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Abstract 

Defect detection in textile manufacturing is critically hampered by the inefficiency of man-

ual inspection and the dual constraints of deep learning (DL) approaches. Specifically, DL 

models suffer from poor generalization, as the rapid iteration of fabric types makes ac-

quiring sufficient training data impractical. Furthermore, their high computational costs 

impede real-time industrial deployment. To address these challenges, this paper proposes 

a texture-adaptive fabric defect detection method. Our approach begins with a Dynamic 

Subspace Feature Extraction (DSFE) technique to extract spatial luminance features of the 

fabric. Subsequently, a Light Field Offset-Aware Reconstruction Model (LFOA) is intro-

duced to reconstruct the luminance distribution, effectively compensating for environ-

mental lighting variations. Finally, we develop a texture-adaptive defect detection system 

to identify potential defective regions, alongside a probabilistic ‘OutlierIndex’ to quantify 

their likelihood of being true defects. This system is engineered to rapidly adapt to new 

fabric types with a small number of labeled samples, demonstrating strong generalization 

and suitability for dynamic industrial conditions. Experimental validation confirms that 

our method achieves 70.74% accuracy, decisively outperforming existing models by over 

30%. 

Keywords: textile manufacturing; fabric defect detection; feature extraction; small sample 

detection 

 

1. Introduction 

Fabrics, composed of textile fibers, are extensively utilized in daily life. Fabric de-

fects, defined as surface imperfections arising during the industrial manufacturing pro-

cess, are typically attributed to factors such as machinery malfunctions, yarn inconsisten-

cies, suboptimal processing conditions, and excessive mechanical stretching [1]. Identify-

ing these defects is a cornerstone of quality assurance in the textile industry and is crucial 

for safeguarding fabric integrity. Effective defect detection is essential for maintaining 

product standards and controlling production costs. If the detection process is inaccurate, 

defective fabrics might enter the market. This can damage a manufacturer’s reputation 

and lead to substantial financial losses [2]. 

Traditional fabric defect detection has primarily relied on manual visual inspection. 

However, this process is susceptible to limitations such as operator fatigue, subjectivity, 

and low efficiency [3]. These constraints render traditional approaches inadequate for 
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meeting the high-speed and precision demands of modern textile production. Conse-

quently, the integration of computer vision technology has emerged as a major research 

and industrial trend, with numerous scholars undertaking extensive research to advance 

the field significantly [4,5]. 

Automated defect detection algorithms are broadly classified into conventional and 

deep learning-based approaches [6]. Conventional methods leverage handcrafted features 

derived from spatial or frequency domains—such as statistical models, spectral analysis, 

and morphological filtering—to identify anomalies [7,8]. While these algorithms exhibit 

computational efficiency, they suffer from key limitations. Specifically, they are highly 

sensitive to variations in lighting and fabric texture. Furthermore, their dependence on 

handcrafted features constrains their robustness and generalization capabilities in com-

plex industrial environments. Deep learning methods, particularly those using Convolu-

tional Neural Networks (CNNs) [9], have demonstrated superior accuracy by automati-

cally learning hierarchical features from data [10,11]. However, their effectiveness is lim-

ited by a critical weakness: a heavy dependency on vast, meticulously annotated datasets. 

This dependency creates a significant bottleneck for practical applications, as the process 

of collecting and labeling tens of thousands of images is prohibitively labor-intensive and 

time-consuming. 

Fabric defect detection remains a critical challenge in industrial applications due to 

several key factors. First, fabric defects are often slender and fine-grained, allowing them 

to blend easily into the fabric’s natural texture. This makes them exceptionally difficult to 

distinguish from normal variations, which in turn renders many detection algorithms in-

sensitive to such fine structures. Compounding this issue, the complex and variable con-

ditions of industrial environments can interfere with effective feature extraction, thereby 

reducing detection accuracy. Second, the data scarcity problem is particularly acute in the 

textile industry. Modern manufacturing is characterized by small-batch production and 

rapid product turnover. This production dynamic, combined with low defect rates, makes 

it nearly impossible to accumulate a large and diverse dataset of defective samples for 

each new fabric type. Consequently, data-hungry deep learning models often fail to gen-

eralize to new product lines. This failure necessitates costly and time-consuming retrain-

ing. Finally, real-time industrial inspection typically relies on low-power embedded sys-

tems, yet the high computational demands of deep learning models hinder timely infer-

ence on such platforms [12]. Although model compression and lightweight architectures 

can reduce complexity, they often compromise accuracy. In cloud-based settings, latency 

and instability further limit real-time performance. Additionally, the opaque nature of 

deep models impedes interpretability and explainability in defect classification [13]. 

This paper proposes a data-efficient fabric defect detection method to address the 

critical challenges of data scarcity, performance robustness, and deployment limitations. 

Our main contributions include: 

1. A Dynamic Subspace Feature Extraction (DSFE) method to extract global features 

from fabric images. DSFE is designed to capture key information along the primary 

directions of the fabric’s weave, which aligns well with the structural characteristics 

of fabric defects. 

2. A Light Field Offset-Aware Reconstruction Model (LFOA) to reconstruct the lumi-

nance distribution, which effectively mitigates the non-uniformity introduced by en-

vironmental lighting inconsistencies. 

