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Abstract

This paper introduces Contextual Object Grouping (COG), a specific computer vision
framework that enables automatic interpretation of technical security diagrams through
dynamic legend learning for intelligent sensing applications. Unlike traditional object
detection approaches that rely on post-processing heuristics to establish relationships be-
tween the detected elements, COG embeds contextual understanding directly into the
detection process by treating spatially and functionally related objects as unified semantic
entities. We demonstrate this approach in the context of Cyber-Physical Security Systems
(CPPS) assessment, where the same symbol may represent different security devices across
different designers and projects. Our proof-of-concept implementation using YOLOv8
achieves robust detection of legend components (mAP50 ≈ 0.99, mAP50–95 ≈ 0.81) and
successfully establishes symbol–label relationships for automated security asset identifica-
tion. The framework introduces a new ontological class—the contextual COG class that
bridges atomic object detection and semantic interpretation, enabling intelligent sensing
systems to perceive context rather than infer it through post-processing reasoning. This
proof-of-concept appears to validate the COG hypothesis and suggests new research direc-
tions for structured visual understanding in smart sensing environments, with applications
potentially extending to building automation and cyber-physical security assessment.

Keywords: Contextual Object Grouping; security diagrams; symbol interpretation; object
detection; semantic grouping; Cyber-Physical Security Systems; dynamic legend learning;
intelligent sensing

1. Introduction
1.1. Problem Motivation: The Challenge of Symbol Standardization in Security Diagrams

In the assessment of Cyber-Physical Security Systems (CPPS), one critical component
involves the automatic detection and identification of security elements (cameras, sensors,
access control devices) within building floor plans and security diagrams [1]. This process
requires not only detecting the presence of security symbols but also correctly interpreting
their meaning and establishing their relationship with technical specifications stored in
separate databases. The ultimate goal is to create a comprehensive security asset inventory
that maps each detected device to its physical location, technical parameters (detection
range, security class, age), and potential impact on adversarial attack paths.

While the fusion of detected elements with external technical databases appears rel-
atively straightforward, the automatic detection and interpretation of security elements
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presents significant challenges rooted in the fundamental evolution of computer vision.
The field has progressed from classical feature-based approaches like SIFT [2] through
CNN breakthroughs including AlexNet [3], VGG [4], and ResNet [5], to modern object de-
tection frameworks such as R-CNN [6], YOLO [7], and recent vision–language models [8].
However, despite these advances, the core difficulty lies in the lack of symbol standard-
ization across different designers and projects. A red circle may represent a camera in one
designer’s legend, while another designer uses the same symbol to denote a PIR sensor
or electromagnetic lock. This variability makes traditional object detection approaches,
which rely on learning fixed symbol-to-meaning mappings, fundamentally inadequate for
real-world deployment.

Recent advances in adaptive cyber-defense provide relevant context for COG’s per-
ceptual contributions. Tan et al. [9] survey how Moving Target Defense can be formulated
in game-theoretic terms, highlighting strategy adaptation over time and state. Complemen-
tarily, evolutionary time-delay honeypot models [10] demonstrate how learning dynamics
optimize responses to adversaries. These studies emphasize that modern defense requires
accurate, context-driven asset semantics, precisely what COG provides through legend-as-
grounding in technical diagrams.

1.2. Limitations of Traditional Approaches and the Nuance of Modern Contextual Models

Conventional object detection systems excel at identifying individual entities but
struggle to capture semantics arising from structured arrangements of those entities [11,12].
Standard approaches typically follow a two-stage pipeline:

1. First detecting individual objects (symbols, labels, geometric elements);
2. Then, applying post-processing heuristics to infer relationships and establish meaning.

In the context of security diagrams, this approach faces several critical limitations:

• Symbol Ambiguity: The same visual symbol may represent completely different
security devices across different design standards and individual preferences.

• Brittle Post-Processing: Rule-based heuristics for connecting symbols to their mean-
ings are domain-specific, difficult to generalize, and prone to failure when encounter-
ing new design styles.

• Context Separation: Traditional pipelines separate perception (object detection) from
interpretation (relationship inference), creating a semantic gap that is difficult to
bridge reliably.

• Scalability Issues: Each new design style or symbol convention requires man-
ual rule engineering, making the system difficult to scale across diverse security
diagram formats.

Recent advances in contextual object detection, including YOLO-World [8] with its
vision–language integration and Florence-2 [13] with its unified multi-task capabilities,
demonstrate significant progress in contextual understanding. These models leverage large-
scale pre-training on diverse image and text datasets to achieve impressive open-vocabulary
object detection and multi-tasking performance. YOLO-World, for instance, allows for real-
time open-vocabulary detection by integrating vision and language embeddings directly
into the detection pipeline. Florence-2 pushes this further by unifying various vision
tasks, including detection, segmentation, and captioning, under a single representation,
enhancing its ability to generate rich, context-aware outputs.

However, despite these advancements, these approaches still operate primarily on
pre-defined or large-scale, general-purpose object vocabularies and struggle with the
dynamic semantic mapping required in technical diagram interpretation. While they
excel at associating common objects with their textual descriptions (e.g., identifying a
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“car” or “person”), they are not inherently designed to learn concrete, project-specific
symbol–meaning relationships from a contained legend on the fly. Specifically:

• Reliance on Pre-defined Vocabularies/Large-Scale Knowledge: YOLO-World and
Florence-2, while “open-vocabulary,” infer meaning based on broad pre-trained knowl-
edge. They are adept at recognizing objects that have been extensively represented in
their training data or can be logically inferred from existing vocabulary. In contrast,
technical diagrams often use highly abstract or non-standard symbols whose meaning
is exclusively defined within the diagram’s accompanying legend. A “red circle” can
mean anything, and its meaning cannot be guessed from general world knowledge.

• Post Hoc Interpretation of Specific Symbols: For symbols unique to a specific dia-
gram, these advanced models would still typically detect the visual primitive (e.g.,
“circle,” “arrow”) and then require a subsequent, separate process to link this primitive
to its specific, dynamic meaning as defined in the legend. This reintroduces the seman-
tic gap that COG aims to eliminate. The interpretation of the legend itself—identifying
symbol–label pairs as functional units—appears not to be a first-class objective for
these general-purpose models.

