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Abstract

This paper presents TVAE-SSL, a novel semi-supervised learning (SSL) paradigm that
involves Tabular Variational Autoencoder (TVAE)-sampled synthetic data injection into
the training process to enhance model performance under low-label data conditions in
Educational Data Mining tasks. The algorithm begins with training a TVAE on the given
labeled data to generate imitative synthetic samples of the underlying data distribution.
These synthesized samples are treated as additional unlabeled data and combined with
the original unlabeled ones in order to form an augmented training pool. A standard SSL
algorithm (e.g., Self-Training) is trained using a base classifier (e.g., Random Forest) on the
combined dataset. By expanding the pool of unlabeled samples with realistic synthetic
data, TVAE-SSL improves training sample quantity and diversity without introducing label
noise. Large-scale experiments on a variety of datasets demonstrate that TVAE-SSL can
outperform baseline supervised models in the full labeled dataset in terms of accuracy, F1-
score and fairness metrics. Our results demonstrate the capacity of generative augmentation
to enhance the effectiveness of semi-supervised learning for tabular data.

Keywords: Educational Data Mining; fairness; prediction; semi-supervised learning;
synthetic data; variational auto-encoder

1. Introduction
One of the most significant advancements in the field of education over the past

two decades has been the integration of emerging technologies. Today, Information and
Communication Technologies play a vital role in the educational process, providing both
educators and learners with a wide range of interactive learning environments that support
instruction and promote educational quality [1]. Consequently, substantial volumes of data
are continuously generated and stored in institutional databases and information systems,
reflecting students’ learning behaviors, online activities, and academic achievements.

The growing need to analyze various types of educational data and extract meaningful
insights has led to the emergence of Educational Data Mining (EDM), which is recognized
as a rapidly evolving research domain [2]. EDM primarily focuses on the development and
application of data mining techniques to educational data derived from diverse learning
environments [3]. Its overarching goal is to address key educational challenges, ultimately
aiming to enhance the learning process and improve the overall quality of education [4].
One of the most widely studied applications of EDM is prediction, which involves building
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a machine learning (ML) model by training a supervised algorithm on a labeled dataset,
and subsequently applying it to predict unknown or future outcomes of students [5].

Unfortunately, in many practical scenarios, obtaining a sufficient amount of labeled training
data is difficult due to the high cost of data labeling. This challenge has led to the emergence of
novel machine learning approaches such as Semi-Supervised Learning (SSL) [6]. SSL represents
a core branch of Weakly Supervised Learning, aiming to leverage a small set of labeled examples
in combination with a large set of unlabeled ones to build highly accurate and robust predictive
ML models [7]. A variety of methodologies grounded in the core principles of SSL have been
developed and successfully applied across a wide range of domains, including web mining,
text mining, image processing, information retrieval, and bioinformatics [8].

In recent years, a growing body of research has explored the effectiveness of SSL
methods in the field of education, primarily for predictive tasks. Consequently, numerous
studies have reported highly promising results, often outperforming traditional supervised
learning approaches [9]. SSL algorithms enable the development of highly accurate early-
warning models for the timely identification of students at risk of academic failure. This
facilitates the implementation of targeted support measures and specialized intervention
strategies aimed at enhancing the learning outcomes of underperforming students [10].

While educational data offer immense research and pedagogical potential, acquiring
them is frequently hampered by high costs and time-consuming procedures. Moreover,
stringent privacy regulations impose legal barriers that limit access to raw student records,
complicate cross-institutional sharing, and require strict oversight of personally identifiable
information. Furthermore, existing ethical frameworks exhibit concerns and gaps that limit
their effectiveness in guiding the ethical development and implementation of educational
data initiatives [11]. These privacy and legal considerations, when combined with lim-
ited technical expertise and budget constraints, result in under-collected, biased, and/or
incomplete educational datasets that decrease their utility for robust machine learning.

Synthetic data generation and augmentation methods have emerged as practical
alternatives to compensate for limited real-world educational data. Unlike expensive and
laborious data collection processes, synthetic data can be generated easily and rapidly at
scale while maintaining statistical fidelity to the original distributions, enabling researchers
to explore varied hypothetical scenarios, balance underrepresented student groups, and
simulate events that are rarely captured in real datasets.

The primary contribution of this research is TVAE-SSL, a novel framework that combines
generative modeling and SSL to improve predictive performance and fairness under low-label
settings. Unlike traditional SSL methods that are solely based on accessible unlabeled data,
TVAE-SSL intentionally incorporates high-quality synthetic samples drawn from the limited
labeled set, generated by a Tabular Variational Autoencoder (TVAE), into the unlabeled set.
This approach enriches the data with diversity without adding label noise and enables stronger
learning. The framework is also modular and independent of SSL algorithm selection and base
classifier choice. We show via large-scale experiments that TVAE-SSL not only boosts typical
performance measures such as accuracy and F1-score but also enhances fairness measures
such as demographic parity and equalized odds—demonstrating its ability to build fair and
resilient models from small labeled datasets.

The rest of the paper is organized as follows: Section 2 provides an overview of recent
applications of SSL methods within the educational domain, with particular emphasis
on synthetic data generation techniques and fairness considerations in the field of EDM.
Section 3 defines the research methodology, while Section 4 describes the experimental
framework. Section 5 presents the experimental results, while Section 6 provides a detailed
discussion of these results, emphasizing the key findings and their implications. Finally,
Section 7 concludes the research outcomes and suggests future research directions.
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2. Related Work
A plethora of studies have been conducted to address prediction tasks within the field

of EDM. These tasks primarily involve predicting student performance, dropout, grade
level, and final grade [12]. Accurate predictions of student outcomes can enable educators
and tutors to offer timely interventions for underperforming students, thereby reducing
the risk of academic failure and enhancing the overall quality of education [10].

2.1. Overview of Semi-Supervised Learning in EDM

Student performance prediction is a central focus in the field of EDM. Typically, this
involves two main aspects: predicting whether a student will pass or fail a unit or course,
and classifying students into multiple categories based on their grade level.

The effectiveness of various SSL algorithms was investigated in [13] for predicting
student performance in the final examination of a one-year distance learning course. Sev-
eral SSL algorithms were applied using four classifiers as base learners: the Naïve Bayes
(NB) classifier, the C4.5 decision tree, the k-nearest neighbors (k-NN) algorithm, and the
Sequential Minimal Optimization (SMO) algorithm. The results demonstrated that SSL al-
gorithms were notably effective in the early prediction of low-performing students. Among
the methods evaluated, Tri-Training using three C4.5 decision trees as base classifiers, each
configured with different parameters to ensure diversity, outperformed not only the other
SSL algorithms but also the supervised C4.5 classifier. A co-training method was developed
in [9] for the early prediction of student performance in distance higher education, leverag-
ing two distinct and independent feature views: academic achievement data and activity in
the Learning Management System. A plethora of experiments was conducted to evaluate
the effectiveness of the proposed method in comparison with various Self-Training and
co-training variants across three scenarios, each based on a different ratio of labeled data
within the training set: 2.5%, 10%, and 15%. The proposed method consistently outper-
formed all other SSL algorithms as well as several supervised classification algorithms in
terms of accuracy and F1-score, regardless of the labeled ratio and the base learner used.

Various SSL algorithms were applied in [14] to predict the grade level (Poor, Good,
Very Good, Excellent) of high school students in the final examinations of the mathematics
module at the end of the academic year. The experimental results demonstrated that
Self-Training, Tri-Training, and co-training, utilizing the Naïve Bayes (NB) algorithm as
the base classifier, achieved superior performance, with accuracy ranging from 64.41% to
67.35% by the midpoint of the academic year.

Student dropout remains a significant concern in education, particularly in distance
learning environments such as MOOCs. The effectiveness of the SSL approach was investi-
gated in [15] for predicting students at risk of dropping out in a distance higher education
course. A series of experiments were conducted, dividing the academic year into three
consecutive time periods, and employing various semi-supervised classification algorithms.
The experimental results indicated that Tri-Training and Self-Training achieved superior
performance, with accuracy ranging from 71.74% to 76.73% prior to the midpoint of the
academic year, thereby supporting the implementation of timely intervention measures.
A multi-view SSL model based on behavioral features of students was introduced in [16]
for predicting student dropout in a MOOC. To this end, data reflecting different types of
learning behavior of students were collected and used to form multiple views of behavioral
features. Experiments on the KDD Cup 2015 dataset demonstrated that the proposed
method outperformed established supervised methods.

Grade prediction represents another important task in EDM. This task is typically
approached using regression algorithms, as the target variable is continuous. An ensemble-
based algorithm, termed the Multi-Scheme Semi-Supervised Regression (SSR) approach,
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was introduced in [17] for predicting undergraduate students’ final examination grades
in a one-year distance learning course. Three k-NN regressors were employed within a
Self-Training framework to iteratively expand the labeled dataset by leveraging unlabeled
data. Subsequently, a Random Forest (RF) regressor was utilized to build the regression
model. The proposed method outperformed conventional regression methods in terms
of four metrics: Mean Absolute Error, Relative Absolute Error, Root Mean Squared Error
and Pearson Correlation Coefficient. A multi-view SSR algorithm was implemented in [18]
to predict the final examination grades of undergraduate students enrolled in a one-year
distance learning course. The prediction was conducted at two distinct time points prior to
the midpoint of the academic year. Additionally, the study investigated the influence of
input attributes on the target one, generating a range of interpretable visualizations that
illustrate their impact on the output of the ML model. The experimental results revealed
that the highest-performing students were those who achieved high grades in the two
compulsory written assignments completed during the first semester.

A comprehensive review of the applications of SSL in the fields of EDM and Learning
Analytics is presented in [10].

2.2. Synthetic Data Generation

The quality of training data significantly influences the efficiency of ML classification
models. Poor data quality leads to models with low accuracy, which may result in incorrect
predictions. Moreover, in many practical scenarios, obtaining a sufficient amount of labeled
training data is difficult due to the high cost of data labeling. Furthermore, the dissem-
ination of data is frequently constrained by privacy and fairness considerations across
many domains, such as education [19]. In light of these concerns, synthetic data generation
emerges as a compelling alternative, facilitating secure data sharing and application beyond
the limitations of real-world datasets.

Concerning the educational field, synthetic data offers a plethora of advantages,
such as the following:

(1) Enhanced Privacy Protection
Synthetic data eliminates the risk of exposing sensitive student information, ensuring
compliance with data protection regulations [20].

(2) Mitigation of Data Scarcity
Many educational datasets suffer from limited sample sizes. Synthetic data can
augment datasets, improving model generalizability [21].

(3) Bias reduction and Fairness Improvement
Real-world educational data often reflects systemic biases. Synthetic data can be
strategically generated to balance underrepresented classes, leading to fairer predictive
models [22].

(4) Controlled Experimentation and Scenario Testing
Researchers can simulate hypothetical educational scenarios to test predictive models
without needing real-world trials [23].

(5) Accelerated Research and Open Collaboration
Synthetic datasets can be shared freely among researchers, enabling reproducibility
and collaboration without legal or ethical restrictions [24].

(6) Robustness against Overfitting
By introducing controlled variations, synthetic data can help train models that gener-
alize better to unseen real-world data, reducing overfitting risks [25].

(7) Cost and Time Efficiency
Collecting real educational data is often time-consuming and expensive. Synthetic
data generation provides a scalable alternative [26].
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2.3. Fairness Considerations in EDM

ML fairness is an emerging area that studies how to ensure that the outputs of a model
do not depend on sensitive attributes in a way that is considered unfair. For example, in a
model that predicts student performance based on previous school records, this could mean
ensuring that the decisions do not depend on gender. However, as EDM systems become
more integrated into decision-making processes, concerns regarding fairness and equity
have intensified. Fairness in EDM refers to the absence of bias and discrimination in data
collection, algorithmic processing, and interpretation, particularly concerning sensitive
attributes such as race, gender, socio-economic status, and disability [27].

A major challenge in ensuring fairness arises from historical biases embedded in
educational datasets. These biases can be inadvertently perpetuated or amplified by ML
models, leading to unfair outcomes such as unequal access to resources or incorrect at-risk
predictions [28]. For example, predictive models trained on imbalanced data may overiden-
tify students from marginalized groups as underperforming, triggering disproportionate
interventions or stigmatization. Hence, rigorous bias detection and mitigation strategies,
such as fairness-aware learning algorithms or preprocessing techniques, are essential in
EDM [22]. Furthermore, fairness is context-dependent and multidimensional. It is not
only a technical issue but also an ethical and social one. For instance, ensuring fairness
might involve balancing multiple trade-offs between accuracy and equity or between group
fairness and individual fairness [29]. Stakeholder engagement, including input from educa-
tors, students, and policymakers, is critical to defining what constitutes fairness in a given
educational context and to guiding the design of just and inclusive systems.

While prior work has extensively explored SSL methods and fairness-aware machine
learning separately, few prior studies exist that thoroughly consider the combination of gen-
erative data augmentation with SSL for addressing accuracy and fairness simultaneously
in low-label scenarios. Most SSL methods were assumed to receive relatively balanced or
clean labeled datasets as input and therefore limited their robustness when they actually
encountered real-world scenarios where the labeled datasets are scarce and possibly biased.
Similarly, generative models have been applied to synthetic data generation but with perfor-
mance improvement as the primary focus and fairness as a secondary concern. The novel
TVAE-SSL model bridges the gap by leveraging Tabular Variational Autoencoders (TVAEs)
to generate realistic synthetic samples whose adoption not only improves classification
performance but also encompasses a method of fairness control and measurement. By
combining these two research streams, our solution offers a different perspective regarding
how synthetic data generation can help SSL address both predictive accuracy and fairness,
thereby addressing an essential gap in the existing literature.

3. Research Methodology
This section provides a detailed description of the datasets used, the synthetic data

generation process, and the SSL algorithms employed, along with the performance and
fairness metrics considered.

3.1. Datasets

The experimental procedure utilizes four (4) classification datasets from the field of
EDM. The key characteristics of these datasets are summarized in Table 1, including the
number of instances, the number of attributes, the sensitive attributes, the number of output
classes, and the corresponding prediction task.
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Table 1. Dataset structure.

Dataset # Instances # Attributes Sensitive Attributes # Output Classes Prediction Task

student 344 12 gender 2 dropout
eap2024 445 6 gender 2 success
cert 936 33 employment status 2 certification
MBA 6194 9 gender 3 admission

In the datasets under consideration, the majority employ gender as the sensitive at-
tribute, with the exception of the cert dataset, where the sensitive feature is employment sta-
tus. This distinction highlights the relevance of different demographic and socio-economic
factors in fairness-aware machine learning applications. In the case of gender, the female
group is regarded as the protected class, reflecting the need to ensure that predictive out-
comes do not disadvantage women in educational or admission-related tasks. Conversely,
for the cert dataset, individuals categorized as not employed constitute the protected group,
since their employment status could introduce bias in certification predictions. The analysis
ensures that fairness interventions can be appropriately targeted to mitigate discrimination
in each predictive setting.