3. A computationally efficient, texture-adaptive defect detection system. This system 

introduces a probabilistic ‘Outlier Index’ to characterize defects and features an em-

bedded optimization model to autonomously tune its parameters, ensuring rapid 

generalization and suitability for real-time deployment. 
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The remainder of this paper is structured as follows. Section 2 reviews related work 

in the field. Section 3 details our proposed methodology. Section 4 presents and discusses 

the experimental results, and Section 5 concludes the paper with an outlook on future 

work. 

2. Related Works 

Driven by advances in computer vision, object detection has become a key task in 

artificial intelligence [14]. The goal of image defect detection is to automatically identify 

defect locations through computer algorithms. Currently, improvements in defect detec-

tion technologies primarily focus on enhancing model performance by incorporating aux-

iliary information, such as image content and annotation labels. Nevertheless, several key 

challenges persist, including effective feature integration, similarity measurement, multi-

modal discrepancies, and label imbalance [15]. 

In the field of feature extraction research, a variety of methods have made innovative 

breakthroughs from different directions. Khan Umer Ali proposed the Descriptor-Second-

order Local Tetra-pattern (LTAP), which combines RGB color features with genetic algo-

rithm-based feature selection and an SVM optimized by a genetic algorithm (GA) to 

achieve efficient classification of natural images [16]. J. Yang combined covariance matri-

ces with SIFT to enhance scene classification performance [17]. T. Zhu improved wireless 

capsule endoscope image classification by reorganizing codebooks learned through Lo-

cality-constrained Linear Coding (LLC), thereby better representing private features [18]. 

J. Yu simplified and parallelized the SURF algorithm using FPGA to meet the real-time 

processing demands of large-scale spatial targets [19]. P. Maharjan proposed the “Fast 

LoG” method to accelerate Gaussian operations in SIFT, reducing computational com-

plexity [20]. In the medical imaging domain, S. Gavkare utilized HOG features combined 

with XGBoost to achieve efficient brain tumor recognition in MRI images [21]. These meth-

ods are centered around solving domain-specific problems, optimizing feature extraction 

through algorithmic improvements or technological fusion. The application scenarios 

cover natural images, medical imaging, and spatial targets, with technical implementation 

and evaluation metrics varying according to domain requirements. For example, the med-

ical field emphasizes classification accuracy, while spatial targets prioritize computational 

efficiency and real-time processing. 

In the field of object detection, methods can generally be divided into deep learning-

based approaches and traditional methods. Inspired by the successful application of deep 

convolutional neural networks (DCNN) in the industrial sector, researchers have begun 

exploring the use of deep learning algorithms for detecting fabric surface defects. In 2016, 

Liu et al. introduced the Single Shot MultiBox Detector (SSD) [22], which uses Convolu-

tional Neural Networks (CNNs) as the backbone for feature extraction. By utilizing multi-

layered feature maps of different scales, the SSD predicts object classes and bounding box 

offsets through anchor boxes, followed by non-maximum suppression for precise defect 

localization. Tan and Le’s EfficientDet [23] introduced a compound scaling method that 

increases network depth, width, and resolution while maintaining computational effi-

ciency. This design achieves state-of-the-art object detection results while reducing com-

putational complexity, making it highly suitable for resource-constrained applications. 

One of the significant breakthroughs in deep learning is the YOLO framework. Developed 

by Joseph Redmon, the YOLO framework revolutionized real-time object detection by in-

troducing a grid-based approach to predict both bounding boxes and class probabilities 

simultaneously [24]. This pioneering single-stage object detection algorithm has greatly 

enhanced the efficiency of the detection process. 

Neural networks have proven effective for object detection across various domains. 

However, applying these deep learning methods to fabric defect detection requires a large 
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dataset of high-quality training samples. Acquiring such data is often a significant chal-

lenge. 

In traditional defect detection algorithms, various methods have their own unique 

characteristics. Liu [25] proposed an algorithm based on multi-channel feature extraction 

and joint low-rank decomposition. This approach first simulates biological vision to ex-

tract robust multi-channel features, then applies joint low-rank decomposition to process 

the feature matrix, and finally uses threshold segmentation to locate the defect areas. This 

method is suitable for fabrics with complex textures and multiple types of defects. Guan 

[26] introduced a dynamic hierarchical detection method that simulates the human visual 

system in the HSV color space. By enhancing the saliency of defects through a data-driven 

approach, this method uses task-driven factors to define detection regions and set hierar-

chical thresholds for detecting different types of defects. Zhang [27] proposed an approach 

based on frequency domain filtering and similarity measurement, first separating fabric 

patterns from yarn textures and segmenting the pattern’s periodic units, followed by au-

tomatic defect detection in color-woven fabrics based on similarity measures. 

3. Methods 

The fundamental principle of this work is that fabric defects manifest as localized 

disruptions to the inherent periodicity and textural regularity of the textile weave. Based 

on this insight, our method is designed to first model this expected regularity and then 

precisely identify and characterize anomalous deviations. The specific workflow is out-

lined below. 

The proposed method, illustrated in Figure 1, systematically implements this princi-

ple through three key stages. First, a Dynamic Subspace Feature Extraction (DSFE) 

method is employed to capture the key textural and structural features from the fabric 

images. Second, to mitigate the influence of environmental variations, a Light Field Offset-

Aware (LFOA) module is then used to correct for visual inconsistencies. Finally, a texture 

-adaptive defect system analyzes the corrected features to quantify potential defects. This 

is achieved by initially using Locally Weighted Regression (LOWESS) to localize lumi-

nance outliers. A multidimensional analysis is then performed on these outliers, integrat-

ing both saliency and dispersion metrics to form a comprehensive, probabilistic Outli-

erIndex. Crucially, this stage is made adaptive by an embedded optimization model, 

which automatically tunes the outlier scaling factor 


outlier —a critical parameter in the de-

tection process—a mechanism that allows for automatic adaptation to different fabric tex-

tures during defect detection. 
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Figure 1. Detection System Diagram. 

