

2

(
Z̄ΣZ̄

−1Z̄T − 2µZ̄ΣZ̄
−1Z̄T

))
(A20)

By equating Equations (A19) and (A20), the updates for QZ̄ are

ΣZ̄ ←
(
EQ/Z̄

[
σ−2

P

∑
i=1

(Ψi) + η diag(β)

])−1

(A21)

µZ̄ ←
(
EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiW]Φi)ΦT

i

)
ΣZ̄ (A22)

Derivation of Equations (22) and (23)
According to Equation (13) and the posterior Equation (A6), the update formulae for

QW are

QW ←
exp (EQ/W

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/W

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dW

∝ exp (EQ/W
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])

∝ exp (EQ/W
[ln (Pr[Y|Z, W, Z̄, σ]Pr[W|α, β])])

∝ exp

(
EQ/W

[
−1

2

P

∑
i=1

(
Ni ln(2πσ2) + σ−2||Y− (ZiW + Z̄)Φi||22

)])

exp

(
EQ/W

[
− 1

2

(
ln |2π(diag(β)⊗ diag(α))−1|+

vec(W)T(diag(β)⊗ diag(α)) vec(W)

)])

∝ exp

(
EQ/W

[
−1

2

(
σ−2

P

∑
i=1

(
−2YiΦT

i WTZT
i + 2ZiWΨiZ̄T + ZiWΨiWTZT

i

))])

exp
(
EQ/W

[
−1

2

(
vec(W)T(diag(β)⊗ diag(α)) vec(W)

)])
∝ exp

(
−1

2
EQ/W

[
−2σ−2

P

∑
i=1

vec
((

Φi(ΦT
i Z̄T −YT

i )Zi

)T
)T
]

vec(W)

)

exp

(
−1

2
vec(W)TEQ/W

[
σ−2

P

∑
i=1

(
Ψ⊗ (ZT

i Zi)
)
+ (diag(β)⊗ diag(α))

]
vec(W)

)
(A23)

where we have omitted terms of which W is conditionally independent. By definition,

QW = exp
(

ln(N (vec(W)|µvec (W), Σvec (W)))
)

= exp

(
− 1

2

(
ln |2πΣvec (W)|+

(vec(W)T − µvec (W))Σvec (W)
−1(vec(W)T − µvec (W))

T

))

∝ exp
(
−1

2

(
vec(W)TΣvec (W)

−1 vec(W)− 2µvec (W)Σvec (W)
−1 vec(W)

))
(A24)
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By equating Equations (A23) and (A24), the updates for QW are

Σvec (W) ← EQ/W

[
σ−2

P

∑
i=1

(
Ψ⊗ (ZT

i Zi)
)
+ (diag(β)⊗ diag(α))

]−1

µvec (W) ← EQ/W

[
−σ−2

P

∑
i=1

vec
((

Φi(ΦT
i Z̄T −YT

i )Zi

)T
)T
]

Σvec (W) (A25)

Derivation of Equations (24)–(26)
According to Equation (13) and the posterior Equation (A6), the update formulae for

QZi are

QZi ←
exp (EQ/Zi

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/Zi

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dZi

∝ exp (EQ/Zi
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])

∝ exp (EQ/Zi
[ln (Pr[Yi |Zi , W, Z̄, σ]Pr[Zi ])])

∝ exp
(
EQ/Zi

[
− 1

2

(
Ni ln(2πσ2) + σ−2||Y− (ZiW + Z̄)Φi ||22 + J ln(2π) + ZiZT

i

)])
∝ exp

(
− 1

2

(
ZiEQ/Zi

[
σ−2WΨiWT + I

]
ZT

i − 2EQ/Zi

[
σ−2(Yi − ZiΦi)ΦT

i WT
]

ZT
i

))
(A26)

where we have omitted terms of which Zi is conditionally independent. By definition,

QZi = exp
(
ln(N (Zi|µZi , ΣZi ))

)
= exp

(
−1

2

(
ln |2πΣZi |+ (Zi − µZi )ΣZi

−1(Zi − µZi )
T
))

∝ exp
(
−1

2

(
ZiΣZi

−1ZT
i − 2µZi ΣZi

−1ZT
i

))
(A27)

By equating Equations (A26) and (A27), the updates for QZ̄ are

ΣZi ←
(
EQ/Zi

[σ−2WΨiWT + I]
)−1

(A28)

µZi ← EQ/Zi
[σ−2(Yi − Z̄Φi)ΦT

i WT ]ΣZi (A29)

Derivation of Equations (27)–(29)
According to Equation (13) and the posterior Equation (A6), the update formulae for

Qσ are

Qσ ←
exp (EQ/σ

[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])∫
exp

(
EQ/σ

[ln(Pr[Z, W, Z̄, σ, α, β, η, Y])]
)

dσ

∝ exp (EQ/σ
[ln (Pr[Z, W, Z̄, σ, α, β, η, Y])])

∝ exp (EQ/σ
[ln (Pr[Yi |Zi , W, Z̄, σ]Pr[σ])])

∝ exp

(
EQ/σ

[
− 1

2

P

∑
i=1

(
Ni ln(2πσ2) + σ−2||Y− (ZiW + Z̄)Φi ||22

)])
exp

(
EQ/σ

[(
(a0 − 1) ln σ−2 − b0σ−2

)])
∝ exp

((
a0 +

1
2 ∑

i
Ni − 1

)
ln (σ−2)−

σ−2

(
b0 +

1
2
EQ/σ

[∑
i
||Yi − (ZiW + Z̄)Φi ||22]

))
(A30)
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where we have omitted terms of which σ is conditionally independent. By definition,

Qσ = exp
(

ln(Γ(σ−2|aσ, bσ))
)
= exp

(
ln
(

bσ
aσ

Γ(aσ)
(σ−2)

aσ−1
exp (−bσσ−2)

))
∝ exp

(
(aσ − 1) ln σ−2 − bσσ−2

)
(A31)

By equating Equations (A30) and (A31), the updates for Qσ are

aσ ← a0 +
1
2 ∑

i
Ni (A32)

bσ ← b0 +
1
2
EQ/σ

[
∑

i
||Yi − (ZiW + Z̄)Φi||22

]
(A33)

Appendix C. Scalable Update for BSFDA
Appendix C.1. Implicit Factorization

We initialize the inactive precision parameters as

EQαj
[αj] = ϵ−1, ∀j > J(a) (A34)

EQβk
[βk] = ϵ−1, ∀k > K(a) (A35)

Under these settings and subsequent variational updates (using Equations (A34) and (A35)),
in the limit as ϵ→ 0, the surrogate distributions satisfy

µZi B
= 0, ΣZi B = ϵI(J−J(a)), ΣZi [A,B] =

(
ΣZi [B,A]

)T
= 0 (A36)

µZ̄B = 0, ΣZ̄ [B,B] = ϵI(K−K(a)), ΣZ̄ [A,B] = ΣZ̄
T
[B,A] = 0 (A37)

µvec (W)B
= 0, µvec (W)C

= 0, µvec (W)D
= 0, Σvec (W)[B,B]

= ϵI(K
(a) J−K(a) J(a)),

Σvec (W)[C,C]
= ϵI(J(a)K−J(a)K(a)), Σvec (W)[D,D]

= ϵI(JK+J(a)K(a)−JK(a)−J(a)K),

Σvec (W)[x,y]
= 0, ∀(x, y) /∈ {(A, A), (B, B), (C, C), (D, D)} (A38)

For convenience, we initialize Q with the above properties.

Lemma A1. If Qαj [αj] = ϵ, ∀j ≥ J(a) and Qβk [βk] = ϵ, ∀k ≥ K(a), then the variational
distribution over W factorizes as QW = QWAQWBQWCQWD in the limit as ϵ→ 0.