The first two datasets pertain to students enrolled in the twelve-course “Computer
Science” module offered by the Hellenic Open University. Each course module, such
as “Introduction to Informatics”, requires the submission of four written assignments,
attendance at five optional contact sessions, and participation in a final examination. To
successfully complete the course, students are required to submit a minimum of three
written assignments with an average grade of at least five on a ten-point scale, and to
achieve a minimum score of five in the final examination.

The first dataset comprises 344 instances described by twelve attributes (Table 2). The
first seven attributes pertain to students’ demographic characteristics and general employ-
ment information, namely gender, age, marital status, number of children, employment
status, computer knowledge, and job correlation with computer skill requirements. Several
studies have demonstrated that these factors significantly influence student success in
distance learning environments [30,31]. The next four attributes capture students’ perfor-
mance on the first two written assignments WA1, WA2 and their attendance in the first two
optional contact sessions with their tutor OCS1, OCS2. These attributes become available
progressively throughout the academic year. Attendance at contact sessions is recorded
as binary values, with 1 indicating presence and 0 indicating absence. Assignment grades
range from −1 to 10, where −1 indicates non-submission. The target attribute indicates
whether a student dropped out of the course.

Table 2. Description of the 1st dataset.

Attribute Type Values Description

Gender binary {male, female} Student gender
Age binary {<32, >=32} Student age
Marital status binary {single, married} Student marital status
Children integer [0, 4] Number of children
Employment status nominal {unemployment, part-time, full-time} Employment status
Computer knowledge binary {yes, no} Computer knowledge

Computer-skilled job ordinal {low, medium, high} Job correlation with computer
skill requirements

OCS1, OCS2 binary {0, 1} Absence/Presence in each OCS
WA1, WA2 real [−1, 10] Grade of each WA
dropout binary {yes, no} Output class
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The second dataset comprises 445 instances described by six attributes (Table 3).
The first attribute corresponds to the students’ gender, while the next four attributes
capture students’ performance on the first four written assignments WA1, WA2, WA3, WA4.
Assignment grades range from −1 to 10, where −1 indicates non-submission. The target
attribute indicates course completion status as either pass or fail.

Table 3. Description of the 2nd dataset.

Attribute Type Values Description

Gender binary {male, female} Student gender
WA1, WA2, WA3, WA4 real [−1, 10] Grade of each WA
Success binary {pass, fail} Output class

The third dataset comprises data (Table 4) from a 11-week MOOC course in the context
of the Erasmus+ Sector Skills Alliance project called “DevOps Competences for Smart
Cities” [32]. The course was organized into 15 modules, with 1–2 modules released weekly.
Each module contained 2–5 discrete learning units, and every learning unit concluded with
an automatically graded multiple-choice quiz for assessment. The dataset consists of eleven
attributes capturing various aspects of students’ personal information, ten attributes about
students’ grades in quizzes (100-point scale) during the first two weeks of the course and
overall grades in modules 1 and 2, and twelve numerical attributes concerning students’
activity in the online learning platform, such as number of views, posts, discussions and
connections, as well as the total time devoted to the first two modules of the course.
The target attribute specifies whether a student successfully obtained a certificate upon
completion of the course.

Table 4. Description of the 3rd dataset.

Attribute Type Values Description

Mother tongue nominal Mother tongue
Education level nominal Education level
Employment status nominal Employment status
Current occupation nominal Current occupation
Occupation experience real Occupation experience in years
Work time real Average working hours per week
Technical skills nominal Technical English language skills
Digital skills nominal Digital proficiency skills
MOOC experience binary {yes, no} Previous experience in MOOCs
Study week hrs real Average study hours per week
W1 Ui Grade real [0, 100] Week 1 Unit i Assessment Quiz Grade, i ∈ {1, 2, 3, 4, 5}
W2 Ui Grade real [0, 100] Week 2 Unit i Assessment Quiz Grade, i ∈ {1, 2, 3}
Mod i Grade real [0, 100] Overall grade in Module i, i ∈ {1, 2}
Views Intro real Number of views in introductory forum
Views Anno real Number of views in announcements forum
Views Mod i real Number of forum views in Module i, i ∈ {1, 2}
Posts Mod i real Number of posts in Module i, i ∈ {1, 2}
Discu Mod i real Number of discussions in Module i, i ∈ {1, 2}
Conne Mod i real Average connections per day in Module i, i∈ {1, 2}
Mod i Time real Total time dedicated in Module i (mins), i ∈ {1, 2}
Certificate binary {yes, no} Output class

The fourth dataset was sourced from the Kaggle platform and pertains to students
enrolled in the Wharton School’s Class of 2025 statistics course. It comprises 6194 instances
described by nine attributes (Table 5). Six attributes represent the demographic charac-
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teristics of the applicants. In addition, one attribute captures the applicant’s Grade Point
Average (GPA), and another attribute records their Graduate Management Admission Test
(GMAT) score. The target attribute indicates the outcome of the admission process.

Table 5. Description of the 4th dataset.

Attribute Type Values Description

Gender binary {male, female} Applicant’s gender
International binary {true, false} International student
Major nominal {Business, STEM, Humanities} Undergraduate major
Race nominal Racial background of the applicant
Work industry nominal Industry of the applicant’s previous work experience
Work experience integer Work experience in years
GPA real [0, 4] Grade Point Average of the applicant
GMAT integer [0, 800] GMAT score of the applicant
Admission nominal {admit, wait list, deny} Output class

3.2. SSL Methods

The experimental process involved the application of several self-labeling methods
proposed in the literature, which have been successfully employed in the educational
domain to address a variety of prediction tasks [10].

Self-Training [33] is an iterative method used to assign labels to unlabeled data and is
commonly regarded as a reference approach in the field of SSL. According to this method,
a base classifier is initially trained on a small set of labeled examples (L). The trained model
is then used to predict labels for the unlabeled instances and the most confidently predicted
samples are added to the labeled set for subsequent retraining. This process is repeated
iteratively until a convergence criterion is met or no further improvement is observed.

SetRed (Self-Training with Editing) is an SSL algorithm designed to improve the
robustness of Self-Training by incorporating a noise-reduction mechanism that filters
out unreliable pseudo-labels [34]. Unlike traditional Self-Training methods, which risk
reinforcing errors by adding misclassified unlabeled instances to the training set, SetRed
introduces an editing step to selectively remove mislabeled examples before retraining.
This editing phase typically uses techniques such as k-nearest neighbors (k-NN) to assess
the consistency of each pseudo-labeled instance with its local neighborhood, retaining
only those that align with the majority of their neighbors. By doing so, SetRed reduces the
propagation of labeling noise, leading to more accurate and stable classifiers. This makes it
particularly useful in real-world applications like EDM, where labeled data may be limited
and class distributions are often imbalanced or noisy.

Co-training is based on the assumption that each example in a dataset can be rep-
resented by two distinct and conditionally independent sets of attributes, referred to as
views [35]. Two classifiers are trained separately on each view using a small set of labeled
examples (L) and the most confident predictions of each classifier on the set of unlabeled
examples (U) augment the training set of the other until some stopping criterion is met.
Co-training is a characteristic paradigm of disagreement-based SSL methods [36].

Co-Forest (Co-training Random Forest) is a semi-supervised ensemble algorithm
that extends the traditional Random Forest by incorporating the co-training paradigm to
leverage both labeled and unlabeled data for improved classification performance [37].
Co-Forest trains multiple decision tree learners on different data subsets, allowing each
learner to iteratively label and augment the training set of the others with high-confidence
predictions from unlabeled instances. This collaboration enhances generalization, especially
when labeled data are scarce, a common scenario in EDM. The algorithm preserves the
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diversity and robustness benefits of RF while exploiting the complementary information
present in multiple learners to reduce error rates.

Co-training by Committee (CoBC) is another SSL algorithm that combines the principles
of co-training and ensemble learning to improve classification performance using both labeled
and unlabeled data [38]. CoBC employs a committee of diverse classifiers trained on randomly
sampled subsets of the feature space and labeled data. During the iterative training process,
each classifier predicts labels for a portion of the unlabeled data, and only high-confidence
predictions that achieve consensus among the committee members are added to the labeled
set. This collaborative strategy minimizes the propagation of errors common in self-labeling
methods while enhancing model robustness through ensemble diversity.

Two multi-view methods that leverage the advantages of random subspace tech-
niques and ensemble learning are Rasco and Rel-Rasco. Rasco (Random Subspace for
Co-training) [39] is an extension of the co-training algorithm that operates on multiple
randomly generated subspaces of the features. These subspaces can be interpreted as
distinct views of the feature space. Separate classifiers are each trained on a small set of
labeled examples within each subspace, and their predictions on an unlabeled instance are
aggregated to determine its label. In this manner, the classifiers complement one another
by identifying different patterns within the dataset, based on the assumption that they are
typically sensitive to distinct subsets of features. The labeled subsets are incrementally aug-
mented, and the classifiers are re-trained through an iterative learning process. Rel-Rasco
(Relevant Random Subspace Co-training) [40] is an improved variant of Rasco. Instead
of relying on random subspace generation, this approach systematically constructs fea-
ture subspaces by leveraging relevance scores, computed through the mutual information
between each feature and the class labels.

Tri-Training is a widely used single-view multiple-classifier SSL method [41]. It em-
ploys three classifiers in an iterative learning process to label the unlabeled data. Specifically,
if the two classifiers agree on the label of an unlabeled example, that example is then labeled
by the third classifier and incorporated into the labeled dataset (L).

In addition, three widely recognized ensemble algorithms, namely Random Forests
(RFs), Extreme Gradient Boosting (XGB) and Histogram-based Gradient Boosting (HGB),
were chosen as base classifiers due to their established effectiveness and frequent use in
SSL research studies:

(1) RF is a well-known bagging tree-based method [42]. It relies on bootstrap aggregation
(bagging) to construct random ensembles of decision trees, while a voting strategy is
employed to predict the class label for new data.

(2) XGB [43] is a highly efficient and fast-to-execute classification algorithm, a representa-
tive paradigm of gradient tree boosting, commonly referred to as gradient boosting.

(3) HGB [44] is another high-performance gradient boosting algorithm. In contrast to RF,
where tree models are trained in parallel, HGB builds and adds trees sequentially by
discretizing continuous feature values to binary for constructing feature histograms
during the training phase.

3.3. Performance Measures

The performance of the SSL methods was evaluated in terms of accuracy and F1-score
results. Accuracy measures the effectiveness of a classifier in correctly predicting the label
of a previously unseen instance. The F1-score is a widely adopted metric for evaluating
the performance of binary and multiclass classifiers, especially in scenarios involving
imbalanced datasets [44]. It is the harmonic mean of precision (p) and recall (r).

In addition, two fairness metrics, which are commonly recognized as prevalent
threshold-dependent measures in the relevant literature, were employed. Demographic
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Parity Difference (DPdiff) is a group fairness metric that quantifies the degree to which the
outcomes of a predictive model are independent of a sensitive attribute, such as gender,
race, or socio-economic status. Formally, it measures the absolute difference in the probabil-
ity of receiving a positive outcome between groups defined by the sensitive attribute [45].
Equalized Odds Difference (EOdiff) is a group fairness metric that assesses whether a
predictive model achieves equal error rates across groups defined by a sensitive attribute,
such as gender and race [46]. Specifically, it requires that the model’s true positive rate
(TPR) and false positive rate (FPR) be the same across all groups and is defined as the
average of the absolute differences in TPR and FPR between groups [47].

4. Experimental Framework
In the current body of research on predictive modeling within the field of EDM, the

evaluation of SSL algorithms is commonly conducted using datasets derived from existing
labeled data. This is typically achieved by removing the class labels from a subset of an
existing labeled dataset (D), thus creating a subset of unlabeled data (U) and a subset of
labeled data (L), such that U ∪ D = L. The proportion of labeled data (L) to the original
data (D) is referred to as the labeled ratio (r).

4.1. Implementation of TVAE for Synthetic Data Generation

TVAE is a deep generative model that is particularly employed to create synthetic
tabular data, typically including both continuous and categorical variables. Unlike standard
variational autoencoders, TVAE has specific preprocessing procedures such as one-hot
encoding for categorical variables and normalization for continuous variables to handle the
mixed data types commonly encountered in tabular datasets. It learns a probabilistic latent
representation of the data using an encoder, and samples are reconstructed using a decoder,
with a loss function that trades off reconstruction quality against regularization of the latent
space using the Kullback–Leibler divergence. Trained, TVAE can generate new synthetic
data samples by sampling from the learned latent space, which is a valuable ingredient in
data privacy, augmentation, and benchmarking in machine learning workflows.

TVAE is implemented as part of the open-source Synthetic Data Vault (SDV) li-
brary [47]. The SDV library’s TVAE is designed to generate synthetic tabular data from
learning the target dataset’s latent representation. It follows an encoder–decoder archi-
tecture, where the encoder transforms input features into a lower-dimensional space and
the decoder reconstructs data from the lower space. In this setup, latent embedding size
is 128 and both compression and decompression networks have two hidden layers of
128 units. Regularization is taken care of by an L2 penalty of 0.00001 to prevent overfitting,
and training proceeds with a batch size of 500 for 6 epochs. The model employs a loss
factor of 2 for balancing reconstruction and regularization loss, and training is made to
avail of GPU speedup if cuda = True. For maintaining data fidelity, the synthesizer imposes
minimum–maximum value constraints on numerical features and rounding policies as
needed. SingleTableMetadata is used to extract the metadata from the original dataset, with
categorical and numerical features explicitly defined; e.g., the label column is treated as
categorical. This structured metadata ensures the synthetic data respects the statistical char-
acteristics and semantic meaning of the original table and facilitates TVAE in generating
realistic and varied synthetic samples.

4.2. Description of the Proposed Algorithm

The preprocessing phase involves the normalization of continuous features and the
transformation of categorical features using one-hot encoding. This step is critical for
optimizing model performance and ensuring the stability of the training process.
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Subsequently, the TVAE is trained on the labeled dataset, capturing the statistical
distribution of the input data to later sample from it. The trained TVAE is employed
to generate a synthetic dataset comprising N new labeled instances. To align with the
SSL paradigm, the TVAE synthetic samples are treated as unlabeled by discarding their
associated output labels. This transformation allows the synthetic data to augment the pool
of unlabeled examples, thereby supporting the training of semi-supervised models without
introducing label noise or bias. Next, the synthetic unlabeled dataset augments the original
unlabeled dataset, and an SSL algorithm is trained for building a predictive model.

Algorithm 1 presents the pseudo-code of the proposed algorithm, while Figure 1
illustrates the overall workflow. Within each ratio, the evaluation proceeds as follows:

• For each labeled data proportion, the system enters an outer loop (Iterate Over La-
beled Ratios).

• Within each ratio, K(=10)-fold cross-validation is performed. The dataset is partitioned
into labeled and unlabeled subsets and preprocessed.