3.1. Spatial-Domain Luminance Feature Extraction of Fabric 

Fabric defects are typically slender and narrow. This characteristic makes many ex-

isting feature extraction methods insensitive to such fine structures. In contrast to prior 

work, this study focuses on the brightness characteristics of fabric defects. We specifically 

analyze how defective regions disrupt the periodicity of the spatial brightness. 

The acquired textile images are converted to the HSV color space, and the V channel 

is extracted as the brightness feature. This study proposes a Dynamic Subspace Feature 

Extraction (DSFE) method, where the brightness values within each subspace are summed 

and averaged to obtain the V feature value of that subspace. By traversing these subspaces 

across the fabric image, a complete V feature sequence for the entire fabric is generated. 

The DSFE visualization process is shown in Figure 2. 

 

Figure 2. Dynamic Subspace Feature Extraction Method. 
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Let the image brightness be denoted as 
 M NI R , where M  represents the number 

of rows and N  the number of columns. For the j-th subspace, 1, 2, m,
{ }

j j j j
I I I I= ， ，

, de-

fine a subspace of size mw . For the x-th column, the brightness value of the sub-column 

space j
V

 is obtained by averaging the summed brightness values within the sub-regions 

contained in this column, as shown in Equation (1). 

( 1) ( )jx j x j x w

jx

I I I
V

w

+ +
+ +

=  (1) 

The sub-column space slides along the longitudinal direction to generate the V fea-

ture sequence corresponding to the warp-direction (the lengthwise threads of the fabric) 

of the image, as shown in Equation (2). 

= ，
1 2

{ , }
n j j jM

V V V V  (2) 

Similarly, when extracting fabric information along the latitudinal direction, the sub-

space size is defined as ne , and the sub-row space dynamically covers the image along 

the weft direction to obtain the weft-direction (the crosswise threads) V feature sequence. 

Processing near image boundaries can generate anomalous data as the subspace 

crosses the edge. While padding the edges with fixed values is a common approach, it can 

compromise feature integrity and introduce analytical bias. Therefore, our method pre-

serves data validity by discarding data from the outermost edge regions. 

This approach does not lead to a loss of critical defect information for two reasons. 

First, the discarded region is minimal. Its width is less than that of the sub-column space. 

Second, the images are captured by an array camera system that ensures significant over-

lap between consecutive frames. This overlapping area is substantially larger than the dis-

carded edge region. Consequently, any defect located on the discarded edge of one image 

will appear in a non-edge area of the subsequent image, ensuring it is available for detec-

tion and analysis. 

3.2. Reconstruction of Fabric Luminance Distribution 

The distance between the overhead light source and the fabric varies from the center 

to the edges. This variation causes significant differences in brightness attenuation, result-

ing in non-uniform illumination. The backlight, used here as an auxiliary source, has a 

uniform intensity distribution. Therefore, it does not interfere with the fabric’s brightness 

distribution. In contrast, the overhead light source is fixed in position during image cap-

ture. Besides distance-related attenuation from the fixed overhead light source, ambient 

lighting conditions also affect the captured image. The industrial environment introduces 

extraneous ambient light. This ambient light combines with the fixed overhead source, 

disrupting the original light field balance. This disruption causes a shift in the overall light 

field, further contributing to uneven brightness across the image. 

To mitigate the effects of environmental lighting, this study proposed a Light Field 

Offset-Aware Reconstruction Model (LFOA) to reconstruct the luminance distribution. 

Specifically, the model integrates both environmental and overhead light sources into a 

unified light field. This process couples them to a single, equivalent light field center. 

Let the luminance of the overhead light source be P1, and that of the equivalent en-

vironmental light source be P2. The center of the fabric is designated as 
( , )

c c
x y

, and its 

distance to the overhead light is r . For any given point on the fabric, its distance to center 

is z . The distance between the overhead light and the equivalent environmental light is 

d . The distance from this point to the final, unified light source is denoted by L . 
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The distances d and L are significantly greater than the coordinates of the fabric center. 

Therefore, the governing equation can be simplified as follows: 

4 2 2

2 2 2

3[ ( 1) ]

1( ) 2

P r d r
L

P r d P r

+


+ +

+
 (6) 

Through this method, the coordinates of a single, equivalent light field center can be 

determined. The derivation, detailed in Equations (3)–(6), validates the feasibility of cou-

pling the environmental and overhead light sources into a unified light field. 

The combined illumination is simulated by shifting the light field’s center coordi-

nates within the same plane. The model then calculates the distance from each fabric pixel 

to this center. Based on light attenuation formula, corresponding brightness compensation 

value is calculated for each pixel. This model effectively eliminates the combined influence 

of illumination during fabric image acquisition, thereby reconstructing the distribution 

matrix of the V feature values(Figure 3). 

   
(a) (b) (c) 

Figure 3. Schematic diagram of LFOA, darker colors indicate higher brightness values. (a) Schematic 

diagram of brightness distribution with only top light source illumination; (b) Schematic diagram 

of unified light field and compensation; (c) Schematic diagram of the reconstructed brightness dis-

tribution. 