Proof. We express the distribution as

QW = N (vec(W)|µvec (W), Σvec (W))

= exp
(
−1

2

(
ln |2πΣvec (W)|+ µvec (W)Σvec (W)

−1µvec (W)
T
))

.

The factorization holds if the off-diagonal block matrices in Σvec (W), e.g., Σ[WA ,WB ]
, are

all zero, i.e., the blocks are mutually independent. Initially, this is ensured by the definition
for the initial status in Equation (A38). Thus, we only need to show that the statement
remains true after QW is updated, i.e., after Equation (22) is applied with the inactive scale
parameters Qαj [αj] and Qβk [βk] fixed at ϵ. First, we regard Σ[WABC ]

, i.e., the covariance of
the union of WA, WB, WC after vectorization, as one block. By the block matrix inversion
formula, we obtain Σ[WABC ,WD ] ∝ ϵ2 → 0 and consequently QW = QWABCQWD . Next,
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we apply the block matrix inversion formula to Σ[WABC ]
in Equation (22) and we obtain

(Σ[WB ,WA ]
, Σ[WB ,WC ]

, Σ[WC ,WA ]
, Σ[WC ,WB ]

) ∝ ϵ→ 0, yielding the desired factorization. □

Lemma A2. If Qβk [βk] = ϵ, ∀k ≥ K(a), then the implicit factorization QZ̄ = QZ̄A
QZ̄B

holds in
the limit as ϵ→ 0.

Proof. The proof is similar to the proof for Lemma A1. BecauseQZ̄ = N (µZ̄, ΣZ̄), we need
only the off-diagonal block to be zero, i.e., ΣZ̄ [A,B] = 0. Initially, this is ensured by definition
for the initial status in Equation (A37). QZ̄ is updated by Equation (20). Applying the block
matrix inversion formula with the inactiveQβk [βk], we obtain ΣZ̄ [A,B] ∝ ϵ→ 0, establishing
the factorization. □

Lemma A3. If j ≥ J(a) or k ≥ K(a), then EQ/Zi
[Wkj′Wjk′ ] ∝ O(ϵ), ∀j′ = 1 : J, k′ = 1 : K in the

limit as ϵ→ 0.

Proof. For the initial status, apparently, the largest EQ/Zi
[Wkj′Wjk′ ] is EQ/Zi

[W2
kj′ ] = ϵ.

Because either Qαj [αj] = ϵ or Qβk [βk] = ϵ, after updates from Equations (22) and (23)
are applied, EQ/Zi

[Wkj′Wjk′ ] = Σ[Wkj′ ,Wjk′ ]
+ µvec (W)kj′

µvec (W) jk′
∝ O(ϵ) by the Woodbury

matrix identity. □

Lemma A4. If EQαj
[αj] =

aαj
bαj

= ϵ−1, ∀j ≥ J(a), then the implicit factorizationQZi = QZiAQZiB

holds in the limit as ϵ→ 0.

Proof. The proof is similar to the proof for Lemma A1. Because QZi = N (µZi , ΣZi ),
only ΣZi [A,B] = 0 is needed. Initially, this is ensured by definition for the initial status

Equation (A36). QZ is updated by Equations (24) and (25). In Equation (24), when j ≥ J(a)

or k ≥ K(a), Cijk = Tr(EQ/Zi
[WT

k·Wj·]Ψi) = ∑(j′ ,k′)

(
EQ/Zi

[Wkj′Wjk′ ](Ψi)k′ j′

)
∝ O(ϵ) → 0

applying Lemma A3. Applying the block matrix inversion formula to Equation (25),
ΣZi [AB] ∝ O(ϵ)→ 0, thus proving the implicit factorization. □

Appendix C.2. Scale Parameters

Here, we state the theorems that justify the use of updating rules for Q(a)
αj based

on L(a) to update Qαj (and, similarly, Q(a)
βk for Qβk , Q(a)

η for Qη), and it does maximize
L ultimately.

Lemma A5. ∀Wjk ∈ WB ∪WC, i.e., either (j > J(a)) or (k > K(a)), after updating QWB and

QWC by Equations (22) and (23), EQ[W2
jk] =

bαj bβk
aαj aβk

.

Proof. According to Equations (A34) and (A35), if (j > J(a)) or (k > K(a)), either EQ[αj] =

ϵ−1 or EQ[βk] = ϵ−1, respectively.
In the limit as ϵ → 0, using Equation (22) and the block matrix inversion formula,

we obtain

ΣWjk ← lim
ϵ→0

(EQ/W
[diag(β)⊗ diag(α) + σ−2 ∑

i

(
(Ψi)⊗ (ZT

i Zi)
)
]

)−1


[j+kM,j+kM]

= lim
ϵ→0

((
EQ/W

[αjβk]
)−1

+O(ϵ2)

)
=
(
EQ/W

[αjβk]
)−1

=
bαj bβk

aαj aβk

(A39)
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In the limit as ϵ→ 0 and using Equation (23),

µWjk ← lim
ϵ→0

(
− aσ

bσ
∑

i
vec
((

Φi(µZ̄Φi −Yi)
TµZi

)T
)T

Σvec (W)

)
[1,j+kM]

=

(
− aσ

bσ
∑

i
vec
((

Φi(µZ̄Φi −Yi)
TµZi

)T
)T
)(

Σvec (W)

)
·(j+kM)

∈ O(ϵ) (A40)

Equation (A40) uses the fact that elements in
(

Σvec (W)

)
·(j+kM)

are all O(ϵ) based on

the block matrix inversion formula. Thus,

lim
ϵ→0

EQ[W2
jk] = lim

ϵ→0

(
ΣWjk + (µWjk )

2
)
= lim

ϵ→0

(
ΣWjk +O(ϵ

2)
)

= lim
ϵ→0

(
bαj bβk

aαj aβk

+O(ϵ2)

)
=

bαj bβk

aαj aβk

(A41)

□

Lemma A6. ∀k > K(a), after updating QZ̄B
by Equations (20) and (21), EQ[Z̄2

k ] =
bη

aη
ϵ.

Proof. If k > K(a), EQ[βk] = ϵ−1.
Then, using Equation (20) and the block matrix inversion formula, we have

ΣZ̄kk ← lim
ϵ→0

(EQ/Z̄

[
P

∑
i=1

(
σ−2Ψi

)
+ η diag(β)

])−1


kk

= lim
ϵ→0

( P

∑
i=1

(
aσ

bσ
Ψi

)
+

aη

bη
diag(

a
b
)

)−1


kk

= lim
ϵ→0

(
bηbβk

aη aβk

+O(ϵ2)

)
=

bηbβk

aη aβk

(A42)

Using Equation (21),

µZ̄k ← lim
ϵ→0

((
EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiW]Φi)Φ

T
i

)
ΣZ̄

)
1k

= lim
ϵ→0

((
aσ

bσ

P

∑
i=1

(Y− µZi µW Φi)Φ
T
i

)
ΣZ̄

)
1k

= lim
ϵ→0

(
aσ

bσ

P

∑
i=1

(Y− µZi µW Φi)Φ
T
i

)
ΣZ̄ ·k ∈ O(ϵ) (A43)

Equation (A43) uses the fact that elements in ΣZ̄ ·k are all ∈ O(ϵ).

