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Abstract: This paper investigates the design and MATLAB/Simulink implementation of
two intelligent neural reinforcement learning control algorithms based on deep learning
neural network structures (RL DLNNs), for a complex Heating Ventilation Air Conditioning
(HVAC) centrifugal chiller system (CCS). Our motivation to design such control strategies
lies in this system’s significant control-related challenges, namely its high dimensionality
and strongly nonlinear multi-input multi-output (MIMO) structure, coupled with strong
constraints and a substantial impact of measured disturbance on tracking performance.
As a beneficial vehicle for “proof of concept”, two simplified CCS MIMO models were
derived, and an extensive number of simulations were run to demonstrate the effectiveness
of both RL DLNN control algorithm implementations compared with two conventional
control algorithms. The experiments involving the two investigated data-driven advanced
neural control algorithms prove their high potential to adapt to various types of nonlineari-
ties, singularities, dimensions, disruptions, constraints, and uncertainties that inherently
characterize real-world processes.

Keywords: centrifugal chiller system; reinforcement learning; deep learning neural network

1. Introduction
Control algorithms are essential parts of the successful operation of processes. In recent

years, data-driven intelligent control algorithms mainly relying on artificial intelligence
and soft computing concepts have emerged as a valuable alternative to conventional
model-based control methods, especially in cases involving complex systems. A special
category of such new algorithms that employ the reinforcement learning principle to tune
deep neural networks for optimal control of processes is still in the infancy stage but has
shown promising results when applied to the control of highly nonlinear, high-dimensional,
time-delayed, time-varying, partially known, or hard-to-mathematically-formalize systems.
From this perspective, centrifugal chiller systems (CCSs) from complex Heating Ventilation
Air Conditioning (HVAC) are no exception, needing specifically tailored control strategies.
In this context, the current paper aims to explore the development and MATLAB/Simulink
implementation of two neural reinforcement learning (RL) control algorithms utilizing
deep learning neural network (DLNN) frameworks in relation to a specific intricate HVAC
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centrifugal chiller system. We address the key limitations of existing approaches by making
the following contributions:

• We developed an accurate simplified CCS model in a state-space representation.
Based on the input–output measurement dataset of the open loop multi-input multi-
output (MIMO) CCS extended nonlinear model, having 39 states, three inputs and
two outputs, a MIMO autoregressive moving average with an exogenous input (AR-
MAX) delayed fourth-order polynomial model of z-representation in the complex
domain is obtained. This ARMAX model was converted into a linearized MIMO CCS
model with four states, three inputs, and two outputs;

• We designed and tuned a standard PID controller and also a standard model predictive
control (MPC) for comparison purposes;

• We built two RL DLNN controllers connected in series in a forward path with
the MIMO CCS simplified model represented in state space, for temperature con-
trol inside the evaporator subsystem and liquid refrigerant level control within the
condenser subsystem;

• We rigorously evaluated the tracking performance for both RL DLNNs and compared
it with the results obtained using classic PID or MPC controllers.

The remainder of this research paper is structured in the following six sections.
Section 2 is devoted to a brief literature review and some preliminaries regarding HVAC
control systems. Section 3 outlines four conventional closed-loop control methods, de-
signed and implemented in Matlab/Simulink, with three being based on a standard PID
controller, and the fourth being an MPC. Section 4 focuses on the design of two RL DLNN
controllers. The extensive simulation results are reported in Section 5. Section 6 is dedicated
to discussions, and Section 7 concludes the paper, briefly highlighting the main yields and
the future work directions.

2. Related Work and Preliminaries on HVAC Systems
2.1. Literature Review of HVAC Control Systems

It is well known that the electricity market is undergoing substantial transformations
in grid modernization, large-scale energy storage, and efficient energy transfer manage-
ment. Many elements must work together to effectively provide domestic and commercial
consumers with the electricity services necessary for sustainable development. Both supply
and demand will need to adapt to a new and diverse energy mix, including expanding
demand-side management, building new energy storage capacities, and investing in mod-
ern and efficient power grids. In this context, a considerable amount of energy consumption
in any commercial or residential building is due to heating, ventilation and air conditioning
(HVAC) systems [1–4]. Therefore, improving their efficiency becomes critical for energy
and environmental sustainability [5–8]. In general, centrifugal chillers are the widely pre-
ferred cooling units for a wide range of HVAC control system applications due to their
high efficiency, reliability, and low maintenance costs. More precisely, they are suitable for
providing cold water for the cooling needs of all the air-handling units in a building [1].
Since a centrifugal chiller is the most energy-consuming HVAC device, its efficiency can
be improved by using advanced model-based as well as data-driven controller design
strategies [9–11]. A brief review of the literature on HVAC centrifugal chillers reveals that a
significant amount of work has been carried out on steady-state and transient modeling.
Several dynamic models for the vapor compression cycle have been extensively studied [8].
Also, as previously discussed [1], mechanistic models of single-stage and two-stage cen-
trifugal chillers have been developed in which the centrifugal compressor is modeled
based on the Euler turbomachinery, the balance energy, and the impeller velocity equations.
The energy coefficient of performance (COP) of the chiller is simulated by considering
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the compressor polytropic efficiency and hydrodynamic, mechanical, and electrical losses.
Meanwhile, the condenser and evaporator are modeled based on the lumped parameter
approach, and the heat transfer is calculated based on the effectiveness model. Taking into
account the fact that their dynamics are of high nonlinearity, complexity, and dimensional-
ity, from an appropriate control perspective, the developed models must be simplified [8].
An interesting dynamic model of a semi-hermetic reciprocating compressor was developed
based on the first law of thermodynamics applied to a lumped control volume, the expan-
sion valve modeled based on a simple orifice flow model [1]. Over the past two decades,
our research team has worked intensively with HVAC field control systems, focusing on
developing high-fidelity dynamic modeling of centrifugal chillers and building the most
suitable control strategies based on them, as a priority task of our research [8]. Interested
readers and specialists working in the field can find in [8] a valuable support for the devel-
opment of simplified, linearized, low-dimensionality, accurate, robust, and stable models
in different state-space representations or in the complex domain. Moreover, these models
have been validated and adapted to the harshest realistic working environment including
a variety of uncertainties, nonlinearities, high dimensionality, and disturbances. Therefore,
this paper presents some models of multi-input multi-output (MIMO) centrifugal cooling
systems (CCS) with enough details for good readability and understanding. Based on
these, advanced closed-loop intelligent neural control strategies of real practical interest
were developed. Specifically, the models chosen for our case study served as a valuable
vehicle for “proof of concept” and simulation purposes. These models were inspired by
the literature in the field, with one of the works being particularly fundamental [12], and
others [13–16] providing some valuable and useful references for the design of models
based on discrete time data, such as AutoRegressive with eXogenous input (ARX) and
Autoregressive Moving Average with eXogenous input (ARMAX), which are polynomial
models built in state space. Compared with standard control strategies such as proportional
integral derivative (PID) control [17] and also Model Predictive Control (MPC), the ad-
vanced neural intelligent reinforcement learning deep learning neural network (RL DLNN)
control systems [17–19] demonstrated better performance in various abilities such as pos-
sessing human-like expertise in a particular domain, self-adjusting, adaptively learning
environmental changes, and taking the best decisions or most appropriate actions [20–24].

2.2. Preliminaries—Adopted CCS Model and Its Implementation

This research used a valuable vehicle, namely three MIMO Centrifugal Chiller System
(CCS) models, adopted as a case study, for “proof of concept” and MATLAB R2024a
simulation purposes.

2.2.1. MIMO Centrifugal Chiller Modeling Assumptions

The proposed MIMO (three inputs, two outputs) Centrifugal Chiller model used in
the case study for this research was previously developed with sufficient detail [8] and
also validated [7]. In the current research, this model has been simplified to be suitable for
control purposes. In the case study, the proposed dynamic model of the Centrifugal Chiller
System was constructed by interconnecting the following subsystems: a water-cooled
centrifugal chiller, a centrifugal compressor, shell-and-tube heat exchangers, a thermal
expansion valve, and the controller. The water-cooled centrifugal chiller was modeled
based on the mechanics of fluid theory, and the centrifugal compressor was modeled
based on turbo-machinery theory, similar to those developed previously [8]. The chiller’s
capacity control was achieved by the combination of variable inlet guide vane and variable
speed drive and the entire system consisted of four major components [1,8], as shown
in Figure 1, namely, a centrifugal compressor, a condenser, an expansion valve, and an
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evaporator. Typically, the chilled-water system consists of one circulating refrigerant loop
and two water loops. The first water loop circulates between the condenser and the cooling
tower, and the second water loop circulates between the evaporator and the air handling
units (AHUs) that produce chilled water for the cooling coil.
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evaporator and condenser subsystems, with all four main components [1,8].

A thermal expansion valve is used to regulate the pressure levels at the condenser and
evaporator sides. In this research, the overall dynamics of the MIMO chiller control system
are calculated in a state-space representation via a set of 39 nonlinear differential equations,
with 39 states, two inputs (compressor driver relative speed, expansion valve opening),
and two outputs (water temperature, liquid level in the evaporator). The impact of load
temperature as a main disturbance was also investigated. Even if a centrifugal chiller is a
highly dimensional system, it can easily be integrated into various control HVAC control
applications in commercial buildings, with the chilled-water system supplying chilled
water for the cooling needs of all the building’s air-handling units. In order to accomplish
these tasks HVAC, control systems usually include a water pump to circulate the chilled
water through the evaporator and throughout the building for cooling. Also, another water
loop from the chiller moves the heated condenser water, and another pump circulates the
heated water to the cooling tower and cools it back [1,8].