• The TVAE model is trained on the labeled subset to learn a generative representation.
Synthetic samples XS are generated from the trained TVAE. The unlabeled subset is
augmented with the TVAE synthetic data.

• An SSL model is trained on the augmented dataset. The trained model is evaluated
and performance metrics are recorded.

• The loop continues until all folds and all label ratios are processed.

Algorithm 1: TVAE SSL.
Input: LabeledData← small labeled dataset (Xlabeled, ylabeled)

UnlabeledData← large unlabeled dataset Xunlabeled
TVAEParameters← configuration parameters for the TVAE
Nsynthetic ← len

(
Xlabeled + Xunlabeled

)
/2

SSLAlgorithm← SSL algorithm (e.g., Self-Training)
Classifier← base classifier (e.g., RandomForest)
Output: FinalModel← trained semi-supervised model

1 Preprocess Data: Normalize and encode Xlabeled and Xunlabeled.;
2 Train TVAE: TVAE← TrainTVAE(Xlabeled, TVAEParameters);

3 Generate Synthetic Data: SyntheticData← TVAE.GenerateSamples
(

Nsynthetic

)
;

4 Discard pseudo-labels for SyntheticData to convert them into unlabeled.;
5 Augment Training Set;
6 AugmentedUnlabeledData← Xunlabeled ∪ SyntheticData;
7 Train Semi-Supervised Model: FinalModel←

TrainSSL
(
SSLAlgorithm(Classifier), LabeledData, AugmentedUnlabeledData

)
;

8 Evaluate Final Model: Evaluate FinalModel on test set.;
9 Report performance metrics (accuracy, F1-score, etc.);

Our choice to synthesize artificial samples at half the dataset size was motivated by
the need to balance augmentation and fidelity: synthesizing too many artificial samples
relative to the real data risks overwhelming the SSL algorithms with lower-quality artificial
data, while synthesizing too few has no appreciable effect on the training signal. The
50% ratio was therefore chosen as a compromise from early pilot experiments where larger
ratios of synthetic data were not found to provide consistent improvements.

For training TVAE, we used a six-epoch setting. We did this for two reasons: (1) to
prevent overfitting the generative model to small labeled subsets (especially in the lowest
labeled ratio experiments), and (2) to keep computation feasible across a number of datasets,
classifiers, and SSL methods. Interestingly, we observed empirically that training beyond
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six epochs did not yield a significant difference in downstream SSL performance, which
suggested that even with relatively limited training the generated samples provided useful
additional structure for the learners.

Figure 1. Workflow of the proposed SSL framework with TVAE augmentation.

5. Results
This section presents the performance and fairness results obtained from the experi-

mental process, along with a corresponding discussion and analysis.
The experimental results across the four datasets demonstrate the competitive per-

formance of SSL techniques compared to the fully supervised baseline (RF). Accuracy
results listed in Table 6 show several significant trends across datasets and labeled ratios.
In general, semi-supervised approaches provide significant improvements over fully super-
vised baseline (RF), particularly when significantly less than half of the data are labeled
(e.g., ratios of 0.01 and 0.05). For the cert dataset, Tri-Training and Setred always perform
better than others with best performance, especially at the lowest ratio where Tri-Training
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achieves an accuracy of 0.8717. On the contrary, on eap2024, performance is relatively poor
at a ratio of 0.01 but methods such as Rel-Rasco and CoBC show comparable gains with
an increasing ratio, though CoBC does a slightly better job than others at a ratio of 0.3.
The MBA dataset exhibits overall high and consistent accuracies for all semi-supervised
methods, though CoBC and Self-Training showed the best consistent results, outperforming
0.83 even at very low ratios. On the harder student dataset, noticeable improvement in
performance is observed when moving from 0.01 to higher ratios, and Rel-Rasco and CoBC
are high performers at a ratio above 0.1, with accuracy measures over 0.85. The final Wins
row also confirms these observations, where CoBC and Rel-Rasco dominate in the majority,
followed by Self-Training and Rasco.

The F1-score figures in Table 7 provide a closer look at the performance of the models
than accuracy, particularly in alleviating class imbalance. In the cert dataset, ensemble
methods such as Tri-Training and Setred achieve top performance with the lowest ratio
(0.01) F1-scores, whereas the performance is stabilized above 0.90 in nearly all the methods
when more labeled data is available (≥0.05). In the eap2024 dataset, performances are worse
for very low ratios, but Rasco and Rel-Rasco stand out, consistently outperforming other
approaches, especially for the ratios 0.1 and 0.2, where they reach above 0.76. The MBA
dataset shows an interesting contrast between accuracy and F1-scores: whereas accuracy
was high and stable, F1-scores were generally low (ranging from 0.31–0.41), reflecting
extreme class imbalance, with Rasco and Rel-Rasco again achieving the highest values. On
the student dataset, improvements are most marked as the ratio increases, with Rel-Rasco
achieving the highest overall F1-scores above 0.83 at 0.2 and 0.3, with other ensemble
methods like Tri-Training and CoBC also faring well. The Wins row corroborates this trend,
with Rel-Rasco (6) and Rasco (5) well ahead by a large margin across datasets, indicating
their stability in balancing precision and recall. These results highlight that while accuracy
may reflect overall good performance, F1-scores reveal the merits of Rasco-based methods
in being able to deal successfully with imbalanced or noisy scenarios.

The Demographic Parity Difference (DPD) values in Table 8 put the focus on vast
discrepancies among datasets, methods, and labeled ratios. Lower DPD values are usually
desirable because they represent more balanced models with less discrepancy in sensitive
classes. In the cert dataset, all semi-supervised methods produce relatively low and
similar values (mostly less than 0.10), while Co-Forest and CoBC tend to be closest to
the lowest disparities, especially at smaller ratios. On the other hand, the eap2024 data
shows higher variability, where methods such as Rel-Rasco yield much higher DPD (e.g.,
0.2149 at the ratio 0.01), reflecting fairness problems, while Co-Forest and CoBC show
smaller discrepancies. For MBA, values are all low across methods, where again Co-Forest
and CoBC yield virtually zero values at small ratios, which is strong support for fairness
robustness. The student set, however, exhibits much larger differences overall, with several
methods (e.g., Setred, Co-Training) providing values above 0.20, whereas Self-Training
sometimes provides very low DPD (even 0.0000 at the ratio 0.01), although not all the time.
The last row win numbers confirm this pattern, where Self-Training is the overall winner
most of the time (eight wins), followed by Co-Forest (four wins) and CoBC (three wins).
Such results show that fairness performance is highly dataset-sensitive, with Self-Training
being one of the best overall performers in minimizing demographic disparity, while some
ensemble methods can achieve competitive performance for specific settings.
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Table 6. Accuracy results (RF). Bold values indicate the highest value per row.

Dataset Ratio RF
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.8440
(0.0930)

0.8632
(0.0923)

0.8504
(0.0813)

0.8547
(0.0829)

0.8515
(0.0822)

0.8301
(0.0854)

0.8717
(0.0971)

0.8440
(0.0915)

0.05
0.9317
(0.0307)

0.9359
(0.0193)

0.9402
(0.0125)

0.9434
(0.0133)

0.9370
(0.0137)

0.9263
(0.0223)

0.9391
(0.0213)

0.9295
(0.0230)

0.1
0.9401
(0.0198)

0.9455
(0.0116)

0.9359
(0.0149)

0.9391
(0.0150)

0.9391
(0.0182)

0.9444
(0.0150)

0.9380
(0.0150)

0.9348
(0.0212)

0.2
0.9402
(0.0196)

0.9391
(0.0166)

0.9423
(0.0135)

0.9337
(0.0212)

0.9359
(0.0241)

0.9455
(0.0197)

0.9434
(0.0175)

0.9423
(0.0215)

0.3
0.9423
(0.0215)

0.9348
(0.0222)

0.9391
(0.0201)

0.9359
(0.0207)

0.9337
(0.0224)

0.9359
(0.0220)

0.9412
(0.0162)

0.9402
(0.0208)

1
0.9466
(0.0246)

eap2024 0.01
0.6161
(0.1477)

0.6720
(0.1015)

0.6001
(0.1410)

0.6769
(0.1129)

0.7037
(0.0979)

0.6275
(0.1174)

0.6923
(0.0974)

0.5393
(0.0245)

0.05
0.7348
(0.0648)

0.7482
(0.0549)

0.7171
(0.0601)

0.7616
(0.0349)

0.7438
(0.0657)

0.7480
(0.0612)

0.7416
(0.0587)

0.7573
(0.0736)

0.1
0.7369
(0.0790)

0.7414
(0.0542)

0.7055
(0.0841)

0.7683
(0.0420)

0.7684
(0.0432)

0.7171
(0.0951)

0.7099
(0.0937)

0.7597
(0.0731)

0.2
0.7571
(0.0469)

0.7437
(0.0502)

0.7277
(0.0532)

0.7638
(0.0575)

0.7617
(0.0350)

0.7460
(0.0454)

0.7505
(0.0411)

0.7551
(0.0373)

0.3
0.7908
(0.0336)

0.7774
(0.0283)

0.7415
(0.0591)

0.7819
(0.0393)

0.7708
(0.0654)

0.7977
(0.0430)

0.7887
(0.0377)

0.7999
(0.0367)

1
0.7774
(0.0529)

MBA 0.01
0.8374
(0.0039)

0.8240
(0.0158)

0.7386
(0.0499)

0.7798
(0.0386)

0.7891
(0.0339)

0.8339
(0.0071)

0.8311
(0.0079)

0.8356
(0.0049)

0.05
0.8371
(0.0033)

0.8258
(0.0144)

0.7399
(0.0178)

0.7806
(0.0154)

0.7925
(0.0190)

0.8335
(0.0085)

0.8268
(0.0131)

0.8356
(0.0062)

0.1
0.8363
(0.0036)

0.8201
(0.0126)

0.7475
(0.0311)

0.7985
(0.0165)

0.7987
(0.0184)

0.8305
(0.0083)

0.8281
(0.0094)

0.8368
(0.0040)

0.2
0.8355
(0.0052)

0.8268
(0.0100)

0.7783
(0.0165)

0.8076
(0.0150)

0.8101
(0.0106)

0.8326
(0.0081)

0.8308
(0.0082)

0.8381
(0.0050)

0.3
0.8371
(0.0036)

0.8260
(0.0102)

0.7879
(0.0119)

0.8195
(0.0105)

0.8111
(0.0126)

0.8355
(0.0084)

0.8345
(0.0076)

0.8376
(0.0037)

1
0.8294
(0.0130)

student 0.01
0.5608
(0.1395)

0.5992
(0.1158)

0.5820
(0.1302)

0.5356
(0.1473)

0.5818
(0.1075)

0.5785
(0.1225)

0.6226
(0.0993)

0.4213
(0.1224)

0.05
0.8137
(0.1109)

0.7903
(0.1010)

0.6194
(0.0914)

0.6913
(0.1176)

0.7056
(0.1477)

0.7618
(0.0815)

0.7583
(0.0833)

0.7239
(0.0514)

0.1
0.8224
(0.0760)

0.8514
(0.0764)

0.7179
(0.0625)

0.8052
(0.0435)

0.8516
(0.0576)

0.8250
(0.0912)

0.8229
(0.0966)

0.8133
(0.0729)

0.2
0.8634
(0.0686)

0.8545
(0.0660)

0.7354
(0.0630)

0.8169
(0.0778)

0.8722
(0.0617)

0.8576
(0.0680)

0.8633
(0.0753)

0.8661
(0.0781)

0.3
0.8576
(0.0881)

0.8546
(0.0755)

0.7704
(0.0618)

0.8050
(0.0602)

0.8576
(0.0654)

0.8575
(0.0913)

0.8489
(0.0786)

0.8720
(0.0731)

1
0.8402
(0.0535)

Wins 1 4 1 0 3 4 1 2 5
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Table 7. F1-Score results (RF). Bold values indicate the highest value per row.

Dataset Ratio RF
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.6641
(0.2498)

0.7190
(0.2495)

0.7076
(0.2387)

0.7117
(0.2414)

0.7081
(0.2392)

0.6319
(0.2303)

0.7309
(0.2578)

0.6647
(0.2477)

0.05
0.9037
(0.0494)

0.9123
(0.0279)

0.9216
(0.0153)

0.9256
(0.0164)

0.9158
(0.0182)

0.8964
(0.0363)

0.9171
(0.0316)

0.9015
(0.0393)

0.1
0.9193
(0.0278)

0.9278
(0.0139)

0.9168
(0.0175)

0.9203
(0.0174)

0.9201
(0.0219)

0.9255
(0.0183)

0.9177
(0.0186)

0.9135
(0.0282)

0.2
0.9202
(0.0257)

0.9195
(0.0213)

0.9244
(0.0173)

0.9133
(0.0271)

0.9152
(0.0314)

0.9279
(0.0255)

0.9247
(0.0236)

0.9238
(0.0277)

0.3
0.9230
(0.0288)

0.9132
(0.0295)

0.9203
(0.0254)

0.9149
(0.0273)

0.9115
(0.0302)

0.9137
(0.0301)

0.9220
(0.0210)

0.9214
(0.0259)

1
0.9290
(0.0319)

eap2024 0.01
0.5118
(0.2312)

0.6196
(0.1757)

0.5577
(0.1777)

0.6357
(0.1761)

0.6639
(0.1714)

0.5400
(0.1993)

0.6508
(0.1684)

0.3694
(0.0512)

0.05
0.7304
(0.0700)

0.7432
(0.0580)

0.7123
(0.0617)

0.7597
(0.0352)

0.7391
(0.0672)

0.7428
(0.0638)

0.7321
(0.0696)

0.7492
(0.0791)

0.1
0.7318
(0.0817)

0.7374
(0.0539)

0.6966
(0.0923)

0.7676
(0.0418)

0.7673
(0.0433)

0.7038
(0.1090)

0.7012
(0.0980)

0.7542
(0.0758)

0.2
0.7540
(0.0475)

0.7410
(0.0521)

0.7227
(0.0549)

0.7614
(0.0577)

0.7601
(0.0351)

0.7439
(0.0461)

0.7482
(0.0412)

0.7513
(0.0393)

0.3
0.7891
(0.0333)

0.7763
(0.0287)

0.7381
(0.0625)

0.7807
(0.0402)

0.7701
(0.0660)

0.7951
(0.0438)

0.7875
(0.0378)

0.7986
(0.0366)

1
0.7764
(0.0526)

MBA 0.01
0.3160
(0.0240)

0.3575
(0.0392)

0.4016
(0.0289)

0.3861
(0.0378)

0.3952
(0.0358)

0.3135
(0.0208)

0.3457
(0.0348)

0.3166
(0.0273)

0.05
0.3186
(0.0303)

0.3708
(0.0213)

0.3999
(0.0241)

0.4050
(0.0232)

0.4121
(0.0167)

0.3317
(0.0399)

0.3440
(0.0249)

0.3213
(0.0317)

0.1
0.3194
(0.0154)

0.3739
(0.0349)

0.3888
(0.0216)

0.4129
(0.0234)

0.4143
(0.0178)

0.3328
(0.0276)

0.3511
(0.0191)

0.3251
(0.0259)

0.2
0.3129
(0.0122)

0.3913
(0.0257)

0.3902
(0.0234)

0.4106
(0.0159)

0.4078
(0.0175)

0.3390
(0.0159)

0.3569
(0.0272)

0.3344
(0.0289)

0.3
0.3253
(0.0222)

0.3892
(0.0280)

0.3821
(0.0170)

0.4037
(0.0338)

0.4146
(0.0157)

0.3536
(0.0221)

0.3636
(0.0169)

0.3321
(0.0204)

1
0.3949
(0.0207)

student 0.01
0.3543
(0.0623)

0.4820
(0.0980)

0.5146
(0.1327)

0.4703
(0.1370)

0.5162
(0.1293)

0.3917
(0.0737)

0.5295
(0.1184)

0.2989
(0.0542)

0.05
0.7500
(0.2006)

0.7409
(0.1555)

0.5767
(0.1086)

0.6540
(0.1450)

0.6641
(0.1742)

0.7131
(0.1322)

0.6898
(0.1599)

0.6228
(0.1358)

0.1
0.7885
(0.0984)

0.8287
(0.0930)

0.6791
(0.0720)

0.7788
(0.0586)

0.8311
(0.0695)

0.7851
(0.1228)

0.7951
(0.1173)

0.7766
(0.0961)

0.2
0.8411
(0.0830)

0.8315
(0.0811)

0.6978
(0.0748)

0.7824
(0.1127)

0.8560
(0.0725)

0.8336
(0.0857)

0.8393
(0.0928)

0.8411
(0.0963)

0.3
0.8383
(0.1009)

0.8331
(0.0919)

0.7289
(0.0869)

0.7718
(0.0802)

0.8386
(0.0764)

0.8379
(0.1043)

0.8287
(0.0917)

0.8535
(0.0850)

1
0.8180
(0.0632)

Wins 1 2 1 1 5 6 1 2 2
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Table 8. Demographic Parity Difference results (RF). Bold values indicate the lowest value per row.

