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Abstract

Pinning control is a key strategy for stabilizing complex networks through a limited set
of nodes. However, determining the optimal number and location of pinned nodes under
dynamic and structural constraints remains a computational challenge. This work proposes
an improved version of the Phymastichus–Hypothenemus Algorithm—Minimized and De-
terminated (PHA-MD) to solve multi-constraint, hybrid optimization problems in pinning
control without requiring a predefined number of control nodes. Inspired by the parasitic
behavior of Phymastichus coffea on Hypothenemus hampei, the algorithm models each agent as
a parasitoid capable of propagating influence across a network, inheriting node importance
and dynamically expanding search dimensions through its “offspring.” Unlike its original
formulation, PHA-MD integrates variable-length encoding and V-stability assessment to
autonomously identify a minimal yet effective pinning set. The method was evaluated on
benchmark network topologies and compared against state-of-the-art heuristic algorithms.
The results show that PHA-MD consistently achieves asymptotic stability using fewer
pinned nodes while maintaining energy efficiency and convergence robustness. These
findings highlight the potential of biologically inspired, dimension-adaptive algorithms in
solving high-dimensional, combinatorial control problems in complex dynamical systems.

Keywords: biological basis; complex network; energy-efficient control; heuristic optimization;
pinning control; nonlinear optimization

1. Introduction
Recently, research on the analysis and control of complex networks has advanced

rapidly [1]. The presence of complex networks in nature and society has sparked significant
interest in this field [2], as they are integral to various systems in our daily lives [3].
For instance, the organization and function of a cell result from complex interactions
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between genes, proteins, and other molecules [4]; the brain comprises a vast network
of interconnected neurons [5]; social systems can be represented by graphs illustrating
interactions among individuals [6]; ecosystems consist of species whose interdependencies
can be mapped into food webs [7]; and large networked infrastructures, such as power
grids and transportation networks, can be represented by graphs describing interactions
among components [8,9].

In complex networks, a key challenge is ensuring control and stability while minimiz-
ing resource consumption. This requires selecting a subset of nodes, known as pinning
nodes, to control the entire network. Pinning control achieves global stabilization by inter-
vening in these selected nodes. The optimal selection of these nodes is crucial, with various
centrality metrics, like Degree Centrality [10], Betweenness Centrality [11], and Close-
ness Centrality [12], proposed in the literature. These metrics offer different advantages
depending on the network’s structure and dynamics [3,13,14].

Recent advances in complex network control have led to more sophisticated algo-
rithms designed to handle the growing complexity of modern networks. Techniques such
as adaptive control [15], robust control [16], and sliding mode control [17] have been de-
veloped to improve stability and robustness under various uncertainties. However, these
methods often struggle with the optimal selection of pinning nodes, especially in large
networks with vast combinations of nodes.

Existing methods are limited by their reliance on fixed-dimension approaches and
their difficulty adapting to dynamic network environments. These algorithms often require
prior knowledge of the network’s structure, which may not always be available, and can
become computationally expensive as the network grows, making them impractical for
real-time use.

The PHA-MD algorithm proposed in this work addresses these limitations by offering
a novel approach to pinning control. Inspired by the parasitic relationship between the
Phymastichus coffea wasp and the Hypothenemus hampei coffee borer, PHA-MD prioritizes the
network’s asymptotic stability while optimizing pinning node selection. Unlike its prede-
cessor [18,19], PHA-MD autonomously determines the number of pinning nodes, avoiding
the issues associated with fixed-dimension algorithms. This innovation allows PHA-MD to
dynamically adapt to network changes, ensuring stability even in complex scenarios.

PHA-MD also leverages the V-stability tool [20] to ensure stability during optimization.
Comparative simulations demonstrate PHA-MD’s superior performance compared to
several heuristic optimization algorithms, particularly in achieving network stability with
fewer pinned nodes and efficient energy use.