2.2.2. Case Study—MIMO Centrifugal Chiller System Assumptions and Decomposition

The dynamic model of the overall centrifugal chiller control system is of high complex-
ity in terms of state dimensionality and nonlinearity and is described in state space by a set
of 39 first-order differential equations (ODE), as a natural mathematical form to represent a
physical system. It is beyond the current scope to write out all these equations, since the
MIMO Centrifugal Chiller model used in the case study has already been developed and
validated in sufficient details in other work [14,15], but we briefly present some significant
aspects of the modeling methodology in this section. The first assumption under considera-
tion in the case study related to the decomposition of the overall centrifugal chilller control
system into two embedded open-loop subsystems, the first one an open-loop temperature
control of the chilled water Tchw_sp inside the evaporator subsystem, and the second an
open-loop level control of the liquid refrigerant level L inside the refrigerator subsystem.
The second assumption related to the interference and independence of both loops. Based
on two of these assumptions, the three-input two-outputs MIMO model with temperature
load disturbance and two independent loops was attached to a data-based CCS model to
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be investigated. More precisely, the input triplet (compressor speed Ucom, expansion valve
opening U_EXV, temperature load disturbance Tchw_rr (chilled water return temperature))
and output doublet (temperature Tchw_sp, level L) were considered. It is worth noting
that this modeling strategy, using a deterministic input disturbance Tchw_rr, was the most
reflective of real life, which is of particular interest for investigation. As an oriented object,
the MIMO Centrifugal Chiller plant is considered in MATLAB as an iddata object, generated
based on the dataset of input–output measurements loaded in the MATLAB workspace,
using the following MATLAB code lines:

load InputOutputChiller_Data.mat Tchw_sp Level Ucom U_EXV Tchw_rr;
CentrChiller = iddata (y,u,1)
where the input–output measurement dataset is collected in an open loop using a

specific data acquisition equipment and stored in the input vector u = [u1 u2 u3], which is
a three-columns vector assigned as follows:

u1 = Ucom; u2 = U_EXV; u3 = Tchw_rr
and in the output vector y = [y1 y2] that is a two-column vector assigned as follows:
y1 = Tchw_sp of the chilled water temperature inside the evaporator subsystem
y2 = Level of the liquid refrigerant level of the refrigerator subsystem

2.2.3. Open-Loop MIMO Centrifugal Chiller System (MIMO) MATLAB Simulink Extended
Model Diagram

Representation of the MIMO Centrifugal Chiller System dynamics in state space is
achieved with a MIMO Simulink model with three inputs (u1 = Ucom, u2 = U_EXV,
u3 = Tchw_rr), two outputs (y1 = Tchw_sp, y2 = Level), and 39 states described by
39 nonlinear first-order differential equations encapsulated in a MATLAB function block,
as shown in Figure 2. Also, in Figure 3 are presented the MATLAB Simulink open-loop
simulation results.

A detailed Simulink model of an extended MIMO Centrifugal Chiller closed-loop
control system (three inputs, two outputs, and 39 states) using a proportional integral
derivative (PID) controller described in Section 3, and the MATLAB simulations result is
depicted in Section 5.
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ter temperature (Tchwsp) in condenser; (e) heat exchange rate; (f) coefficient of performance (COP);
(g) uCom input—relative compressor speed (RPM/RPMnominal); (h) u_EXV input–expension valve
opening in (%).

2.2.4. Case Study—The Data-Driven ARMAX Model for MIMO Centrifugal Chiller
Subsystems in Discrete-Time State-Space Representation

The MATLAB System Identification Toolbox provided valuable tools for developing a
simplified second-order polynomial ARMAX model of high accuracy, which was assigned
to the full model of the MIMO Centrifugal Chiller. This simplified model proved very
useful for building two traditional closed-loop control strategies, namely a PID and MPC,
as well as two alternative advanced intelligent reinforcement learning control strategies
based on the reinforcement learning deep learning neural networks (RL DLNNs) as a viable
alternative to traditional approaches. Finally, a rigorous performance analysis was carried
out for comparison purposes, in order to decide which model performed better in terms
of meeting the control design requirements and process control constraints, rejecting the
effect of possible disturbances acting on the controlled process, accuracy and tracking error.
The original MIMO ARMAX model was developed in state-space representation, using
a nonlinear set of ordinary differential equations (ODE) as a natural representation of a
physical system, easily solved using a suitable MATLAB solver. Due to its nonlinearity
and high dimensionality (39 states), a new simplified MIMO Centrifugal Chiller model is
developed in a state space representation.

The following two MATLAB code lines generated the MIMO ARMAX (MIMO) discrete
state-space model in the z-complex domain [8]:

MIMO = armax(CentrifugalChiller_DATA, [[2 0; 0 2],[2 2 2; 3 2 3], [1; 1], [1 1 1; 1 1 1]], options)
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where the options are selected by using the MATLAB code line:

options = armaxOptions(‘InitialCondition’, ’estimate’, ’Focus’, ’prediction’)

In the z-complex domain, the MIMO ARMAX centrifugal chiller model generated in
MATLAB is three-input, two-output, four-state linear model described in discrete-time
state space by a triplet of matrices (A, B, C) given as follows [8]:

A
(

z−1
)
= I2×2 +

[
−1.757 0

0 −1.581

]
z−1 +

[
0.7601 0

0 0.6884

]
z−2, na = 2 (1)

B
(

z−1
)
=

[
−0.0282 −0.008134 0.001173

1.469 −3.07 0.03456

]
z−1 +

[
0 0.001721 0
0 2.079 0

]
z−2 (2)

C
(

z−1
)
= I2×2 +

[
0.3064 0

0 0.7141

]
z−1 (3)

or condensed in discrete-time z-transform transfer matrix representation:

Hu
y (z)

def
=

[
Hu1

y1 (z) Hu2
y1 (z) Hu3

y1 (z)
Hu1

y2 (z) Hu2
y2 (z) Hu3

y2 (z)

]
(4)

such that:

Y(z) = Hu
y (z)×U(z), Y(z) =

[
Y1(z)
Y1(z)

]
, and U(z) =

U1(z)
U2(z)
U3(z)

 (5)

where the input and output channels correspond to the following z-transfer functions.
From the channel input u1 to output y1, the discrete-time transfer function is given

as follows:

Hu1
y1 (z)

def
=

−0.0282z−1

1− 1.756z−1 + 0.7601z−2

From the channel input u1 to output y2, the discrete-time transfer function is
denoted thus:

Hu1
y2 (z)

def
=

1.469z−1

1− 1.628z−1 + 0.6884z−2

From the channel input u2 to output y1, the discrete-time transfer function is repre-
sented by:

Hu2
y1 (z)

def
=
−0.008134z−1 + 0.001721z−2

1− 1.756z−1 + 0.7601z−2

From the channel input u2 to output y2, the discrete-time transfer function is desig-
nated as:

Hu2
y2 (z)

def
=

−3.07z−1 + 2.079z−2

1− 1.628z−1 + 0.6884z−2

From the channel input u3 to output y1, the discrete-time transfer function is given
as follows:

Hu3
y1 (z)

def
=

0.001173z−1

1− 1.756z−1 + 0.7601z−2

From the channel input u3 to output y2, the discrete-time transfer function is
defined as:

Hu3
y2 (z)

def
=

0.03456z−1

1− 1.628z−1 + 0.6884z−2
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The Simulink diagram of MIMO centrifugal chiller model in the z-domain including
all these z-transfer functions is represented in Figure A1 in Appendix A.

A compact matrix description of the MIMO ARMAX centrifugal chiller system in
discrete-time state space (three inputs, four states, two outputs, and sampling time Ts = 1 s)
is given by the following state-space equation:

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (6)

where the values of the matrix’s quadruplet (A, B, C and D) coefficients are given in
Equation (7):

A =


0 −0.7601 0 0

1 1.756 0 0

0

0

0

0

0

1

−0.6884

1.628

, B =


0

−0.1128

0

0.7347

0.006884

−0.03254

1.04

−1.535

0

0.004691

0

0.01728

, C =

0 0.25 0 0

0 0 0 2

, D = 02×3 (7)

The MIMO output responses with the disturbance temperature set to Tchw-rr = 48
[◦F] and the actuator inputs (Speedcomp, ExpValve) are shown in Figure 4.

Algorithms 2025, 18, 170 8 of 53 
 

 

From the channel input u3 to output y1, the discrete-time transfer function is given 
as follows: 𝐻௬భ௨య(𝑧) ≝ 0.001173𝑧ିଵ1 −  1.756𝑧ିଵ + 0.7601𝑧ିଶ 

From the channel input u3 to output y2, the discrete-time transfer function is defined 
as: 𝐻௬మ௨య(𝑧) ≝ 0.03456𝑧ିଵ1 −  1.628𝑧ିଵ + 0.6884𝑧ିଶ 

The Simulink diagram of MIMO centrifugal chiller model in the z-domain including 
all these z-transfer functions is represented in Figure A1 in Appendix A. 

A compact matrix description of the MIMO ARMAX centrifugal chiller system in 
discrete-time state space (three inputs, four states, two outputs, and sampling time Ts = 1 
s) is given by the following state-space equation: 𝑥(𝑡 + 1) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (6)

where the values of the matrix’s quadruplet (A, B, C and D) coefficients are given in Equa-
tion (7): 

𝐴 = ቎0 −0.7601 0         01 1.756 0        000 00 01 −0.68841.628 ቏ , 𝐵 = ቎ 0−0.112800.7347
0.006884−0.03254  1.04 −1.535

00.00469100.01728 ቏ , 𝐶 = ቂ0 0.25 0 00 0 0 2ቃ, 𝐷 = 0ଶ×ଷ (7)

The MIMO output responses with the disturbance temperature set to Tchw-rr = 48 
[°F] and the actuator inputs (Speedcomp, ExpValve) are shown in Figure 4. 

 
Figure 4. Open-loop linear simulation results for the MIMO ARMAX CCS state-space model. 

3. Traditional Controllers: PID and MPC Closed-Loop Control Strategies 
In the time domain, the general form of the PID control law in a closed-loop control 

strategy is given by the following input–output equation: 𝑢௉ூ஽(𝑡) = 𝑘௉𝜀(𝑡) + 𝑘ூ න 𝜀(𝑡) 𝑑𝑡 + 𝑘஽ 𝑑𝜀(𝑡)𝑑𝑡  (8)

where 𝜀(𝑡)  represents the error between the actual measurement of system output 𝑦(𝑡) and its desired value 𝑦𝑠𝑝(𝑡), also called the setpoint, reference, or tracking value, as 
follows: 

Figure 4. Open-loop linear simulation results for the MIMO ARMAX CCS state-space model.

3. Traditional Controllers: PID and MPC Closed-Loop Control Strategies
In the time domain, the general form of the PID control law in a closed-loop control

strategy is given by the following input–output equation:

uPID(t) = kPε(t) + kI

∫
ε(t)dt + kD

dε(t)
dt

(8)

where ε(t) represents the error between the actual measurement of system output y(t) and
its desired value ysp(t), also called the setpoint, reference, or tracking value, as follows:

ε(t) = y(t)− ysp(t) (9)

where uPID(t) refers to the controller output.
kP, kI =

1
TI

, kD = TD represent the PID controller parameters, kP is the proportional
gain, kI refers to the integral gain, kD denotes the derivative gain, and TI and TD are the time
constants for the integral and derivative blocks, respectively. For a particular parameter
setting, different controller architectures (e.g., P, I, PI, PD, and PID) may be obtained.
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In the complex domain, the transfer function of an ideal PID controller is given bellow:

H(s) =
UPID(s)

ε(s)
= kP +

kI
s
+ kDs (10)

Furthermore, adding a compensator formula to Equation (10) using a low pass filter (LPF)
of coefficient N can serve as a practical PID controller via the following transfer function:

H(s) =
UPID(s)

ε(s)
= kP +

kI
s
+

kD N
1 + N

s
(11)

3.1. DTI MIMO Centrifugal Chiller Closed-Loop System Control in State-Space Representation

The discrete-time integrator (DTI) closed-loop control strategy architecture of the
proposed MIMO CCS model, a valuable “vehicle” for MATLAB Simulink simulations, is
depicted in Figure A2, Appendix A. Its discrete-time transfer function in the z-complex
domain is given as follows:

H1(z) =
k1Ts

1− z−1 , k1 = [−1 1], H1(z) =
k2Ts

1− z−1 , k2 = [0.001− 0.01], Ts = 1 (12)

The parameters of both DTI controller blocks k1, k2 are easy to adjust. However,
the parameter adjustment process encounters some difficulties due to the constraints on
the model inputs 0 ≤ u1 = uCom ≤ 1.1, 0 ≤ u2 = u_EXV ≤ 1. Also, the “trial and
error” procedure to track evaporator temperature and condenser level performance was
inaccurate. Figure A2a presents the compact DTI Simulink diagram, with valuable details
of the two integrators shown in Figure A2b,c.