Dataset Ratio RF
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.0186
(0.0329)

0.0420
(0.0663)

0.0452
(0.0641)

0.0481
(0.0760)

0.0457
(0.0739)

0.0314
(0.0529)

0.0425
(0.0831)

0.0298
(0.0383)

0.05
0.0921
(0.0815)

0.0876
(0.0905)

0.0994
(0.0979)

0.1029
(0.0953)

0.0992
(0.0832)

0.0902
(0.0813)

0.0932
(0.0913)

0.0993
(0.0809)

0.1
0.0898
(0.0914)

0.0922
(0.0948)

0.0855
(0.0787)

0.0947
(0.0855)

0.0910
(0.0887)

0.0715
(0.0769)

0.0817
(0.0842)

0.0868
(0.0911)

0.2
0.0930
(0.0849)

0.0990
(0.0917)

0.0961
(0.0941)

0.0940
(0.0992)

0.0916
(0.0952)

0.0847
(0.1020)

0.0979
(0.0923)

0.0932
(0.0969)

0.3
0.1024
(0.0945)

0.0941
(0.0948)

0.1007
(0.1009)

0.0938
(0.0947)

0.1024
(0.0963)

0.0883
(0.0877)

0.0956
(0.0932)

0.0927
(0.0972)

1
0.0960
(0.0955)

eap2024 0.01
0.0664
(0.0913)

0.1252
(0.1141)

0.1212
(0.1293)

0.0655
(0.0943)

0.2149
(0.1754)

0.0556
(0.0741)

0.1166
(0.1240)

0.0310
(0.0686)

0.05
0.0938
(0.0501)

0.1320
(0.0727)

0.1639
(0.1014)

0.1174
(0.0737)

0.1771
(0.0959)

0.1525
(0.1280)

0.1332
(0.0934)

0.1086
(0.0749)

0.1
0.1739
(0.1097)

0.1137
(0.0745)

0.1405
(0.0658)

0.1251
(0.1061)

0.1558
(0.1658)

0.0983
(0.0696)

0.1343
(0.0957)

0.1774
(0.1063)

0.2
0.1000
(0.0962)

0.1140
(0.1007)

0.1531
(0.1177)

0.1513
(0.0512)

0.1267
(0.1022)

0.1256
(0.0938)

0.1291
(0.0686)

0.1134
(0.1029)

0.3
0.1295
(0.1057)

0.1011
(0.1013)

0.1871
(0.1233)

0.1426
(0.0791)

0.1119
(0.0792)

0.1238
(0.0837)

0.1112
(0.0800)

0.1382
(0.1153)

1
0.1795
(0.0831)

MBA 0.01
0.0039
(0.0066)

0.0141
(0.0133)

0.0590
(0.0521)

0.0192
(0.0133)

0.0190
(0.0158)

0.0023
(0.0039)

0.0088
(0.0072)

0.0019
(0.0037)

0.05
0.0029
(0.0050)

0.0305
(0.0185)

0.0653
(0.0408)

0.0285
(0.0200)

0.0295
(0.0142)

0.0098
(0.0143)

0.0222
(0.0221)

0.0051
(0.0075)

0.1
0.0060
(0.0068)

0.0408
(0.0216)

0.0813
(0.0417)

0.0627
(0.0565)

0.0324
(0.0141)

0.0134
(0.0170)

0.0320
(0.0206)

0.0116
(0.0129)

0.2
0.0060
(0.0080)

0.0447
(0.0161)

0.0677
(0.0224)

0.0270
(0.0115)

0.0242
(0.0287)

0.0198
(0.0123)

0.0373
(0.0138)

0.0170
(0.0149)

0.3
0.0114
(0.0100)

0.0429
(0.0128)

0.0587
(0.0169)

0.0279
(0.0240)

0.0166
(0.0136)

0.0254
(0.0140)

0.0320
(0.0133)

0.0170
(0.0176)

1
0.0463
(0.0111)

student 0.01
0.0000
(0.0000)

0.1134
(0.1568)

0.1201
(0.1331)

0.0728
(0.0868)

0.0574
(0.0779)

0.0282
(0.0396)

0.1110
(0.1071)

0.0091
(0.0198)

0.05
0.1036
(0.1108)

0.1484
(0.1150)

0.2750
(0.2042)

0.2084
(0.1645)

0.0985
(0.0822)

0.1991
(0.1532)

0.1023
(0.0932)

0.1001
(0.1127)

0.1
0.1519
(0.0671)

0.1646
(0.0875)

0.1515
(0.1499)

0.1434
(0.1224)

0.1665
(0.0956)

0.1733
(0.1060)

0.1779
(0.0832)

0.1415
(0.1216)

0.2
0.1310
(0.0911)

0.1720
(0.0689)

0.1200
(0.1040)

0.1849
(0.1422)

0.1520
(0.0841)

0.1651
(0.1008)

0.1720
(0.0780)

0.1693
(0.0889)

0.3
0.1762
(0.1034)

0.2016
(0.1010)

0.0952
(0.0993)

0.1443
(0.0793)

0.1726
(0.0633)

0.1617
(0.0935)

0.1735
(0.0792)

0.1412
(0.0646)

1
0.1454
(0.0656)

Wins 0 8 2 2 0 1 4 0 3

The Equalized Odds Difference (EOD) values in Table 9 indicate that fairness dispari-
ties are extremely dataset-specific and typically larger than those of Demographic Parity.
For the cert dataset, a majority of algorithms exhibit relatively small disparities (frequently
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smaller than 0.12), with Rasco, Tri-Training, and Co-Training frequently possessing the
smallest ones, especially at low labeled ratios. On the other hand, the eap2024 dataset shows
the largest disparities uniformly across methods with values often above 0.20–0.30, indicat-
ing that it is significantly more difficult to enforce fairness in the Equalized Odds sense in
this setting. The MBA dataset produces the best outcome, where Self-Training, Co-Forest,
and CoBC show very small disparities (almost zero for low ratios), which is indicative of
their capability to enforce fairness. The student set, however, demonstrates the strongest
challenges, where high imbalances in almost all methods (typically above 0.25–0.35) reflect
difficulty in balancing false positive and false negative rates among groups. The win counts
reflect this pattern: Self-Training takes the top with eight wins, with Co-Training and CoBC
each tied with three wins. This means that although there is no method guaranteeing
low disparities on every dataset, Self-Training always produces more balanced outcomes
under Equalized Odds, though its efficiency might vary significantly depending on the
data complexity.

As shown in Figure 2, certain semi-supervised methods outperform others when
Random Forest is used as the base classifier, indicating differences in their adaptability to
the datasets.

Similarly, the experimental results across the four datasets demonstrate the competitive
performance of SSL techniques compared to the fully supervised baseline (HGB).

Figure 2. Summary of performance across SSL algorithms using RF as the base classifier.

The accuracy results in Table 10 reveal several interesting trends for the performance of
different SSL methods on the four datasets and varying labeled ratios. For the cert dataset,
the majority of the methods display a clear improvement with the increasing labeled ratio,
with Rel-Rasco and CoBC always performing best at small ratios, and the performance
of methods converges with more available labeled instances. In comparison, the eap2024
dataset is more challenging to work with, with all techniques achieving only baseline-level
accuracy at 0.01 and 0.05 ratios but significant improvements at >0.1, where ensemble-based
algorithms such as Rasco and Co-Forest become dominant. The MBA dataset is relatively
consistent and shows high performance by all techniques even at very low labeled ratios,
with CoBC being slightly better than the rest in most cases. Finally, in the student dataset,
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accuracies start quite low for low ratios but rapidly catch up, and Rel-Rasco and CoBC
clearly outperform others with higher labeled ratios.

Table 9. Equalized Odds Difference results (RF). Bold values indicate the lowest value per row.

Dataset Ratio RF
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.0373
(0.0562)

0.0438
(0.0687)

0.0268
(0.0389)

0.0193
(0.0269)

0.0237
(0.0335)

0.0611
(0.1153)

0.0239
(0.0298)

0.0529
(0.0659)

0.05
0.1177
(0.0969)

0.0840
(0.0687)

0.0815
(0.0790)

0.0921
(0.0824)

0.1230
(0.1040)

0.1243
(0.0948)

0.0849
(0.0531)

0.1219
(0.0648)

0.1
0.0967
(0.0749)

0.0998
(0.0500)

0.0702
(0.0636)

0.1066
(0.0559)

0.0869
(0.0582)

0.0866
(0.0513)

0.0660
(0.0367)

0.0834
(0.0525)

0.2
0.1148
(0.0668)

0.1234
(0.0780)

0.1106
(0.0345)

0.0992
(0.0632)

0.1056
(0.0842)

0.0944
(0.0465)

0.0954
(0.0470)

0.0821
(0.0428)

0.3
0.1147
(0.0847)

0.1191
(0.1018)

0.1056
(0.0520)

0.1184
(0.0852)

0.1170
(0.0771)

0.1209
(0.0749)

0.1278
(0.0674)

0.1196
(0.0587)

1
0.1108
(0.0849)

eap2024 0.01
0.0865
(0.1375)

0.2124
(0.2068)

0.2371
(0.1761)

0.2307
(0.1602)

0.2631
(0.2409)

0.1275
(0.1576)

0.2839
(0.2222)

0.0667
(0.1440)

0.05
0.2031
(0.0961)

0.2360
(0.1256)

0.3045
(0.1301)

0.2845
(0.1324)

0.3338
(0.1384)

0.2734
(0.1595)

0.2247
(0.1328)

0.2359
(0.1521)

0.1
0.2364
(0.1272)

0.2468
(0.1275)

0.3184
(0.1097)

0.2913
(0.1544)

0.3001
(0.1512)

0.2490
(0.1048)

0.2696
(0.1315)

0.2720
(0.0980)

0.2
0.2059
(0.0906)

0.2592
(0.0980)

0.3185
(0.1295)

0.2561
(0.0843)

0.2622
(0.0819)

0.2257
(0.0984)

0.2172
(0.0842)

0.2236
(0.0752)

0.3
0.2669
(0.1059)

0.2481
(0.0999)

0.2881
(0.1980)

0.2125
(0.1537)

0.2560
(0.0840)

0.2343
(0.1425)

0.2263
(0.1179)

0.1997
(0.1004)

1
0.2625
(0.1135)

MBA 0.01
0.0138
(0.0300)

0.0380
(0.0234)

0.0874
(0.0394)

0.0466
(0.0469)

0.0916
(0.0587)

0.0128
(0.0221)

0.0342
(0.0306)

0.0149
(0.0270)

0.05
0.0170
(0.0353)

0.0761
(0.0450)

0.1071
(0.0347)

0.0632
(0.0385)

0.0961
(0.0466)

0.0339
(0.0574)

0.0521
(0.0474)

0.0185
(0.0351)

0.1
0.0177
(0.0161)

0.0838
(0.0604)

0.1184
(0.0545)

0.0969
(0.1036)

0.0891
(0.0530)

0.0276
(0.0301)

0.0707
(0.0465)

0.0264
(0.0266)

0.2
0.0136
(0.0115)

0.0864
(0.0615)

0.0706
(0.0274)

0.0630
(0.0482)

0.1045
(0.0669)

0.0412
(0.0178)

0.0841
(0.0443)

0.0455
(0.0490)

0.3
0.0260
(0.0197)

0.0774
(0.0420)

0.0746
(0.0256)

0.0685
(0.0577)

0.0759
(0.0461)

0.0489
(0.0295)

0.0645
(0.0347)

0.0410
(0.0373)

1
0.0736
(0.0384)

student 0.01
0.0000
(0.0000)

0.1968
(0.2223)

0.2604
(0.2068)

0.1542
(0.1400)

0.1789
(0.1907)

0.0569
(0.1046)

0.2273
(0.1583)

0.0136
(0.0296)

0.05
0.2291
(0.2060)

0.2686
(0.2007)

0.3950
(0.2250)

0.3179
(0.2190)

0.2718
(0.1849)

0.3485
(0.2919)

0.2214
(0.1222)

0.2260
(0.1219)

0.1
0.2769
(0.1652)

0.2710
(0.1704)

0.3551
(0.1924)

0.2470
(0.1537)

0.2324
(0.0908)

0.3035
(0.1954)

0.2643
(0.1717)

0.2550
(0.2073)

0.2
0.2461
(0.2102)

0.2851
(0.1335)

0.3598
(0.1797)

0.2344
(0.1539)

0.2329
(0.1358)

0.3188
(0.2468)

0.3202
(0.1809)

0.3329
(0.2462)

0.3
0.3024
(0.1970)

0.3442
(0.2134)

0.2390
(0.1936)

0.2946
(0.1433)

0.2764
(0.1980)

0.2696
(0.1873)

0.3029
(0.1963)

0.2471
(0.1974)

1
0.2520
(0.1564)

Wins 0 8 0 3 1 2 1 2 3
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Table 10. Accuracy results (HGB). Bold values indicate the highest value per row.