EQ[Z̄2
k ] = lim

ϵ→0

(
ΣZ̄kk + µZ̄

2
k

)
= lim

ϵ→0

(
ΣZ̄kk +O(ϵ

2)
)

= lim
ϵ→0

(
bηbβk

aηaβk

+O(ϵ2)

)
= lim

ϵ→0

(
bη

aη
ϵ +O(ϵ2)

)
=

bη

aη
ϵ (A44)

□

Theorem A1. ∀j ≤ J(a), updates ofQαj andQWB will converge at EQαj
[αj] = E

Q(a)
αj
[αj] given that

EQβk
[βk] = E

Q(a)
βk

[βk], ∀k ≤ K(a), a0 = b0 = 0 and the conditions in Equations (A35) and (A36)

are satisfied in the limit as ϵ→ 0.
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Proof. Assume thatQ(a)
αj has just been updated using Equations (14) and (15), i.e., ∀j ≤ J(a)

a(a)αj = a0 +
K(a)

2
(A45)

b(a)αj = b0 +
1
2

K(a)

∑
k=1

E
Q(a)

/αj

[W2
jkβk]

= b0 +
1
2

K(a)

∑
k=1

(ΣWjk + µ2
Wjk

) a(a)βk

b(a)βk

 (A46)

The updates for Qα derived from L are

bαj ← b0 +
1
2

K

∑
k=1

((
ΣWjk + µ2

Wjk

) aβk

bβk

)

= b0 +
1
2

K(a)

∑
k=1

((
ΣWjk + µ2

Wjk

) aβk

bβk

)

+
1
2

K

∑
k=K(a)+1

((
ΣWjk + µ2

Wjk

) aβk

bβk

)

= b(a)αj +
1
2

K

∑
k=K(a)+1

((
ΣWjk + µ2

Wjk

) aβk

bβk

)
(A47)

It involves Wjk, k > K(a) and therefore they need to be kept updated. Applying
Theorem A5 for Equation (A47), we can obtain

bαj ← b(a)αj +
1
2

K

∑
k=K(a)+1

((
bαj bβk

aαj aβk

)
aβk

bβk

)

= b(a)αj +
1
2
(K− K(a))

bαj

aαj

(A48)

Applying Equation (A48) in an iterative manner, we will obtain a sequence of updates
for aαj . Solving

bαj = b(a)αj +
1
2
(K− K(a))

bαj

K
2

(A49)

⇒ bαj = (1− 1
2
(K− K(a))

2
K
)−1b(a)αj =

K
K(a)

b(a)αj (A50)

Thus, we find that the sequence will converge at

bαj ←
K

K(a)
b(a)αj (A51)

As a result, EQαj
[αj] =

aαj
bαj

=
a(a)αj

b(a)αj

= E
Q(a)

αj
[αj]. □

Theorem A2. ∀k ≤ K(a), updates of Qβk and QWC will converge at EQβk
[βk] = E

Q(a)
βk

[βk] given

that EQαj
[αj] = E

Q(a)
αj
[αj],∀j ≤ J(a), a0 = b0 = 0 and the conditions in Equations (A35) and (A36)

are satisfied in the limit as ϵ→ 0.
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Proof. Assume that Q(a)
βk

has just been updated using Equations (18) and (19), i.e.,

a(a)βk
= a0 +

K(a) + 1
2

(A52)

b(a)βk
← b0 +

1
2
E
Q(a)

/βk

[Z̄2
k +

J(a)

∑
j=1

W2
jkαj]

= b0 +
1
2

(ΣZ̄kk + µZ̄
2
k

)
+

J(a)

∑
j=1

(ΣWjk + µ2
Wjk

) a(a)αj

b(a)αj

 (A53)

The update for Qβk derived from L is

bβk ← b0 +
1
2

((
ΣZ̄kk + µZ̄

2
k

)
+

J

∑
j=1

((
ΣWjk + µ2

Wjk

) aαj

bαj

))

= b0 +
1
2

(ΣZ̄kk + µZ̄
2
k

)
+

J(a)

∑
j=1

((
ΣWjk + µ2

Wjk

) aαj

bαj

)
+

1
2

 J

∑
j=J(a)+1

((
ΣWjk + µ2

Wjk

) aαj

bαj

)
= b(a)βk

+
1
2

 J

∑
j=J(a)+1

((
ΣWjk + µ2

Wjk

) aαj

bαj

) (A54)

It involves Wjk, j > J(a) and therefore they need to be kept updated. Applying
Theorem A5 for Equation (A54), we can obtain

bβk ← b(a)βk
+

1
2

J

∑
j=J(a)+1

((
bβk bαj

aβk aαj

)
aαj

bαj

)
(A55)

⇒ = b(a)βk
+

1
2
(K− K(a))

bβk

aβk

(A56)

Applying Equation (A56) in an iterative manner, we will obtain a sequence of bβk . Solving

bβk = b(a)βk
+

1
2
(K− K(a))

bβk
K+1

2
(A57)

bβk = (1− 1
2
(K− K(a))

2
K + 1

)−1b(a)βk
=

K + 1
K(a) + 1

b(a)βk
(A58)

Thus, we find that the sequence will converge at

bβk ←
K + 1

K(a) + 1
b(a)βk

(A59)

As a result, EQ[βk] =
aβk
bβk

=
a(a)βk

b(a)βk

= EQ(a) [βk]. □

Theorem A3. Updates ofQη andQZ̄B
will converge at EQη

[η] = E
Q(a)

η
[η] given that EQβk

[βk] =

E
Q(a)

βk

[βk], ∀k ≤ K(a), a0 = b0 = 0 and the conditions in Equations (A35) and (A36) are satisfied

in the limit as ϵ→ 0.
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Proof. Assume that Q(a)
η has just been updated using Equations (16) and (17), i.e.,

a(a)η ← a0 +
K(a)

2
(A60)

bη
(a) ← b0 +

1
2

K(a)

∑
k=1

EQ/η
[Z̄2

k βk]

= b0 +
1
2

K(a)

∑
k=1

(ΣZ̄k + µZ̄
2
k

) a(a)βk

b(a)βk

 (A61)

The update for Qη derived from L is

bη ← b0 +
1
2

K

∑
k=1

((
ΣZ̄k + µZ̄

2
k

) aβk

bβk

)

= b0 +
1
2

K(a)

∑
k=1

((
ΣZ̄k + µZ̄

2
k

) aβk

bβk

)
+

1
2

K

∑
k=K(a)+1

((
ΣZ̄k + µZ̄

2
k

) aβk

bβk

)

= bη
(a) +

1
2

K

∑
k=K(a)+1

((
ΣZ̄k + µZ̄

2
k

) aβk

bβk

)
(A62)

It involves Z̄k, k > K(a) and therefore they need to be kept updated. Applying
Lemma A6 for Equation (A62), we can obtain

bη ← bη
(a) +

1
2

K

∑
k=K(a)+1

((
bηbβk

aηaβk

)
aβk

bβk

)
(A63)

= bη
(a) +

1
2
(K− K(a))

bη

aη
(A64)

Applying Equation (A64) in an iterative manner, we will obtain a sequence of updates
for bη . Solving

bη = bη
(a) +

1
2
(K− K(a))

bη

K
2

(A65)

bη = (1− 1
2
(K− K(a))

2
K
)−1bη

(a) =
K

K(a)
bη

(a) (A66)

Thus, we find that the sequence will converge at

bη ←
K

K(a)
bη

(a) (A67)

As a result, EQ[η] =
bη

aη
=

bη
(a)

a(a)η

= EQ(a) [η]. □

In practice, due to limitations in numerical representation, we restrict the values so
that the active precision parameter estimates do not truly reach infinity:

EQαj
[αj] ≤ τmax, ∀j ≤ J(a) (A68)

EQβk
[βk] ≤ τmax, ∀k ≤ K(a) (A69)
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Appendix C.3. Weights and Noise

We next describe how to update QZA ,QZ̄A
,QWA ,Qσ in a scalable manner, using

computation in the K(a)-dimension subspace only.