The performance of PHA-MD is compared with other heuristic optimization algo-
rithms, such as Ant Lion Optimizer (ALO) [21], Teaching–Learning-Based Optimization
(TLBO) [22], Grey Wolf Optimizer (GWO) [23], Animal Migration Optimization (AMO) [24],
Particle Swarm Optimization (PSO) [25], Artificial Bee Colony (ABC) [26], Gaining–Sharing
Knowledge Based Algorithm (GSK) [27], Biogeography-Based Optimization (BBO) [28],
Whale Optimization Algorithm (WOA) [29], Ant Colony Optimization (ACO) [30], Os-
prey Optimization Algorithm (OOA) [31], Mayfly Algorithm (MA) [32], Archimedes Op-
timization Algorithm (AOA) [33], Coronavirus Herd Immunity Optimizer (CHIO) [34],
and Driving Training-Based Optimization (DTBO) [35].

These algorithms were selected for several reasons. They represent a wide range of
optimization techniques, from bio-inspired methods like ALO [21] and PSO [25] to recent
innovations such as CHIO [34] and OOA [31]. This diversity allows for a comprehensive
comparison across different strategies. Many of these algorithms have shown high per-
formance in solving complex optimization problems, making them robust benchmarks



Algorithms 2025, 18, 637 3 of 33

for evaluating PHA-MD. Their popularity in the research community ensures that the
comparison results are relevant and easily interpretable.

The selected algorithms also cover different optimization mechanisms, including
swarm intelligence (PSO, WOA [29]), natural evolution (Genetic Algorithm (GA) [36]),
intensive local search (GWO [23]), and reinforcement learning (Q-Learning based algo-
rithms [37]). Comparing PHA-MD with these approaches helps its competitiveness with
the latest developments in heuristic optimization.

In summary, the selection of these algorithms provides a rigorous benchmarking
framework, allowing for a thorough assessment of PHA-MD’s capabilities, particularly in
solving the permutation problem in node selection and ensuring the network’s asymptotic
stability. Additionally, PHA-MD’s ability to handle multi-constraint optimization problems
makes it versatile and effective in various applications.

The rest of this paper is organized as follows. Section 2 provides an overview of com-
plex network pinning control, detailing the V-stability tool and other essential mathematical
preliminaries. This section also defines the optimization problem, focusing on minimizing
the energy consumed by control actions at the pinning nodes and the number of pinning
nodes required for network stability. In Section 3, the biological foundation of the PHA-MD
algorithm is described, highlighting its unique characteristics and mechanisms. Section 4
presents a comprehensive simulation study of the proposed PHA-MD algorithm across
various complex network topologies, including a detailed comparison with other heuristic
optimization algorithms. Finally, Section 5 discusses the conclusions and potential future
directions of the research.

2. Problem Statement
The optimization problem in complex networks is formulated to achieve two pri-

mary objectives:

(i) Minimizing the energy consumed by the control actions at the pinning nodes: this objective
focuses on reducing the overall energy required to stabilize the network through
targeted interventions at selected nodes.

(ii) Minimizing the number of pinning nodes required to achieve network stability: this objective
aims to reduce the number of nodes that need to be pinned to maintain the stability of
the entire network, thereby optimizing resource usage.

These objectives define the optimization problem as follows. Let M ≡ Q(Θ, G, K)
denote the closed-loop matrix built from the node passivity degrees Θ, the coupling matrix
G, and the diagonal gain matrix K; let λ{·} denote the spectrum (set of eigenvalues); and
let Re{·} denote the real-part operator applied to those eigenvalues. Then

minimize { f (U ), card(U ) }
subject to U ⊆ {1, . . . , Nn},

max
{

Re{λ{M}}
}
< 0,

(1)

where U is the index set of pinning nodes and card(U ) is its cardinality. The control law for
node ni is ui = −ki xi, with xi = (xi,1, xi,2, . . . , xi,Ns)

T ∈ RNs and ki ≥ 0 the i-th diagonal
entry of K, defined as

Ki,i =

ki, i ∈ U ,

0, i /∈ U .