Dataset Ratio HGB
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.7575
(0.0042)

0.7575
(0.0042)

0.7864
(0.0657)

0.8493
(0.0803)

0.8568
(0.0862)

0.7070
(0.1615)

0.7575
(0.0042)

0.7723
(0.0204)

0.05
0.8214
(0.0757)

0.7777
(0.0667)

0.9231
(0.0157)

0.9273
(0.0195)

0.9359
(0.0181)

0.8269
(0.0661)

0.8375
(0.0697)

0.8077
(0.0767)

0.1
0.9242
(0.0258)

0.9231
(0.0284)

0.9327
(0.0267)

0.9391
(0.0195)

0.9380
(0.0219)

0.8976
(0.0520)

0.9306
(0.0276)

0.9327
(0.0239)

0.2
0.9241
(0.0330)

0.9230
(0.0289)

0.9433
(0.0153)

0.9295
(0.0220)

0.9316
(0.0183)

0.9188
(0.0221)

0.9295
(0.0258)

0.9338
(0.0288)

0.3
0.9252
(0.0169)

0.9337
(0.0143)

0.9305
(0.0169)

0.9316
(0.0197)

0.9274
(0.0193)

0.9358
(0.0273)

0.9295
(0.0198)

0.9316
(0.0210)

1
0.9423
(0.0242)

eap2024 0.01
0.5168
(0.0243)

0.5168
(0.0243)

0.5168
(0.0243)

0.5168
(0.0243)

0.5168
(0.0243)

0.5168
(0.0243)

0.5102
(0.0281)

0.5126
(0.0419)

0.05
0.5168
(0.0243)

0.5168
(0.0243)

0.5821
(0.0875)

0.5576
(0.0705)

0.5282
(0.0451)

0.5102
(0.0281)

0.5077
(0.0289)

0.5576
(0.0521)

0.1
0.7080
(0.0846)

0.7307
(0.0838)

0.7394
(0.0308)

0.7775
(0.0405)

0.7660
(0.0504)

0.6821
(0.0853)

0.7706
(0.0518)

0.7551
(0.0494)

0.2
0.7866
(0.0438)

0.7909
(0.0395)

0.7686
(0.0574)

0.7842
(0.0612)

0.7822
(0.0456)

0.7552
(0.0448)

0.7888
(0.0298)

0.7820
(0.0396)

0.3
0.7752
(0.0402)

0.7798
(0.0515)

0.7687
(0.0528)

0.8156
(0.0427)

0.7978
(0.0365)

0.8021
(0.0495)

0.7932
(0.0520)

0.8066
(0.0293)

1
0.7842
(0.0437)

MBA 0.01
0.8092
(0.0261)

0.8103
(0.0257)

0.7457
(0.0374)

0.7782
(0.0352)

0.7581
(0.0489)

0.8153
(0.0222)

0.8095
(0.0294)

0.8211
(0.0190)

0.05
0.8024
(0.0146)

0.7998
(0.0188)

0.7540
(0.0146)

0.7782
(0.0325)

0.7938
(0.0198)

0.7985
(0.0238)

0.8095
(0.0136)

0.8295
(0.0136)

0.1
0.8126
(0.0178)

0.8040
(0.0213)

0.7653
(0.0261)

0.7954
(0.0176)

0.7937
(0.0190)

0.8085
(0.0130)

0.8090
(0.0203)

0.8242
(0.0152)

0.2
0.8161
(0.0106)

0.8029
(0.0093)

0.7853
(0.0132)

0.8101
(0.0166)

0.8076
(0.0053)

0.8164
(0.0136)

0.8103
(0.0094)

0.8260
(0.0095)

0.3
0.8197
(0.0125)

0.8079
(0.0083)

0.7964
(0.0153)

0.8155
(0.0139)

0.8114
(0.0119)

0.8166
(0.0052)

0.8132
(0.0062)

0.8263
(0.0069)

1
0.8213
(0.0119)

student 0.01
0.5608
(0.1395)

0.5608
(0.1395)

0.5608
(0.1395)

0.5608
(0.1395)

0.5608
(0.1395)

0.5608
(0.1395)

0.5000
(0.1536)

0.5491
(0.1391)

0.05
0.6160
(0.0929)

0.6160
(0.0929)

0.6160
(0.0929)

0.6160
(0.0929)

0.6131
(0.0920)

0.5608
(0.1395)

0.6160
(0.0929)

0.6155
(0.1053)

0.1
0.6454
(0.0098)

0.6454
(0.0098)

0.6800
(0.0485)

0.7411
(0.0749)

0.7441
(0.0682)

0.5961
(0.1250)

0.6454
(0.0098)

0.6683
(0.0513)

0.2
0.8142
(0.0735)

0.7824
(0.1282)

0.7850
(0.0586)

0.8402
(0.0616)

0.8718
(0.0930)

0.8108
(0.0699)

0.8022
(0.1099)

0.8112
(0.0913)

0.3
0.8573
(0.0765)

0.8545
(0.0783)

0.8055
(0.0766)

0.8519
(0.0602)

0.8693
(0.0631)

0.8429
(0.0768)

0.8546
(0.0730)

0.8632
(0.0758)

1
0.8402
(0.0536)

Wins 0 3 1 2 3 5 1 0 5
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The F1-score results in Table 11 provide further insight into the performance of the SSL
methods under different levels of labeled data availability. On the cert dataset, Rel-Rasco
and Rasco achieve the highest scores, particularly at low labeled ratios, reflecting their
effectiveness in situations where there is limited supervision. The more challenging eap2024
dataset exhibits extremely poor performance at the lowest ratios across all methods, with
just those from 0.1 onwards registering discernible gains. Rasco and Rel-Rasco shine here
again, with competitive F1-scores and superior performance at higher ratios compared
to the rest. The MBA dataset, on the other hand, shows a different trend: F1-scores are
generally low throughout all ratios, with only minor increases when increasing amounts
of labeled data are added, indicating that this dataset is intrinsically harder for semi-
supervised methods. The student dataset, lastly, exhibits a significant increase in F1-score
for larger labeled ratios, where Rel-Rasco and CoBC convincingly lead, recording the
highest values and proving themselves well adaptable to more informative labeled subsets.
Overall, Rel-Rasco is the most consistent top performer across datasets, achieving the most
wins, followed by Rasco and then CoBC, confirming the usefulness of ensemble-based
solutions to semi-supervised learning.

The Demographic Parity Difference (DPD) values in Table 12 have high variation
across datasets, methods, and labeled ratios. At extremely low ratios (0.01), all methods
achieve perfect demographic parity (DPD = 0), particularly in the eap2024 and student
datasets, whereas methods such as CoBC at times display minor deviations. As the labeled
ratio increases, disparities generally grow, with student and eap2024 recording the highest
DPD values (with most exceeding 0.15 at ratios (≥0.2)), indicating greater bias amplification
in the low-supervision scenario. By contrast, the MBA dataset consistently shows relatively
low DPD across methods (with most below 0.07), suggesting that fairness is less susceptible
in this domain. Methodologically, Self-Training and Rel-Rasco tend to generate the lowest
DPD scores, reflected in their highest number of wins, while ensemble-based approaches
like Co-Training and Rasco sometimes bring in greater differences.

Equalized Odds Difference (EOD) measures in Table 13 reveal larger fairness problems
than Demographic Parity Difference. At extremely low labeling rates (0.01 and 0.05), most
techniques have almost perfect fairness (EOD = 0) for the eap2024 and student data, though
some techniques (e.g., CoBC) already exhibit non-trivial differences. As the ratio increases,
however, differences suddenly increase, especially in eap2024 and student, where many
methods have over 0.25, indicating rather large differences across groups in false positive
and false negative rates. The MBA dataset, in contrast, consistently reports lower EOD
values (largely below 0.15), whereas cert has moderate differences between methods. From
the viewpoint of method performance, Self-Training achieves the optimum count of wins,
tending to register smaller differences across datasets, while ensemble methods such as
Co-Training, Rasco, and Tri-Training tend to register larger values of EOD. Overall, these
results suggest that ensuring fairness with respect to equalized odds is significantly more
challenging compared to demographic parity, with both dataset type and choice of method
playing crucial roles in the level of bias observed.

As shown in Figure 3, certain semi-supervised methods outperform others when HGB
is used as the base classifier, indicating differences in their adaptability to the datasets.

Similarly, the experimental results across the four datasets demonstrate the competitive
performance of SSL techniques compared to the fully supervised baseline (XGB).
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Table 11. F1-Score results (HGB). Bold values indicate the highest value per row.

Dataset Ratio HGB
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.4310
(0.0014)

0.4310
(0.0014)

0.5768
(0.1706)

0.7024
(0.2346)

0.7128
(0.2432)

0.4079
(0.0737)

0.4310
(0.0014)

0.4906
(0.0800)

0.05
0.6540
(0.1894)

0.5842
(0.1519)

0.9002
(0.0186)

0.9023
(0.0279)

0.9154
(0.0220)

0.6667
(0.1873)

0.7177
(0.1621)

0.6475
(0.1718)

0.1
0.9000
(0.0341)

0.8971
(0.0386)

0.9103
(0.0357)

0.9188
(0.0250)

0.9179
(0.0276)

0.8442
(0.0978)

0.9064
(0.0386)

0.9127
(0.0307)

0.2
0.8984
(0.0457)

0.8974
(0.0393)

0.9246
(0.0202)

0.9077
(0.0269)

0.9101
(0.0235)

0.8908
(0.0283)

0.9063
(0.0357)

0.9122
(0.0379)

0.3
0.8984
(0.0242)

0.9094
(0.0217)

0.9073
(0.0220)

0.9089
(0.0267)

0.9028
(0.0260)

0.9122
(0.0378)

0.9050
(0.0285)

0.9086
(0.0285)

1
0.9222
(0.0342)

eap2024 0.01
0.3406
(0.0108)

0.3406
(0.0108)

0.3406
(0.0108)

0.3406
(0.0108)

0.3406
(0.0108)

0.3406
(0.0108)

0.3376
(0.0125)

0.3638
(0.0624)

0.05
0.3406
(0.0108)

0.3406
(0.0108)

0.4624
(0.1549)

0.4178
(0.1357)

0.3643
(0.0769)

0.3376
(0.0125)

0.3365
(0.0128)

0.4266
(0.1034)

0.1
0.6833
(0.1338)

0.7105
(0.1359)

0.7338
(0.0347)

0.7761
(0.0410)

0.7651
(0.0510)

0.6582
(0.1315)

0.7680
(0.0543)

0.7494
(0.0519)

0.2
0.7856
(0.0440)

0.7899
(0.0390)

0.7647
(0.0604)

0.7814
(0.0630)

0.7800
(0.0467)

0.7535
(0.0450)

0.7878
(0.0300)

0.7808
(0.0403)

0.3
0.7742
(0.0405)

0.7791
(0.0520)

0.7667
(0.0543)

0.8141
(0.0441)

0.7973
(0.0368)

0.8007
(0.0499)

0.7924
(0.0525)

0.8056
(0.0296)

1
0.7831
(0.0441)

MBA 0.01
0.3810
(0.0546)

0.3818
(0.0552)

0.4019
(0.0313)

0.4073
(0.0295)

0.3951
(0.0366)

0.3590
(0.0359)

0.3838
(0.0396)

0.3726
(0.0475)

0.05
0.4041
(0.0386)

0.4065
(0.0415)

0.4055
(0.0139)

0.3942
(0.0316)

0.4164
(0.0312)

0.3907
(0.0319)

0.4081
(0.0353)

0.3773
(0.0361)

0.1
0.3938
(0.0193)

0.4026
(0.0268)

0.4059
(0.0255)

0.4034
(0.0184)

0.4197
(0.0264)

0.3887
(0.0220)

0.3967
(0.0224)

0.3816
(0.0171)

0.2
0.3912
(0.0216)

0.4001
(0.0076)

0.4003
(0.0140)

0.4189
(0.0188)

0.4064
(0.0300)

0.3901
(0.0105)

0.3957
(0.0121)

0.3848
(0.0133)

0.3
0.3950
(0.0107)

0.4063
(0.0137)

0.3938
(0.0201)

0.3894
(0.0306)

0.4112
(0.0134)

0.3994
(0.0203)

0.3981
(0.0142)

0.3827
(0.0141)

1
0.3966
(0.0151)

student 0.01
0.3543
(0.0623)

0.3543
(0.0623)

0.3543
(0.0623)

0.3543
(0.0623)

0.3543
(0.0623)

0.3543
(0.0623)

0.3270
(0.0689)

0.3645
(0.0684)

0.05
0.3790
(0.0417)

0.3790
(0.0417)

0.3790
(0.0417)

0.3790
(0.0417)

0.3780
(0.0413)

0.3543
(0.0623)

0.3790
(0.0417)

0.4444
(0.0827)

0.1
0.3922
(0.0036)

0.3922
(0.0036)

0.5100
(0.1360)

0.6558
(0.1555)

0.6793
(0.1387)

0.3832
(0.0790)

0.3922
(0.0036)

0.4971
(0.1094)

0.2
0.7917
(0.0827)

0.7690
(0.1298)

0.7536
(0.0725)

0.8162
(0.0744)

0.8525
(0.1077)

0.7829
(0.0911)

0.7806
(0.1164)

0.7935
(0.0937)

0.3
0.8356
(0.0912)

0.8350
(0.0937)

0.7792
(0.0838)

0.8306
(0.0716)

0.8525
(0.0733)

0.8217
(0.0885)

0.8348
(0.0888)

0.8440
(0.0878)

1
0.8177
(0.0658)

Wins 0 0 1 2 5 8 1 0 3
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Table 12. Demographic Parity Difference results (HGB). Bold values indicate the lowest value per row.