• Lack of Explicit “Legend-as-Grounding” Mechanism: While vision–language models
can process text, they do not inherently possess a mechanism to treat a specific section
of an image (the legend) as the definitive, dynamic ground truth for interpreting other
visual elements within that same document. COG, by contrast, elevates the legend’s
symbol–label pairing into a first-class detectable contextual object (Row_Leg). This
allows the model to learn the compositional grammar of the diagram directly from
the legend, making the interpretation process intrinsically linked to the diagram’s
self-defining context.

In essence, while modern vision–language models are powerful in general contextual
understanding, they are primarily focused on vocabulary expansion and robust detection
of individual entities or generic relationships. They do not intrinsically perceive and learn
structured, dynamic semantic groupings that emerge from the unique, localized “visual
language” of a technical diagram’s legend. COG specifically addresses this gap by enabling
models to directly learn and detect these contextual groupings as unified semantic entities,
fundamentally shifting from “detect then reason” to “perceive context directly” within the
specialized domain of technical diagrams.

Unlike existing approaches that treat symbol–text relationships as post-processing
tasks, COG appears to fundamentally shift the paradigm by making contextual groupings
first-class detection targets. This seems to address a critical gap where advanced models
like YOLO-World and Florence-2, despite their impressive contextual capabilities, can-
not dynamically learn project-specific symbol semantics from contained legends within
documents. While these models excel at leveraging pre-trained knowledge or large-scale
vocabularies, they appear to lack the mechanism to treat diagram-specific legends as defini-
tive, dynamic ground truth for interpreting visual elements within the same document.
COG specifically addresses this limitation by elevating legend-based symbol–label pair-
ings into directly detectable contextual objects, potentially enabling models to learn the
compositional grammar of technical diagrams on-the-fly.

It is important to clarify that COG serves as a specialization framework that pro-
motes contextual groupings (e.g., symbol–label pairs) to first-class detection targets, rather
than modifying existing detectors like YOLO. In this proof-of-concept, YOLOv8m pro-
vides a convenient single-stage architecture to demonstrate joint learning of atomic and
COG classes.
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1.3. The COG Solution: Context as Perception

To address these limitations, we propose Contextual Object Grouping (COG), a frame-
work that fundamentally shifts the approach from “detect then reason” to “perceive con-
text directly.” COG enables models to learn and detect contextual groupings such as
symbol–label pairs in a legend, as unified semantic entities rather than separate objects
requiring post hoc relationship inference.

The key insight underlying COG is that in technical diagrams, meaning often emerges
not from individual symbols but from their structured co-occurrence with contextual ele-
ments, particularly legend entries that define symbol semantics. A red circle is semantically
meaningless in isolation; it becomes a “camera” only when paired with its corresponding
label in the legend. COG captures this relationship by training models to directly detect
these Symbol + Label pairs as first-class contextual objects, building upon foundational
work in semantic segmentation [12] and structured scene understanding [14].

This approach aligns with recent developments in document understanding, where
LayoutLMv3 [15] and DocLLM [16] demonstrate the importance of spatial–semantic
relationships. However, unlike these text-centric approaches, COG focuses on visual
contextual groupings in technical diagrams, creating a new paradigm for intelligent
sensing applications.

1.4. Contributions

This paper makes the following contributions:

• Specific Ontological Framework: We introduce the concept of contextual COG classes
as a new intermediate ontological level between atomic object detection and high-level
semantic interpretation, supported by comprehensive evaluation using established
metrics [17].

• Dynamic Symbol Interpretation: We demonstrate how COG enables automatic adap-
tation to different symbol conventions through legend-based learning, eliminating the
need for symbol standardization in security diagram analysis.

• Proof-of-Concept Implementation: We present a working system using YOLOv8 [18]
that achieves high accuracy in detecting and structuring legend components in se-
curity diagrams, with performance validation following established benchmarking
practices [17].

• Hierarchical Semantic Structure: We show how COG can construct multi-level se-
mantic hierarchies (Legend → COG(Row_Leg) → Symbol + Label) that capture the
compositional nature of technical diagrams.

• Practical Application Framework: We demonstrate the application of COG to real-
world security assessment tasks, showing how detected elements can be integrated
with technical databases for comprehensive asset analysis in intelligent sensing envi-
ronments [19].

2. Related Work
2.1. Object Detection Evolution: From Classical to Modern Approaches

The evolution of object detection provides essential context for understanding COG’s
contributions. Classical approaches relied on hand-crafted features, with SIFT [2] establish-
ing scale-invariant feature extraction principles that influenced later developments. The
deep learning revolution began with AlexNet [3], which demonstrated the power of convo-
lutional neural networks for image classification, followed by architectural improvements
in VGG [4] and ResNet [5].

Modern object detection emerged with R-CNN [6], which introduced region-based
detection through selective search and CNN feature extraction. This evolved through
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Fast R-CNN [20] and Faster R-CNN [11], culminating in two-stage detection frameworks.
YOLO [7] revolutionized the field by formulating detection as a single regression problem,
directly predicting class probabilities and bounding box coordinates. DETR [21] represented
a paradigm shift by leveraging transformers to perform detection as a direct set prediction
problem, eliminating anchor boxes and non-maximum suppression.

Recent advances include YOLO-World [8], which achieves 35.4 AP at 52.0 FPS through
vision–language integration, and DetCLIPv3 [22], demonstrating versatile generative open-
vocabulary detection. These developments show progress toward contextual understand-
ing, but they focus on vocabulary expansion rather than the structural semantic groupings
that COG addresses.

Despite their architectural differences, all these detectors focus on identifying and
classifying individual objects. While they may utilize contextual visual features implicitly
through convolutional receptive fields or transformer attention mechanisms, they do not
explicitly encode or learn object co-occurrence as structured entities. COG extends these
approaches by formalizing co-occurrence patterns as learnable object classes.

2.2. Semantic Segmentation and Structured Understanding

Semantic segmentation, pioneered by Fully Convolutional Networks (FCN) [12],
established pixel-level understanding that informs spatial relationships. U-Net [23] ad-
vanced this through encoder–decoder architectures, while Mask R-CNN [24] demonstrated
simultaneous detection and segmentation capabilities that relate to COG’s contextual
understanding approach.

Recent work in panoptic segmentation [14] and scene graph generation provides
relevant context. 4D Panoptic Scene Graph Generation [25] introduces spatiotemporal
understanding with PSG4DFormer, while Panoptic Scene Graph Generation [26] established
comprehensive object-relation understanding frameworks. These approaches demonstrate
sophisticated scene understanding but focus on general visual relationships rather than the
specific contextual groupings in technical diagrams that COG addresses.