The inequality max Re{λ{M}} < 0 expresses exponential stability.
Specifically, the optimization problem involves the construction of the control gain

matrix K. The goal is to find the optimal set of pinning nodes that achieves efficient network



Algorithms 2025, 18, 637 4 of 33

control. In this context, the construction of the control gain matrix K is crucial. The matrix K
determines the effectiveness of the pinning control strategy, directly impacting the stability
and efficiency of the network. Ensuring an optimal configuration of K is essential for
achieving network stability with minimal resource consumption. Thus, the following
describes the relevance of the matrix K in the pinning control of complex networks, and its
impact on the stability of the network.

Consider the following Network (2) of Nn nodes with linear diffusive couplings and
an Ns-dimensional dynamical system [38]:

ẋi = fi(xi) +
Nn

∑
j=1, j ̸=i

cijaij Γ
(
xj − xi

)
, (2)

where fi : RNs → RNs denotes the self-dynamics of node ni, i.e., the intrinsic vector field that
governs its evolution in isolation (all couplings and controls set to zero). The constants cij

are the coupling strengths between ni and nj, Γ ∈ RNs×Ns specifies how state components
are coupled for each connected pair (xj, xi), and the connection matrix A =

[
aij
]
∈ RNn×Nn

encodes the network topology: if there is a connection between ni and nj for i ̸= j, then
aij = aji = 1; otherwise aij = aji = 0 for i ̸= j. The diagonal elements are defined by
aii = −∑Nn

j=1
j ̸=i

−di, where di is the degree of node ni. A small subset of nodes in the network

is subjected to local feedback as part of the pinning control, and these are called pinning
nodes [39]. Assuming the diffusive condition

cii aii +
Nn

∑
j=1
j ̸=i

cij aij = 0, i = 1, 2, . . . , Nn, (3)

Network (2) can be rewritten in a compact controlled form as

ẋi = fi(xi) +
Nn

∑
j=1

cijaij Γ xj + Bi ui, (4)

where Bi ∈ RNs×Ns is the input (actuation) matrix that maps the control vector ui ∈ RNs into
the state derivatives of node ni. In the context of pinning control, Bi specifies which state
components are directly actuated (full or partial channels). Typical choices are Bi = INs

(full–state actuation) or Bi = diag(bi) with bi ∈ {0, 1}Ns (selected coordinates), where INs

denotes the Ns × Ns identity matrix (ones on the diagonal and zeros elsewhere). Unless oth-
erwise stated, we adopt Bi = INs in the simulations.

The control input is defined nodewise as

ui(xi) =

−ki xi, i ∈ U ,

0, i /∈ U ,
(5)

where U is the set of pinning nodes with 1 ≤ card(U ) ≤ Nn [40]. Hence, the self-dynamics
of the controlled nodes becomes

ẋi = fi(xi)− ki Bi xi, i ∈ U . (6)

To demonstrate network stability and to calculate the lower bound Nλ+ for the number
of pinned nodes, consider a continuously differentiable Lyapunov function V(xi) : D ⊆



Algorithms 2025, 18, 637 5 of 33

RNs 7→ R+, satisfying V(x) = 0 with x ∈ D, such that for the self-dynamics (6), there is a
scalar θi and ki guaranteeing

∂V(xi)

∂xi
( fi(xi)− kiBxi + θiΓxi + kiΓxi) < 0

∀xi ∈ Di ⊆ D, xi ̸= 0, (7)

where

Di = {xi : ∥xi − xi∥ < α}, α > 0, D =
Nn⋃
i=1

Di,

and θi is the passivity degree of f (xi). Then, to determine whether Network (4) is synchro-
nized at the equilibrium point X = (xT