3.2. PID MIMO Centrifugal Chiller Closed Loop System Control in Extended State
Space Representation

The PID closed-loop control strategy for the MIMO CCS extended model with
39 internal states is depicted in Figure A3a–c. The PID transfer function in the s-complex
domain is given by Equation (11). Both controllers’ parameter datasets for evaporator
temperature (indexed by T) and condenser liquid refrigerant level (indexed by L) were set
to the following values:

kPT = 0.1, kIT = 0.0001, kDT = 0.1, NT = 100, kPL = 0.1, kIL = 0.0001, kDL = 0.1, NL = 100,

The temperature setpoint within the evaporator was Tchw-sp = 6.67 [degC], and
the level of liquid refrigerant inside the condenser was L = 45 (%), with a much longer
simulation time of Tf = 13,600 s (3 h 30 min).

Therefore, alternative simplified ARMAX, ANFIS and neural network models of the
MIMO Centrifugal Chillaer capable of capturing its entire dynamic evolution and suitable
for control purposes were investigated in this research.

Figure A3a shows the Simulink diagram of the PID closed-loop control strategy, and
Figure A3b presents two subsystem components of the Simulink diagram (model + visual-
ization block). The code lines of the Simulink MATLAB function from the visualization
block are given in Figure A3c. The Simulink simulation results are discussed in Section 5,
and a rigorous performance analysis is conducted in Section 6.

3.3. Digital PID Control of MIMO Centrifugal Chiller Closed-Loop System in Extended
State-Space Representation (39 States)

A large number of simulations performed on a MATLAB Simulink R2024a platform
showed a slow response of about 3 h and 30 min to reach a steady state and achieve
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accurate tracking performance for control of the evaporator subsystem temperature and
the levels of liquid refrigerant in the condenser subsystem. The development of a fast-
tuning digital PID controller, similar to an interesting approach proposed previously [15],
provided a substantial improvement. Furthermore, an alternative to the extended MIMO
centrifugal chiller model, a simplified Adaptive Neural Fuzzy Inference System (ANFIS)
is under investigation for integration with the digital PID in the same closed-loop control
strategy whose Simulink block diagram is shown in Figure 5. The MATLAB Simulink
simulations are presented and discussed in Section 5 and a rigorous performance analysis is
carried out in Section 6, revealing a fast response (settling time) and high tracking accuracy.
Furthermore, the model’s performance was compared with an advanced deep learning
neural network (RL DLNN) in which the reward function was generated based on the
step response block specifications of digital PID control of the MIMO CCS ANFIS model
developed in the next section.
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In the Simulink diagram shown in Figure 5 the digital PID controller appears on the
left side, implemented based on Equation (8). The simplest way to implement a digital PID
is to discretize Equation (8) and then to transform it into a difference equation of the form
suggested in [22]. Specifically, this is a recursive method that calculates the PID controller
output at t = kTs, k ∈ Z, Ts—sampling time, based on the previous value of the controller
output and its growth [22], as follows:

uPID(kTs) = uPID[(k− 1)Ts] + ∆uPID(kTs) (13)

For simplicity, assuming Ts = 1[s], Equation (13) becomes:

uPID(k) = uPID(k− 1) + kP(e(k)− e(k− 1)) + kIe(k) + kD(e(k)− 2e(k− 1) + e(k− 2)) (14)

or, compact:

uPID(k) = uPID(k− 1) + (kP + kI + kD)e(k)− (kP + 2kD)e(k− 1) + kDe(k− 2) (15)

uPID(k) = uPID(k− 1) + ae(k) + be(k− 1) + ce(k− 2) (16)

with the coefficients a, b and c given by:

a = kP + kI + kD, b = −kP − 2kD, c = kD (17)
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In this research, the controller coefficients were set to (0.095, −0.225, 0.1) for the first
digital PID controller integrated into the closed-loop feedback control of the chilled water
temperature inside the ANFIS model evaporator subsystem.

The set of values (0.025, −0.105, 0.05) was selected for the second digital PID controller
that controlled the liquid refrigerant level in the ANFIS model condenser subsystem. As
can be seen, the MIMO Centrifugal model was split into two accurate ANFIS models of
the MIMO centrifugal chiller; the first a MISO ANFIS CentrChillerfis1 attached to the
evaporator subsystem, and the second a MISO ANFIS CentrChillerfis2 assigned to the
condenser, as shown in Figure 6a–h. Both MISO ANFIS models were generated using the
Fuzzy Logic Designer app based on the measurement input–output dataset of the open-
loop MIMO Centrifugal Chiller plant. The first ANFIS MISO evaporator centrifugal chiller
model (fisCentrChiller1) is shown along with the membership functions in Figure 6a,b,
and its estimation performance is reported in Figure 6e. Data for the second ANFIS MISO
condenser centrifugal chiller, including the membership functions, are shown in Figure 6c,d
and its estimation performance in Figure 6f. Figure 6g,h show a Rule Viewer for each MISO
ANFIS model.
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Figure 6. Fuzzy logic design application, MATLAB Simulink simulation results: (a) Centrifugal
Chiller FIS temperature within evaporator; (b) Centrifugal Chiller FIS membership functions; (c) Cen-
trifugal Chiller FIS temperature within condenser; (d) Centrifugal Chiller FIS membership functions;
(e) Chilled water temperature, evaporator training data and ANFIS model output estimation;
(f) liquid refrigerant level inside condenser training data and ANFIS model output estimation;
(g) Rule Viewer: fis MISO chilled water temperature inside the evaporator subsystem; (h) Rule
Viewer: fis MISO liquid refrigerant level within the condenser subsystem.

The MATLAB Simulink simulation results are discussed in Section 5, and a rigorous
comparative performance analysis is made in Section 6.

3.4. Model Predictive Control Based on Centrifugal Chiller MIMO State-Space Representation

The MPC closed-loop control strategy architecture for MIMO CCS is shown in Figure 7.
The model predictive control (MPC) object was generated in MATLAB, as explained is detail
in Section 4.2, and the MPC Simulink diagram shown in Figure 7 was obtained using the
MPC MATLAB Simulink Toolbox. The MPC object has two manipulated variables (MVs):
uCom and u_EXV; one measured disturbance (MD) (temperature Trr set to 48 degrees
Fahrenheit); and two measured outputs variables (OV), namely, evaporator temperature
Tchw_sp and liquid refrigerant level inside condenser. The MIMO model of the Centrifugal
Chiller plant is represented in a discrete-time state space via Equation (6), with the values of
the matrices’ coefficients given in Equation (7). The MATLAB Simulink simulation results
are shown in Section 5.2 and the performance analysis is reported in Section 6.
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4. Design and Implementation of Reinforcement Learning Using Deep
Learning Neural Networks-MIMO CCS Closed-Loop Control Strategies

This section focuses on the design and implementation in MATLAB Simulink of
two RL DLNN advanced intelligent control strategies for a MIMO CCS simplified state-
space model. The first uses the MPC specifications to generate the reward function, and
the second uses step response specifications imposed on a MIMO CCS model represented
in the simplified state space. The tracking accuracy performance was compared with the
MPC integrated in the first controller structure and an improved digital PID based on the
MISO CCS ANFIS models.

4.1. Reinforcement Learning Closed-Loop Control Strategy Using Deep Learning Neural Network
MIMO Centrifugal Chiller Plant Model Represented in State Space
4.1.1. Reinforcement Learning Process—Description

Reinforcement learning (RL) involving multi-layered deep learning neural networks
is a well-used and well-suited method for research and development in modern artificial
intelligence, as is shown in [18]. More precisely, RL is a modeling process in which an agent
(controller) learns to make decisions by interacting with an unknown environment through
trial and error, as shown in Figure 8a [18,19]. Mathematically speaking, the RL modeling
process (algorithm) depicted in Figure 8a is typically based on a Markov decision process
(MDP). In this type of process, the RL agent block receives in its current state the observation
St as a result of the interaction with the unknown Environment, performing an action that
it then sends to the same Environment. The latter reacts by sending a scalar reward Rt to
the same RL block for a new transition to the next state St+1, according to the conditional
probability of the Environment dynamics; p(St+1|St, At). The RL agent attempts to learn
a policy π(At|St) or map from observations to actions, in order to maximize its returns
(expected sum of rewards). In RL (as opposed to optimal control), the algorithm has
access to Environment dynamics p(St+1|St, At) only during the sampling time. During
the training process, the RL blocks learn the unknown environment and “make a series of
decisions to maximize the cumulative reward for the task without human intervention and
without being explicitly programmed to achieve the task” [18].

From the perspective of a system-oriented approach, the diagram shown in Figure 8a
shows a general representation of a reinforcement learning (RL) algorithm. Figure 8b reveals
its equivalence to a traditional closed-loop control strategy used in system applications [19].
In other words, the key role of the RL policy in Figure 8a is to observe the unknown
environment (state St) and generate actions (At) to “complete a task optimally”, similar
to a traditional controller operating in a control system application. Of course, the RL
algorithm comes with a valuable improvement to the RL policy, known as policy updating.
More specifically, RL can be seen as a mapping of a conventional feedback control system
depicted in Figure 8b, and the correspondence between both diagrams is well presented
in [19]. The concept is based on “rewarding or punishing an agent’s performance in a specific
environment” [24]. According to this definition, a state is a description of the environment
that provides the agent with helpful information for taking a decision at each time step. The
agent receives observations and a reward from the Environment and the actions generated
are sent into the same Environment. Reward is a measure of the achievement of an action
on the completion of the task goal; i.e., the reward signal evaluates the outcome of past
actions [18]. RL policy is based on cost function to map each state to the optimal action in
order to maximize its reward function during the episode [17].
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system, and the red color is to highlight that the parameters of the controller are adjustable and a
particular Reward function, respectively.