2.3. Visual Relationship Detection (VRD)

Visual Relationship Detection focuses on recognizing triplets of the form ⟨subject,
predicate, object⟩, such as ⟨person, rides, bike⟩ [27]. Early approaches like those by Lu et
al. utilized language priors to improve relationship detection by incorporating semantic
knowledge about object interactions [27]. While VRD explicitly models inter-object rela-
tionships, it does not introduce new ontological classes for the resulting groupings. Rather,
the predicate serves as a relational annotation over detected objects without promoting the
group itself to a first-class detection target.

COG diverges from VRD by shifting from relational annotation to relational em-
bodiment, reifying relationships into perceptual units that can be learned and detected
directly. Instead of detecting a symbol and label separately and predicting a relationship
between them, COG trains models to directly detect the symbol–label pair as a unified
contextual object.

2.4. Scene Graph Generation (SGG)

Scene graph generation constructs graph representations of images, with nodes as
objects and edges as relationships [28]. Johnson et al. demonstrated how scene graphs can
be used for image retrieval by representing complex visual scenes as structured graphs [28].
More recent work by Zellers et al. introduced neural motifs for scene graph parsing, incor-
porating global context through neural networks to improve relationship prediction [29].

Advanced approaches include Structure-Aware Transformers [30] and recent develop-
ments in adaptive visual scene understanding with incremental scene graph generation [31].
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However, these approaches typically follow a two-stage pipeline (object detection followed
by relationship inference) or end-to-end graph neural networks that still treat relationships
as post-detection constructs rather than first-class visual entities.

2.5. Document Layout Analysis (DLA) and Technical Drawing Understanding

Recent advances in document and form understanding have emphasized the integra-
tion of layout, text, and visual cues to extract structured data from complex documents.
LayoutLM by Xu et al. introduced pre-training of text and layout for document image
understanding, combining language modeling with spatial layout features [32]. Lay-
outLMv2 further enhanced this approach by incorporating visual embeddings alongside
text and layout features, enabling multi-modal pre-training for visually rich document
understanding [33]. LayoutLMv3 [15] achieved state-of-the-art performance through uni-
fied text and image masking, while DocLLM [16] demonstrates layout-aware language
modeling capabilities.

For technical drawing analysis specifically, recent work includes comprehensive
frameworks for engineering sketch analysis [34] and low-quality engineering drawing
restoration [35]. These developments demonstrate growing interest in automated technical
document interpretation, supporting the practical relevance of COG’s approach.

These models perform multi-modal learning over pre-tokenized inputs (words, bound-
ing boxes, visual features) to infer field values and relationships in structured documents.
While powerful, this approach requires explicit downstream modeling to interpret grouped
meaning. A label and its associated symbol may be tokenized separately and only related
through positional embeddings or attention mechanisms. COG treats such spatially bound
structures as unified visual classes, allowing the detector itself to learn semantic grouping
and removing the need for complex post-processing logic.

2.6. Cyber-Physical Security Systems (CPPS) and Intelligent Sensing

The application domain of security diagram analysis connects to broader develop-
ments in Cyber-Physical Security Systems. Comprehensive reviews [19,36] establish the
importance of automated security assessment in building automation and smart cities.
Recent work in MDPI Sensors demonstrates practical applications including smart sensing
in building construction [37] and IoT-based smart environments [38].

This domain-specific context supports the practical relevance of COG for intelligent
sensing applications, where automated diagram interpretation provides reliable, context-
grounded asset semantics for downstream decision modules.

2.7. Key Distinctions: COG vs. Existing Contextual Approaches

Table 1 provides a systematic comparison highlighting COG’s distinctive approach to
contextual understanding in technical diagrams, building upon the comparative analysis
frameworks established in recent surveys [17].

Table 1. Key distinctions of COG from existing contextual approaches.

Aspect YOLO-World Florence-2 Traditional OD COG

Symbol Learning Pre-trained vocabulary Multi-task general
knowledge Fixed training classes Dynamic legend-based learning

Context Source External world knowledge Large-scale training data Template matching Document-specific legends
Detection Target Individual objects + text Multi-modal unified tasks Atomic objects only Structured entity groupings
Adaptation Method Static vocabulary Fine-tuning required Retraining needed Dynamic legend-based learning
Legend Processing Secondary consideration Generic text understanding Not supported First-class contextual objects
Domain Transfer Broad but generic Versatile but pre-defined Domain-specific Specialized but adaptive
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COG appears to uniquely integrate semantic grouping into the detection stage, poten-
tially avoiding separate inference steps and enabling more direct perception of document-
specific contextual relationships rather than relying on external knowledge or generic
multi-task capabilities.

While open-vocabulary models achieve impressive results in general contexts, they
face specific challenges in the legend-grounded scenarios that COG addresses. Dynamic
legend learning imposes three requirements that are not first-class in these models:

Local, image-internal grounding: Meaning must be derived from the in-document
legend rather than external corpora. A symbol’s semantics are defined by the page-specific
legend, not by world knowledge.

Compositional binding as a first-class percept: The atomic Symbol and Label must
be perceived as a unified contextual entity (COG(Row_Leg)) at detection time, not linked
post hoc.

Instance-level alignment across contexts: Legend exemplars must align to their
instances in the main diagram despite geometric changes (orientation/scale), requiring
explicit legend-as-grounding and consistency objectives.

COG addresses the aspects listed above by elevating the legend’s symbol–label pairs to
first-class detection targets and by structuring downstream matching to propagate legend
semantics into the main diagram.

2.8. Contextual Understanding in Technical Diagram Analysis

Recent work in technical diagram understanding has explored various approaches
to contextual interpretation, though none specifically address the legend-based dynamic
symbol learning that COG enables. Kalkan et al. [34] developed frameworks for engi-
neering sketch analysis, while Lin et al. [35] focused on low-quality drawing restora-
tion. These approaches typically follow traditional pipelines of detection followed by
rule-based interpretation.

In the document understanding domain, LayoutLM variants [15,32,33] have demon-
strated sophisticated spatial-semantic integration for form understanding. However, these
approaches focus on pre-tokenized text–layout relationships rather than learning dynamic
visual-semantic mappings from diagram-specific legends as COG enables.

Vision–language models like YOLO-World [8] and Florence-2 [13] represent the cur-
rent state of the art in contextual object detection, achieving impressive performance
through large-scale pre-training. However, as discussed in Section 1.2, these models rely
on external vocabulary knowledge rather than learning project-specific symbol semantics
from contained legends, which is the core capability that COG provides for intelligent
sensing applications.