1 , · · · , xT
Nn
)T , such that

x1(t) = x2(t) = · · · = xNn(t)→ x as t→ ∞,

let us consider

VN(X) =
Nn

∑
i=1

1
2

xT
i Pxi, P = PT > 0, (8)

for the controlled Network (4); then

V̇N(X) =
Nn

∑
i=1

xT
i P

(
fi(xi) +

Nn

∑
j=1

cijaijΓxj − kiBxi

)

V̇N(X) <
Nn

∑
i=1

xT
i P

(
θiΓxi +

Nn

∑
j=1

cijaijΓxj + kiΓxi

) (9)

or, using the Kronecker product,

V̇N(X) < XT(−Θ + G− K)⊗ PΓX, (10)

where cijaij are the entries of G ∈ RNn×Nn , Θ = diag(θ1, θ2, · · · , θNn), K = diag(k1, k2, · · · ,
kNn), and PΓ ≥ 0. Then, according to [20], Network (2) is locally asymptotically stable
around its equilibrium point if the closed-loop characteristic matrix

Q = −Θ + G− K (11)

is negative definite; then, the number of pinned nodes cannot be less than the number of
positive eigenvalues Nλ+ with K = [0]Nn×Nn , such that, card(U ) > Nλ+ . Thus, satisfying
the above conditions, Network (2) is V-stable [20], demonstrating the importance of the K
matrix to ensure stability in fixation control.

In (11), the importance of the K matrix for ensuring stability in the pinning control is
evident. However, the energy consumed by the pinning nodes during the control process is
a significant factor that impacts the overall efficiency of the network. Therefore, optimizing
the energy consumption is essential to ensure that the network operates effectively without
unnecessary expenditure of resources.

The objective function f (U ) in (1) focuses on minimizing the energy consumed by
the pinning nodes at a specific time t0. This approach not only helps in achieving the
desired control with minimal energy, but also ensures that the network remains stable
and efficient. By concentrating on energy optimization, the control strategy can be made
more sustainable and cost-effective, addressing both performance and resource utilization
concerns in complex network systems.
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The selected objective function for this problem is the energy consumed by the pinning
nodes at time t0, Et0(U ), defined as

Et0(U ) =
1
2 ∑

i∈U

∥∥ ki xi(t0)
∥∥2, (12)

where U is the set of pinned nodes (only those that contribute to the sum; equivalently,
summing over all i with Kii = 0 for i /∈ U yields the same value).

Remark 1. Considering V-stability and that energy is consumed only by the pinning nodes,
the maximum energy occurs at time t0 [20]. This allows the optimization to jointly minimize Et0(U )
and card(U ), ensuring efficient and stable control of the complex network.

3. PHA-MD Algorithm
The PHA-MD algorithm iteratively constructs the control gain matrix K, leveraging

the adaptive nature of its agents. Each agent presents a unique and variable candidate
solution in each iteration, inheriting information and discarding non-optimal nodes to
improve the solution in successive generations. This approach enables the optimization
of the pinning node set configuration U , achieving a network controlled efficiently with
the minimum number of pinning nodes and the lowest possible energy consumption.
In summary, the PHA-MD algorithm excels in simultaneously optimizing the energy
consumed and the cardinality of the set of pinning nodes, optimizing the control gain
matrix K for complex networks.

3.1. Biological Basis

The proposed PHA-MD algorithm is inspired by the parasitic symbiotic relationship
between the parasitoid wasp (Phymastichus coffea, LaSalle, Hymenoptera: Eulophidae,
Figure 1a) and the coffee borer (Hypothenemus hampei, Ferrari, Coleoptera: Curculionidae:
Scolytinae, Figure 1b). This symbiotic relationship is used as a biological control mechanism
because the borer is considered the most harmful pest affecting the coffee crop due to its
attack on the berry, producing weight loss, depreciation of the grain, and loss of quality
due to the presence of impurities in the infected beans [41].

(a) (b)

Figure 1. (a) Phymastichus coffea Lasalle (P. coffea). (b) Hypothenemus hampei Ferrari (H. hampei).