Theorem A4. L and L(a) share the same update rule for ZiA, i.e.,

HiAjk ← EQ/Zi
[WAjΦiAΦT

iAWT
Ak] = Tr(EQ/Zi

[WT
AkWAj]ΦiAΦT

iA)

= Tr
((

Σ[WAk ,WAj ]
+ µT

[WAj ]
µ[WAk ]

)
ΦiAΦT

iA

)
, ∀j = 1 : J(a), k = 1 : K(a) (A70)

ΣZi A ←
(
EQ/Zi

[σ−2WAΦiAΦT
iAWT

A + I]
)−1

= [
aσ

bσ
HiA + I]−1 (A71)

µiA ← EQ/Zi
[σ−2(Yi − Z̄ΦiA)ΦT

iAWT
A]ΣZi A =

aσ

bσ
(Yi − µZ̄ AΦiA)ΦT

iA(µWA)
TΣZi A (A72)

Proof. Applying Lemma A3 to Equation (24), we have

HiAjk ← Tr
((

Σ[WAk ,WAj ]
+ µT

[WAj ]
µ[WAk ]

)
ΦiAΦT

iA

)
+O(ϵ)

→ Tr
((

Σ[WAk ,WAj ]
+ µT

[WAj ]
µ[WAk ]

)
ΦiAΦT

iA

)
, ∀j = 1 : J(a), k = 1 : K(a) (A73)

Applying the block matrix inversion formula to Equation (25), we have

ΣZi A ←
(
EQ/Zi

[σ−2WAΦiAΦT
iAWT

A + I]
)−1

+O(ϵ2)

→
(
EQ/Zi

[σ−2WAΦiAΦT
iAWT

A + I]
)−1

= [
aσ

bσ
HiA + I]−1 (A74)

Applying block matrix multiplication and Theorem A5 to Equation (26) conditioned
on Equation (A37), we obtain

µiA ← EQ/Zi
[σ−2(Yi − Z̄ΦiA)ΦT

iAWT
A]ΣZi A +O(ϵ)

→ aσ

bσ
(Yi − µZ̄ AΦiA)ΦT

iA(µWA)
TΣZi A (A75)

□

Theorem A5. L and L(a) share the same update rule for Z̄A, i.e.,

ΣZ̄ A ←
(
EQ/Z̄

[
P

∑
i=1

(
σ−2ΦiAΦT

iA

)
+ η diag(βA)

])−1

=

(
P

∑
i=1

(
aσ

bσ
ΦiAΦT

iA

)
+

aη

bη
diag(

aA
bA

)

)−1

(A76)

µZ̄ A ←
(
EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiAWA]ΦiA)ΦiA

)
ΣZ̄ A

=

(
aσ

bσ

P

∑
i=1

(Y− µiAµWA ΦiA)ΦiA

)
ΣZ̄ A (A77)
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Proof. Applying the block matrix inversion formula to Equation (20) conditioned on
EQ/Z̄

[βk] = ϵ−1, ∀k > K(a), we have

ΣZ̄ A ←
(
EQ/Z̄

[
P

∑
i=1

(
σ−2ΦiAΦT

iA

)
+ η diag(βA)

])−1

+O(ϵ)

→
(
EQ/Z̄

[
P

∑
i=1

(
σ−2ΦiAΦT

iA

)
+ η diag(βA)

])−1

(A78)

Applying block matrix multiplication and Theorem A5 to Equation (21) conditioned
on Equation (A36), we have

µZ̄ A ←
(
EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiAWA]ΦiA)ΦiA

)
ΣZ̄ A +O(ϵ)

→
(
EQ/Z̄

[
σ−2

] P

∑
i=1

(Y−EQ/Z̄
[ZiAWA]ΦiA)ΦiA

)
ΣZ̄ A (A79)

□

Theorem A6. L and L(a) share the same update rule for WA, i.e.,

Σvec (W) ← EQ/W

[
σ−2

P

∑
i=1

(
(ΦT

iAΦiA)⊗ (ZT
iAZiA)

)
+ diag(βA)⊗ diag(αA)

]−1

=

(
aσ

bσ

P

∑
i=1

(
(ΦT

iAΦiA)⊗ (µT
iAµiA + ΣZi A)

)
+ diag

(
aA
bA

)
⊗ diag

(
cA
dA

))−1

(A80)

µvec (W) ← EQ/W

[
−σ−2

P

∑
i=1

vec
((

ΦiA(Φ
T
iAZ̄T

A −YT
i )ZiA

)T
)T
]

Σvec (W)A

= − aσ

bσ

P

∑
i=1

vec
((

ΦiA(Φ
T
iAµZ̄

T
A −YT

i )µiA

)T
)T

Σvec (W)A
(A81)

Proof. Applying the block matrix inversion formula to Equation (22) conditioned on
EQ/Z̄

[βk] = ϵ−1, ∀k > K(a) and EQ/Z̄
[αj] = ϵ−1, ∀j > J(a), we have

Σvec (W) ← EQ/W

[
σ−2

P

∑
i=1

(
(ΦT

iAΦiA)⊗ (ZT
iAZiA)

)
+ diag(βA)⊗ diag(αA)

]−1

+O(ϵ)

→ EQ/W

[
σ−2

P

∑
i=1

(
(ΦT

iAΦiA)⊗ (ZT
iAZiA)

)
+ diag(βA)⊗ diag(αA)

]−1

(A82)

Applying block matrix multiplication and Theorem A5 to Equation (23) conditioned
on Equations (A36) and (A37), we obtain

µvec (W) ← EQ/W

[
−σ−2

P

∑
i=1

vec
((

ΦiA(Φ
T
iAZ̄T

A −YT
i )ZiA

)T
)T
]

Σvec (W)A
+O(ϵ)

→ EQ/W

[
−σ−2

P

∑
i=1

vec
((

ΦiA(Φ
T
iAZ̄T

A −YT
i )ZiA

)T
)T
]

Σvec (W)A
(A83)

□
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Theorem A7. L and L(a) share the same update rule for σ, i.e.,

aσ ← a0 +
1
2 ∑

i
Ni (A84)

bσ ← b0 +
1
2
EQ/σ

[
∑

i
||Yi − (ZiAWA + Z̄A)ΦiA||22

]

= b0 +
1
2 ∑

i
(YiYT

i − 2Yi
(
µiAµWA ΦiA

)T − 2Yi
(
µZ̄ AΦiA

)T
+ 2µiAµWA ΦiAΦT

iA(µZ̄ A)
T

+ Tr
((

ΣZ̄ A + (µZ̄ A)
TµZ̄ A

)
ΦiAΦT

iA

)
)

+
1
2

vec(GT
A)

T ∑
i

vec
(

vec(ΦiAΦT
iA) vec(ΣZi A + µT

iAµiA)
T
)

, (A85)

where

GA(j+kM) ← EQ/σ

[
vec(WAkWT

Aj)
T
]

= vec(Σ[WAk ,WAj ]
+ µvec (W)

T
[WAj ]

µvec (W)[WAk ]
)T , ∀j = 1 : K(a), k = 1 : K(a) (A86)

Proof. Applying block matrix multiplication and Theorem A5 to Equation (28) conditioned
on Equations (A36) and (A37), we have

bσ ← b0 +
1
2
EQ/σ

[
∑

i
||Yi − (ZiAWA + Z̄A)ΦiA||22

]
+O(ϵ)

→ b0 +
1
2
EQ/σ

[
∑

i
||Yi − (ZiAWA + Z̄A)ΦiA||22

]
(A87)

□

We show that QZiA ,QWA ,QZ̄iA
, and Qσ share the same update formulas as those

derived from the low-dimensional lower bound: Q(a)
ZiA ,Q(a)

WA ,Q(a)
Z̄iA

,Q(a)
σ. Thus,

in practice, it suffices to update Q(a); we can then increase K(a) by including new basis
functions. This process proves to implicitly maximize L with Q.

Appendix C.4. Low-Dimensional Lower Bound

We now have updating formulas for the parameters in the active subspace. QZiA is up-
dated by Equations (A70)–(A72). QWA is updated by Equations (A80) and (A81). QZ̄A

is up-
dated by Equations (A76) and (A77). QαA ,QβA ,Qη are updated by Theorems A1–A3, with
the companion of implicit updates of QWB ,QWC . Qσ is updated by
Equations (A84)–(A86). All the updating rules are identical to those derived from the
low-dimensional lower bound L(a) with K(a) basis functions. Therefore, in practice, all

we need is to optimize L(a), with time complexity of O
(

K(a)2
max

(
K(a)4

, P maxi(Ni)
))

, as
described in Theorem A8, and then check if a new basis function should be included in
the model.