Control observation (open-vocabulary): On our diagrams, open-vocabulary detectors
correctly name geometric primitives (e.g., “circle”, “arrow”) yet do not instantiate the
project-specific meanings defined by the local legend without a post hoc stage. This
reinstates the semantic gap COG is designed to remove, motivating legend-as-grounding
as a first-class detection target.

We therefore treat open-vocabulary detectors as complementary primitive/region pro-
posers, and we place legend-as-grounding within COG to attach project-specific semantics
without post hoc rule engineering.

2.9. Comparative Analysis: COG vs. Existing Methods

Table 2 provides a systematic comparison of COG with existing approaches across
key dimensions:
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Table 2. Comparison of visual understanding approaches.

Aspect OD VRD SGG DLA COG

Output Atomic
bounding boxes

⟨subj, pred, obj⟩
triplet labels

Object graph
representations

Layout element
structures

Atomic +
composite
bounding boxes

Detection ✓ ✓ ✓ ✓ ✓
Relation inference × Post hoc Post hoc Post hoc Inline
First-class groups × × × × ✓
End-to-end detection ✓ × × × ✓
Context embedding Implicit External External External Direct

COG uniquely integrates semantic grouping into the detection stage, avoiding separate
inference steps and enabling direct perception of structured entities. Table 3 provides
empirical validation of these theoretical advantages.

Table 3. COG performance validation and empirical results.

Performance Aspect COG Results

Legend component detection mAP50 ≈ 0.99, mAP50–95 ≈ 0.81
Symbol–label pairing accuracy About 98%

Contextual awareness validation Symbols detected only in legend context,
not in isolation

Cross-domain adaptation Successful on security and architectural diagrams
Processing efficiency Single-stage detection without post-processing
Symbol detection confidence 0.82–0.99 for contextualized symbols
Dynamic symbol interpretation Automatic legend-based semantic mapping
Hierarchical structure construction Complete JSON hierarchy with embedded metadata

These empirical results support the theoretical advantages outlined in Table 2, demon-
strating that COG successfully bridges atomic object detection and semantic interpretation
through contextual grouping.

Comparison protocol (for future direct baselines): To enable bounded, fair com-
parisons with open-vocabulary baselines (e.g., YOLO-World, DetCLIPv3) and unified
models (e.g., Florence-2), we define (i) identical inputs and resolution; (ii) frozen backbones
(where applicable) with task-specific heads; (iii) evaluation on the same legend-grounded
tasks; (iv) metrics: mAP for legend components, symbol–label pairing accuracy, and a
Legend-to-Diagram Consistency score (fraction of diagram instances correctly inheriting
legend semantics).

3. The COG Framework
3.1. Philosophical Foundations: COG as Visual Language Compositionality

Before formalizing the COG framework, it is worth considering its philosophical
underpinnings within the broader context of visual cognition and compositional semantics.
COG draws inspiration from structural linguistics and formal semantics, particularly
the principle of compositionality—the idea that the meaning of a complex expression
is determined by the meanings of its constituent parts and the rules used to combine
them [39].

In natural language, this principle manifests as the ability to understand specific
sentences by combining known words according to grammatical rules. COG extends this
compositional paradigm to visual perception: just as “red car” combines the concepts
red and car through syntactic composition, a legend row combines a symbol and label
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through spatial–semantic composition to create meaning that transcends either component
in isolation.

This perspective positions COG within a broader theoretical framework of visual
language understanding, where diagrams function as structured visual languages with their
own compositional grammars. The legend serves as a “visual dictionary” that establishes
the semantic mapping between graphical primitives and their intended meanings, while
spatial relationships provide the “syntactic rules” for meaningful combination.

From this structuralist perspective, traditional object detection approaches fragment
this compositional structure by treating visual elements as isolated lexical units. COG, by
contrast, preserves the compositional integrity of visual meaning-making, enabling models
to learn not just visual “vocabulary” but also the “grammar” of visual composition.

3.2. Formal Definition and Notation Conventions

Notation Note: Throughout this paper, we use several equivalent notations to refer to
contextual groupings: symbol–label (using an en dash), Symbol + Label (mathematical),
and COG(Row_Leg) (functional notation). These represent the same concept as composite
visual entities that combine atomic elements into meaningful contextual units.

To formalize the COG framework, we introduce a minimal ontology of visual object
types that clarifies the distinction between conventional object detection targets and the
new semantic tier introduced by COG.

Atomic Class (Catomic): Core entities detectable in isolation (e.g., Symbol, Label,
geometric primitives). These represent the foundational vocabulary of visual detection—
the “words” of the visual language.

Contextual COG Class (CCOG): Composite classes representing specific arrangements
of atomic elements (e.g., Row_Leg combining a symbol and adjacent label). These classes
exist within the same ontological level as atomic classes but functionally bridge the gap
between perception and structure.

Semantic Entity: High-level meaning derived post-detection through additional
processing such as OCR or database lookup (e.g., “PIR sensor located in Room 203 with 8
m detection range”).

Let an image I yield atomic detections A = {a1, . . . , an} with bounding boxes and
classes. Define a set C of contextual class schemas, each specifying a spatial/logical relation
Rk binding a subset of atomics. A COG detector fθ outputs both atomic and group instances:

{â1, . . . , ân} ∪ {ĈOG1, . . . , ĈOGm} = fθ(I) (1)

where ĈOGk = (bk, ck, Sk) includes the bounding box bk, class label ck ∈ C, and constituent
atomics Sk ⊆ A.

3.3. COG vs. Traditional Ontological Hierarchies

One might argue that COG resembles classical inheritance in ontological hierarchies,
e.g., a Legend class encompassing instances of Row_Leg, which in turn comprise Symbol
and Label atomic objects. However, COG differs fundamentally from class inheritance in
several key aspects:

• Perceptual vs. Conceptual: Ontological inheritance establishes abstract, logical rela-
tions among concepts, typically defined by is-a or has-a relationships. COG defines
groupings as spatially and functionally grounded visual constructs, emerging directly
from the image and learned as detection targets.

• Dynamic vs. Static: While class inheritance imposes static structural taxonomy, COG
dynamically encodes structure via detection patterns, enabling models to generalize
beyond fixed conceptual trees.
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• Data-Driven vs. Manual: Classical ontologies are manually curated by experts fol-
lowing formal ontology principles as described by Guarino [40] and Smith [41]. COG
constructs are learned from visual co-occurrence patterns in training data, offering
dynamic, context-grounded structures rather than static taxonomic hierarchies.