The life cycle of the wasp begins when P. coffea parasitizes H. hampei, depositing up
to two eggs per host, typically one male and one female. From this point, the incubation
process begins. Upon hatching, the larvae feed on the abdominal tissues of the host,
the coffee borer, until they complete their metamorphosis. Once this stage is finished,
the larvae emerge from the host as adult wasps [42].

The i-th symbiotic relationship ϕi(t) between the i-th agents P. coffea and H. hampei at
iteration t is represented as

ϕi(t) = {Fi(t), hi(t), pi(t), hi(t)}, (13)
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where pi ∈ Nj∈[1,Nn ] and hi ∈ RNn are the i-th agents P. coffea and H. hampei respectively,
whose populations are defined as

P(t) =


p1(t)

...
pNa(t)

, H(t) =


h1(t)

...
hNa(t)

, (14)

where Na is the number of agents for both populations. Fi(t) is a penalty function,
defined as

Fi(t) = Et0(U ) + α1c(1)i (t) + α2Λ(hi(t)), (15)

where α1 and α2 are penalty parameters, with the difference between them defining the
importance between the second and third terms in (15); c(1)i = card(pi) is the cardinality of
the agent pi(t); and Λ(hi(t)) is the maximum value between zero and the maximum real
eigenvalue of matrix (11), defined as follows:

Λ(hi(t)) = [max{Re{λ{Q(Θ, G, Ki)}}}]+, (16)

where the elements ki,j of the main diagonal of the i-th control gains matrix Ki are deter-
mined by the relationship of the agents pi and hi, such that

ki,j =

hi,j j ∈ pi

0 j /∈ pi.
(17)

The symbiotic relationship ϕ is classified in three possible favorable events for the
P. coffea species (see Figure 2), which are as follows:

ϕ
(1)
i (t) = {F(1)

i (t), Λ(1)
i (t), p(1)

i (t), h(1)
i (t)}, (18)

ϕ(2)(t) = {F(2)(t), Λ(2)(t), p(2)(t), h(2)(t)}, (19)

ϕ(3)(t) = {F(3)(t), Λ(3)(t), p(3)(t), h(3)(t)}, (20)

where ϕ
(1)
i (t) is the favorable parasitization event, when the wasp parasites the beetle;

ϕ(2)(t) implies the birth of only a female; and ϕ(3)(t) corresponds to the birth of a female
and a male. Note that types 2 and 3 affect the entire population; however, type 1 is particular
for each agent, and this is reflected in the subscript i for this type of symbiotic relationship.
A single male fertilizes numerous females; however, it requires a female to bore the host
abdomen in order to emerge, and therefore, the birth of a female and a male is the ideal
scenario for the P. coffea species [42].

The concept of Memory Inheritance justifies the relevance of these events. This attribute
implies that each i-th wasp can pass down two types of memories, mi ∈ NNn and wi ∈ RNn ,
to its future generations. Since the coffee tree can be modeled as a graph, whose berries are
equivalent to nodes, m and w are, respectively, “how many nodes to select” and “which
nodes to select”.

The example in Figure 3 shows the decision of the i-th agent pi(t) to visit four nodes,
selecting n18, n15, n10, and n8. The elements mi,j and wi,j of each memory are selected by
the roulette method. Note that in case of mi,j(t) ̸= j or wi,j(t) ̸= i, if the element is selected,
it returns the index it represents, and not its occurrence value. In the following sections,
the process of modifying the frequency of occurrence is explained.
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Figure 2. Parasitic symbiotic relationship between agents, favorable events. (1) Parasitization, (2)
birth of a female wasp, (3) birth of a female and a male wasp.

 

 

 

 

 

 

 

 

 

 

Figure 3. Behavior and modeling of P. coffea wasp: visits of P. coffea wasp, coffee tree graph.