For numerical stability, we scale ϕ, b such that mink(EQβ
[βk]) = mink(

ck
dk
) = 1 at the

beginning of Algorithm A1.

Theorem A8. The lower bound L can be optimized using Algorithm A1 with time complexity of

O
(

K(a)2
max

(
K(a)4

, P maxi(Ni)
))

.

Proof. The proof is a consequence of Theorems A1–A7. □
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Algorithm A1 Variational inference

Require: µZi , ΣZi , µvec (W), Σvec (W), µZ̄, ΣZ̄, aσ, bσ, aαj , bαj , aβk , bβk , ∀i, j, k ▷ Multisample
RVM
while True do
L(a) ← lowerbound(Q(a))

Update Q(a) with respect to all parameters using mean field approximation
if lowerbound(Q(a))−L(a) < τcon then ▷ Insignificant increase

Search for new basis functions using Algorithm 1
if not found then ▷ Converged

break
end if

end if
Remove dimensions associated with the precision of the maximum values

end while
Get rid of dimensions associated with αj ≥ minj(αj)τeff and βk ≥ mink(βk)τeff

Appendix D. Scalable Update for BSFDAFast

For brevity, we denote the covariance of ζi as S, i.e., ζi ∼ N (0, S). S is diagonal and
Skk = ς2

kβ−1
k . The variational update formulas are as follows:

Σθi ← EQ/θi

[
ΦiΦT

i σ−2 + S−1
]−1

(A88)

µθi ← EQ/θi

[(
(Yi − Z̄Φi)ΦT

i σ−2 + ZiWS−1
)]

Σθi (A89)

ΣZi ← EQ/Zi

[
WS−1WT + I

]−1
(A90)

µZi ← EQ/Zi

[
θiS−1WT

]
ΣZi (A91)

aςk ← a0 +
P
2

(A92)

bςk ← EQ/ςk

[
b0 +

1
2 ∑

i
(θik − ZiW·k)2βk

]
(A93)

ΣW·k ← EQ/W·k

[
ς−2

k βk ∑
i

ZT
i Zi + βk diag(α)

]−1

(A94)

µW·k ← EQ/W·k

[
ς−2

k βk ∑
i
(θikZi)

]
ΣW·k (A95)

aβk ← a0 +
1 + K + P

2
(A96)

bβk ← EQ/βk

[
b0 +

1
2

[
Z̄2

k η + ∑
j
(W2

jkαj) + ∑
i
(θik − ZiW·k)2ς−2

k

]]
(A97)

ΣZ̄ ← EQ/Z̄

[
σ−2 ∑

i
(ΦiΦT

i ) + η diag(β)

]−1

(A98)

µZ̄ ← EQ/Z̄

[
σ−2 ∑

i

[
(Yi − θiΦi)ΦT

i

]]
ΣZ̄ (A99)

aσ−2 ← a0 +
1
2 ∑

i
Ni (A100)

bσ−2 ← EQ/σ

[
b0 +

1
2 ∑

i
||Yi − (Z̄ + θi)Φi||22

]
(A101)
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Notably, the columns of W become conditionally independent of the introduction of
the slack variable θ, akin to the strategy described in [18,28]. Then, the surrogate posterior
of W factorizes over the columns, thereby requiring the calculation of the covariance of each
column separately, instead of the entire W at once. Thus, the computational complexity is
significantly reduced. This factorization is introduced on top of the existing factorizations;
thus, the low-dimensional optimization strategy of BSFDA also applies to BSFDAFast.

Appendix E. Fast Initialization
In order to efficiently obtain a good initialization for the unknowns to be estimated, e.g.,

Z, Z̄, β and σ, we approximate the model so that we can adopt a fast strategy maximizing
the marginal likelihood using direct differentiation, which is similar to [39]. This initial β

serves to select the K(a) basis functions to start with.
We introduce Z̃ for easier marginalization:

Yi = Z̃iΦi + Ei (A102)

Z̃ik =
Zik√

βk
+ Z̄k ∼ N (Z̄k, β−1

k ) (A103)

Z̄k ∼ N (0, β−1
k ) (A104)

βk ∼ Γ(βk|a0, b0), σ−2 ∼ Γ(σ−2|a0, b0) (A105)

Ei ∼ N (0, σ2 I) (A106)

The approximated probabilistic graphical model is shown in Figure A1.

𝑌௜

𝑍௞ ∼ 𝒩ሺ0,𝛽௞ିଵሻ

𝑍௜௞ ∼ 𝒩ሺ𝑍௞ ,𝛽௞ିଵሻ 

𝛽௞ ∼ Γሺ𝑎଴, 𝑏଴ሻ

𝜎ିଶ ∼ Γሺ𝑎଴, 𝑏଴ሻ

P

E௜ ∼ 𝒩ሺ0,𝜎ଶ𝐼ሻ

𝜙ሺ⋅ሻ

𝑋௜

Φ௜

Simplified model

Figure A1. Probabilistic graphical model for the simplified model.

Appendix E.1. Maximum Likelihood Estimation

We apply maximum likelihood estimation for point estimates of Z̄, β, σ.

Z̄∗, β∗, σ∗ ← arg min
Z̄,β,σ
P , (A107)

where P = − ln Pr[Y|Z̄, β, σ]. Conditioned on these estimates, we can calculate the expec-
tation of Z.

Optimization of β, Z̄
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We set the differentiation to zero, i.e., ∂P
∂βk

= 0, and obtain

βk ←

θk, if θk > 0

∞, otherwise
(A108)

where

θk =

(
∑P

i=1 s2
ik

∑P
i=1(q

2
ik − sik)

)
(A109)

qik = ΦikC−1
i/k

(Y− Z̄Φi)
T (A110)

sik = ΦikC−1
i/k

ΦT
ik (A111)

Ci/k
= Ci −ΦT

ikβ−1
k Φik (A112)

Ci = ΦT
i diag(β−1)Φi + σ2 I =

K

∑
k=1

ΦT
ikβ−1

k Φik + σ2 I (A113)

We differentiate P with respect to Z̄ and zero the derivative, i.e., ∂P
Z̄ = 0, to obtain

Z̄ ←
P

∑
i=1

(
YiC−1

i ΦT
i

)( P

∑
i=1

(ΦiC−1
i ΦT

i )

)−1

(A114)

We approximate Equation (A114) by Z̄A ← ∑P
i=1

(
YiC−1

i ΦT
iA

)(
∑P

i=1(ΦiAC−1
i ΦT

iA)
)−1

and

Z̄B ← 0. This way, we can apply the update with only the active basis functions.
Optimization of σ:
We use EM to optimize σ. In the E-step,

EQZ̃
[Z̃i]← σ−2(Yi − Z̄Φi)ΦT

i Si (A115)

EQZ̃
[Z̃T

i Z̃i]← Si +EQZ̃
[Z̃i]

TEQZ̃
[Z̃i], (A116)

where Si = (Ψiσ
−2 + diag(β))−1.

In the M-step,

σ−2 ←
∑P

i=1 EQZ̃

[
||Yi − (Z̃i + Z̄)Φi||22

]
∑P

i=1 Ni

=
∑P

i=1(Yi − Z̄Φi)(Yi − Z̄Φi − 2ΦT
i EQZ̃

[
Z̃i
]T
)T + Tr(EQZ̃

[
Z̃T

i Z̃i
]
Ψi)

∑P
i=1 Ni

(A117)

The optimization iterates between the E-step Equations (A115) and (A116) and the
M-step Equation (A117).