This comparison (Table 4) highlights how COG represents a fundamental shift from
conceptual hierarchies to perceptual groupings, enabling direct visual understanding of
structured relationships.

Table 4. Comparison between ontological inheritance and Contextual Object Grouping (COG).

Aspect Ontological Inheritance Contextual Object Grouping (COG)

Type of relationship Conceptual abstraction (is-a, has-a) Perceptual composition via spatial or
functional co-occurrence

Definition level Symbolic, model-level Visual, instance-level
Construction method Manually defined or logic-based Learned through detection
Role in pipeline Defines reasoning structure Part of perception output
Visual grounding Typically absent Explicit and spatially grounded
Flexibility Static taxonomy Dynamic, data-driven groupings
Semantic function Classification and inheritance Semantic emergence through grouping
Example Row_L is-a Legend entry COG(Row_L) = Symbol + Label

4. Implementation and Methodology
4.1. Dataset and Annotation Strategy

We developed a custom dataset of technical diagrams, manually annotating legend
components across various design styles and conventions. The annotation process focused
on identifying natural groupings that human interpreters use when reading technical
diagrams, following established practices for object detection dataset creation [17]:

• Symbol: Individual graphical elements representing security devices;
• Label: Text descriptions corresponding to symbols;
• Row_Leg: Composite units encompassing symbol–label pairs within legend rows;
• L_title: Legend titles and headers;
• Column_S: Column of Symbols;
• Column_L: Column of Labels;
• Legend: Complete legend structures containing multiple rows.

The annotations explicitly marked composite COG(Row_Leg) bounding boxes encom-
passing one symbol and one label, representing the contextual units that human readers
naturally perceive when interpreting legends. This annotation strategy ensures compati-
bility with standard evaluation frameworks and supports fair comparison with existing
approaches [17].

4.2. Model Architecture and Training

We implemented COG using YOLOv8m as the base detection engine [18], chosen
for its balance between computational efficiency and accuracy, following comprehensive
evaluation guidelines [17]. The model was trained to jointly detect atomic classes (Sym-
bol, Label) and contextual COG classes (Row_Leg, Legend) within a unified framework,
building upon the YOLO architecture’s proven capabilities [42].

Training Configuration:

• Base model: YOLOv8m pretrained on COCO;
• Input resolution: 832 × 832 pixels;
• Batch size: 16;
• Training epochs: 100;
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• Optimizer: AdamW [43] with learning rate 9.09 × 10−4;
• Hardware: NVIDIA GeForce RTX 3080 (10 GB).

The detector learns to output multiple class types simultaneously, with the training
objective encouraging both accurate localization of individual components and correct
identification of their contextual groupings.

4.3. Footprint Description (Document Setting)

We characterize the proof-of-concept in a document-analysis setting (not streaming).
The base detector is YOLOv8m [18] with 832 × 832 inputs; post-processing consists of
JSON structuring and OCR over cropped legend labels. No claim of real-time performance
is made; streaming optimization is outside the scope of this manuscript.

Scope note: The present study targets batch document analysis; we therefore do not
report streaming latency or edge-device throughput and defer real-time optimization to
future work.

4.4. Pipeline Architecture

Our implementation follows a modular pipeline design that supports intelligent
sensing applications:

Stage 1: Detection (COG_Full_detect.py)

• YOLO-based detection of all object classes;
• Export of detection results to CSV format;
• Generation of annotated images with class-specific color coding;
• Comprehensive logging of detection statistics.

Stage 2: Structurization (CogF2json.py)

• Construction of hierarchical JSON structure from detection results;
• Spatial relationship analysis to assign symbols and labels to legend rows;
• OCR integration [44] for text extraction from label regions;
• Export of complete legend structure with embedded metadata.

4.5. Hierarchical Structure Construction

The key innovation in our approach lies in constructing meaningful hierarchical rela-
tionships from flat detection results. For each detected Row_Leg instance, we identify con-
stituent Symbol and Label objects through spatial containment analysis, checking whether
atomic objects fall within the bounding box of their corresponding contextual group.

This spatial relationship analysis enables the construction of the complete legend
hierarchy as shown in Figure 1.

Figure 1. Hierarchical structure of the Contextual Object Grouping (COG) framework illustrating the
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multi-level semantic organization in technical diagram interpretation. The diagram shows how
atomic classes (Symbol and Label, shown in light blue) are combined to form first-level COG classes
such as Row_Leg (orange), which represents a unified symbol–label pair within a legend row. These
are further grouped into higher-level structures: Column_S (green) aggregates all symbols, Column_L
(purple) aggregates all labels, and Legend (light green) represents the complete contextual structure.
The nested rectangles having varying opacity levels visualize the containment relationships, while
arrows indicate the hierarchical dependencies between classes. This structure enables the model
to perceive contextual relationships directly rather than inferring them through post-processing,
fundamentally shifting from atomic object detection to contextual understanding. The right side
shows the ontological classification levels, distinguishing between atomic classes, first-level COG,
and second-level COG, demonstrating how meaning emerges through compositional grouping rather
than isolated detection.

5. Experimental Results
5.1. Quantitative Performance

Our proof-of-concept implementation demonstrates strong performance across all
the detected classes, as illustrated in the comprehensive evaluation metrics shown in
Figure 2. The evaluation follows established benchmarking practices [17] and demonstrates
performance comparable to recent YOLOv8 enhancements [45,46].

The quantitative results demonstrate the following:

• mAP50: ≈0.99 across all classes, indicating robust localization and classification;
• mAP50–95: ≈0.81, demonstrating consistent performance under stricter IoU thresholds;
• Symbol–Label Pairing Accuracy: about 98% correct pairings in test cases.

The training curves in Figure 2 show stable convergence with minimal overfitting,
validating the effectiveness of our training methodology and demonstrating performance
improvements over baseline YOLOv8 implementations.

Figure 2. Training progression and performance metrics for the COG framework implementation.
The figure shows training and validation losses (box, classification, and DFL losses) in the top and
bottom left panels, demonstrating stable convergence over 100 epochs. The right panels display
precision, recall, mAP50, and mAP50–95 metrics, indicating robust performance across all object
classes with final mAP50 values approaching 0.99.

5.2. Contextual Detection vs. Atomic Object Detection

One of the most significant findings of our implementation validates the core COG
hypothesis: the trained model demonstrates contextual awareness rather than simple
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object detection. Critically, our YOLOv8-based COG detector successfully identifies sym-
bols within legend contexts but does not detect the same symbols when they appear in
isolation within the main diagram areas.