3

1
1
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( 1)( 2)

n
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1
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( 1)( 2)

n
n

k
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S

n n s=

−
=

− −
  (8) 

1x k
O S n=   (9) 

y 2k
O S n=   (10) 

Let I  denote the brightness of the light; P  represent the total brightness of the 

light source; r  represent the distance from the light source to the center point of the fabric, 
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and r  be the actual distance from the light source to the fabric. Since the brightness at 

the fabric center and the distance r  are known, the brightness P  of the light source can 

be determined (Equation (3)). Through Equations (7) and (8), the skewness of the data 

calculated, and the offset distance is determined using Equations (9) and (10). Similarly, 

the same applies to the y-direction. By adding these offsets to the pixel coordinates, we 

calculate the distance from the pixel to the center of the light source. 

= +

= +

x

y

i i O

j j O
 (11) 

= − + −（ ） （ ）2 2

, 0 0i j
r i i j j  (12) 

 = +2 2

,i j
r r r  (13) 

Given the known brightness of the light source, the theoretical brightness reaching 

the fabric is calculated using Equations (11)–(14). Light attenuation is then determined by 

subtracting this theoretical brightness from the source brightness (Equation (15)). Finally, 

the corrected brightness value is obtained by adding k   times the attenuation to the 

measured brightness, as shown in Equation (16). 


 =

24

P
I

r
 (14) 

= −
d

I P I  (15) 

  

  
= +

  

LL

M O M M O M

L L

00 01 000 01 0

10 11 110 11 1

0 1 0 1

( , )

d d d

d d

d d d

jj

d jj

j j ij j j jj

I I IL L L

I I IL L L
I i j k

L L L I I I

 (16) 

3.3. Fabric Texture-Adaptive Defect Detection System 

Analysis of the reconstructed brightness distribution shows that disturbance patterns 

from defects differ significantly from those caused by interfering factors like wrinkles and 

stains [28,29,30]. Defects typically cause abrupt and transient disruptions to the periodic 

brightness [31]. Based on this observation, we propose a texture-adaptive defect detection 

method. Specifically, LOWESS is used to fit the raw brightness data. The resulting resid-

uals are then analyzed to capture defect-related deviations. A multidimensional analysis 

is then conducted to represent periodic brightness anomalies. This process allows each 

detected defect to be graded and assigned a likelihood of being genuine. This approach 

effectively suppresses interference from non-defect factors. 

3.3.1. Localization of Potential Defects 

In some fabric images, the brightness distribution is highly scattered. Consequently, 

Light Field Correction alone is insufficient for effective feature extraction. To address this 

issue, we use LOWESS to compute a fitted curve for the V feature values. The fitting effect 

is shown in Figure 4a. The formula for LOWESS is as Equations (17)–(20). 
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V V  (20)  

The residual between the original V feature values and the fitted data is then calcu-

lated. For each fabric image, we calculate the mean residual value 


mean . This mean serves 

as the reference center for the V feature value distribution (Figure 4a). This value is then 

weighted with an outlier scaling factor 


outlier  to create an outlier discrimination coeffi-

cient. This coefficient is used to identify outliers within the dataset. Figure 4b shows the 

residual graph after fitting. The red dots in the figure represent the detected outliers. This 

LOWESS-based process effectively mitigates the influence of wrinkles, stains, and similar 

factors. As a result, the method achieves higher sensitivity to fabric defects and can pre-

cisely capture their subtle brightness variations. 

Fabric defects are often elongated. Therefore, a small step size is used during dy-

namic subspace coverage to capture more detailed information. This approach ensures 

comprehensive data acquisition. However, it can also cause a single defect to be covered 

by multiple subspaces. This process generates similar outlier values in neighboring re-

gions, creating outlier redundancy. To address this issue, this study proposes a Nearby 

Non-Maximum Suppression (NNMS) technique. NNMS ensures that each detected out-

lier is the most prominent value in its local neighborhood. This process effectively reduces 

redundancy. 

  
(a) (b) 

Figure 4. (a) LOWESS Fitted Curve for Average V feature values by Subspaces; (b) Residual graph 

obtained after fitting. 

3.3.2. Multidimensional Analytical Representation of Potential Defects 

Our analysis targets periodic disturbances in the fabric’s spatial brightness. This pro-

cess often identifies multiple outliers in the feature residual map. However, these outliers 

do not have equal significance, as their probability of representing a true defect varies 

considerably. To accurately assess the confidence that an outlier corresponds to a true 

fabric defect, this study proposes a confidence evaluation metric—OutlierIndex. This met-

ric quantifies the association between an outlier and a genuine defect. 

The OutlierIndex is evaluated comprehensively from two dimensions: 

First, First, we assess the dispersion of residual data to characterize the outlier distri-

bution. To ensure consistency, the residuals are first normalized to a unified scale. This 
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process eliminates differences in units and magnitudes. It also reduces statistical bias 

caused by variations in the original data range. After normalization, the variance is com-

puted to quantify dispersion. This standardized approach ensures that the variance relia-

bly reflects the underlying distribution of the residuals. 

The variance of the residuals is calculated according to the following Equations (21) 

and (22), 

=
max

i
i

V
V

V
, (21) 

=
−

=
 2

1
( )

n

ii
V V

S
n

, (22) 

-

0
(0,0.001)

[0.001,0.06]
1

(0.06,0.25]
1

( 0.06)
0.25 0.06

disp s x
Score

e

S








−






= 
+

−
+ − 

−

（ ）  (23) 

In Equation (23), k  is set to 100, 


 denotes the maximum value of the function 

0.9. and x  represents the center point of the curve, taken as 0.0305 in this context. 