In practice, we need only EQZ̃ [Z̃iA],EQZ̃ [Z̃
T
iAZ̃iA], and SiA, and they can be calculated

using the K(a) active basis functions. Thus, similarly to [39], all computations can be
operated with only the active basis functions and thus it is computationally efficient. This
is described in Algorithm A2.

P = − ln Pr[Y|Z̄, β, σ] = −
P

∑
i=1

ln Pr[Yi|Z̄, β, σ] =
P

∑
i=1
Pi (A118)

Pi =
∫

Pr[Yi|Z̃i, Z̄, β, σ]Pr[Z̃i|Z̄, β]dZ̃i = EZ̃i∼N (Z̄,β)[Pr[Yi|Z̃i, σ]] = N (Yi|Z̄Φi, Ci) (A119)

Pr[Yi|Z̃i, Z̄, β, σ] = N (Yi|(Z̃i + Z̄)Φi, σ2 I) (A120)
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Algorithm A2 Multisample relevance vector machine

while P is not converged do

k← a random number that satisfies CosSim(ϕk, ϕA) ≤ τsim ▷ O(K(a)3
)

sik ← ΦikC−1
i/k

ΦT
ik, ∀i ▷ Sparsity factor. O

(
P max(K(a)3

, maxi(Ni)
2)
)

qik ← ΦikC−1
i/k

(Y− Z̄AΦiA)
T , ∀i ▷ Quality factor.

O
(

P maxi(Ni)max(K(a), maxi(Ni))
)

θk ←
(

∑P
i=1 s2

ik
∑P

i=1(q
2
ik−sik)

)
if θ > 0 then

βk ← θk ▷ Precision is finite
else

βk ← ∞ ▷ Precision is infinite and the dimension is removed
end if
ΦiA ← All Φik that has βk < ∞, ∀i
Ci = ∑βk<∞ ΦT

ikβ−1
k Φik + σ2 I, ∀i

Z̄A ← ∑P
i=1

(
YiC−1

i ΦT
iA

)(
∑P

i=1(ΦiAC−1
i ΦT

iA)
)−1

▷

O
(

PK(a) max
(

K(a), maxi(Ni)
)2
)

SiA ← (ΦiAΦT
iAσ−2 + diag(βA))

−1, ∀i

EQZ̃ [Z̃iA]← σ−2(Yi − Z̄AΦiA)ΦT
iASiA, ∀i ▷ O(PK(a)2

maxi(Ni))

EQZ̃ [Z̃
T
iAZ̃iA]← SiA +EQZ̃

[Z̃iA]
TEQZ̃

[Z̃iA], ∀i

σ←
∑P

i=1(Yi−Z̄AΦiA)(Yi−Z̄AΦiA−2ΦT
iAEQZ̃

[Z̃iA]
T
)T+Tr(EQZ̃

[Z̃T
iA Z̃iA]ΦiAΦT

iA)

∑P
i=1 Ni

end while

We apply Sylvester’s determinant theorem to Equation (A113) and obtain

|Ci| = |Ci/k
||I + β−1

k ΦT
ikC
−1
i/k

Φik| (A121)

We apply the Woodbury matrix identity to Equation (A113) and obtain

C−1
i = C−1

i/k
− C−1

i/k
ΦT

ik(βk + ΦikC−1
i/k

ΦT
ik)
−1ΦikC−1

i/k
(A122)

We first expand Pi

Pi = ln Pr[Yi|Z̄, σ, β]

= −1
2 ∑

i
ln |2πCi|+ (Yi − Z̄Φi)C−1

i (Yi − Z̄Φi)
T

= −1
2
(Ni ln(2π) + ln |Ci/k

|+ ln |I + β−1
k ΦikC−1

i/k
ΦT

ik|+ (Yi − Z̄Φi)C−1
i (Yi − Z̄Φi)

T

− (βk + ΦikC−1
i/k

ΦT
ik)
−1||ΦikC−1

i/k
(Y− Z̄Φi)

T ||22)

= Pi/k
+

1
2
(ln βk − ln |βk + sik|+

q2
ik

βk + sik
) (A123)

where we plug in Equations (A121) and (A122) and define qik, sik in a similar way
to [39]. The sparsity factor sik can be seen to be a measure of the extent to which the basis
function ϕk overlaps those already present in the model under the measurements at index
set Xi. The quality factor qik is a measure of the alignment with the error of the model at Xi

with this basis function excluded. Because we are representing the mean functions using
only the active basis functions, i.e., Z̄k = 0 when βk = ∞, Equation (A110) uses only the K
active basis functions. Similarly, Equation (A111) only uses the K active basis functions.
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For computational efficiency, we can compute sik, qik using Sik = ΦikC−1
i ΦT

ik, Qik =

ΦikC−1
i (Y− Z̄Φi)

T in a similar way to [39] as follows:

sik = ΦikC−1
i/k

ΦT
ik = Sik + ΦikC−1

i/k
ΦT

ik(βk + ΦikC−1
i/k

ΦT
ik)
−1ΦikC−1

i/k
ΦT

ik

= Sik + sik(βk + sik)
−1sik ⇌ sik =

βk + sik
βk

Sik (A124)

⇒ sik ← (1− 1
βk

Sik)
−1Sik =

βkSik
βk − Sik

(A125)

qik = ΦikC−1
i/k

(Y− Z̄Φi)
T

= Qik + ΦikC−1
i/k

ΦT
ik(βk + ΦikC−1

i/k
ΦT

ik)
−1ΦikC−1

i/k
(Y− Z̄Φi)

T

= Qik + sik(βk + sik)
−1qik (A126)

⇒ qik ←
βk + sik

βk
Qik =

βkQik
βk − Sik

(A127)

Appendix E.2. Optimization of β, Z̄

Derivation of Equation (A108)
We differentiate P with respect to βk

∂P
∂βk

=
P

∑
i=1

1
2

(
β−1

k − |βk + sik|−1 − q2
ik(βk + sik)

2
)

=
1
2

β−1
k

P

∑
i=1

(
(βk + sik)

−2(βk(sik − q2
ik) + s2

ik)
)

(A128)

We further adopt the approximation s1k ≈ s2k ≈ . . . ≈ sPk. Because sik is a discrete
measure of the overlapping between the basis functions, it should remain invariant with
respect to different sampling grids Xi given that the number of measurements is adequate
and similar. Alternatively, the expectation maximization scheme can also be applied and is
guaranteed to increase the likelihood P in each iteration until convergence. However, we
opt for this gradient descent with approximations for its advantage in speed to obtain a
reasonable initialization. This way, we set the approximated differentiation to zero:

∂P
∂βk
≈ 1

2
β−1

k (βk + s1k)
−2

P

∑
i=1

(
(βk(sik − q2

ik) + s2
ik)
)
= 0 (A129)

⇒ βk ← θk =

(
∑P

i=1 s2
ik

∑P
i=1(q

2
ik − sik)

)
(A130)

Because βk is a scale parameter, we need βk > 0. Consequently, the optimal value for
βk to maximize P depends on the sign of θk. When θk > 0, the maximum of P is achieved
at βk = θk.

On the other hand, when θk ≤ 0, P is monotonically increasing with respect to βk, we
should have βk ← ∞ in order to maximize P .

More intuitively, Equation (A130) can be regarded as a weighted summation of the
estimation of βk using each individual sample function, and it automatically assigns more
weight to those with more measurements. Therefore, this optimization strategy is supposed
to provide reasonable estimates even when the sampled functions have different numbers
of measurements.

Derivation of Equation (A114)
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We differentiate P with respect to Z̄ and zero the derivative to obtain

∂P
Z̄

= −1
2

P

∑
i=1

(
−2YiCiΦT

i + 2Z̄ΦiC−1
i ΦT

)
= 0 (A131)

⇒ Z̄ ←
P

∑
i=1

(
YiC−1

i ΦT
i

)( P

∑
i=1

(ΦiC−1
i ΦT

i )

)−1

(A132)

Appendix E.3. Optimization of σ

Derivation of Equations (A115) and (A116)
We use the expectation maximization strategy with latent variables Z̃i. It is similar to

that used in [30]. It introduces a surrogate function, the log likelihood for the complete
data EQZ̃

[PZ̃], which is easier to optimize; moreover, in theory, the process ultimately
maximizes P .