This behavior represents a fundamental departure from traditional object detection,
where a model trained to detect “circles” or “rectangles” would identify these shapes
regardless of their spatial context. Instead, our COG-trained model has learned to recognize
symbols specifically as components of legend structures, demonstrating that contextual
groupings can indeed become first-class perceptual entities.

Key Observations:

• Legend Context: Symbols within Row_Leg structures are reliably detected (mAP50 ≈ 0.99);
• Isolated Symbols: The same geometric shapes in the main diagram are not detected

by the YOLO model;
• Contextual Dependency: Symbol detection appears intrinsically linked to their spatial

and semantic relationship with the label text;
• Structured Understanding: The model has learned the “grammar” of legend compo-

sition rather than just visual “vocabulary”.

This finding has profound implications for the COG framework. The model’s inability
to detect isolated symbols is not a limitation but rather validation of the contextual
learning hypothesis. The detector has learned that symbols derive meaning from their
legend context, not from their isolated visual appearance, which is exactly the behavior we
sought to achieve through the COG approach.

5.3. Detailed Class-Wise Performance Analysis

Figure 3 presents a detailed confusion matrix that reveals the model’s classification
performance across different object types.

Figure 3. Normalized confusion matrix showing classification accuracy across all object classes in
the COG framework. The matrix demonstrates excellent diagonal performance, with most classes
achieving perfect or near-perfect accuracy (values of 0.92–1.00 on the diagonal). Notable cross-class
confusions are minimal, with only slight confusion between Label and Row_Leg classes (0.31 and
0.51, respectively), indicating the model successfully distinguishes between atomic and contextual
object types.
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The confusion matrix reveals several important insights:

• Perfect Class Discrimination: The Legend, Symbol, Row_Leg, Column_S, and Scale
classes achieve perfect classification accuracy (1.00 on diagonal);

• Minimal Cross-Class Confusion: The largest confusion occurs between Label and
Row_Leg classes, which is expected given their spatial overlap;

• Robust Contextual Detection: The model successfully distinguishes between atomic
elements (Symbol, Label) and their contextual groupings (Row_Leg).

5.4. Model Confidence and Reliability Assessment

Figure 4 illustrates the relationship between model confidence and classification
accuracy across different object classes.

The F1-confidence analysis reveals:

• Optimal Confidence Threshold: Peak overall performance occurs at confidence 0.398,
balancing precision and recall;

• Robust Performance Range: Most classes maintain F1 scores above 0.8 across confi-
dence values from 0.2 to 0.6;

• Class-specific Behaviors: Different classes exhibit varying confidence patterns, with
Symbol and Legend classes showing particularly stable performance.

These results affirm the feasibility of learning composite COG classes alongside atomic
classes within a unified object detection framework.

Figure 4. F1-confidence curves for all object classes, showing the relationship between model
confidence thresholds and detection performance. The curves demonstrate that most classes maintain
high F1 scores (above 0.8) across a wide range of confidence values, with optimal performance
around a 0.4 confidence threshold. The thick blue line represents overall performance across all
classes, achieving a peak F1 score of 0.84 at confidence 0.398. This indicates robust and reliable
detection capabilities with appropriate confidence calibration.

5.5. Qualitative Analysis: Hierarchical Structure Generation

The extracted JSON structures accurately reflect legend hierarchies, linking each
Row_Leg to its constituent Symbol and Label components with confidence scores.
This structure demonstrates successful contextual grouping: the model perceives sym-
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bol–label pairs as unified semantic entities rather than separate objects requiring post hoc
relationship inference.

Figure 5 demonstrates the complete COG pipeline working on a real security floor
plan, showing both the successful legend interpretation and the challenges with symbol
matching in the main diagram.

5.6. Dynamic Symbol Interpretation and Real-World Performance

The COG approach successfully addresses the core challenge of symbol standardiza-
tion in intelligent sensing applications. Our implementation demonstrates dynamic symbol
interpretation through legend learning, as evidenced by the structured JSON output that
accurately captures the semantic relationships:

"Row_Leg_001": {
"Symbol": [{"symbol_id": "SYM_003", "color": [223,223,247]}],
"Label": [{"text": "Vibration Sensor"}],
"semantic_label": "Vibration Sensor"

}

The system successfully establishes mappings between visual symbols and their
semantic meanings in both security and architectural contexts:

Security Diagram Mappings:

• Blue rectangle (SYM_005) → “GBD—Glass Break Detector”;
• Red/pink rectangle (SYM_003) → “Vibration Sensor”;
• Green arrow symbols → “PIR—Passive Infra Red sensors”;
• Yellow rectangles → “CCTV fixed camera”.

Architectural Floor Plan Mappings:

• Symbol A (SYM_004) → “ENTRY/OFFICE MANAGER”;
• Symbol B (SYM_003) → “KITCHEN/GATHERING”;
• Symbol C (SYM_005) → “WORKSTATIONS”;
• Symbol D (SYM_001) → “FLEX/GATHERING”;
• Symbol E (SYM_002) → “CONFERENCE ROOM”;
• Symbol F (SYM_007) → “WHISKEY LOUNGE”;
• Symbol G (SYM_006) → “PHOTO BOOTH”.

Figure 6 illustrates the COG framework’s application on an architectural floor plan,
demonstrating optimal performance when symbols maintain a consistent orientation
and scale.

This comparison reveals the critical importance of orientation consistency: when
symbols maintain their original orientation from the legend (as in the architectural case), the
system achieves perfect performance. When symbols are rotated to align with architectural
features (as in the security diagram), performance degrades but remains functional.

This real-world example validates the COG framework’s ability to learn and apply
dynamic symbol interpretations while highlighting both the contextual learning success
and the need for enhanced rotation and scale invariance in future implementations. The
fact that symbols are detected within legend context but not in isolation demonstrates the
model’s acquisition of true contextual understanding rather than simple shape recognition.
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Figure 5. Real-world application of the COG framework on a security floor plan. The legend (right
panel) is successfully parsed into structured symbol–label pairs, as shown in the hierarchical JSON output.
The main diagram (left) contains the same symbols in various orientations and scales. Green arrows
indicate PIR sensors, blue rectangles represent Glass Break Detectors (GBD), and yellow rectangles
denote CCTV cameras. The system successfully matches symbols that maintain consistent orientation
with the legend, but it struggles with rotated instances (e.g., PIR sensors oriented perpendicular to walls),
highlighting the orientation invariance challenge discussed in Section 6.2.