This RL policy can be a deterministic policy, defined as At = π(St) for π : S → A , or
stochastic policy, described as At ∼ π( ·|St) for π : S → P(A) , where P(A) is a set of
probability distributions over actions. For an MDP, these probability distributions have an
interesting feature; they factorize over trajectories [17,19]:

p(S1, A1, . . . , Sn, An) = p(S1)π(A1, S1) P(S2|S1, A1)π(A2, S2) . . . . . .P(Sn|Sn−1, An−1)π(An, Sn) (18)

Thus, this feature is useful in the field of control applications, since RL policies need
only to consider the current state, which is a strong consequence of the Markov assumption
and full observability [23]. Otherwise, if the RL environment is partially observable, then
the RL policy must depend on the history of observations. It is important to note that
the RL deep learning method differs from supervised learning because it does not require
correct sets of actions and labelled input/output pairs [24–27]. The general reinforcement
learning structure shown in Figure 8a is described by the following Equations [17]:

At ∼ π(At|St) (19)

St+1 ∼ fstate(St+1|St, At) (20)

Rt+1 = freward(St, At, St+1) (21)

R =
t=∞

∑
t=0

γtRt+1 (22)

Qnew(St, At) = Qold(St, At) + α

(
Rt + max

a′∈A
Qnext(St+1, a′

)
−Q(St, At)

)
= Qold(St, At) + α(Target− Prediction) (23)

where π(At|St) is the policy at time t, At denotes the action of time t, St is the state
(observation) at time t, fstate and freward are the transition functions from time t to t+1, and
Q is the state-action value function. The so-called Q function, 0 ≤ γ < 1 is an important
hyperparameter called the discount factor, which determines how much we care about
rewards now versus rewards later; more precisely, this is an exponential decay factor, which
means longer term planning is harder.

Also, 0 < α < 1 represents the learning rate—a value that controls how quickly
an agent updates its Q-values based on new information, essentially determining how
much weight is given to newly acquired experiences compared with previously learned
information; a higher value for α means faster learning and more significant updates to
Q-values with each new interaction. When adopting a Monte Carlo technique to estimate
the Q-values, every iteration of the Q-value requires updating Q for every state. Monte
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Carlo estimation of the expectation µ = E[X] repeatedly samples X, and the convex
relationship [23] is updated as follows:

µ← µ + α(X− µ) (24)

In this relationship, the X dynamics is required to evaluate the expectation µ.
The ε-greedy policy that appears in Figure 9f for a block of parameters of the TD3

RL agent is defined as a policy that chooses argmaxa∈AQ(S, A) with probability 1-ε and a
random action with probability ε. The typical value for the parameter ε is 0.005 [23].
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Figure 9. Reinforcement learning control strategy based on deep neural network for a MIMO Cen-
trifugal Chiller simplified model in state-space representation: (a) compact Simulink diagram of 
MIMO Centrifugal Chiller plant and RL DLNN; (b) detailed Simulink diagram; (c) MPC and 
RLDNN subsystem; (d) visualization block; (e) MPC parameters block; (f) RL Agent block (control-
ler); (g) state-space representation block; (h) reward function; (i) RL Agent greedy policy block; (j) 
observation block-detail; (k) agent training process-print screen snapshot after 13 epochs; (l) agent 
training process-print screen snapshot after 262 epochs. 
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to balance exploitation and exploration. It ensures that most of the time (probability 1-ε), 
the RL agent exploits its incomplete knowledge of its environment by choosing the best 

Figure 9. Reinforcement learning control strategy based on deep neural network for a MIMO
Centrifugal Chiller simplified model in state-space representation: (a) compact Simulink diagram of
MIMO Centrifugal Chiller plant and RL DLNN; (b) detailed Simulink diagram; (c) MPC and RLDNN
subsystem; (d) visualization block; (e) MPC parameters block; (f) RL Agent block (controller); (g) state-
space representation block; (h) reward function; (i) RL Agent greedy policy block; (j) observation
block-detail; (k) agent training process-print screen snapshot after 13 epochs; (l) agent training
process-print screen snapshot after 262 epochs.

Combining all the information on Monte Carlo estimation of the expectation µ, a
helpful pseudocode algorithm for implementers called Q-learning with ε-greedy policy is
given in [23].

The ε-greedy policy is a valuable mechanism for managing the exploration–exploitation
balance, as has been stated [23]. It operates according to the following equation:

πε(S ; Q) =

{
argmaxa∈AQ(St, A) with probability 1− ε

Uni f ormly random action in A with probability ε
(25)

Due to its simplicity, the ε-greedy policy has become the most widely used method to
balance exploitation and exploration. It ensures that most of the time (probability 1-ε), the
RL agent exploits its incomplete knowledge of its environment by choosing the best action,
and occasionally (probability ε) explores other actions. There may be some good actions that
the agent will never find without exploration [23]. This is why the exploration–exploitation
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trade-off is an important research topic. Also, for our readers and implementers interested
in being well-documented, the pseudocode Algorithm 1 of the RL Deep Learning NN
algorithm described in [17] is reproduced below for its great informal value:

Algorithm 1: RL Deep Learning NN [17]

RL Agent states: Observations S
RL Agent actions; A
Define the optimal policy given by the Bellman equation [23]:

Qπ∗(s, a) = r(s, a) + γ(∑
s′

p(s′|s, a)max
a′

Qπ∗(s′, a′) (26)

and
Q∗ = Qπ∗ is the optimal state-action value function;
Initialize the hyperparameter learning rate α, discount factor γ, and exploration parameter ε.
for t in range (epoch) do
Calculate the action At according to the optimal policy:

At ←
{

argmaxa∈AQ(St, A) with probability 1− ε

Uni f ormly random action in A with probability ε
(27)

Send the action At into the agent environment;
Evaluate the next value of the observation St+1 starting from the previous state St according Equation (20) and [23]:
St+1 ∼ fstate(St+1|St, At) = P(( ·|St, At)) (28)
The agent is sensed by the next observation St+1 and the reward function Rt+1 given by Equations (21) and (22) (could
be r(St, At), or could be stochastic);
Update the new action-value function Qnew(St, At) at state-action (St, At), according the Equation (23);
Evaluate the estimation using the following loss function in terms of RMSE, MSE, and MAE as defined in [17].
End

The MATLAB software package Simulink Reinforcement Learning Toolbox provides
all the valuable tools to create and train reinforcement learning agents (controllers), as
previously demonstrated [20,21]. In many practical decision-making problems, the MDP
states are high-dimensional and cannot be solved by traditional RL algorithms. Deep
reinforcement learning algorithms incorporate deep learning (DL) to solve such MDPs,
often representing the π(At|St) policy or other learned functions as a neural network (NN)
and developing specialized algorithms that perform well in this context. Therefore, in
this study, the agent policy (control law) was implemented using deep neural networks
(DNNs) created using the most appropriate tools provided in the MATLAB Simulink Deep
Learning Toolbox software package [24–26]. Some problems related to the graphics issues
encountered during the MATLAB simulations were solved based on the advice provided
in [27].

4.1.2. Reinforcement Learning Workflow

The following steps are suggested in [19] to illustrate the RL workflow:
Step 1. Formulate problem: define the task for the RL agent to learn, including its

interaction with the environment and primary and secondary achievement goals;
Step 2. Create environment: employ MATLAB or Simulink to define the environment

within which the RL agent will operate, including the interface between the agent and
environment and the environment dynamic model;

Step 3. Create RL Agent: create the RL agent containing policy and a learning algo-
rithm [18,19];

A learning algorithm continuously updates the policy parameters based on the actions,
observations, and rewards;
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Step 4. Create Deep Neural Network Policies and Value Functions: as discussed in
Section 4.1.1.

The agents define the DLNN inputs and outputs based on specified actions and
observations from the Environment. Also, an actor net and an actor critic representations
for the RL agents can be created using Deep Learning Toolbox functionality. Pretrained
deep neural networks or deep neural network layer architectures can be imported using
the MATLAB Simulink Deep Learning Toolbox network import functionality.

Step 5. Train RL Agent: the RL Agent policy representation is trained using the
defined environment, reward, and agent learning algorithm. Training an agent using
reinforcement learning is an iterative process.

Step 5. Validate RL Agent: Evaluate the performance of the trained agent by simulat-
ing the agent and environment together.

Step 6. Deploy policy: Deploy the trained policy representation using a generation code.

4.2. Deep Learning Neural Network

In this section, the deep learning neural networks (DLNN) is discussed. A deep
learning neural network is structured as a series of interconnected layers with multi-
ple nodes called “neurons”. Deep learning is used for training multi-layered, allowing
them to learn hierarchical representations of datasets in order to make predictions and to
generate outputs.

4.2.1. DLNN Architectures, Components, Algorithms and Applications

The deep learning (DL) architecture originated from artificial neural networks (ANNs)
that were inspired by the structure of the human brain. Neural network (NN) architectures
consist of several components working together to process and learn from massive datasets,
extracting patterns and abstract representations of data as information flows through each
layer. The components include the input layer, hidden layers, neurons (nodes), weights and
biases, activation functions, the output layer, and the loss function; these are well explained
in a comprehensive review presented in [24]. In that review, deep learning is described as a
multi-layer machine learning method for performing complex tasks. This layered structure
is why the deep learning technique differs from conventional machine learning methods;
within this structure, the data flows from an input layer through several hidden layers
to an output layer. These added hidden layers increase the accuracy performance of the
neural network design.

Each neuron performs calculations on the received input and passes the result to the
next layer, allowing the network to learn complex patterns from the data [24]. Also, a
perceptron simulates a neuron with a set of inputs, each of these having a particular weight,
such that the inputs with higher weights have a significant impact on the neural network.
The neuron computes and produces an output based on the weighted inputs. Each neuron
receives n inputs (features), sums them, applies a transformation (activation) and generates
the output. A second parameter called bias is used to adjust the output based on the input
weights; thus the model fits the data in the best possible way. An activation function
converts the inputs into the output produced using a threshold. Briefly, the neural network
architecture serves as the support for the understanding and processing of diverse data
types, and generative models unlock the ability to create new data samples that resemble
the training data. In the literature [24], it is mentioned that deep learning is “among the
fastest-growing areas in computational science, employing complex multilayered networks
to model high level patterns in data”. The state-of-the-art of deep learning techniques has
been enhanced in several fields, including “visual object recognition, speech recognition,
genomics, and discovery of drugs, along with plenty of others”. Among the well-known
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deep learning algorithms discussed [24] are backpropagation models, autoencoders, varia-
tional autoencoders, restricted Boltzmann machines, deep belief networks, convolutional
natural networks, forward neural networks, recurrent neural networks, LSTM, generative
adversarial networks, transformer deep learning structure, embedding from language
models, and bidirectional encoder representations from transformers. A brief overview of
the steps involved in using deep learning is expressed in the following sequence:

1.Data Preparation→ 2.Building NN → 3.Training NN → 4
Evaluation

Tuning
→ 5

Prediction
Generation

→ 6.Iterative Improvement

These steps can be seen in the MATLAB code lines of both the RL DLNN algorithms de-
veloped in the present research, Appendix B.1, Algorithm A1, and Algorithm A2 respectively.