For the E-step, we calculate the posterior of Z̃i.

ln Pr[Z̃i|Yi, Z̄, σ, β] = ln
Pr[Yi|Z̃i, Z̄, σ, β]Pr[Z̃i|β]

Pr[Yi|Z̄, σ, β]
(A133)

∝ −1
2

(
Z̃i(Ψiσ

−2 + diag(β))Z̃T
i − 2σ−2(YI − Z̄Φi)ΦT

i Z̃T
i

)
(A134)

Therefore,

EQZ̃
[Z̃i]← σ−2(Yi − Z̄Φi)ΦT

i Si (A135)

EQZ̃
[Z̃T

i Z̃i]← Si +EQZ̃
[Z̃i]

TEQZ̃
[Z̃i] (A136)

where

Si = (Ψiσ
−2 + diag(β))−1 (A137)

Derivation of Equation (A117)
In the M-step, we need to maximum EQZ̃

[PZ̃] conditioned on QZ̃ with respect to σ−2,

PZ̃ =
P

∑
i=1

ln Pr[Yi, Z̃i|Z̄, σ, β] =
P

∑
i=1

ln(Pr[Yi|Z̃i, Z̄, σ]Pr[Z̃i|β])

= −1
2

P

∑
i=1

(
Ni ln(2πσ−2) + σ−2||Yi − (Z̃i + Z̄)Φi||22+

K

∑
k=1

ln(2πβ−1
k ) + Tr(Z̃i diag(β)Z̃T

i )

)
(A138)

We differentiate EQZ̃
[PZ̃] with respect to σ−2 and set to 0

∂EQZ̃
[PZ̃]

∂σ−2 = EQZ̃

[
−1

2

P

∑
i=1

(
Niσ

−2 − σ−4||Yi − (Z̃i + Z̄)Φi||22
)]

= 0 (A139)

⇒ σ−2 ←
∑P

i=1 EQZ̃

[
||Yi − (Z̃i + Z̄)Φi||22

]
∑P

i=1 Ni

=
∑P

i=1(Yi − Z̄Φi)(Yi − Z̄Φi − 2ΦT
i EQZ̃

[
Z̃i
]T
)T + Tr(EQZ̃

[
Z̃T

i Z̃i
]
Ψi)

∑P
i=1 Ni

(A140)
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Appendix F. Experiments
Appendix F.1. Benchmark Simulation

Figure A2 presents the application of the proposed BSFDA to the simulation bench-
mark (Scenario 1) outlined in [21]. Even though prior analyses have utilized this benchmark,
the current experimental configuration is specifically adapted to highlight the method’s
capacity for uncertainty quantification. The experimental design consists of 20 functional
observations, each sampled at either three points (with a 20% probability) or 10 points (with
an 80% probability), determined via random assignment. The number of sampled functions
is decreased from 200 to 20 to underscore the effect and estimation of uncertainties. The
actual white noise standard deviation is 0.4472, whereas the estimated standard deviation
is 0.4839. The component number is also correctly estimated as 3. The figure depicts the
true underlying function, the discrete observational data, and the corresponding functional
estimates, accompanied by their respective 95% truncated uncertainty intervals.

Notably, the uncertainty associated with sparsely sampled functions exhibits sub-
stantial inflation in regions devoid of observations. In contrast, in sampled regions, the
uncertainty aligns closely with that of densely sampled functions, approximating twice
the standard deviation of the white noise. Additionally, the uncertainty bounds for the
estimated mean function are presented, demonstrating reduced variability relative to
individual function estimates.

Table A3. Distributions of the estimated component number r̂ for Scenario 1 (r = 3).

Ni r̂ AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 ≤1 0.000 0.000 0.155 0.005 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.008 0.405 0.335 0.565 0.215 0.000 0.000 0.000 0.000 0.985
=3 0.000 0.580 0.380 0.410 0.735 0.650 0.880 0.645 0.995 0.015
=4 0.121 0.010 0.115 0.010 0.045 0.335 0.120 0.235 0.005 0.000
≥5 0.870 0.005 0.015 0.010 0.005 0.015 0.000 0.120 0.000 0.000

10 ≤1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.005 0.040 0.040 0.005 0.000 0.000 0.000 0.000 0.075
=3 0.000 0.980 0.670 0.955 0.985 0.880 0.920 0.645 1.000 0.910
=4 0.000 0.015 0.255 0.000 0.010 0.120 0.080 0.235 0.000 0.015
≥5 1.000 0.000 0.035 0.005 0.000 0.000 0.000 0.120 0.000 0.000

50 ≤1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=3 0.000 1.000 0.830 1.000 1.000 1.000 1.000 0.890 0.980 0.945
=4 0.000 0.000 0.150 0.000 0.000 0.000 0.000 0.060 0.020 0.050
≥5 1.000 0.000 0.020 0.000 0.000 0.000 0.000 0.050 0.000 0.005

Table A4. Distributions of the estimated component number r̂ for Scenario 2 (r = 3).

Ni r̂ AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 ≤1 0.000 0.000 0.230 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.205 0.395 0.000 0.140 0.050 0.075 0.000 0.000 0.960
=3 0.005 0.630 0.245 0.375 0.605 0.570 0.620 0.475 1.000 0.040
=4 0.125 0.155 0.110 0.440 0.210 0.345 0.275 0.350 0.000 0.000
≥5 0.870 0.010 0.020 0.185 0.045 0.035 0.030 0.175 0.000 0.000

10 ≤1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.170 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=3 0.000 0.710 0.665 0.570 0.805 0.825 0.850 0.640 1.000 0.995
=4 0.005 0.260 0.135 0.355 0.185 0.175 0.150 0.235 0.000 0.005
≥5 0.995 0.030 0.030 0.075 0.010 0.000 0.000 0.125 0.000 0.000

50 ≤1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=3 0.000 0.630 0.795 0.955 0.945 1.000 1.000 0.950 1.000 0.950
=4 0.000 0.320 0.185 0.045 0.055 0.000 0.000 0.020 0.000 0.050
≥5 1.000 0.050 0.020 0.000 0.000 0.000 0.000 0.030 0.000 0.000
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Table A5. Distributions of the estimated component number r̂ for Scenario 3 (r = 3).

Ni r̂ AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 ≤1 0.000 0.000 0.335 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.025 0.035 0.260 0.220 0.005 0.000 0.005 0.000 0.000 0.025
=3 0.005 0.720 0.325 0.640 0.590 0.320 0.400 0.450 0.995 0.945
=4 0.130 0.170 0.080 0.075 0.280 0.640 0.565 0.360 0.005 0.030
≥5 0.840 0.075 0.000 0.065 0.125 0.030 0.030 0.190 0.000 0.000

10 ≤1 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.015 0.000 0.035 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=3 0.000 0.580 0.770 0.965 0.665 0.740 0.755 0.440 0.995 1.000
=4 0.000 0.400 0.145 0.030 0.320 0.260 0.245 0.380 0.005 0.000
≥5 0.985 0.020 0.045 0.005 0.015 0.000 0.000 0.180 0.000 0.000

50 ≤1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000
=3 0.000 1.000 0.775 1.000 1.000 1.000 1.000 0.765 0.980 0.920
=4 0.000 0.000 0.200 0.000 0.000 0.000 0.000 0.110 0.005 0.050
≥5 1.000 0.000 0.025 0.000 0.000 0.000 0.000 0.125 0.000 0.030

Table A6. Distributions of the estimated component number r̂ for Scenario 4 (r = 3).