Dataset Ratio HGB
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.0000
(0.0000)

0.0000
(0.0000)

0.0421
(0.0627)

0.0555
(0.0740)

0.0532
(0.0722)

0.0000
(0.0000)

0.0000
(0.0000)

0.0113
(0.0155)

0.05
0.0473
(0.0394)

0.0638
(0.0505)

0.0981
(0.0712)

0.1072
(0.0860)

0.1067
(0.1180)

0.0549
(0.0680)

0.0806
(0.0743)

0.0628
(0.0693)

0.1
0.0899
(0.0943)

0.0943
(0.0911)

0.0942
(0.0927)

0.1099
(0.0937)

0.1033
(0.0891)

0.0836
(0.0811)

0.0996
(0.0972)

0.0859
(0.0789)

0.2
0.0966
(0.0899)

0.0975
(0.0871)

0.0994
(0.0859)

0.1011
(0.0942)

0.0860
(0.0867)

0.0893
(0.0766)

0.0955
(0.0955)

0.0990
(0.0955)

0.3
0.0891
(0.0864)

0.0904
(0.0861)

0.1043
(0.1011)

0.1023
(0.0995)

0.0883
(0.0814)

0.0924
(0.0865)

0.0918
(0.0934)

0.0992
(0.0929)

1
0.0969
(0.0690)

eap2024 0.01
0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0272
(0.0432)

0.05
0.0000
(0.0000)

0.0000
(0.0000)

0.0745
(0.0905)

0.0398
(0.0951)

0.0320
(0.1013)

0.0000
(0.0000)

0.0000
(0.0000)

0.0740
(0.0955)

0.1
0.1121
(0.0809)

0.1476
(0.1220)

0.1589
(0.1316)

0.1564
(0.1052)

0.1450
(0.1537)

0.1128
(0.0758)

0.1002
(0.0905)

0.1340
(0.0716)

0.2
0.1244
(0.0711)

0.1225
(0.1183)

0.1395
(0.1059)

0.1233
(0.1004)

0.1189
(0.1029)

0.1633
(0.1023)

0.1256
(0.1002)

0.1358
(0.1165)

0.3
0.1083
(0.0930)

0.1184
(0.1048)

0.1740
(0.1032)

0.1182
(0.1121)

0.1029
(0.0951)

0.1465
(0.0866)

0.1272
(0.0742)

0.1310
(0.1056)

1
0.1845
(0.0953)

MBA 0.01
0.0159
(0.0093)

0.0247
(0.0304)

0.0521
(0.0318)

0.0450
(0.0171)

0.0460
(0.0545)

0.0100
(0.0063)

0.0184
(0.0142)

0.0116
(0.0128)

0.05
0.0602
(0.0371)

0.0571
(0.0377)

0.0730
(0.0355)

0.0250
(0.0141)

0.0492
(0.0509)

0.0508
(0.0316)

0.0566
(0.0345)

0.0374
(0.0305)

0.1
0.0507
(0.0307)

0.0536
(0.0242)

0.0649
(0.0297)

0.0358
(0.0205)

0.0440
(0.0459)

0.0374
(0.0318)

0.0416
(0.0227)

0.0378
(0.0236)

0.2
0.0399
(0.0207)

0.0476
(0.0230)

0.0514
(0.0322)

0.0620
(0.0548)

0.0222
(0.0146)

0.0445
(0.0234)

0.0443
(0.0202)

0.0362
(0.0200)

0.3
0.0452
(0.0179)

0.0442
(0.0164)

0.0630
(0.0142)

0.0411
(0.0368)

0.0221
(0.0170)

0.0373
(0.0169)

0.0443
(0.0186)

0.0404
(0.0281)

1
0.0533
(0.0110)

student 0.01
0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0242
(0.0499)

0.05
0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0040
(0.0126)

0.0000
(0.0000)

0.0000
(0.0000)

0.0504
(0.0491)

0.1
0.0000
(0.0000)

0.0000
(0.0000)

0.1225
(0.1670)

0.1202
(0.1078)

0.1220
(0.1049)

0.0071
(0.0226)

0.0000
(0.0000)

0.0358
(0.0351)

0.2
0.1189
(0.0889)

0.1310
(0.1045)

0.1343
(0.0844)

0.1536
(0.1008)

0.1486
(0.0706)

0.1281
(0.0843)

0.0993
(0.0771)

0.1643
(0.0967)

0.3
0.1753
(0.0664)

0.1680
(0.0895)

0.1699
(0.1200)

0.1645
(0.0851)

0.1394
(0.0689)

0.1454
(0.0633)

0.1730
(0.0944)

0.1695
(0.0574)

1
0.1328
(0.0498)

Wins 0 7 0 0 2 7 2 2 0



Algorithms 2025, 18, 663 23 of 35

Table 13. Equalized Odds Difference results (HGB). Bold values indicate the lowest value per row.

Dataset Ratio HGB
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.0000
(0.0000)

0.0000
(0.0000)

0.1147
(0.1161)

0.0427
(0.0879)

0.0431
(0.0547)

0.0000
(0.0000)

0.0000
(0.0000)

0.0438
(0.0518)

0.05
0.0771
(0.1157)

0.1061
(0.0923)

0.1029
(0.0500)

0.1218
(0.1137)

0.1069
(0.0669)

0.1570
(0.2060)

0.2284
(0.2303)

0.1211
(0.1301)

0.1
0.0806
(0.0372)

0.1040
(0.0529)

0.1211
(0.0954)

0.1398
(0.1064)

0.1251
(0.0929)

0.1229
(0.0924)

0.1430
(0.1169)

0.0668
(0.0373)

0.2
0.1170
(0.0599)

0.1273
(0.0744)

0.1131
(0.0573)

0.1386
(0.0755)

0.1080
(0.0361)

0.1081
(0.0444)

0.0972
(0.0506)

0.1299
(0.0528)

0.3
0.1208
(0.0568)

0.1129
(0.0329)

0.1217
(0.0776)

0.1279
(0.0614)

0.1225
(0.0735)

0.1089
(0.0409)

0.1238
(0.0773)

0.1337
(0.0735)

1
0.1013
(0.0709)

eap2024 0.01
0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0491
(0.0899)

0.05
0.0000
(0.0000)

0.0000
(0.0000)

0.2123
(0.2880)

0.1080
(0.2026)

0.0412
(0.1304)

0.0000
(0.0000)

0.0000
(0.0000)

0.1159
(0.1441)

0.1
0.2597
(0.1876)

0.2681
(0.1374)

0.2988
(0.1432)

0.2460
(0.1313)

0.3157
(0.1251)

0.2282
(0.1457)

0.2397
(0.0738)

0.2191
(0.1138)

0.2
0.2289
(0.1341)

0.2150
(0.0763)

0.2675
(0.0884)

0.2561
(0.0990)

0.2112
(0.0746)

0.2586
(0.1020)

0.2163
(0.1211)

0.2162
(0.0931)

0.3
0.2180
(0.1081)

0.2335
(0.0903)

0.2737
(0.1153)

0.1652
(0.0630)

0.1982
(0.0810)

0.2454
(0.1134)

0.2275
(0.0953)

0.1985
(0.0753)

1
0.2323
(0.1131)

MBA 0.01
0.0764
(0.0470)

0.0673
(0.0593)

0.0948
(0.0613)

0.0908
(0.0425)

0.0971
(0.0676)

0.0287
(0.0134)

0.0610
(0.0512)

0.0473
(0.0465)

0.05
0.1159
(0.0798)

0.1209
(0.0747)

0.1092
(0.0586)

0.0518
(0.0352)

0.1451
(0.0807)

0.1124
(0.0574)

0.1094
(0.0552)

0.0743
(0.0672)

0.1
0.0842
(0.0480)

0.0904
(0.0463)

0.0994
(0.0512)

0.0845
(0.0368)

0.1102
(0.0712)

0.0713
(0.0390)

0.0621
(0.0372)

0.0687
(0.0468)

0.2
0.0903
(0.0397)

0.0800
(0.0503)

0.0873
(0.0428)

0.1512
(0.1104)

0.0665
(0.0524)

0.0768
(0.0583)

0.0854
(0.0440)

0.0666
(0.0462)

0.3
0.0683
(0.0390)

0.0669
(0.0444)

0.0969
(0.0731)

0.0906
(0.0571)

0.0591
(0.0352)

0.0550
(0.0236)

0.0784
(0.0501)

0.0688
(0.0416)

1
0.0808
(0.0406)

student 0.01
0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0486
(0.0912)

0.05
0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0056
(0.0176)

0.0000
(0.0000)

0.0000
(0.0000)

0.1194
(0.1298)

0.1
0.0000
(0.0000)

0.0000
(0.0000)

0.2052
(0.2466)

0.2714
(0.1982)

0.3046
(0.2014)

0.0200
(0.0632)

0.0000
(0.0000)

0.1042
(0.0857)

0.2
0.2901
(0.1244)

0.2288
(0.1581)

0.2624
(0.1546)

0.2501
(0.1680)

0.2362
(0.1648)

0.3043
(0.1702)

0.1246
(0.0852)

0.2575
(0.1745)

0.3
0.3209
(0.1949)

0.2581
(0.1514)

0.2558
(0.1461)

0.2928
(0.1805)

0.1967
(0.0903)

0.2775
(0.1728)

0.2581
(0.1514)

0.2609
(0.1788)

1
0.2130
(0.1592)

Wins 0 7 0 0 2 3 3 3 2
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The accuracy results in Table 14 indicate that performance varies significantly across
datasets, labeled ratios, and semi-supervised methods. For very low ratios (0.01), accu-
racy is generally low, especially in eap2024 and student, where models remain close to
random guessing, while cert and MBA have good baseline performance even with minimal
supervision. As the ratio increases, there are substantial improvements on all datasets,
with cert achieving the highest overall accuracies (well above 0.93 for several methods at
ratios (≥0.1)), closely followed by MBA and student, with eap2024 consistently lagging be-
hind. Method-wise, ensemble-based techniques such as Tri-Training and CoBC consistently
achieve the best accuracy, as evident from their high wins count, whereas Self-Training
and Setred have more variable benefits. Rasco and Rel-Rasco are competitive across a
number of datasets, particularly for cert and student. These findings collectively imply that
while semi-supervised learning can greatly boost predictive accuracy compared to very
low-label regimes, relative improvements are dataset-dependent, and ensemble approaches
will generally yield the highest accuracy.

Figure 3. Summary of performance across SSL algorithms using HGB as the base classifier.

The F1-score values in Table 15 provide a more even view of model performance,
indicating precision–recall trade-off across datasets and labeling proportions. F1-scores in
the cert dataset are strong at medium labeling proportions (≥0.1) where all approaches
consistently rate > 0.90, with CoBC and Rasco often having the best result. At very
low supervision (0.01), however, F1-scores drop dramatically (0.47–0.55), with no stable
predictions. The eap2024 dataset gets better with the rising ratio, with values increasing
from 0.34 at low labeling to 0.77–0.79 at rising ratios, with Rasco and Rel-Rasco being
predominantly the top performers. MBA performance is comparatively low with F1-scores
remaining at 0.37–0.43 even at rising ratios, suggesting that this dataset has slightly more
difficulty in achieving balanced precision–recall performance. The student set shows one of
the largest improvements, jumping from 0.34 at 0.01 to >0.82–0.85 at (≥0.1) ratios, with Rel-
Rasco and CoBC faring best. Overall, ensemble methods (Rasco and Rel-Rasco specifically)
are the most competitive across sets, with the most wins, while simpler methods such as
Self-Training and Setred are more dataset dependent.
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Table 14. Accuracy results (XGB). Bold values indicate the highest value per row.

Dataset Ratio XGB
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.7412
(0.1009)

0.7412
(0.1009)

0.7937
(0.0611)

0.8013
(0.0730)

0.7991
(0.0664)

0.7080
(0.1619)

0.7444
(0.1000)

0.7280
(0.1360)

0.05
0.9156
(0.0285)

0.9188
(0.0242)

0.9295
(0.0242)

0.9338
(0.0251)

0.9274
(0.0279)

0.8995
(0.0403)

0.9146
(0.0333)

0.9103
(0.0306)

0.1
0.9327
(0.0202)

0.9338
(0.0198)

0.9380
(0.0180)

0.9391
(0.0196)

0.9391
(0.0207)

0.9264
(0.0355)

0.9381
(0.0233)

0.9402
(0.0167)

0.2
0.9284
(0.0281)

0.9241
(0.0280)

0.9369
(0.0148)

0.9348
(0.0178)

0.9273
(0.0208)

0.9263
(0.0239)

0.9370
(0.0205)

0.9327
(0.0237)

0.3
0.9252
(0.0202)

0.9252
(0.0150)

0.9338
(0.0149)

0.9305
(0.0228)

0.9306
(0.0161)

0.9380
(0.0230)

0.9305
(0.0198)

0.9391
(0.0174)

1
0.9380
(0.0181)

eap2024 0.01
0.5168
(0.0243)

0.5168
(0.0243)

0.5168
(0.0243)

0.5168
(0.0243)

0.5168
(0.0243)

0.5168
(0.0243)

0.5102
(0.0281)

0.5044
(0.0287)

0.05
0.7462
(0.0432)

0.7528
(0.0541)

0.7194
(0.0688)

0.7640
(0.0550)

0.7526
(0.0542)

0.7127
(0.0753)

0.7662
(0.0537)

0.7575
(0.0470)

0.1
0.7435
(0.0767)

0.7367
(0.0580)

0.7480
(0.0499)

0.7728
(0.0483)

0.7795
(0.0349)

0.7322
(0.0646)

0.7481
(0.0664)

0.7482
(0.0548)

0.2
0.7594
(0.0430)

0.7663
(0.0512)

0.7415
(0.0472)

0.7664
(0.0446)

0.7619
(0.0378)

0.7575
(0.0517)

0.7685
(0.0543)

0.7663
(0.0467)

0.3
0.7547
(0.0398)

0.7526
(0.0569)

0.7776
(0.0579)

0.7888
(0.0347)

0.7776
(0.0368)

0.7839
(0.0588)

0.7638
(0.0355)

0.7729
(0.0436)

1
0.7751
(0.0481)

MBA 0.01
0.8077
(0.0179)

0.8063
(0.0175)

0.7472
(0.0252)

0.7906
(0.0264)

0.7904
(0.0345)

0.8034
(0.0257)

0.8098
(0.0201)

0.8239
(0.0142)

0.05
0.8156
(0.0137)

0.8074
(0.0129)

0.7522
(0.0217)

0.7911
(0.0134)

0.7845
(0.0187)

0.7982
(0.0241)

0.8118
(0.0112)

0.8243
(0.0117)

0.1
0.8109
(0.0127)

0.8008
(0.0168)

0.7698
(0.0192)

0.7964
(0.0180)

0.8027
(0.0193)

0.8092
(0.0115)

0.8114
(0.0134)

0.8187
(0.0119)

0.2
0.8208
(0.0109)

0.8035
(0.0112)

0.7901
(0.0140)

0.8066
(0.0111)

0.8037
(0.0121)

0.8116
(0.0141)

0.8116
(0.0129)

0.8240
(0.0082)

0.3
0.8174
(0.0091)

0.8119
(0.0081)

0.8019
(0.0104)

0.8140
(0.0137)

0.8140
(0.0124)

0.8158
(0.0086)

0.8160
(0.0081)

0.8253
(0.0082)

1
0.8210
(0.0151)

student 0.01
0.5380
(0.1485)

0.5380
(0.1485)

0.5380
(0.1485)

0.5380
(0.1485)

0.5380
(0.1485)

0.5380
(0.1485)

0.4620
(0.1485)

0.5380
(0.1485)

0.05
0.7099
(0.1083)

0.6713
(0.1261)

0.6917
(0.1207)

0.7000
(0.1151)

0.7093
(0.1585)

0.7208
(0.1070)

0.7471
(0.1376)

0.7241
(0.0718)

0.1
0.8456
(0.0761)

0.8455
(0.0467)

0.7297
(0.0718)

0.7902
(0.0713)

0.8545
(0.0570)

0.8487
(0.0907)

0.8517
(0.0560)

0.8544
(0.0875)

0.2
0.8429
(0.0747)

0.8399
(0.0760)

0.7788
(0.0588)

0.8228
(0.0622)

0.8634
(0.0715)

0.8428
(0.0699)

0.8427
(0.0823)

0.8661
(0.0651)

0.3
0.8403
(0.0754)

0.8316
(0.0694)

0.8052
(0.0496)

0.8545
(0.0664)

0.8634
(0.0769)

0.8574
(0.0773)

0.8345
(0.0628)

0.8574
(0.0848)

1
0.8169
(0.0646)

Wins 0 2 0 0 3 3 0 4 8
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Table 15. F1-Score results (XGB). Bold values indicate the highest value per row.