Equation (24) scales the variance to the range [0, 1]. 

( 1) 100
disp disp

Score = − +   (24) 

Based on the linear distance of each outlier, a distinct dispersion weight is assigned 

to each outlier’s disp


. The final disp
Index

, obtained through weighting, reflects the degree 

of data dispersion (Equations (25) and (26)). 

( )

( )max( )

top
i

top
i

v

i v

e

e
 =  (25) 

disp disp i
Index  =   (26) 

Second, OutlierIndex is evaluated based on the magnitude of residual values. For this 

evaluation, we propose an improved SoftMax function. It incorporates each outlier’s re-

sidual value along with a mean adjustment factor 


mean   and an outlier scaling factor 


outlier  derived from the residual dataset. This formulation yields a difference score for each 

outlier. The score is then normalized using a standard procedure. 

( )

( )
[ ]      

top
i

top
mean outlier i

v

sig v

e
i

e e 



=

+
 (27) 

0.5
100

0.5

sig

sig
Index

 −
=   (28) 

When 


outlier  takes on excessively large values, the ratio sig
Index

 decays exponen-

tially. Under these conditions, the sig
Inedx

 also decays exponentially to zero (Equations 

(27) and (28)). Empirical analysis shows that the discrete scaling factor rarely attains ex-

cessively large values, and there is typically a significant order-of-magnitude difference 
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between the top value and the average value. As a result, the confidence outcomes follow 

a truncated normal distribution within the interval [0.5, 1]. To ensure statistical robust-

ness, we adopt an asymmetric truncation strategy. Any calculated score below the 0.5 

lower bound is mapped to this baseline value. This approach ensures both numerical sta-

bility and consistent score interpretation. 

(0.5 0.5 ) 100
disp sig

OutlierIndex Index Index=  +    (29) 

The disp
Index

  and the sig
Inedx

  are combined proportionally to form the Outli-

erIndex evaluation metric (Equation (29)). By introducing OutlierIndex, each outlier is as-

signed a corresponding confidence score. This score highlights the differences in signifi-

cance and reliability among them. 

3.3.3. Adaptive Optimization of the Outlier Scaling Factor 

The outlier scaling factor is a critical parameter in the outlier filtering stage. Its value 

significantly affects performance. A high scaling factor may cause subtle defects to be 

overlooked. This can result in missed detections of texture anomalies. Conversely, a low 

scaling factor risks misclassifying noise as defects. This misclassification hinders the sub-

sequent identification of true defects. 

To address this issue, we introduce an adaptive optimization model based on a back-

propagation mechanism. This model dynamically and accurately updates the outlier scal-

ing factor during computation. This approach optimizes the outlier filtering process, 

thereby improving the accuracy and reliability of fabric defect detection, as illustrated in 

Figure 5. 

 

Figure 5. Adaptive Optimization Flowchart. 

In the optimization network constructed in this study, the discrete scaling factors in 

the warp and weft directions, denoted as 1
x

 an 2
x

, respectively, are selected as key 

input parameters. The process begins with the initialization of these scaling factors, fol-

lowed by forward propagation to obtain predicted outputs 
%y  . These predictions are 

then compared with the ground truth to calculate the prediction loss. To optimize model 

performance, we define an adjustment factor t
Q

. It is the product of the loss and   

term, reflecting the current change in loss, The value of   is specified manually based 

on task requirements. Additionally, an accumulator c
A

 is introduced to aggregate his-

torical loss values. Parameter 1
K

  primarily controls the perception rate, which deter-

mines the parameter update step size. A larger 1
K

 results in faster parameter updates. 

Parameter 2
K

 regulates the granularity of observing loss changes. Smaller values allow 

for a more detailed analysis of loss fluctuations. Parameter 3
K

 defines the time span for 

accumulating historical losses. A higher K3 value means a richer set of past data is consid-

ered. These three parameters can be flexibly adjusted according to the specific require-

ments of the application scenario. 
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Based on the parameters 1
K

, 2
K

, and 3
K

, combined with the real-time loss, loss 

change rate t
Q

, and accumulated historical loss c
A

, the scaling factor deviation P  is 

calculated. This deviation P , is then used to optimize the outlier scaling factor via a 

backpropagation algorithm. This process enhancing the overall accuracy and stability of 

the model (Equations (30)–(32)). 

t
Q loss=   (30) 

=


-1
-

i i
c

loss loss
A  (31) 

1 2 3t c
P K loss K Q K A=  +  +   (32) 

To ensure both effectiveness and efficiency, this study defines strict termination cri-

teria for the iterative training process. Training is halted under two conditions. First, it 

stops if the loss function’s reduction remains below a threshold   for N consecutive 

training rounds. Second, the process terminates when the number of training epochs 

reaches the preset maximum T. At this stage, the adaptive optimization model is capable 

of training the optimal outlier scaling coefficients for both the warp and weft directions, 

This provides a robust foundation for subsequent outlier filtering and fabric defect anal-

ysis. The model can thus achieve texture self-adaptation during detection, which enhances 

its generalization capabilities. 