Ni r̂ AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 ≤1 0.000 0.000 0.315 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.015 0.020 0.180 0.160 0.015 0.000 0.000 0.000 0.000 0.000
=3 0.015 0.710 0.410 0.640 0.560 0.515 0.575 0.370 1.000 0.975
=4 0.145 0.185 0.070 0.095 0.260 0.450 0.390 0.515 0.000 0.025
≥5 0.825 0.085 0.025 0.105 0.165 0.035 0.035 0.115 0.000 0.000

10 ≤1 0.000 0.000 0.010 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=3 0.000 0.830 0.775 0.920 0.900 0.750 0.760 0.350 0.995 0.990
=4 0.000 0.150 0.190 0.045 0.085 0.250 0.240 0.380 0.005 0.010
≥5 1.000 0.020 0.020 0.035 0.015 0.000 0.000 0.270 0.000 0.000

50 ≤1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.010 0.000
=3 0.000 0.945 0.835 1.000 1.000 1.000 1.000 0.730 0.950 0.935
=4 0.000 0.055 0.140 0.000 0.000 0.000 0.000 0.160 0.040 0.055
≥5 1.000 0.000 0.025 0.000 0.000 0.000 0.000 0.110 0.000 0.010

Table A7. Distributions of the estimated component number r̂ for Scenario 5 (r = 6).

Ni r̂ AICPACE AIC BIC PCp1 ICp1 AIC2022
PACE BIC2022

PACE fpca BSFDA BSFDAFast

5 ≤4 0.005 0.165 0.835 0.580 0.060 0.000 0.000 0.010 0.000 0.060
=5 0.005 0.330 0.020 0.345 0.335 0.575 0.590 0.010 0.075 0.515
=6 0.705 0.470 0.090 0.070 0.545 0.425 0.410 0.855 0.925 0.160
=7 0.245 0.035 0.050 0.005 0.060 0.000 0.000 0.115 0.000 0.160
≥8 0.040 0.000 0.005 0.000 0.000 0.000 0.000 0.010 0.000 0.105

10 ≤4 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=5 0.000 0.000 0.030 0.145 0.000 0.425 0.425 0.000 0.000 0.000
=6 0.065 0.570 0.525 0.775 0.705 0.575 0.575 0.500 1.000 0.930
=7 0.475 0.280 0.165 0.020 0.185 0.000 0.000 0.405 0.000 0.035
≥ 8 0.455 0.150 0.030 0.060 0.110 0.000 0.000 0.095 0.000 0.035

50 ≤4 0.000 0.000 0.005 0.000 0.000 0.000 0.000 0.000 0.000 0.000
=5 0.065 0.000 0.000 0.000 0.000 0.130 0.130 0.005 0.000 0.000
=6 0.000 0.260 0.590 0.980 0.965 0.870 0.770 0.695 0.995 0.925
=7 0.000 0.405 0.325 0.010 0.035 0.000 0.000 0.250 0.005 0.045
≥8 0.935 0.335 0.080 0.010 0.000 0.000 0.000 0.050 0.000 0.030
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True Mean
Estimated Mean

Figure A2. Application of the proposed BSFDA to the simulation benchmark from [21], illustrating
the true mean function (blue), the observed measurements from two functions sampled at different
densities (light blue for sparse, orange for dense), and the corresponding functional estimates with
95% truncated uncertainty intervals.

Appendix F.1.1. Performance of LFRM

To compare the latent factor regression model (LFRM) [18] as a dimension reduc-
tion model to ours, i.e., Bayesian scalable functional data analysis (BSFDA), we set the
covariates in LFRM to zero, thus assigning standard Gaussian priors to the latent variables,
analogously to our approach. We followed the simulation benchmark in [21] to select the
number of components, focusing on Scenario 1 with 50 measurements per function (the
densest data). Because LFRM does not estimate a mean function, we omitted the mean
from the simulation run here.

The following hyperparameters of LFRM need to be determined:

• Gamma prior for white noise and correlated noise;
• Length scale;
• Number of basis functions;
• Number of iterations.

LFRM, with its default white noise prior, correctly identified the white noise variance
(true value 0.2) in all tests. We thus retained this default. We tested different Gamma priors
for correlated noise: the default prior, a noninformative-like (vagor) prior (same mean but
100 times the variance) and a low-noise prior (same variance but 100 times the mean). We
maintained the number of locations for basis functions at 10, which is the default setting.
For the length scale in LFRM, we first used the best estimate from our cross-validation
(CV). We then tried all 10 CV-selected length scales, producing 100 basis functions in total.
However, this required substantial time, so we performed only two repeated runs for this
setting. We kept LFRM’s default of 5000 burn-in iterations (25,000 total) with thinning
at intervals of 5, verifying convergence through trace plots in line with [18]. Meanwhile,
BSFDA was run 200 times as in Section 5.1, LFRM (10 length scales) two times, and all other
settings 10 times.

Across repeated trials, LFRM consistently overestimated the true number of compo-
nents (which was 3). Specifically,

• Standard LFRM estimated 10–14 components;
• LFRM with 10 length scales estimated 6–8 components;
• LFRM with a low-correlated-noise prior estimated 8–15 components;
• LFRM with a noninformative-like correlated-noise prior estimated 10–14 components.
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In contrast, our method BSFDA produced a clear gap in the distribution of the precision
parameters, effectively separating effective dimensions from redundant ones.

Several factors may explain LFRM’s performance.

• Correlated noise interference: The correlated noise can obscure the true signal.
• Prior specification: LFRM’s precision parameter priors are potentially less noninfor-

mative and not as sparse as those sparse Bayesian learning priors [30] in BSFDA.
• Element-wise vs. column-wise precision: The element-wise precision parameters in

LFRM might compensate in a way that reduces the overall sparsity.

Appendix F.2. Variational Inference vs. MCMC

We conducted experiments using both Gibbs sampling (MCMC) and mean field
approximation (variational inference) for the Bayesian PCA simulation [28] under varying
noise levels, assuming that the true noise was known. In our experiments, “satisfactory
estimation” was defined as the point when the fourth smallest precision (i.e., the inverse of
variance) was at least 100 times smaller than the fifth—indicating that the four true signal
dimensions (with variances [5, 4, 3, 2]) had been correctly identified. For computational
tractability, we capped VI at 200,000 iterations (approximately 200 s) and MCMC sampling
at 20,000 iterations (about 20 min), with a burn-in period of 200 iterations and thinning
set to 10.

Figure A3 illustrates the runtime for VI and MCMC to identify the correct components.
Our key findings are as follows:

1. When the noise level was close to the signal, neither MCMC or VI found the true
dimension in the limited iterations (and probably never would have), because the
data were heavily polluted.

2. As the noise level decreased toward zero, the number of iterations (and runtime) re-
quired for satisfactory estimation increased dramatically; VI began to fail around
a noise level of 1 × 10−4 and MCMC sampling around 1 × 10−3, within the set
time constraints.

3. Across the 10 noise levels (about 3× 10−3 to 2× 10−1) where both successfully iden-
tified the correct dimensionality, VI was consistently completed much faster than
MCMC sampling. VI was 85.57 ± 50.24 times faster on average, in the range of 32.46
to 189.12.
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Figure A3. Time for variational inference and MCMC to identify the correct components in Bayesian PCA.

These results indicate that both MCMC sampling and VI become slower as the noise
decreases due to strong dependencies in the posterior. We hypothesize this is because
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both MCMC and VI suffer from the dependency introduced by low noise, which is a
known long-standing issue with ongoing research methods, e.g., structured VI [38] or
blocked/collapsed Gibbs samplers [40]. However, both MCMC and VI work well provided
that there are sufficient iterations. This behavior suggests that the dependency induced
by very low noise levels creates an optimization challenge rather than a fundamental
modeling issue.

In summary, (1) VI is significantly faster than MCMC, (2) both methods slow down
as the noise level decreases, and (3) both fail to recover the correct components when the
noise is excessively high.
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