In the first step, the data are collected and preprocessed (cleaning by removing errors
or inconsistences, normalization, and splitting, such as for example, 70% into training data
and 30% testing data). The data format must be compatible with the NN. The architecture
of the NN is defined in the second step. In the third step, the training process is launched
for fine-tuning of the network’s weights and biases in order to minimize the difference
between the predicted output and the true output. This is followed by step 4, evaluation
and validation, required for a rigorous evaluation of performance accuracy, followed by
a test validation to gather valuable information about how well the NN generalizes to
unseen data. In step 5, the trained DLNN evaluated and validated in the previous step
acquires good ability to predict or generate results for unseen data. If the proposed DLNN
performance does not meet the control objective in the last step, an iterative improvement
process is initiated to adjust the DLNN parameters, including modifications to the DLNN
architecture using the “trial and error” procedure by changing the number of layers and
hidden neurons, or exploring new optimization control algorithms to achieve the proposed
control objectives.

4.2.2. NN Table Models

Neural network tables can take various forms depending on the specific application
and the type of data being processed. The most usual NN tables built to analyze NN
performance using evaluation metrics include the confusion matrix, the weight matrix,
activation tables, and loss tables. In the following, we examine these particular tables.

1. Confusion Matrix: This type of table is used to evaluate the performance of a classifi-
cation model. It shows the numbers of true positives, true negatives, false positives,
and false negatives. A generic example is presented as follows:

Actual/Predicted Positive Negative

Actual 60 20

Predicted 10 25

2. Weight Matrix: In each NN, the weights are critical parameters that transform input
data within the network. A weight matrix represents the weights between layers of
neurons, for which a simple matrix might look like this:

Neuron k Neuron k + 1 Neuron k + 2

0.2 0.3 −0.1

−0.3 0.5 0.2

3. Activation Table: This type of table illustrates the activation values of the neurons in
a NN for a given input, as shown below:
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Input k Input k + 1 Neuron k activation
Neuron k + 1

activation

0.4 0.2 0.5 0.5

0.3 0.7 0.2 0.8

4. Loss Table: This table tracks the loss values during NN training, a valuable informa-
tion for understanding how well the model is learning over time; a figurative example
is presented below:

Epoch Training Loss Validation Loss

1 0.32 0.35

2 0.15 0.2

3 0.25 0.25

These tables are essential for analyzing and understanding the performance and
behavior of neural networks in various applications. Appendix B.2 details two DLNN
tables, namely the Tables A1 and A2 with parameter simulation and monitoring training
for the two proposed RL DLNN control algorithms developed in Section 4.3. Since both RL
DLNN algorithms solve a tracking reference control regression problem, the most suitable
evaluation metrics are RMSE and MSE [17]. The strong dependence of reward function
of RMSE and MSE gives us the possibility of using an evaluation metric based on reward
function, since the problem of minimization of RMSE or MSE to the smallest possible value
closest to zero becomes a maximization problem of reward function, for which the most
appropriate metrics are the cumulative reward value (return value) or average reward value.
The evaluation metric used for DLNN performance in both NN tables is the average reward
value for each training episode, since this value appears automatically in the monitoring
of the RL agents’ training progress, as shown in Figure 9k,l and Tables A1 and A2 from
Appendix B.2. The RL agents are trained using the adopted RL DLNNs control algorithms
whose reward functions are generated from MPC and the step response specifications of
the MIMO Centrifugal Chiller System discussed below in Section 4.3.

4.3. Reinforcement Learning Deep Learning Neural Networks Closed-Loop Control Strategies
Applied to a Centrifugal Chiller System

In this section, we develop two advanced intelligent reinforcement learning deep
learning neural network (RLDLNN) control algorithms to control the evaporator tempera-
ture and the level of refrigerant in the condenser. The first algorithm generates a reward
function for an RL Agent based on model predictive control (MPC) specifications and the
second algorithm generates two reward functions for two RL agents (controllers) based on
the step response block specifications.

4.3.1. Generate Reward Function from the Cost and Constraint Specifications Defined in an
MPC Object

This intelligent control strategy and the training phase results were implemented in
MATLAB Simulink in Figure 9.

Its compact and detailed architecture is presented in Figure 9a–d and is of practical
interest. It automatically generates the reward function from the cost and constraint
specifications defined in a Simulink model predictive controller (MPC) object, as shown in
Figure 9e. It is connected in a closed loop with the MIMO centrifugal cooling plant model
given by Equations (6) and (7) in Section 2.2 to control the chilled water temperature Tchw-
sp in the evaporator subsystem and the level of liquid refrigerant in the second condenser
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subsystem, depicted in the state-space representation shown in Figure 9g. Implementing
this control strategy follows the same procedure that is well described in the updated
MathWorks documentation for MIMO Centrifugal Chiller System (CCS) model [18,19].
The MPC object appearing at the top of Figure 9b,c with its parameters block depicted
in Figure 9e was created based on the CCS MIMO model, using an inline MATLAB code
procedure. For the CCS MIMO plant model under investigation, the sampling time value
is set to Ts = 0.1 s, the prediction horizon was assumed to be p = 10 steps, and the control
horizon m = 2 steps.

The following specifications of the MPC object are helpful for RL DLNN MPC
strategy design:

• Standard linear bounds for output variables (OVs) and manipulated variables (MVs):

ymin = [0 0], ymax = [10 52], mvmin = 0, mvmax = 1.1, mvratemin = −1000, and mvratemax = Inf

• Scale factors as specified for OVs and MVs:

Sy = [10 52], Smv = [1.1 1]

• Standard cost weights:

Qy= [0.1 0.1], Qmv = [0 0], and Qmvrate = [0.1 0.1]

The reward function generated based on the MPC object specifications was the starting
point for the reward design. The reward function is used to train the RL Agent, as shown in
Figure 9f. The implementer can modify the reward function with different penalty function
options and adjust the weights:

The reward function requires the following two components to be computed:

1. The cost component, calculated according to the following equations:

dy = (re f y(:)− y(:))./Sy
T (29)

dmv = (re f mv(:)−mv(:))./Smv
T (30)

dmvrate = (mv(:)− lastmv(:))./Smv
T (31)

Jy = dyTdiag
(
Qy. ˆ 2

)
dy (32)

Jmv = dmvTdiag(Qmv. ˆ 2)dmv (33)

Jmvrate = dmvrateTdiag(Qmvrate. ˆ 2)dmvrate (34)

Cost = Jy + Jmv + Jmvrate (35)

2. The penalty component for violation of linear bound constraints, with the following
components:

• Penalty function weight (specify nonnegative):

Wy = [1 1], Wmv = [10 10], Wmvrate = [10 10] (36)

# Choose the step or quadratic penalty method to calculate the exteriorPenalty;
# Set the Pmv value to 0 if the RL Agent action specification has appropriate

“LowerLimit” and “UpperLimit” values.



Algorithms 2025, 18, 170 23 of 53

• Penalty functions:

Py = Wy
(
exteriorPenalty

(
y, ymin, ymax,′ step′

))
(37)

Pmv = Wmv
(
exteriorPenalty

(
mv, mvmin, mvmax,′ step′

))
(38)

Pmvrate = Wmvrate
(
exteriorPenalty

(
mv − lastmv, mvratemin, mvratemax,′ step′

))
(39)

and finally:
Penalty = Py + Pmv + Pmvrate (40)

To calculate the reward value as a result of the MATLAB function block illustrated
in Figure 9h, the following relationship between all three components—reward, cost, and
penalty—is used:

reward = −(Cost + Penalty) (41)

For the actual control application under research, the specifications of the RL DLNN
environment were the following:

• The observations reference signals (Y1sp and Y2sp), output variables (Tchw and Level),
and their integrals, were as shown in Figure 9j;

• The Tchw and Level signals were normalized by multiplying with the gain [1/10 1/52];
• The action of Ucom and uEXV was limited to between [0 1.1] for Ucom and [0 1] for uEXV ;
• The sample time and total simulation time were Ts = 0.1 s. In order to capture the

full evolution of the dynamics for both plant outputs, the simulation time was set to
Tsim = 60 s.

The MATLAB Simulink simulations result is presented in Figure 9.
The block parameters and the block diagram for simulation of reinforcement learning

of the RL Agent using a Simulink model as a training and simulation environment are
depicted in Figure 9f. The same block also generates the RL Agent greedy policy π0(.), as
shown in Figure 9i. Figure 9h shows a screen capture of the MATLAB reward function, and
Figure 9j presents a detail of the observation block that appears in Figure 9b,c.

The RL agent chosen in the case study was a twin-delayed deep deterministic policy
gradient (TD3) agent [20,21] that used two parametrized Q-value function approximators
to estimate the value (that is, the expected cumulative long-term reward) of the policy, as
shown in Figure 9f,i. To model the parametrized Q-value function, a neural network that
was used had two inputs (the observation and action) and one output corresponding to the
value of the policy π0( ) when taking a given action from the state corresponding to a given
observation, as shown in Figure 9i. Before training the RL Agent, each network path of the
DLNN was defined as an array of layer objects, and names assigned to the input and output
layers of each path in order to connect the paths. Thus, a layer graph object was created
and layers aded to generate the criticNet, as is shown in Figure 10a. The critic function
objects were created using a dedicated MATLAB rlQValueFunction command. To make sure
the critics had different initial weights, each network was explicitly initialized before being
used create critic 1 and critic 2 [20,21]. The TD3 agent learns a parametrized deterministic
policy over continuous action spaces. The policy is learned by a continuous deterministic
actor that takes the current observation as input and returns as output an action that is a
deterministic function of the observation. The neural network that is used to model the
parametrized policy within the actor has one input layer (which receives the content of
the environment observation channel) and one output layer (which returns the action to
the environment action channel) [20,21]. An actor network named actorNet is created;
its layer graph is shown in Figure 10b. The deterministic actor function is generated for
the purposes of modeling the policy of the RL Agent. A set of agent options is specified
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to train the agent from an experience buffer of maximum capacity 1 × 106 by randomly
selecting mini-batches of size 256. It has been reported that a discount factor of 0.995 favors
long-term rewards [20,21]. The optimizer options are specified for the actor and critic
functions: a learning rate of 1 × 10−3 and a gradient threshold of 1, as set out in [20,21].
During training, the agent explores the action space using a Gaussian noise model of action.
The standard deviation and decay rate of the noise are set by using an ExplorationModel
property, as is shown in [20,21]. The RL Agent was trained using train function, as depicted
in Figure 9k; after 13 epochs, it is produced the best tracking performance for chilled water
temperature inside the evaporator and for liquid refrigerant level within the condenser.
Figure 9l also illustrates the results of the training process after 262 epochs, when the
tracking performance of the liquid refrigerant level in condenser was at its best, while that
for the chilled water temperature inside the evaporator was slightly attenuated compared
with the first result obtained, as shown in Figure 9k. A snapshot of the main steps of the
MPC RL DLNN Algorithm A1 is presented in Appendix B.1.
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The layer graphs of criticNet and actorNet are displayed in Figures 10a,b, respectively.