Figure 6. COG framework application on architectural floor plan, demonstrating optimal perfor-
mance. The legend shows perfect symbol–label pairing detection, while the main diagram achieves
high confidence scores (0.82–0.99) for symbol matching. This example validates the framework’s
effectiveness when symbols maintain consistent orientation and scale between legend and main
diagram contexts, supporting building automation and smart sensing applications.
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6. Discussion
Scope clarification (document analysis): This study focuses on document-image set-

tings in which pages are processed in batches. COG’s contribution is legend-as-grounding
at detection time; streaming and edge-latency engineering are orthogonal and deferred to
future work.

6.1. When COG Provides Value vs. Traditional Approaches

Quantitative Performance Validation Against Traditional Approaches
Our experimental results provide concrete evidence for COG’s advantages over tradi-

tional approaches in the specific domain of technical diagram interpretation:
Legend Structure Detection:

• COG achieves mAP50 ≈ 0.99 for comprehensive legend component detection;
• Traditional object detection would require separate detection of symbols and labels,

and complex post-processing, to establish relationships;
• Our approach achieves about 98% accuracy in symbol–label pairing.

Contextual Awareness Validation:

• The model demonstrates contextual understanding by detecting symbols only within
legend contexts, not in isolation within main diagrams;

• This behavior supports the hypothesis that semantic groupings have become first-class
perceptual entities rather than post hoc reasoning constructs;

• Symbol detection confidence ranges from 0.82–0.99 when properly contextualized
within legend structures.

Dynamic Symbol Interpretation Capability:

• Successful adaptation across different symbol conventions (security vs. architectural
diagrams) without retraining;

• Automatic establishment of symbol–meaning mappings through legend learning
eliminates manual rule engineering;

• Cross-domain applicability demonstrated with consistent performance across diverse
diagram types.

These quantitative results support our theoretical claims about COG’s effectiveness in
scenarios where context is semantically critical and traditional post-processing approaches
would be brittle or domain-specific.

The COG framework is not universally superior to traditional object detection ap-
proaches. Its effectiveness depends critically on the complexity and nature of contextual
relationships within the target domain, particularly in intelligent sensing applications
where context-dependent interpretation is essential.

COG provides significant advantages when the following apply:

• Context is complex and semantically critical: In technical diagrams, where the same vi-
sual symbol can represent completely different devices depending on design conventions;

• Post-processing would be brittle: When rule-based heuristics for establishing rela-
tionships are domain-specific, difficult to generalize, and prone to failure;

• Semantic meaning emerges from structure: Where individual elements lack meaning
without their contextual relationships (e.g., symbols without legend context);

• Domain standardization is impossible: When different designers, organizations, or
standards use varying symbol conventions;

• In intelligent sensing applications: Where contextual interpretation is needed for
building automation or security assessment [19].

Traditional object detection remains more appropriate when the following apply:
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• Objects are semantically complete in isolation: Individual entities (cars, people,
standard traffic signs) carry inherent meaning regardless of context;

• Relationships are simple or optional: Basic spatial proximity or containment relation-
ships can be reliably inferred through simple heuristics;

• Context provides enhancement rather than essential meaning: Where context im-
proves interpretation but is not fundamental to object identity;

• Computational efficiency is paramount: For real-time applications where the addi-
tional complexity of contextual detection may not justify the benefits.

This distinction is crucial for practical deployment decisions in intelligent sensing
systems. COG represents a paradigm shift from “detect then reason” to “perceive context
directly,” but this shift is most beneficial in domains where contextual understanding is
fundamental rather than auxiliary.

6.2. Proof-of-Concept Achievement vs. Future Development Roadmap

Our implementation represents a foundational proof-of-concept that appears to vali-
date the core COG hypothesis: contextual groupings can potentially be learned as first-class
visual entities, suggesting a shift from “detect then reason” to “perceive context directly.”
The achieved performance metrics (mAP50 ≈ 0.99 for legend detection, approximately
98% symbol–label pairing accuracy) appear to demonstrate the feasibility of embedding
contextual structure into object detection pipelines for intelligent sensing applications.

Proof-of-Concept Achievements:
The current implementation appears to successfully establish several key principles:

• Contextual Learning Validation: The model seems to demonstrate contextual aware-
ness by detecting symbols only within legend contexts, not in isolation—suggesting
that semantic groupings may become first-class perceptual entities rather than post
hoc reasoning constructs.

• Dynamic Symbol Interpretation: Apparent successful adaptation to different symbol
conventions through legend-based learning, potentially eliminating reliance on fixed
symbol standards across diverse security diagram formats.

• Hierarchical Structure Construction: Demonstrated ability to construct what appear
to be meaningful semantic hierarchies (Legend → COG(Row_Leg) → Symbol + Label)
that seem to capture the compositional nature of technical diagrams.

• Cross-Domain Applicability: Initial validation across both security and archi-
tectural floor plans, suggesting the framework’s potential for broader intelligent
sensing applications.

Systematic Development Roadmap:
The identified challenges appear to provide a clear roadmap for systematic ad-

vancement rather than limitations. Our research program follows three strategic
development tracks:

• Algorithmic Enhancement Track: Potential development of rotation-invariant detec-
tion mechanisms, multi-scale symbol matching, and advanced OCR integration for
robust real-world deployment in intelligent sensing systems.

• Domain Expansion Track: Possible extension to P&ID diagrams, electrical schematics,
and network topologies, potentially establishing COG as a general framework for
structured visual understanding in industrial sensing applications.

• System Integration Track: Anticipated edge deployment optimization, digital twin
connectivity, and multi-modal sensing integration for comprehensive cyber-physical
system modeling.
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This systematic approach seems to position COG not as a final solution, but as the
foundation for what may become a new research paradigm in contextual visual understand-
ing for intelligent sensing applications. The current proof-of-concept appears to validate the
theoretical framework while establishing performance baselines for future enhancements.

6.3. Limitations and Challenges

Intentional contextuality and rotation/scale robustness: By design, the current model
recognizes symbols within legend contexts but not in isolation, validating the contextual-
learning hypothesis. For robust matching in the main diagram, future work will incorporate
(i) rotation/scale augmentations, (ii) rotation-equivariant or oriented-detection heads, and
(iii) geometric consistency checks linking legend exemplars to diagram instances.