Another attribute of biological inspiration is the behavior of H. hampei. In nature,
the beetle drills into coffee berries at or near the apex, which is the softest area of the coffee
bean [43] (Figure 4). Similar to how the gravity, shape, relief, or orientation of the berry
influence its movement, the borer functions guide H. hampei towards the optimal regions
identified by the group of beetles, without direct interference. These functions reduce the
search space in favor of the symbiotic relationship ϕ(2), because the beetles that manage to
bore into the fruit will be able to feed, thereby increasing the probability that at least one
P. coffea individual will be born. The borer functions are defined as

β(1) = h(2) − ζ|h(2)|+
(

β(1)(0)− h(2) + ζ|h(2)|
)

e
(−γτ

Nτ

)
, (21)

β(2) = h(2) + ζ|h(2)| −
(

h(2) − β(2)(0) + ζ|h(2)|
)

e
(−γτ

Nτ

)
, (22)
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where β(1) and β(2) are the lower and upper borer functions, respectively; β
(1)
j ≤ hi,j ≤

β
(2)
j ∀j ∈ [1, Nn], | · | denotes the absolute value; ζ is the compression parameter, which

prevents the limits β(2) and β(1) from converging to h(2); Nτ is the maximum interaction
number per epoch; γ is an iteration coefficient; and β(1)(0) and β(2)(0) are, respectively,
the initial upper and lower bounds. It is important to mention that the borer functions limit
the values of each dimension j; however, they can be specific for each i-th agent H. hampei.
It should be understood that with the notation of (21) and (22), the entire population H is
delimited equally.

Figure 4. The biological inspiration for the borer functions: the path of Hypothenemus hampei towards
the coffee berry apex.

3.2. Attribute Updating

This section describes the creation of new generations for each type of agent based on
updating parameters such as symbiotic relationships, updating subtypes, and optimizing
inheritance memories. The subtypes of symbiotic relationships are updated as follows:

ϕ
(1)
i (t) =


ϕi(t) if t = 1∨ τ = 1

ϕi(t) if t > 1∧ τ > 1∧ Fi(t) < F(1)
i (t− 1)

ϕ
(1)
i (t− 1) else,

(23)

ϕ(2)(t) =


ϕ
(1)
min(t) if t = 1∨ τ = 1

ϕ
(1)
min(t) if t > 1∧ τ > 1∧ F(1)

min(t) < F(2)(t− 1)

ϕ(2)(t− 1) else,

(24)
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ϕ(3)(t) =



ϕ(2)(t) if τ = Nτ ∧ B(t) = ∅ ∧ h(2)(t) = 0

ϕ(2)(t) if τ = Nτ ∧ B(t) ̸= ∅ ∧ h(2)(t) = 0∧ c(2)(t) < c(3)(t− 1)

ϕ(2)(t) if τ = Nτ ∧ B(t) ̸= ∅ ∧ h(2)(t) = 0∧ c2(t) = c3(t− 1)

∧F(2)(t) < F(3)(t− 1)

ϕ(3)(t− 1) else,

(25)

where τ is the epoch trigger, which increases by one with each iteration t. When τ = Nτ , a
new epoch starts, whose first generation has its initial conditions reset, including the epoch
trigger (Figure 4), F(1)

min(t) = mini∈[1,Na ]

{
F(1)

i (t)
}

.
Figure 5 details how PHA-MD updates the three symbiotic subtypes at each iteration

and at the end of every epoch. First, each agent evaluates its candidate and updates the
per-agent best ϕ

(1)
i (t) whenever its current cost Fi(t) improves (Equation (23)). Next, the al-

gorithm promotes the population-wide best ϕ(2)(t) using the minimum among {F(1)
i (t)}

(Equation (24)). When the epoch boundary is reached (τ = Nτ), the blocking stage is
invoked; based on stability (h(2) = 0), cardinality, and cost, ϕ(2)(t) may be adopted as the
epoch-level best ϕ(3)(t) (Equation (25)). If the stated conditions are not met, the correspond-
ing records are preserved (“else” branches in Equations (23)–(25)). While the flow focuses on
ϕ-updates, it is coordinated with the blocking-set dynamics B(t) (Equations (26) and (27))
that are executed at epoch end.