4. Results 

This study utilized the ZD001 dataset [32], which was acquired using a high-fidelity 

imaging system. The system features an adaptable camera array. Images are captured 

with a deliberate overlap to ensure informational integrity at the edges. An alternating 

lighting strategy, employing both surface and backlights, was used to enhance image 

quality. The acquisition geometry was standardized with a lens-to-fabric distance of 82 

cm and a sensor pixel size of 3.45 μm × 3.45 μm. This setup produced a final image 

resolution of 1920 × 1080 pixels. The data annotation was performed on-site. When testers 

identified a defect, they stopped the inspection machine, marked the defect on a digital 

device, and added a note specifying its category. 

We selected a subset of 8795 images from the dataset. This subset encompasses five 

distinct defect types. These include three types of warp-direction defects: Broken End, 

Misdraw, and Reediness; and two types of weft-direction defects: Thick Place and Thin 

Place (Figure 6). The data distribution is presented in the following Table 1: 

Table 1. The table lists the quantities of each defect type in the dataset. 

Categories BrokenEnd MisDraw Reediness ThickPlace ThinPlace Total 

Numbers 1993 2040 1922 976 1864 8795 

 

    
(a) (b) 
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(c) (d) 

    
(e) (f) 

Figure 6. The figure presents images of several common defects and their corresponding magnified 

views: (a) BrokenEnd; (b) Misdraw; (c) Reediness; (d) ThickPlace; (e) ThinPlace; (f) Defect images 

containing both fabric and background. 

4.1. Feature Extraction Method 

Methods for extracting fabric features are diverse and can be broadly categorized into 

four main types. 

First, edge detection techniques, such as Canny and Sobel operators, capture signifi-

cant pixel intensity changes by calculating image gradients. Second, feature point detec-

tion and description methods, such as Scale-Invariant Feature Transform (SIFT), identify 

key points within an image and generate descriptors that provide detailed representations 

of these points. Third, texture extraction methods, including Local Binary Patterns (LBP) 

and Completed LBP (CLBP), encode local grayscale variations to characterize texture. 

Fourth, shape and object descriptors, such as Histogram of Oriented Gradients (HOG), 

analyze gradient orientation distributions to describe object shapes, excelling in recogni-

tion tasks. Figure 7 illustrates the results of different feature extraction methods. 

Fabrics are woven from yarns. Defects result from the improper positioning of these 

yarns and typically manifest as elongated, strip-like shapes. The extracted features from 

existing methods generally fall into two categories. The first includes feature point detec-

tion and texture extraction techniques, which localize defects by capturing detailed local 

variations. However, these methods are sensitive to interferences such as wrinkles, which 

also produce significant local changes. The second category comprises edge detection and 

shape descriptors that extract global features and filter noise. Due to the elongated nature 

of fabric defects, these methods risk smoothing out critical defect details. This can result 

in missed detections. 

Therefore, effective fabric defect detection requires a balance between these two ap-

proaches. The goal is to minimize non-defect interference while accurately identifying 

subtle defect features. Our study addresses this by extracting continuous information 

from dynamic spatial subspaces. This process converts two-dimensional fabric data into 

continuous one-dimensional features, preserving data continuity. Brightness features 

from these dynamic subspaces preserve the periodic variations in the fabric. This method 

also allows for adaptive adjustment of the local receptive field via the subspace range. Our 

method detects disruptions in brightness periodicity caused by defects. It effectively sup-

presses non-defect interference while retaining critical defect features. By combining local 

detail with global structure, our method enhances detection reliability. It also provides 

new insights into fabric structure and imperfections. 
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(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 7. The figure illustrates the results of different feature extraction methods. (a) Canny; (b) 

SIFT; (c) LBP; (d) CLBP; (e) Sobel X operators; (f) Sobel Y operators; (g) HOG; (h) DSFE (ours). 

4.2. Light Field Correction 

To validate our light field correction approach, we conducted a two-part experiment. 

First, we addressed the issue of brightness attenuation caused by a single overhead light 

source. The brightness distribution from an actual fabric image is shown in Figure 8a. This 

distribution closely matches the theoretical attenuation curve derived from the light for-

mula (Figure 8b). Applying our proposed LFOA formula effectively calibrates the image. 

This process resulting in a uniform and corrected brightness distribution as shown in Fig-

ure 8c. This result confirms the model’s efficacy for idealized single-source conditions. 

   
(a) (b) (c) 

Figure 8. (a) Original Brightness Distribution Curve; (b) Theoretical Brightness Distribution Curve; 

(c) Compensated Brightness Curve. 

However, practical industrial environments involve not only an overhead source but 

also ambient light. This combination creates a more complex composite light field (Figure 

9a). For comparison, Figure 9b depicts the theoretical brightness distribution that only 

accounts for single-source light attenuation. When a conventional correction method de-

signed only for a single source is applied, it fails to account for the ambient component, 

leaving significant residual distortion in the corrected image (Figure 9c). In contrast, our 

comprehensive approach successfully models and eliminates the effects of both lighting 

components. As demonstrated in Figure 9d, the final calibrated result is a clean, interfer-

ence-free brightness distribution. This result proves the model’s robustness and superior-

ity for real-world applications. 
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(a) (b) 

  
(c) (d) 

Figure 9. (a) Original Brightness Distribution Curve; (b) Theoretical Brightness Distribution Curve; 

(c) Compensation Applied Only for Natural Illumination; (d) Compensation Including the Effect of 

Ambient Light. 

4.3. Fitting Method 

We evaluated various fitting methods to characterize the spatial brightness distribu-

tion of fabric images. Since the brightness distribution is not smooth, traditional tech-

niques like linear and polynomial regression struggle to model it effectively. Linear re-

gression fails to capture nonlinear variations. While polynomial regression is more flexi-

ble, it often overfits complex data, reducing its generalization capability. Spline interpola-

tion offers flexibility but is highly sensitive to knot placement, which can compromise ac-

curacy or introduce oscillations. Figure 10 illustrates the results of different data fitting 

methods. 