4.3.2. Reinforcement Learning Deep Learning Neural Network Control Strategy—Generate
Reward Function from a Step Response Specifications of MIMO Centrifugal Chiller
Simplified Model in State-Space Representation

Both The digital PID and RL DLNN closed-loop control strategies are depicted in
Figure 11a in a compact Simulink diagram architecture. A description in state space of
MIMO CCS model is provided in Figure 11b. Figure 11c shows the block parameters of
RL Agent1, and Figure 11d details the observations block as a component of the same
compact Simulink diagram. The compact Simulink diagram also shows how to auto-
matically generate two reward functions—rewardfunctionVfb1 and rewardfunctionVfb2,
shown in Figure 11e,g from the performance requirements defined in the Simulink Design
Optimization model verification blocks provided in MATLAB R2024a Simulink Toolbox for
evaporator temperature control (chosen as the first agent, RL Agent1) and condenser liquid
refrigerant level control (the second agent, RL Agent2), respectively. Also in the compact
Simulink diagram appear two Boolean logic termination blocks, which stop the training
of the RL Agent1 and RL Agent2 when the evaporator temperature and the condenser
level reach good accuracy performance, as shown in Figure 11f,h. The rewardfunctionVfb1
and rewardfunctionVfb2 are used to train both reinforcement learning RL Agent1 and RL
Agent2, following the stated steps and the MATLAB Reinforcement Learning subroutine
procedure similar to those developed in [20,21] applied for MIMO plants. The training
of both agents, RL Agent1 and RL Agent2, is performed similarly to the MPC RL DLNN
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procedure described above in Section 4.3.1. Compared with MPC RL DLNN, both RL
agents are decentralized with two distinct paths. The untrained simulation results for
evaporator temperature control and condenser liquid refrigerant level control are pre-
sented in Figure 11i,j, respectively. Figure 11k,l presents the training simulation results
for the evaporator temperature and liquid refrigerant level inside of the condenser after
200/200 epochs. As shown in Figure 11m, the training process of both RL Agent1 and RL
Agent2 finishes after the agents reach the criteria to stop training set out in the training
options MATLAB subroutine presented in the print screen snapshot of Algorithm A2 from
Appendix B.1. The penalty function weight is specified nonnegative and set to the value
2. To compute the penalty for violation of linear bound constraints, the same MATLAB
functions were used as described in previous section for MPC strategy. The user can specify
the penalty method as step or quadratic; the quadratic is typically preferred.
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Figure 11. Reinforcement learning deep learning neural network Simulink diagram: (a) overall Sim-
ulink diagram of RL DLNN control architecture and MIMO CCS; (b) MIMO CCS state-space model; 
(c) RL Agent1 block; (d) observation block; (e) Reward Function Vfb1 block; (f) termination block 
for first RL Agent1; (g) Reward Function Vfb2 block; (h) termination block for first RL Agent2; (i) 
chilled water temperature within evaporator and step response block specifications-untrained RL1 
Agent; (j) liquid refrigerant level inside condenser and step response block specifications-untrained 
RL Agent2; (k) chilled water temperature within evaporator-trained RL1 Agent after 33/200 epochs; 
(l) liquid refrigerant level inside condenser-trained RL2 Agent after 33/200 epochs; (m) training pro-
cess ofRL1 and RL2 Agents. 

5. Traditional and Advanced Intelligent Closed-Loop Control Strategies—MATLAB 
Simulink Simulation Results 

This section presents the MATLAB Simulink simulation results of traditional closed-
loop control strategies. Subsection 5.1.1 discusses DTI control of the MIMO CCS, and in 
Subsection 5.1.2 is depicted the simulations result for a PID control of MIMO CCS ex-
tended nonlinear model with 39 states, inputs subjected to constraints, and under meas-
ured temperature disturbance. In Section 5.1.3 are shown the simulation results of an im-
proved version of PID control, more precisely, a digital PID control of a MIMO CCS AN-
FIS model. Model predictive control of the MIMO CCS model represented in state space 
with four states is discussed in Subsection 5.1.4. Also, the reinforcement learning MPC 
deep learning neural network (RL DLNN) control MIMO CCS model is compared versus 
MPC control in Subsection 5.2.1, and the RL DLNN control of MIMO CCS model in state-

Figure 11. Reinforcement learning deep learning neural network Simulink diagram: (a) overall
Simulink diagram of RL DLNN control architecture and MIMO CCS; (b) MIMO CCS state-space
model; (c) RL Agent1 block; (d) observation block; (e) Reward Function Vfb1 block; (f) termination
block for first RL Agent1; (g) Reward Function Vfb2 block; (h) termination block for first RL Agent2;
(i) chilled water temperature within evaporator and step response block specifications-untrained RL1
Agent; (j) liquid refrigerant level inside condenser and step response block specifications-untrained
RL Agent2; (k) chilled water temperature within evaporator-trained RL1 Agent after 33/200 epochs;
(l) liquid refrigerant level inside condenser-trained RL2 Agent after 33/200 epochs; (m) training
process ofRL1 and RL2 Agents.

The corresponding MATLAB code lines inside the MATLAB blocks built based
on the step response specifications for each reward function are presented in the same
Algorithm A2 from Appendix B.1. The MATLAB Simulink simulations results are shown in
Section 6.2, below.

5. Traditional and Advanced Intelligent Closed-Loop Control
Strategies—MATLAB Simulink Simulation Results

This section presents the MATLAB Simulink simulation results of traditional closed-
loop control strategies. Section 5.1.1 discusses DTI control of the MIMO CCS, and in
Section 5.1.2 is depicted the simulations result for a PID control of MIMO CCS extended
nonlinear model with 39 states, inputs subjected to constraints, and under measured
temperature disturbance. In Section 5.1.3 are shown the simulation results of an improved
version of PID control, more precisely, a digital PID control of a MIMO CCS ANFIS model.
Model predictive control of the MIMO CCS model represented in state space with four
states is discussed in Section 5.1.4. Also, the reinforcement learning MPC deep learning
neural network (RL DLNN) control MIMO CCS model is compared versus MPC control in
Section 5.2.1, and the RL DLNN control of MIMO CCS model in state-space representation
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versus the improved digital PID control of MIMO CCS ANFIS model is compared in
Section 5.2.2.

5.1. Traditional Closed-Loop Control Strategies
5.1.1. DTI Closed-Loop Control

The simulation results are presented in Figure A2 in Appendix A. Figure A2a shows the
Simulink diagram of the DTI controller. Figure A2b depicts the DTI control of chilled water
temperature control within the evaporator subsystem, and Figure A2c the liquid refrigerant
level control inside the condenser subsystem. Figure A2d presents the compressor and
expansion valve opening actuator control efforts.

5.1.2. PID Closed-Loop Control—Centrifugal Chiller Extended Model (39 States)

The Simulink simulation result is depicted in Figure 12. Figure 12a presents the
PID MIMO Centrifugal Chiller closed-loop temperature control inside the evaporator
subsystem; in Figure 12b, the results for PID control of the liquid refrigerant level in the
condenser subsystem are revealed. Figure 12c depicts the compressor actuator control
effort and Figure 12d discloses the expansion valve opening actuator control effort.
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Figure 12. MATLAB Simulink simulation results: (a) PID evaporator subsystem temperature control;
(b) PID liquid refrigerant level control in condenser subsystem; (c) compressor relative speed actuator
control effort; (d) expansion valve opening actuator control effort.
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5.1.3. Digital PID Control of MIMO Centrifugal Chiller ANFIS Model

The MATLAB Simulink simulations results are revealed in Figures 13 and 14, and
also in Figures A4–A7 in Appendix A. The MATLAB Simulink simulation results for the
digital PID control CCS ANFIS model without changes in temperature and level setpoints
are depicted in Figure 13a,b, respectively. The actuators’ control efforts for the compressor
and expansion valve opening are shown in Figure 14a,b. On simple visual inspection of
both figures, it seems that the fast digital PID control had a fast step response, reaching
zero steady-state for a settling time of 50 s with a 9% overshoot for chilled water inside the
evaporator and 2% for liquid refrigerant level within the condenser.
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level, respectively. Figure A5a shows the impact of temperature disturbance on the com-
pressor actuator control effort, and Figure A5b on expansion valve opening actuator ef-
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Figure 13. MATLAB Simulink simulation results without changes in temperature and level setpoints:
(a) PID ANFIS discrete-time control of Tchw-sp in evaporator; (b) PID ANFIS discrete-time control of
liquid refrigerant level in condenser.
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Figure 14. PID ANFIS discrete-time control—MATLAB Simulink simulation results of actuator
control efforts: (a) compressor relative speed; (b) expansion valve opening.

The ability of the digital PID controller to overcome the effects of temperature distur-
bance is revealed in Figure A4a for temperature and in Figure A4b for liquid refrigerant
level, respectively. Figure A5a shows the impact of temperature disturbance on the com-
pressor actuator control effort, and Figure A5b on expansion valve opening actuator effort,
respectively. Figure A6a shows the evolution of the chilled water temperature inside the
evaporator subsystem, and Figure A6b shows the evolution of the liquid refrigerant level
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in the condenser subsystem with changes in setpoint values for temperature and level,
respectively. The impact of these setpoint changes on the compressor and expansion valve
opening actuator control efforts are shown in Figure A7a,b, respectively.

5.1.4. Model Predictive Control of MIMO Centrifugal Chiller Nonlinear Extended Model in
State-Space Representation (39 States) with Input Constraints

The MPC simulation results are described in Figure 15a–d. The control effects of both
actuators, compressor relative speed and expansion valve opening, are represented in
Figure 15a. Figure 15b reveals the chilled water temperature disturbance, Trr. Figure 15c
shows the MPC of chilled water temperature (OV1) inside the evaporator in degrees Celsius,
and Figure 15d displays the liquid refrigerant level (OV2) within the condenser with a
change in temperature disturbance Trr from 48 [degF] to 54 [degF] applied at time instant
t = 40 [s].
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Figure 15. MPC MATLAB Simulink simulations resulted in a closed loop for input (u1 = Ucom,
u2 = uEXV, u3 = Trr) and output (y1 = Tch-sp, y2 = Level) responses against internal plant using
mpcDesigner application based on the input–output measurement dataset for the MIMO CCS
extended state model: (a) actuator control effort; (b) temperature disturbance; (c) chilled water
temperature in evaporator; (d) liquid refrigerant level in condenser.