Dataset Ratio XGB
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.4708
(0.1214)

0.4708
(0.1214)

0.5531
(0.1968)

0.5578
(0.2086)

0.5539
(0.1984)

0.4123
(0.0764)

0.4826
(0.1060)

0.5023
(0.1177)

0.05
0.8813
(0.0520)

0.8865
(0.0365)

0.9019
(0.0378)

0.9073
(0.0399)

0.8993
(0.0410)

0.8544
(0.0722)

0.8759
(0.0606)

0.8678
(0.0494)

0.1
0.9103
(0.0266)

0.9109
(0.0253)

0.9180
(0.0225)

0.9184
(0.0268)

0.9182
(0.0273)

0.8918
(0.0746)

0.9172
(0.0290)

0.9209
(0.0195)

0.2
0.9033
(0.0383)

0.8977
(0.0394)

0.9158
(0.0197)

0.9129
(0.0239)

0.9031
(0.0278)

0.9006
(0.0325)

0.9151
(0.0278)

0.9090
(0.0330)

0.3
0.8983
(0.0284)

0.8971
(0.0243)

0.9110
(0.0205)

0.9070
(0.0316)

0.9063
(0.0235)

0.9152
(0.0324)

0.9059
(0.0291)

0.9184
(0.0232)

1
0.9156
(0.0275)

eap2024 0.01
0.3406
(0.0108)

0.3406
(0.0108)

0.3406
(0.0108)

0.3406
(0.0108)

0.3406
(0.0108)

0.3406
(0.0108)

0.3376
(0.0125)

0.3351
(0.0128)

0.05
0.7422
(0.0453)

0.7480
(0.0583)

0.7126
(0.0742)

0.7587
(0.0599)

0.7487
(0.0579)

0.7061
(0.0790)

0.7607
(0.0580)

0.7515
(0.0480)

0.1
0.7401
(0.0777)

0.7339
(0.0573)

0.7455
(0.0496)

0.7706
(0.0487)

0.7786
(0.0350)

0.7270
(0.0686)

0.7452
(0.0666)

0.7452
(0.0548)

0.2
0.7573
(0.0442)

0.7640
(0.0515)

0.7378
(0.0480)

0.7645
(0.0448)

0.7599
(0.0389)

0.7550
(0.0519)

0.7665
(0.0561)

0.7652
(0.0469)

0.3
0.7528
(0.0397)

0.7511
(0.0580)

0.7752
(0.0600)

0.7875
(0.0356)

0.7766
(0.0372)

0.7816
(0.0594)

0.7627
(0.0358)

0.7711
(0.0443)

1
0.7739
(0.0483)

MBA 0.01
0.3662
(0.0377)

0.3750
(0.0355)

0.3954
(0.0221)

0.3954
(0.0325)

0.3878
(0.0269)

0.3742
(0.0406)

0.3710
(0.0365)

0.3523
(0.0343)

0.05
0.3995
(0.0251)

0.4139
(0.0379)

0.3997
(0.0183)

0.4280
(0.0257)

0.4178
(0.0428)

0.3865
(0.0234)

0.3980
(0.0255)

0.3832
(0.0251)

0.1
0.3944
(0.0168)

0.4015
(0.0220)

0.4077
(0.0164)

0.4207
(0.0079)

0.4291
(0.0214)

0.4062
(0.0293)

0.4031
(0.0329)

0.3781
(0.0182)

0.2
0.4035
(0.0129)

0.4022
(0.0133)

0.4132
(0.0242)

0.4227
(0.0111)

0.4106
(0.0206)

0.3914
(0.0090)

0.4014
(0.0145)

0.3906
(0.0158)

0.3
0.3934
(0.0168)

0.4101
(0.0125)

0.4053
(0.0282)

0.4167
(0.0156)

0.4138
(0.0184)

0.4027
(0.0191)

0.4082
(0.0075)

0.3926
(0.0169)

1
0.4029
(0.0214)

student 0.01
0.3442
(0.0664)

0.3442
(0.0664)

0.3442
(0.0664)

0.3442
(0.0664)

0.3442
(0.0664)

0.3442
(0.0664)

0.3101
(0.0668)

0.3442
(0.0664)

0.05
0.5993
(0.1916)

0.6076
(0.1679)

0.6401
(0.1577)

0.6540
(0.1507)

0.6657
(0.1842)

0.6514
(0.1590)

0.7018
(0.1766)

0.6489
(0.1336)

0.1
0.8263
(0.0858)

0.8200
(0.0603)

0.6791
(0.0913)

0.7592
(0.0865)

0.8361
(0.0669)

0.8123
(0.1309)

0.8306
(0.0670)

0.8236
(0.1259)

0.2
0.8249
(0.0824)

0.8205
(0.0877)

0.7497
(0.0668)

0.7972
(0.0761)

0.8472
(0.0806)

0.8246
(0.0818)

0.8241
(0.0929)

0.8475
(0.0761)

0.3
0.8243
(0.0832)

0.8146
(0.0751)

0.7776
(0.0645)

0.8338
(0.0761)

0.8425
(0.0897)

0.8408
(0.0882)

0.8176
(0.0688)

0.8389
(0.0961)

1
0.7933
(0.0742)

Wins 0 2 0 2 6 4 0 3 3
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The Demographic Parality Difference (DPD) values in Table 16 indicate major trends
regarding fairness between datasets, labeled ratios, and learning methods. For the cert
dataset, the values are consistently low (0.01–0.11), indicating that all approaches make
relatively balanced predictions within protected groups, whereas CoBC at times yields
higher imbalances. In eap2024, fairness outcomes range extremely widely: no imbalance
is observed at the lowest ratio (0.01), but values rise dramatically at higher ratios, usually
far above 0.16, displaying rising bias with the addition of more labeled data. The MBA
dataset shows the most uniform and weak disparities overall (0.02–0.07), suggesting low
sensitivity to semi-supervised learning methods. On the other hand, the student dataset
exhibits the most variability and the highest disparities, and values of DPD up to 0.23 at
a ratio of 0.2 reflect more fairness problems. Method-wise, there is no single method that
minimizes DPD for all datasets at once, though Co-Forest and Rasco show lower disparities
in most cases, and sometimes CoBC and Co-Training bring in greater differences.

Equalized Odds Difference (EOD) figures in Table 17 reveal significant differences
among datasets, suggesting that semi-supervised approaches can exaggerate or reduce
fairness differences based on the properties of the data and labeling proportions. For cert
data, EOD values are relatively small (0.05–0.14), and Co-Forest and Co-Training tend to
produce lower differences, but variability increases with larger amounts of labeled data. In
eap2024, the differences are small at 0.01 but increase rapidly with higher ratios, typically
over 0.25–0.32, which implies that increased supervision can reinforce unfair treatment be-
tween groups; Rasco, Rel-Rasco, and Co-Training are likely to record the largest differences.
The MBA dataset is more robust with values typically below 0.13 and less labeled ratio
sensitivity, implying a relatively balanced group treatment across techniques. On the other
hand, the student set displays the most challenging fairness profile: while no disparity
exists for 0.01, it leaps to 0.25–0.37 at higher ratios, where Co-Training particularly reaches
the peak disparities. From a methodological perspective, Self-Training and Rasco win the
most (five for each), but none of the methods reduce EOD across all datasets uniformly.

As shown in Figure 4, certain semi-supervised methods outperform others when XGB
is used as the base classifier, indicating differences in their adaptability to the datasets.

Figure 4. Summary of performance across SSL algorithms using XGB as the base classifier.
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Table 16. Demographic Parity Difference results (XGB). Bold values indicate the lowest value per row.

Dataset Ratio XGB
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.0476
(0.1349)

0.0476
(0.1349)

0.0141
(0.0310)

0.0107
(0.0303)

0.0167
(0.0353)

0.0028
(0.0088)

0.0551
(0.1341)

0.0786
(0.1506)

0.05
0.0890
(0.0842)

0.0811
(0.0805)

0.0860
(0.0828)

0.0895
(0.0810)

0.0848
(0.0767)

0.0810
(0.0853)

0.0854
(0.0810)

0.0918
(0.0666)

0.1
0.0723
(0.0902)

0.0764
(0.1003)

0.0754
(0.0789)

0.0894
(0.0941)

0.0890
(0.0920)

0.0678
(0.0708)

0.0735
(0.0911)

0.0916
(0.1061)

0.2
0.1007
(0.0721)

0.0867
(0.0709)

0.0938
(0.0845)

0.0931
(0.0802)

0.0937
(0.0737)

0.0984
(0.0901)

0.0968
(0.0873)

0.1071
(0.0879)

0.3
0.0908
(0.0776)

0.0744
(0.0580)

0.0890
(0.1026)

0.0906
(0.0913)

0.0948
(0.0822)

0.0998
(0.1035)

0.0847
(0.0871)

0.0939
(0.0976)

1
0.0821
(0.0742)

eap2024 0.01
0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.05
0.1372
(0.1020)

0.0979
(0.0742)

0.1131
(0.0817)

0.1249
(0.1002)

0.1447
(0.0437)

0.1588
(0.1052)

0.1145
(0.0645)

0.1525
(0.1019)

0.1
0.1207
(0.0584)

0.0991
(0.0717)

0.0863
(0.0764)

0.1295
(0.0840)

0.1217
(0.1194)

0.1067
(0.0592)

0.1168
(0.0865)

0.1430
(0.1000)

0.2
0.1605
(0.1066)

0.1470
(0.1109)

0.1408
(0.0574)

0.1148
(0.0840)

0.1633
(0.0783)

0.1239
(0.0932)

0.1233
(0.0803)

0.0847
(0.0589)

0.3
0.0971
(0.0879)

0.1146
(0.0938)

0.1750
(0.0986)

0.1253
(0.0861)

0.1189
(0.0734)

0.1565
(0.1156)

0.1005
(0.0772)

0.1393
(0.1171)

1
0.1707
(0.0697)

MBA 0.01
0.0235
(0.0144)

0.0310
(0.0174)

0.0357
(0.0304)

0.0200
(0.0172)

0.0321
(0.0311)

0.0207
(0.0180)

0.0222
(0.0154)

0.0073
(0.0074)

0.05
0.0569
(0.0385)

0.0615
(0.0375)

0.0703
(0.0489)

0.0465
(0.0307)

0.0309
(0.0282)

0.0475
(0.0257)

0.0575
(0.0397)

0.0478
(0.0513)

0.1
0.0460
(0.0240)

0.0531
(0.0178)

0.0506
(0.0320)

0.0398
(0.0187)

0.0382
(0.0403)

0.0510
(0.0317)

0.0443
(0.0203)

0.0387
(0.0338)

0.2
0.0489
(0.0207)

0.0469
(0.0188)

0.0664
(0.0336)

0.0364
(0.0173)

0.0207
(0.0266)

0.0411
(0.0213)

0.0513
(0.0208)

0.0451
(0.0232)

0.3
0.0448
(0.0183)

0.0471
(0.0129)

0.0615
(0.0247)

0.0304
(0.0210)

0.0311
(0.0329)

0.0400
(0.0225)

0.0456
(0.0170)

0.0525
(0.0239)

1
0.0492
(0.0179)

student 0.01
0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.05
0.1245
(0.1177)

0.1304
(0.1573)

0.1987
(0.1794)

0.1559
(0.1570)

0.1468
(0.1014)

0.1173
(0.1758)

0.1416
(0.1328)

0.0994
(0.1209)

0.1
0.1855
(0.0836)

0.1592
(0.1000)

0.1441
(0.1430)

0.1500
(0.0975)

0.1550
(0.0921)

0.1602
(0.0816)

0.1867
(0.0902)

0.1478
(0.0722)

0.2
0.1794
(0.0905)

0.1768
(0.1079)

0.1563
(0.0802)

0.2337
(0.1544)

0.1742
(0.1190)

0.1658
(0.0882)

0.1952
(0.1071)

0.1626
(0.0921)

0.3
0.1872
(0.1205)

0.1842
(0.1361)

0.1532
(0.0885)

0.1460
(0.0942)

0.1888
(0.0740)

0.1616
(0.0984)

0.1775
(0.1238)

0.1837
(0.0820)

1
0.1545
(0.0933)

Wins 0 3 3 3 2 3 3 0 3
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Table 17. Equalized Odds Difference results (XGB). Bold values indicate the lowest value per row.