Orientation and Scale Invariance: One significant challenge involves detecting sym-
bols in the main diagram that have different orientations or scales compared to their
corresponding representations in the legend. The symbol matching results show per-
fect scores (1.0) for symbols maintaining consistent orientation, but decreased confidence
(0.82–0.93) for rotated instances. This limitation directly impacts the system’s ability to
create comprehensive security asset inventories from real-world floor plans.

OCR Dependency and Text Recognition: Text extraction relies on Tesseract OCR [44],
which occasionally misreads characters, particularly in cases of poor image quality, unusual
fonts, or complex diagram layouts. This dependency on OCR accuracy can propagate
errors through the entire interpretation pipeline.

Two-Stage Processing Pipeline: The current implementation requires a two-stage approach:

1. COG-based legend detection and interpretation;
2. Separate symbol matching for main diagram elements.

This separation occurs because the COG model has learned contextual symbol detec-
tion rather than general shape recognition. While this validates the contextual learning
hypothesis, it necessitates additional processing stages for complete diagram interpretation.

6.4. Future Research Directions

Enhanced Contextual Detection: Integration with recent vision–language models [8,13]
could improve symbol–text association and enable more robust contextual understanding
across diverse diagram types.

Multi-Modal Sensing Integration: Extension to incorporate multiple sensor modali-
ties (thermal, depth, acoustic) for comprehensive building automation and security assess-
ment applications [37].

Edge Deployment Optimization: Development of optimized implementations for edge
computing devices to support intelligent sensing applications in IoT environments [38].

Cross-Domain Transfer: Application of COG principles to other structured visual
domains such as P&ID diagrams, electrical schematics, and network topologies, expanding
the framework’s utility in industrial sensing applications.

Hierarchical COG Extensions: Exploration of deeper grouping structures (e.g., Leg-
end → Section → Row_Leg → Symbol + Label) and recursive detection of nested semantic
units for complex technical documentation.

Integration with Digital Twins: Connection of detected structures with digital twin frame-
works for comprehensive cyber-physical system modeling and continuous monitoring [47].

Domain expansion and cross-domain protocol: We plan a unified legend-as-
grounding evaluation across additional domains (e.g., P&ID diagrams, electrical schematics,
network topologies). To analyze generalization, we will stratify by (a) symbol complex-
ity (e.g., stroke/primitive count or contour entropy) and (b) layout density (objects per
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unit area). We will report detection and pairing accuracy per stratum to quantify how
complexity and density affect COG performance.

Integration with open-vocabulary detectors: Two-stage: an open-vocabulary detector
proposes generic primitives and text regions; COG then performs legend-as-grounding to
attach project-specific semantics. Multi-head: a shared backbone with (i) open-vocabulary
head and (ii) contextual-grouping head, trained with a Legend–Grounding Consistency
loss. A simple contrastive objective aligns embeddings of (Symbol, Label) legend pairs
with their matched diagram instances, encouraging consistent semantics across contexts.

Public/non-proprietary evaluation addendum: Because public datasets with legend-
grounded semantics are scarce, we will report stratified results across additional non-
proprietary pages and release a small anonymized test pack to facilitate external checks of
legend-grounded tasks.

6.5. Research Impact Statement

The COG framework appears to introduce a potentially new research paradigm that
bridges computer vision, document understanding, and intelligent sensing systems. By
demonstrating that semantic groupings can seemingly be perceived rather than inferred,
this work may open pathways for next-generation context-aware sensing applications that
could understand visual languages compositionally rather than atomically.

The broader implications seem to extend beyond technical diagram interpretation.
COG principles appear to apply to any domain where meaning emerges from structured
visual composition—from scientific notation and mathematical expressions to architectural
drawings and industrial schematics. This apparent paradigm shift from “detect then
reason” to “perceive context directly” may enable more efficient, interpretable, and robust
intelligent sensing systems for cyber-physical environments.

The proof-of-concept nature of this work appears to establish a foundation for sys-
tematic research advancement, with what seem to be clear pathways for algorithmic en-
hancement, domain expansion, and system integration that could enable comprehensive
automated understanding of structured visual languages in intelligent sensing applications.

7. Conclusions
This paper introduces Contextual Object Grouping (COG), a specific framework that ap-

pears to advance visual understanding by promoting semantic groupings to first-class detection
targets for intelligent sensing applications. Our proof-of-concept implementation seems to vali-
date the approach’s feasibility and effectiveness in the challenging domain of security diagram
interpretation, potentially establishing a foundation for systematic research advancement.

The key contributions of this proof-of-concept appear to include the following:

• Paradigm Innovation: Introduction of what seems to be a “perceive context directly”
paradigm, potentially shifting from traditional “detect then reason” approaches and
possibly enabling more sophisticated intelligent sensing capabilities.

• Ontological Framework: Development of contextual COG classes as what ap-
pears to be an intermediate level between atomic perception and semantic reason-
ing, potentially creating new possibilities for structured visual understanding in
cyber-physical systems.

• Dynamic Learning Validation: What seems to be proof that models can learn to detect
contextual groupings as unified entities, potentially opening new research directions
for adaptive intelligent sensing systems that may learn visual languages on-the-fly.

• Cross-Domain Applicability: Demonstrated effectiveness across security and archi-
tectural diagrams, suggesting the framework’s potential for diverse intelligent sensing
applications including building automation and industrial monitoring.
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• Systematic Research Foundation: Clear identification of development tracks (algo-
rithmic enhancement, domain expansion, system integration) that appear to provide a
roadmap for advancing context-aware intelligent sensing systems.

The experimental results seem to demonstrate robust performance, with mAP50 values
approaching 0.99 and what appears to be excellent contextual learning validation. Most
significantly, our implementation seems to prove contextual awareness: the model appears
to learn to detect symbols only within legend contexts, potentially validating the core
hypothesis that contextual groupings may become first-class perceptual entities.

This proof-of-concept appears to establish COG as a potentially foundational frame-
work for next-generation intelligent sensing systems that could understand visual structures
compositionally. Beyond technical diagrams, COG principles seem to extend to any domain
where meaning emerges from structured visual composition—from scientific notation to
industrial schematics—potentially enabling more efficient and interpretable context-aware
sensing applications.

Future research could systematically advance the framework through algorithmic
enhancements, domain expansion, and system integration, potentially positioning COG as
the foundation for comprehensive automated understanding of structured visual languages
in intelligent cyber-physical environments. Integration with emerging vision–language
models [8,13] and multi-modal sensing technologies [37,38] seems to promise even greater
capabilities for context-aware intelligent sensing systems.
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