5.2. Advanced Reinforcement Learning Using Deep Learning Neural Network Control Strategies

This subsection presents the simulation results of the advanced reinforcement learning
deep learning neural networks (RL DLNNs) developed in Section 4, conducted on the
MATLAB Simulink R2024 software programming platform.
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The Section 5.2.1 refers to the Simulink simulation results for the RL DLNN that
generated the reward function from an MPC dataset extracted from the MIMO CCS sim-
plified model represented in state-space, given in Equation (7). Section 5.2.2 presents
the simulations result for the RL DLNN that generated the reward function from
two step responses’ block specifications for the same MIMO CCS simplified model in
state-space representation.

5.2.1. Reinforcement Learning Deep Learning Neural Network Control
Strategies–Generate Reward Function from MPC of MIMO Centrifugal Chiller Simplified
Model in State-Space Representation

The Simulink simulations results are shown in Figure 16a–c. Results for the RL DLNN
control of evaporator chilled water temperature are displayed in Figure 16a, and Figure 16b
represents the liquid refrigerant level in the condenser, both versus their corresponding
MPC step responses on the same graphs. The Figure 16c illustrates the separate RL DLL
MPC control efforts.
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Figure 16. RL DLNN—Generate reward function based on MPC specifications: (a) RL DLNN MPC
evaporator temperature control versus MPC; (b) RL DLNN MPC condenser level control versus MPC;
(c) RL DLNN MPC actuator efforts.

5.2.2. Reinforcement Learning Deep Learning Neural Network Control
Strategies—Generate Reward Function from Step Response Specifications of a MIMO
Centrifugal Chiller Simplified Model in State-Space Representation

The simulation results for RL DLNN control of evaporator chilled water temperature
are depicted in Figure 17a, and Figure 17b illustrated the liquid refrigerant levels versus
digital PID control of MIMO ANFIS model responses.
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Figure 17. MATLAB Simulink simulation results of RL DLNN versus digital PID MIMO ANFIS
model generate reward function from the step response specifications of the MIMO Centrifugal
Chiller simplified model in state-space representation. (a) RL DLNN of chilled water temperature
inside the evaporator versus digital PID controller using ANFIS CCS models; (b) RL DLNN control of
liquid refrigerant level within the condenser versus digital PID controller using ANFIS CCS models;
(c) compressor actuator control effort, RL DLNN; (d) expansion valve opening actuator control effort,
RL DLNN; (e) compressor actuator control effort, digital PID CCS ANFIS model; (f) expansion valve
opening actuator control effort, digital PID CCS ANFIS model.
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The RL DLNN actuators control efforts for the compressor and for the expansion
valve opening is illustrated in Figure 17c,d, respectively, while the control efforts of digital
PID control CCS ANFIS models are shown in Figure 17e for the compressor actuator and
Figure 17f for expansion valve opening actuator.

6. Discussion
6.1. Conventional Control Strategies

In this section, a rigorous performance analysis is presented based on the statistical
data and stability performance error indicators extracted from step responses and the
standard structures used to calculate these indicators, such as ISE, ITSE, IE, IAE, and ITAE.

6.1.1. DTI Controllers

For the discrete-time integrator (DTI) controller developed in Section 3.1, through a
simple inspection of both the step responses represented in Figure A2a,b and the statistics
extracted for the same step responses for evaporator temperature, depicted in Figure 18a,
and liquid refrigerant level inside the condenser, reported in Figure 18b, the following
performances during transient and steady state regimes were calculated: acceptable time
responses (settling time, Ts) and rise time (Tr) for temperature Ts = 40, Tr = 5.5 s and for
liquid refrigerant level Ts = 20, Tr = 1.7 s, an overshoot of σ_max = 45.27% for temperature,
and a larger number of maximum amplitude oscillations, of about 10%, both reaching zero
steady-state errors, therefore showing high tracking accuracy.
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Figure 18. Statistical data extracted from the time responses: (a) TDI evaporator temperature control;
(b) TDI condenser liquid refrigerant level control.

Mean = 7.071 and standard deviation (std) = 1.708 for DTI temperature control can be
extracted from Figure 18a, while mean = 44.43 and std = 7.759 for DTI liquid refrigerant
level control is given in Figure 18b. It is also worth noting the strong control effort of the
oscillating compressor and the almost smooth opening of the expansion valve.

6.1.2. PID Control MIMO Centrifugal Chiller System Extended Model with 39 States

The step responses shown in Figure 12a,b reveal a very long Ts = 10,000 s, Tr = 10,000 s,
no overshoot, zero steady-state error, smooth compressor control effort for PID temperature
control, and a very long Ts = 6000, Tr = 6000 s, no overshoot, zero steady-state error, and
smooth expansion valve opening control effort for PID level control. The main issues
encountered for this closed-loop control strategy were a very slow time response and the
need for accurate tuning of the parameter values. Also, mean = 7.405 and std = 0.9972 for
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PID temperature control are revealed in Figure 19a, and mean = 45.03 and std = 0.7477 for
PID level control are shown in Figure 19b.
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6.1.3. Model Predictive Control of MIMO Centrifugal Chiller Simplified Model in
State-Space Representation

The rigorous performance analysis of step responses depicted in Figure 15c for the
evaporator temperature subsystem and in Figure 15d for the liquid refrigerant level in the
condenser subsystem revealed the following features:

• settling time Ts = 24.6 s, rising time Tr = 7.6 s, an overshoot of σ_max = 6.75%, zero
steady-state error, and an excellent disturbance rejection for evaporator temperature
control;

• settling time Ts = 7.2 s, rising time Tr = 7.2 s, no overshoot, a high tracking performance
accuracy, and significant disturbance rejection for the liquid refrigerant level inside
the condenser subsystem.

These results recommend the MPC closed-loop strategy as among the most suitable
conventional control strategies. It performs very well, and neither the compressor relative
speed and nor the expansion valve opening input violated the linear bound constraints.
The MPC adopted in the first RL DLNN closed-loop control strategy was developed in
Section 4.3.1 to generate the reward function from the MPC specifications of the MIMO
Centrifugal Chiller System model proposed in the case study.

6.2. Advanced Intelligent Closed-Loop Neural Control Strategies
Digital PID Control MIMO CCS MISO ANFIS Models

The MATLAB Simulink simulation results of the digital PID control CCS ANFIS model
without changes in temperature and level setpoints, depicted in Figure 13a,b, respectively,
show a fast time response Ts = 50 s from the evaporator temperature control subsystem,
with zero steady-state error and a 9% temperature of chilled water overshoot, compared
with the liquid refrigerant level control inside the condenser subsystem which had Ts =
64 s, steady-state error, and 2% overshoot of the liquid refrigerant level in the condenser.
Moreover, the actuator control efforts for the compressor and expansion valve opening,
correspondingly shown in Figure 14a,b, are sharp at the beginning and smooth later. The
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Simulink simulation results depicted in Figure A4a,b reveals that the effects of changes in
disturbance temperature load Trr from 48 to 54 degrees Fahrenheit applied at time t = 70 s
were completely overcome via the chilled temperature control inside the evaporator, as
were those in the level of liquid refrigerant within the condenser, almost within 40 s. Also,
the figures indicate that the steady state for each controlled output was very close to
zero, and the settling times of the step responses were fast enough for both digital PID
controllers, which can be interpreted as excellent performance using the improved digital
PID control strategy, outperforming the previous control PID control strategy based on the
extended model developed in Section 3.2. For this reason, the digital PID with the proposed
tuning procedure for the parameters’ values was used for performance comparison with
the second RL DLNN control structure.

6.3. Advanced Reinforcement Learning Deep Learning Neural Networks Control Strategies

For a rigorous analysis of tracking performance, it is essential to minimize errors in
any closed-loop feedback control system. In order to keep track of errors at all time, from
zero to infinity, and to minimize them continuously, performance measures were calculated
including integral time absolute error (ITAE), integral square error (ISE), integral time
square error (ITSE), and integral absolute error (IAE), as previously defined [15] and given
by Equations (42)–(46).

An effective tracking performance measure uses data statistics such as min, max,
mean, median, mode, standard deviation (std), and range, which are included in
Figures A8a–d and A10a–d. As discussed elsewhere [15], the integral time indicators
defined by Equations (42)–(45) are so-called fitness functions. Their values are calculated by
the standard hardware structures shown in Figures A9a–d and A11a–d, defined as follows:

ISE =
∫

e(t)2dt (42)

ITSE =
∫

t
[
e(t)2

]
dt (43)

IAE =
∫
|e(t)|dt (44)

ITAE =
∫

t|e(t)|dt (45)

IE =
∫

e(t)dt (46)

Specifically, all of these time integral criteria are generic and comprehensive tools to
evaluate the performance of a control system. Hence, a system may have a good rise time
but a poor settling time, or vice versa, while other basic criteria for evaluating the step
response tracking performance of a closed-loop feedback system include the overshoot
and the steady-state error extracted from the statistical data, although all these statistics
describe only one characteristic. The time integral criteria are generic and comprehensive;
they allow comparison between different controller designs or even differently structured
controllers. The fitness functions are not actually limited to the above equations. Engineers
can provide custom fitness functions depending on the target design and control system.
The overall performance (convergence speed and optimization accuracy) of an interesting
evolutionary algorithm previously developed [15] for optimal tuning of the PID parameter
values depends on the fitness functions. Note that integral time absolute error (ITAE) is
widely used in control processing since it is simple to implement and to define the energy
of signals which demonstrate symmetry and differentiability.
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6.3.1. Reinforcement Learning Deep Learning Neural Network Control
Strategies—Generating a Reward Function from the MPC of MIMO Centrifugal Chiller
Simplified Model in State-Space Representation

The statistical data tables for the RL DLNN temperature and level control algorithms
versus MPC of evaporator temperature and condenser refrigerant level are shown in the
Figure A8a–d. Figure A8a presents the statistical data for the MPC for evaporator tempera-
ture control, Figure A8b for the RL DLNN temperature control, Figure A8c visualizes the
data for the condenser refrigerant level, and Figure A8d includes the RL DLNN refriger-
ant level control data. The performance error indicator values extracted from the hard-
ware structures are given in Figure A9a–d; precisely, for MPC evaporator temperature in
Figure A9a, RL DLNN MPC evaporator temperature in Figure A9b, MPC condenser refrig-
erant level in Figure A9c, and finally, RL DLNN MPC condenser refrigerant in Figure A9d.

Attentive performance analysis based on the data statistics for the MPC RL DLNN
evaporator temperature control subsystem revealed a slight superiority compared with
MPC based on the corresponding data statistics and vice versa for the condenser liquid
level control subsystem. Regarding the final fitness function values after 60 iterations,
the Simulink simulations results indicated a slight superiority on the part of the MPC RL
DLNN evaporator temperature control subsystem compared with the MPC, and vice versa
for the condenser liquid level control subsystem. The MPC RL DLNN performed better
for temperature control and similarly for liquid refrigerant level control. After many other
repetitions of the parameter values tuning procedure, which was a so-called “trial and
error” procedure, the performance of MPC RL DLNN simulation results was observed to
change significantly, such that it was finally able to outperform the conventional MPC for
control of both temperature and liquid refrigerant level. Our investigations will continue
to improve the performance io the MPC RL DLNN controller in future work.