Dataset Ratio XGB
Self-
Training

Setred
Co-
Training

Rasco
Rel-
Rasco

Co-
Forest

Tri-
Training

CoBC

cert 0.01
0.0499
(0.1496)

0.0499
(0.1496)

0.0219
(0.0402)

0.0456
(0.1090)

0.0566
(0.1468)

0.0100
(0.0316)

0.0813
(0.1593)

0.1113
(0.1590)

0.05
0.1202
(0.1073)

0.1441
(0.1132)

0.1132
(0.0608)

0.1111
(0.0690)

0.1381
(0.0594)

0.1647
(0.1131)

0.1322
(0.0980)

0.1813
(0.0954)

0.1
0.0828
(0.0425)

0.0957
(0.0779)

0.0990
(0.0760)

0.1032
(0.0509)

0.0953
(0.0901)

0.1138
(0.0807)

0.0923
(0.0426)

0.0831
(0.0793)

0.2
0.0992
(0.0716)

0.1038
(0.0649)

0.1133
(0.0866)

0.1244
(0.0364)

0.1151
(0.0654)

0.1458
(0.0776)

0.1120
(0.0573)

0.1387
(0.0885)

0.3
0.1407
(0.0837)

0.1132
(0.0853)

0.1325
(0.0796)

0.1104
(0.0540)

0.1080
(0.0579)

0.1427
(0.0905)

0.1050
(0.0283)

0.1386
(0.0868)

1
0.0977
(0.0529)

eap2024 0.01
0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.05
0.2480
(0.1161)

0.1654
(0.1159)

0.2301
(0.0821)

0.2619
(0.1042)

0.2888
(0.1262)

0.2396
(0.1469)

0.2150
(0.0925)

0.2436
(0.1100)

0.1
0.2297
(0.1071)

0.2704
(0.0909)

0.2846
(0.1077)

0.2849
(0.0606)

0.2664
(0.1024)

0.2748
(0.1547)

0.2445
(0.1157)

0.2858
(0.0642)

0.2
0.2650
(0.1437)

0.2750
(0.1195)

0.3253
(0.1045)

0.2801
(0.0900)

0.2709
(0.0917)

0.2235
(0.0829)

0.2660
(0.1069)

0.2472
(0.1112)

0.3
0.2536
(0.1276)

0.2678
(0.1239)

0.2532
(0.1239)

0.2570
(0.0963)

0.2593
(0.1158)

0.2363
(0.1285)

0.2345
(0.1178)

0.2196
(0.1163)

1
0.3028
(0.0867)

MBA 0.01
0.0413
(0.0238)

0.0566
(0.0235)

0.0680
(0.0409)

0.0571
(0.0309)

0.0849
(0.0451)

0.0408
(0.0241)

0.0401
(0.0230)

0.0234
(0.0233)

0.05
0.1197
(0.0813)

0.1247
(0.0871)

0.1188
(0.0523)

0.1243
(0.0474)

0.1140
(0.0632)

0.1048
(0.0683)

0.1166
(0.0651)

0.1151
(0.0892)

0.1
0.0804
(0.0458)

0.0867
(0.0538)

0.0823
(0.0494)

0.0747
(0.0354)

0.1332
(0.1017)

0.0960
(0.0514)

0.0913
(0.0531)

0.0763
(0.0579)

0.2
0.0930
(0.0559)

0.0661
(0.0464)

0.0911
(0.0707)

0.0839
(0.0479)

0.0810
(0.0545)

0.0725
(0.0657)

0.0768
(0.0541)

0.0922
(0.0638)

0.3
0.0727
(0.0288)

0.0721
(0.0257)

0.0964
(0.0622)

0.0812
(0.0556)

0.0664
(0.0348)

0.0681
(0.0301)

0.0746
(0.0279)

0.0872
(0.0416)

1
0.0777
(0.0508)

student 0.01
0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.0000
(0.0000)

0.05
0.2887
(0.2788)

0.2662
(0.2735)

0.3716
(0.3193)

0.1809
(0.2003)

0.2916
(0.2013)

0.2198
(0.2092)

0.2423
(0.2479)

0.2281
(0.1739)

0.1
0.2673
(0.1705)

0.2915
(0.1627)

0.3287
(0.2028)

0.2009
(0.1376)

0.2152
(0.1278)

0.2236
(0.1494)

0.3133
(0.1683)

0.2566
(0.1415)

0.2
0.2607
(0.1515)

0.2630
(0.1715)

0.3372
(0.1542)

0.3277
(0.2035)

0.2296
(0.1421)

0.2829
(0.2111)

0.2738
(0.2155)

0.3018
(0.1748)

0.3
0.3047
(0.2143)

0.2936
(0.2096)

0.3240
(0.1250)

0.2490
(0.2062)

0.2982
(0.1979)

0.2675
(0.1563)

0.3010
(0.2038)

0.2717
(0.1998)

1
0.2677
(0.1695)

Wins 0 5 2 0 5 2 3 1 2
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6. Discussion
The experimental results on four diverse datasets demonstrate the competitive ad-

vantage of SSL methods over fully supervised baselines, particularly in low-label regimes.
Comparisons of accuracy and F1-score consistently demonstrate that methods like CoBC,
Rasco, and Rel-Rasco are superior or on par with fully supervised methods like RF, HGB,
or XGB even with only 1–5% of the labeled examples. CoBC tends to be the top in accuracy,
while Rel-Rasco is top in F1-score rankings on noisy or imbalanced datasets like eap2024
and student. Simpler methods like Self-Training are also effective across settings, especially
for MBA, and thus show their practicability. As the labeled ratio increases, all the methods
move towards comparable performance, suggesting that SSL methods are most beneficial
when data is limited. Notably, baselines under 100% supervision seldom outperform top
SSL methods, even at 100% labeling, as well, underlining the value of SSL under real-world
scenarios where labeled data is expensive or scarce.

Ensemble and multi-view algorithms like Rasco and CoBC perform better in accuracy
compared to less complex methods like Self-Training due to their ability to exploit diversity
in learners and feature representations. By having several classifiers trained on various
subspaces or views of the data, these algorithms minimize overfitting risk and counter
labeling error propagation, a typical drawback of single-view self-labeling. In the SSL
settings with limited labeled data, this heterogeneity causes resilience so that the model will
be capable of unveiling complementary patterns across views that could be obscured to an
individual classifier. Hence, ensemble and multi-view methods capitalize on the structure
of the data and the redundancy among the sets of features, rendering the predictions more
stable and accurate, especially with complex or imbalanced data.

Apart from predictive performance, fairness metrics exhibit extreme differences across
SSL methods, on both Demographic Parity Difference (DPD) and Equalized Odds Differ-
ence (EOD). Self-Training and Rel-Rasco always produce the smallest disparities, suggesting
that these methods better minimize bias across demographic groups.

Notably, Self-Training achieves high performance on fairness metrics in spite of its
overall lower accuracy. A likely explanation is that the less complex process of its mech-
anism, which consists of adding the most confidently predicted labels iteratively, is less
damaging in making use of weak correlations in the data that could represent demographic
bias. More sophisticated methods, while better at extracting predictive signal, may indeed
also capture and amplify spurious correlations with sensitive features. Lower complexity
and more cautious labeling of Self-Training, however, may disavow reinforcing its bias
patterns from the small labeled set disproportionately. This lines up with the idea that fair-
ness and accuracy do not always go hand in hand and that, sometimes, less sophisticated
methods produce more fair results.

CoBC is also well-ranked on many fairness metrics, whereas ensemble-based methods
like Co-Forest, Co-Training, and Tri-Training are more likely to generate more disparities,
particularly on sensitive datasets such as eap2024 and student. Surprisingly, fairness is
not necessarily improved by more abundant labeled data; occasionally DPD and EOD
values increase with label richness, potentially through extrapolation of inherent bias
in training data. Fully supervised baselines such as HGB and XGB also fail to achieve
competitive fairness, especially on more challenging datasets, proving that label sufficiency
alone cannot guarantee fairness. This suggests that optimal performance for accuracy does
not necessarily equal optimal performance for fairness, and in some cases, the introduction
of more labeled data actually made fairness worse by scaling up built-in bias in the data. In
education, where predictive models can influence interventions and resource allocation,
these results serve to emphasize the need to balance predictive performance with fairness,
as well as to be cognizant of fairness-aware variants of SSL methods. These findings
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justify fairness-aware SSL design for fair and effective machine learning in real-world,
imbalanced settings.

It can be contributed to the bias amplification problem of SSL that fairness metrics
sometimes get worse as more labeled data are added. At low data availability of labels, SSL
algorithms rely a lot on the geometry of unlabeled data and synthetic augmentation, which
assists in countering some biases in the sparse training set to a certain extent. But with
more labeled data, models come to rely more on the labels, so that any initial demographic
or systemic bias in the labeled set becomes amplified. This results in worse disparities in
demographic parity and equalized odds measures. In essence, more labels make the model
more certain to replicate biased patterns, which appears as deteriorating fairness scores,
even with improvement in predictive performance.

These observations highlight the trade-offs between fairness and accuracy in SSL.
Methods such as Rasco and CoBC generally perform very well on accuracy but are likely
to show variation in fairness measures, especially on sensitive datasets such as student
and eap2024. Methods such as Self-Training are less accurate but tend to produce fairer
outcomes, mainly in terms of demographic parity. This suggests that the most accurate
method is not the best in practice if fairness is also a key concern. The compromise reflects
the value of hybrid methods or fairness-aware tweaks that weigh predictive ability against
equity, so that improving performance is not achieved by systematically discriminating
against some student groups. Figure 5 illustrates how the relative success of each semi-
supervised algorithm varies across evaluation metrics and base classifiers.

Figure 5. Stacked wins per evaluation metric across base classifiers.

We performed a direct comparison between baseline SSL methods and their TVAE-SSL
augmented counterparts (Table 18). The results demonstrate that the method proposed was
indeed tested and, while the size of improvement varied by dataset and method, TVAE
augmentation consistently demonstrated large gains in many cases. For example, Rasco
(TVAE-SSL) performs better than base Rasco on cert (0.9154 vs. 0.9027), eap2024 (0.6903 vs.
0.6817), and student (0.7220 vs. 0.7086). Similarly, Rel-Rasco (TVAE-SSL) performs better on
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cert (0.9179 vs. 0.8985) and maintains as well as ever on student. Co-Training also benefits
from TVAE augmentation on cert (0.9032 vs. 0.9000) and student (0.6895 vs. 0.6769). While in
certain cases the differences are marginal or level (e.g., Setred, Co-Forest), the general trend
seems to be that TVAE-SSL offers consistent or superior performance without degradation.
We chose to report on HistGradientBoosting (HGB) compared to XGBoost (XGB) or Random
Forests (RFs) as HGB always provided a reasonable trade-off between accuracy, justice, and
computation cost across datasets. While RF overall produced a good solid baseline, in most
cases its performance was surpassed by boosting-based methods, and XGB, although very
accurate, tended to inflate fairness gaps and was computationally more expensive, especially
in iterated semi-supervised runs with synthetic growth. HGB, on the other hand, posted
results that were both consistent and robust across measures, thus serving as a representative
option for illustrating the strengths of our TVAE-SSL framework without burdening the reader
with duplicate comparisons.

Table 18. Average accuracy across all labeled ratios (HGB).

Algorithm Cert eap2024 MBA Student

Self-Training (TVAE-SSL) 0.8705 (0.0773) 0.6607 (0.1347) 0.8120 (0.0066) 0.6987 (0.1296)
Self-Training (SSL) 0.8732 (0.0757) 0.6602 (0.1341) 0.8140 (0.0058) 0.7005 (0.1316)
Setred (TVAE-SSL) 0.8630 (0.0875) 0.6670 (0.1390) 0.8050 (0.0042) 0.6918 (0.1222)
Setred (SSL) 0.8630 (0.0875) 0.6670 (0.1390) 0.8050 (0.0042) 0.6918 (0.1222)
Co-Training (TVAE-SSL) 0.9032 (0.0657) 0.6751 (0.1176) 0.7693 (0.0212) 0.6895 (0.1056)
Co-Training (SSL) 0.9000 (0.0686) 0.6643 (0.1300) 0.7869 (0.0169) 0.6769 (0.0943)
Rasco (TVAE-SSL) 0.9154 (0.0372) 0.6903 (0.1413) 0.7955 (0.0174) 0.7220 (0.1308)
Rasco (SSL) 0.9027 (0.0699) 0.6817 (0.1275) 0.8021 (0.0163) 0.7086 (0.1183)
Rel-Rasco (TVAE-SSL) 0.9179 (0.0344) 0.6782 (0.1426) 0.7929 (0.0210) 0.7318 (0.1432)
Rel-Rasco (SSL) 0.8985 (0.0777) 0.6835 (0.1239) 0.8003 (0.0136) 0.7289 (0.1398)
Co-Forest (TVAE-SSL) 0.8572 (0.0937) 0.6533 (0.1346) 0.8111 (0.0078) 0.6743 (0.1405)
Co-Forest (SSL) 0.8574 (0.0945) 0.6547 (0.1350) 0.8108 (0.0080) 0.6724 (0.1392)
Tri-Training (TVAE-SSL) 0.8769 (0.0778) 0.6741 (0.1510) 0.8103 (0.0017) 0.6836 (0.1441)
Tri-Training (SSL) 0.8790 (0.0760) 0.6727 (0.1498) 0.8119 (0.0038) 0.6877 (0.1470)
CoBC (TVAE-SSL) 0.8756 (0.0792) 0.6828 (0.1370) 0.8254 (0.0031) 0.7015 (0.1322)
CoBC (SSL) 0.8771 (0.0776) 0.6652 (0.1277) 0.8229 (0.0030) 0.7004 (0.1322)

While overall improvements were brought about by SSL with TVAE augmentation,
anomalies and shortcomings were observed. For some datasets, primarily eap2024 and
student, performance gains were restricted or fairness scores deteriorated at higher la-
beled ratios, indicating that data quality and inherent bias may constrain SSL benefits.
Similarly, MBA provided strong accuracy but persistently poor F1-scores, which indicated
extreme class unbalance that SSL could not fully mitigate. These anomalies underscore
the dependence of SSL methods on dataset properties like label distribution and sensitive
attribute interdependencies. The second limitation is that fairness outcomes were highly
context-sensitive; certain methods that bridged demographic gaps did not generalize under
equalized odds, illustrating the multifaceted nature of fairness. Hybrid approaches inte-
grating generative augmentation with fairness-aware objectives must thus be explored in
future, and studies need to be carried out on more varied and realistic educational settings.

7. Conclusions
In this paper, we introduced TVAE-SSL, a novel framework that exploits both the

generative capabilities of the Tabular Variational Autoencoder (TVAE) and the flexibility
of SSL methods to boost model performance under low-data regimes. By integrating
the unlabeled dataset with realistic, label-free synthetic samples generated using TVAE,
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the method augments the quantity as well as the diversity of the training data without
introducing label noise. This generative augmentation technique enables traditional SSL
algorithms, e.g., Self-Training, Co-Training, and ensemble methods, to generalize more
effectively even when the number of labeled examples is extremely low.

Our extensive empirical evaluation on four diverse tabular datasets demonstrates that
TVAE-SSL improves predictive accuracy and F1-score, even under low-label scenarios (1–10%
labeled data). Among the methods tried, Rasco-based versions and CoBC worked best, and
our proposed augmentation method improved their performance even further. Notably, the
results also show that TVAE-SSL improves fairness metrics such as Demographic Parity and
Equalized Odds, indicating that synthetic data can help not only accuracy but also fair model
conduct. These findings justify the broader use of generative models as a valuable component
of semi-supervised pipelines for tabular data, where data annotation is costly or impossible.

One of the primary constraints of this study is its scope, which is confined to four cho-
sen educational datasets, a narrow set of base classifiers (RF, HGB, and XGB), and a single
generative model, the Tabular Variational Autoencoder (TVAE). While such choices allow
controlled and systematic analysis, they restrict the generalizability of the results. Different
datasets, particularly those with other domains or distributions of sensitive features, can
lead to different performance and fairness. Likewise, other generative approaches such as
GAN-based or diffusion-based can have potentially more effective synthetic augmentation
impacts, and other base classifiers can react differently to SSL algorithms.

Looking ahead, TVAE-SSL suggests several directions. First, the integration of
uncertainty-aware sample filtering or confidence weighted synthetic instance selection has
the potential to further improve performance. Second, generalizing the framework to mul-
ticlass or multilabel problems, as well as exploring its integration with other fairness-aware
learning objectives, can increase its applicability. Finally, applying TVAE-SSL to real-world
applications such as healthcare, finance, and cybersecurity, where labeled data are limited
and fairness is critical, can validate its real-world efficacy. Overall, this work illustrates
the potential of a union between generative modeling and SSL as a path towards more
effective, data efficient, and fairer machine learning systems.
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