We ultimately selected LOWESS as the primary fitting strategy. LOWESS assigns 

weights to observations near each prediction point and performs localized regression 

analysis based on these weighted data, enabling precise modeling of local data character-

istics. This method is particularly well-suited for datasets containing noise and outliers, 

effectively mitigating the influence of such disturbances. Moreover, LOWESS can adap-

tively adjust fitting parameters in response to local data variations, ensuring accurate fit-

ting results even when the brightness curve exhibits significant fluctuations or abrupt 

changes. 

  
(a) (b) 
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(c) (d) 

Figure 10. (a) Linear Regression; (b) Polynomial Regression; (c) Spline Interpolation Fitting; (d) Lo-

cally Weighted Regression. 

4.4. Study on the Influence of Dynamic Subspace Range 

This study designs DSFE to extract brightness features from fabric images, the range 

of the subspace inevitably affects the extraction results. A larger subspace tends to capture 

macroscopic brightness distributions, while a smaller one emphasizes finer, microscopic 

details. As discussed in Chapter 2, fabric defects are often caused by the misweaving of a 

single yarn. This implies that the dynamic subspace should not be excessively large. More-

over, during fabric image acquisition, phenomena such as moiré patterns, fabric uneven-

ness, wrinkles, and stains often occur. If the subspace is too small, it may include excessive 

noise, thereby disturbing defect analysis. Therefore, the receptive field of the dynamic 

subspace should ideally encompass the defect itself along with two to three adjacent pixel 

columns. To investigate the effect of the subspace size on detection performance, we con-

ducted a series of experiments. Figure 11 visualizes these results, and the detailed metrics 

are summarized in Table 2. Our experimental results demonstrate that a subspace size of 

1.39 × 10−1 dmm2 offers the optimal performance. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 11. Effect of subspace size on detection performance for values of: (a) 2.78 × 10−2; (b) 5.56 

× 10−2; (c) 8.33 × 10−2; (d) 1.11 × 10−1; (e) 1.39 × 10−1; (f) 1.67 × 10−1. 

Table 2. The table shows the effect of varying subspace range on detection performance. 

Subspace Range (dmm2) 2.78 × 10−2 5.56 × 10−2 8.33 × 10−2 1.11 × 10−1 1.39 × 10−1 1.67 × 10−1 

mAP 26.95% 35.47% 50.36% 61.85% 70.74% 60.61% 
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4.5. Improvement of the Multidimensional Anomaly Analysis Formula 

In terms of saliency representation, Equation (33) presents the classic SoftMax func-

tion, which is widely used to convert a set of values into a probability distribution. How-

ever, the traditional SoftMax formula is ill-suited for our application. It fails to account for 

the intrinsic disparities among different groups of values. When significant outliers are 

present, they disproportionately influence the calculation. This leads to a misrepresenta-

tion of the true differences between values. 



=

=



( )

( )

1

[ ]      
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i
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i
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
=

+
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To address this issue, we propose an improved formula based on the original Soft-

Max, Equation (34). Our formula incorporates an outlier scaling factor 


outlier  and a mean 

adjustment factor 


mean . This modification amplifies the influence of values significantly 

deviating from the data distribution while mitigating imbalance caused by extremes, re-

sulting in a more reasonable and discriminative probability distribution (Figure 12). 

  
(a) (b) 

Figure 12. (a) Traditional SoftMax formula; (b) improved SoftMax formula. 

The improved formula enhances sensitivity to outliers. This ensures their saliency is 

distinctly reflected in the final output. Visualization results demonstrate that the opti-

mized formula is better suited for complex scenarios requiring fine-grained differentiation 

among data points, it provides a more precise and reliable foundation for subsequent 

analysis. 

In terms of dispersion characterization, we evaluated various statistical measures to 

quantify data dispersion, including Variance, Interquartile Range (IQR), Extremum, Co-

efficient of Variation (CV), and Peaks. The IQR and Extremum focus on extremes and fail 

to capture overall dispersion trends. The CV, though accounting for the mean, is sensitive 

to outliers and may produce misleading comparisons across datasets with varying scales. 

Peak value detection highlights salient local maxima but overlooks broader distribution 

characteristics. 

In contrast, Variance effectively quantifies dispersion by averaging the squared de-

viations from the mean. As shown in Table 3, the data dispersion levels for the examples 

in the first column decrease sequentially. During this process, only variance shows a linear 

relationship with the degree of data dispersion. The other parameters exhibit no such lin-

ear regularity. Specifically, the variance value decreases as the degree of dispersion rises. 

It can accurately reflect the state of data dispersion. Moreover, variance maintains con-

sistent expressiveness across different distribution patterns. Consequently, we selected 
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variance as the preferred metric for measuring brightness dispersion in fabric images. This 

choice enables a precise characterization of the data distribution and an effective repre-

sentation of changes in feature dispersion. 

Table 3. This table is based on Variance, IQR, Extremum, CV, Peaks calculation results of the 

method. 