6.3.2. Reinforcement Learning Deep Learning Neural Network Control
Strategies—Generating Reward Function from a Step Response Specifications of MIMO
Centrifugal Chiller Simplified Model in State Space Representation

Similarly, the statistical data tables for the RL DLNN temperature and level control
algorithms versus the digital PID control–CCS ANFIS model of evaporator temperature
and condenser refrigerant level are shown in Figure A10a–d. The Figure A10a presents
the statistical data for RL DLNN evaporator temperature control, Figure A10b for digital
PID temperature control CCS ANFIS model, Figure A10c visualizes the statistics for RL
DLNN condenser refrigerant level, and Figure A10d illustrates the digital PID refrigerant
level control CCS ANFIS model results. The performance indicator values were extracted
from the hardware structures illustrated in Figure A11a–d: for RL DLNN evaporator
temperature in Figure A11a, the digital PID evaporator temperature control CSS ANFIS
model in Figure A11b, RL DLNN condenser refrigerant level in Figure A11c, and finally the
digital PID condenser refrigerant level control CCS ANFIS model in Figure A11d. Similar
to MPC RL DLNN, rigorous performance analysis conducted for the RL DLNN based
on the statistical data and fitness functions’ final values after 60 iterations indicated a
slight superiority of the improved digital PID controller connected in the same forward-
path closed loop architecture with the MISO ANFIS CCS models, compared with the
RL DLNN’s performance, with both these controllers outperformed the standard PID
controller. Furthermore, by increasing the number of “trial-and-error” procedures for
tuning parameter values, it seems certain that the performance of RL DLNN results can
improve significantly, until it can finally outperform the improved digital PID control
structure for control of both temperature and liquid refrigerant level. Our investigations in
future work will continue in this direction.
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6.4. Considerations Regarding the RL DLNN Control Strategies’ Applicability

The proposed RL DLNN control strategies are well suited for handling the complexities
of real-world centrifugal chiller systems, due to the abilities of the RL agents to cope with
dynamic environments (e.g., varying cooling loads, weather conditions, or equipment
performance) and to detect and compensate for system faults or degradation. Moreover,
with the rapid advancements in edge computing and hardware acceleration, RL controllers
can perform real-time optimization, making them practical for real-world applications.
Moreover, RL DLNN controllers can be effectively scaled for centrifugal chiller systems
due to a combination of attributes, including their modularity, ease of transfer learning
(i.e., pre-trained RL models can be fine-tuned for different chiller systems or operating
conditions, reducing the need for extensive retraining), and distributed control capabilities
(i.e., RL agents can be deployed in a distributed manner, controlling multiple chillers in a
plant or across different locations, and coordinated to achieve global objectives).

From another point of view, the applicability of the proposed RL DLNN control
strategies in real-life scenarios can be affected by three important factors: (a) the customized
reward function design based on step response specifications may not cover all operational
constraints, such as energy efficiency, or the long-term stability of the MIMO Centrifugal
Chiller control system, requiring fine-tuning for each specific HVAC application; (b) safety
and stability concerns resulting from possibly damaging actions the RL agents explore
during training; and, (c) high computational cost, since the RL DLNN models can be
computationally expensive to train and deploy, demanding significant hardware resources.
These limitations may be mitigated by employing carefully pre-trained RL agents deployed
on real-time and low-cost embedded systems.

7. Conclusions
This study explored the development and implementation of two intelligent neural

reinforcement learning control algorithms utilizing deep learning neural network frame-
works in the specific case of a complex HVAC centrifugal chiller system characterized by
high dimensionality and nonlinearity, strict constraints, and significant impact of measured
disturbances. For this, two simplified MIMO models of the CCS were generated, and
a comprehensive series of simulations were conducted to showcase the efficacy of both
RL DLNN control algorithm implementations when compared to two traditional control
methods. The two data-driven advanced neural control algorithms this paper proposes
have demonstrated their viability and adaptability to various kinds of nonlinearities, singu-
larities, and uncertainties. In future work, we intend to take a further step by implementing
our control strategies in real-life scenarios.
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Figure A2. DTI control—MIMO Centrifugal Chiller system extended model and Simulink simulations:
(a) DTI control Simulink diagram; (b) chilled water temperature in evaporator; (c) liquid refrigerant
level in condenser; (d) compressor and expansion valve-opening actuator control efforts.
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Figure A3. Simulink model of PID closed-loop control strategies for the MIMO Centrifugal Chiller 
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MATLAB function visualization block. 

Figure A3. Simulink model of PID closed-loop control strategies for the MIMO Centrifugal Chiller
nonlinear extended model (39 states): (a) overall diagram; (b) components of the Simulink block
diagram (MATLAB function of the extended model and MATLAB function visualization block);
(c) MATLAB function visualization block.
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refrigerant level control.
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evaporator temperature control; (c) MPC condenser refrigerant level control; (d) RL DLNN MPC
condenser refrigerant level control.
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Appendix B
Appendix B.1 Algorithms

Algorithm A1. Generate Reward Function Based on MPC Specifications for a MIMO Centrifugal Chiller System-MPC
RL DLNN

Step 1. Plant Dynamics (State Space):
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Step 8. Create the reinforcement learning environment for RL Agent1 and RL Agent2 (TDR3s): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 8. Create the reinforcement learning environment for RL Agent1 and RL Agent2 (TDR3s):
Step 8.1. Set the random reproducibility seed:
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Step 8.2. Define network path:
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Step 8.3. Create a layer graph object for criticNet: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 8.3. Create a layer graph object for criticNet:

Algorithms 2025, 18, 170 42 of 56 
 

 

 

 

 

 

 

 

Step 8.4. Connect all network layers: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 8.4. Connect all network layers:
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Step 9. Plot the critic network structure: 

Step 9.1. Convert network to dlnetwork: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 9. Plot the critic network structure:
Step 9.1. Convert network to dlnetwork:
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Step 9.2. Convert the critic functions for TD3 agents: 
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Step 9.3. Define actorNet: 
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Step 9.4. Plot the actorNet: 
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Step 9.4. Plot the actorNet:
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Step 9.5. Create a deterministic actor function: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 9.5. Create a deterministic actor function:
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Step 10. Create the TD3 agents:
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Step 12. Closed-loop simulation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Step 12. Closed-loop simulation:
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Appendix B.2

Appendix B.2.1 DLNN Table for Reinforcement Learning Based on MPC Specifications

Table A1. Simulation Parameters: Reinforcement Learning Actor Critic and actorNet for MPC
specifications.

Parameter Name Value/Description

RL Algorithm

TD3 RL agent
Description: TD3 agents parametrize Q-value function
NN architecture: NN with two inputs (one for
observation and the second one for action-see the layer
graphs for both actors) to model the parametrized
Q-value function within both critics
Metrics:
• cumulative long-term reward (expected)
• Average reward: −65.7446 at epoch 150 when the

training process is finished after the agent reaches
the stop training criteria (when evaluation statistic is
−0.2);

• Episode reward: −0.1929;
• Episode Q0: −51.1876;
• Evaluation statistic: −0.1929.
* See the episode information from RL Training Monitor:
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DNN Architecture

1. DLNN for actorCritic:

One Input layer of size 24 (number of observations), one
input layer of size 2 (number of actions), three fully
connected layers on the main path of output sizes 128, 64,
and 1;
One concatenation layer (1,2) and two RELU layers;
One fully connected layer of size 8 on the action path.
* See the layer graphs for Actor Critic and Actornet
2. DLNN for actorNet:
One input layer of size 24 (number of observations or
features);
Three fully connected layers of sizes 128, 64, and 2
(number of actions);
Two RELU layers

Reward Function Derived from MPC model verification block

Training episodes 1000
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Table A1. Cont.

Parameter Name Value/Description

Test Episodes 1

Maximum Steps per Episode 600 (Tsim/Ts = 60/0.1)

Stop training criteria Evaluation statistic: −0.2

Score Averaging Window length 20

Number Episodes for Evaluator 1

Evaluation frequency 50 episodes

Discount factor (γ) 0.995

Exploration model property Noise: std = 100, exponential decay rate = 1 × 10−5,
minimum value reached of 1 × 10−3.

Learning rate 0.001

Batch size 256

Replay Buffer Size 1 × 106

Appendix B.2.2 DLNN Table for Reinforcement Learning Based on Step Responses
Specifications

Table A2. Simulation Parameters: Reinforcement Learning Actor Critic and actorNet for step
responses specifications.

Parameter Name Value/Description

RL Algorithm
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Two TD3 agents for RL Agent1 (evaporator temperature)
and RL Agent2 (condenser level).
Description: two parametrized Q-value function
approximators to estimate the value of the policy
(expected cumulative long-term reward as metric).
NN architecture: two NNs with two inputs for each
agent (observation and action-see the layer graphs for
Actor Critic and actorNet) that model the parametrized
Q-value function within both critics.
A critic function object is created to encapsulate the critic
by wrapping around the critic deep neural network. To
make sure the critics have different initial weights, each
network is initialized before using them to create the
critics.
Metrics:
• Cumulative long-term reward (expected metric);
• Average reward: [0–50] at epoch 200 when the

training process ends after the maximum number of
episodes, even if both RL agents do not reach the
training stop criteria (when average reward is set for
both RL agents [1 1]);

• Episode reward: [0–50];
• Episode Q0: [-1.493065–457.5267].
* See the episode information from RL Training Monitor.
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Table A2. Cont.

Parameter Name Value/Description

DNN Architecture

DLNN for each Actor Critic:
One input layer of size 6 (number of observations), one
input layer of size 1 (number of actions), three fully
connected layers on the main path with output sizes 128,
64, and 1;
One concatenation layer (1,2) and two RELU layers;
One fully connected layer of size 8 on the action path. *
See the layer graphs for Actor Critic and actorNet.
DLNN for actorNet:
One input layer of size 6 (number of observations or
features);
Three fully connected layers of sizes 128, 64, and 1
(number of actions);
Two RELU layers.

Reward Function
Two reward functions that derive from step responses of
two model verification blocks, one for evaporator
temperature, other one for condenser level blocks.

Training episodes 200

Test Episodes 1

Maximum Steps per Episode 200 (Tsim/Ts = 20/0.1)

Stop training criteria Average Reward: [1 1]

Score Averaging Window length 20

Number Episodes for Evaluator 1

Evaluation frequency 10 episodes

Discount factor (γ) 0.995

Exploration model property Noise: std = 100, exponential decay rate = 1 × 10−5,
minimum decay rate value reached = 1 × 10−3.

Learning rate 0.001

Batch size 256

Replay Buffer Size 1 × 106
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