Residual Images Variance IQR 
Extre-

mum 
CV Peaks 

 

0.02 0.97 0.21 167.04 6.00 

 

0.06 1.44 0.34 46.08 2.00 

 

0.04 1.32 0.25 25.16 4.00 

 

0.39 7.11 0.77 86.75 2.00 

4.6. Comparison with Other Models 

We constructed a small sample dataset by selecting 1104 images from the ZD001 da-

taset. Stratified random sampling was used to ensure the defect category distribution in 

the subset mirrored that of the original dataset. This process simulates the data-scarce 

scenarios common in industrial settings. This allows us to evaluate the model’s learning 

ability and generalization performance under such constraints. The small sample dataset 

was then split into training, validation, and test sets using an 8:1:1 ratio. For model per-

formance evaluation, this study employs mean Average Precision (mAP) and Frames Per 

Second (FPS) as the core metrics. The mAP measures the overall performance of the model 

in multi-class detection tasks, while FPS assesses the model’s operational efficiency in 

practical industrial deployments. Together, these metrics provide a comprehensive 
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evaluation framework for both detection accuracy and engineering applicability. By 

processing data with the CPU, our FPS is significantly higher than other models. Table 4 

shows the parameter default values and ranges. The detection results of the various mod-

els are shown in Table 5. 

Table 4. This table shows the parameter default values and ranges. 

Parameter Description Default Value  Range 

S Subspace Range 4 (0, 110] 

steps Subspace Steps 1 [0, S] 

frac Degree of Smoothing 0.05 (0, 1] 

Axis1 Warp Directions 0 \ 

Axis2 Weft Directions 1 \ 

I Intersection over Union 0.05 (0, 1] 

K1 Perception Rate 0.1 (0, 1] 

K2 Defines the Time Span Over 0.1 (0, 1] 

K3 Observing Loss Changes 0.1 (0, 1] 

  the Change Rate of the Score 100 (0, +∞] 

x  Center Point of the Fitted Curve 0.0305 [0.001, 0.06] 
  Maximum Value of the Score function 0.9 [0, 1] 

Ox Light Field Center Offset \ [−960, +960] 

Oy Light Field Center Offset \ [−540, +540] 

V Ignored Boundary Region \ [0, 110) 


outlier  Outlier Scaling Factor 4.0 (0, 20] 

Table 5. This table shows the detection results of different models on the same dataset with small 

samples. 

MODELS mAP FPS 

YOLO v5 43.71% 1.6 

YOLO v8 27.53% 1.8 

Rt-DETR 26.61% 1.5 

ours 70.74% 4.6 

To validate our model’s stability, we reconstructed datasets of different sizes from 

the original 8795 images. We maintained the original class distribution throughout this 

process. Each dataset was then split into training, validation, and test sets at a ratio of 8:1:1. 

The experimental results are summarized in Table 6. 

Table 6. This table presents the training results following the adjustment of the dat-aset split. 

Dataset Size 1104 2199 3298 4355 5497 6398 7696 8795 

mAP 70.74% 66.93% 67.80% 69.08% 66.77% 70.19% 69.15 70.27% 

Figure 13 presents the annotation results for different fabrics and defect types. In the 

figure, red boxes denote the manually annotated ground truths, green boxes represent 

algorithm-detected warp-direction defects, and blue boxes indicate weft-direction defects, 

with the detection confidence displayed alongside each bounding box. As can be observed, 

our method precisely localizes the defects and demonstrates strong robustness, as its per-

formance is not compromised by common industrial artifacts such as oil stains and wrin-

kles. 
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Figure 13. Detection results for different defects. 

4.7. Discussion 

The experimental results compellingly demonstrate the effectiveness of our proposed 

multi-stage framework. Our method reliably identifies defects while remaining robust to 

interferences like wrinkles and stains. This addresses a significant challenge in automated 

textile inspection. This success can be attributed to the synergistic design of our compo-

nents. First, the LFOA module reconstructs a uniform light field distribution. Simultane-

ously, the DSFE module extracts information-rich local features. Next, the anomaly char-

acterization stage leverages LOWESS and our Outlier Index. This stage can sensitively 

detect even subtle deviations from the established norm. Finally, the adaptive optimiza-

tion model provides an additional layer of robustness. It allows the system to fine-tune its 

sensitivity without manual intervention. 

The significance of this work lies in its departure from data-intensive deep learning 

models. It offers a practical alternative for industrial settings where data is often scarce. 

Many conventional methods struggle with the trade-off between feature sensitivity and 

environmental robustness. In contrast, our approach provides a balanced solution. 

Despite these promising results, this study has several limitations that open avenues 

for future research. Firstly, the current light field correction relies on a fixed template and 

does not yet adapt to the unique brightness characteristics of each individual image. Sec-

ondly, the feature extraction process is primarily optimized for warp and weft directional 

defects, with relatively limited effectiveness on highly localized, nonlinear defect shapes. 

5. Conclusions 

In this paper, we addressed the challenge of creating a data-efficient and robust de-

fect detection method for the textile industry. We proposed a novel method based on dy-

namic subspace feature extraction, light field correction, and a texture-adaptive defect de-

tection system that generates a probabilistic Outlier Index. Experimental results confirm 

that our method accurately localizes various fabric defects. It also exhibits strong resili-

ence to common interferences like stains and wrinkles. Notably, it achieves high detection 
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accuracy even with limited training samples, addressing key industrial challenges such as 

the rapid introduction of new textile varieties, the difficulty of sample acquisition, and 

poor model generalization. Furthermore, our model operates at a high detection speed. 

This makes it suitable for real-time inspection in industrial scenarios. Future work will 

focus on enhancing the adaptability of the light field correction and improving feature 

extraction for localized, non-directional defects. 
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