In the PHA-MD algorithm, a new feature has been introduced compared to its previous
version, a node-blocking stage. This stage involves the identification and blocking of nodes,
with the set of blocked nodes denoted as B(t). During each epoch, if and only if h(1)(t) = 0,
a node will be selected for blocking. This action increases the cardinality of the set B(t)
by one. The set B(t) captures the nodes that are currently blocked at time t, reflecting the
evolving state of the algorithm as it progresses through each epoch. The set of blocked
nodes is defined as

B(t) =



∅ if t < Nτ

b(t) if τ = Nτ ∧ b(t) = ∅ ∧ h(2)(t) = 0

B(t− 1) ∪ b if τ = Nτ ∧ B(t) ̸= ∅ ∧ h(2)(t) = 0∧ Nn − c(B) > Nλ+

Bmax(t) if τ = Nτ ∧ B(t) ̸= ∅ ∧ h(2)(t) ̸= 0

B(t− 1) else,

(26)

where b(t) is a blocked node, and Bmax(t) is the best set of blocked nodes, such that

Bmax(t) =


∅ if t < Nτ

B(t− 1) if τ = Nτ ∧ B(t) = ∅ ∧ h(2)(t) = 0

B(t− 1) if τ = Nτ ∧ B(t) ̸= ∅ ∧ h(2)(t) = 0∧ c(B) ≥ c(Bmax)

Bmax(t− 1) else,

(27)

with c(B) = card(B) and c(Bmax) = card(Bmax). The i-th node will be blocked when its
number of visits implies the minimum number of successes achieved, thus

b(t) = max
i∈[1,Nn ]

{
Na

∑
j=1

vi,j(t)
wi,j(t)

}
, (28)

where vi,j(t) represents the number of visits made by the i-th agent of P. coffea at the j-th
node. A visit by this agent is considered successful if it leads to performance improve-
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ment. The memory vector wi(t) ∈ R1×Nn increases its j-th dimension by 1 to signify
successful visits.

Figure 5. A flowchart for the updating of symbiotic relationships in PHA-MD. The diagram sum-

marizes the decision logic for the three favorable subtypes: per-agent best ϕ
(1)
i (t) (Equation (23)),

population best ϕ(2)(t) (Equation (24)), and epoch-level best under blocking ϕ(3)(t) (Equation (25)),
with the epoch trigger τ and the blocking set B(t) governing transitions at τ = Nτ .

In this context, vi,j(t) accounts for both successful and unsuccessful visits, while wi,j(t)
specifically tracks successful visits by incrementing its j-th dimension when the i-th agent
enhances its performance after visiting the j-th node. As shown in Figure 3, the first
type of memory that P. coffea agents inherit from their offspring is M ∈ RNa×Nn . This
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memory represents “how many nodes to select”, that is, the cardinality of each agent,
and its elements mi,j(t) are updated in the following way:

mi,j(t + 1) =



1 ∀i if t = 1∧ j > Nλ+

0 ∀i if t = 1∧ j ≤ Nλ+

mi,j(t) + 1 if F(1)
i (t) < F(1)

i (t− 1) ∧ j = c(1)(t)

0 ∀i if h(1)
i (t) = 0∧ j > c(1)(t)

1 ∀i if τ = Nτ ∧ j ∈ [Nn − c(B) − 1, Nn − c(B)]

0 ∀i if τ = Nτ ∧ j /∈ [Nn − c(B) − 1, Nn − c(B)]

mi,j(t) else,

(29)

where c(1)(t) = card(p(1)
i (t)). The second type of memory that P. coffea agents inherit from

their offspring is W ∈ RNa×Nn . This memory represents “which nodes to select”, and its
elements wi,j(t) are updated in the following way:

wi,j(t + 1) =



1 if t = 1

wi,j(t) + 1 if F(1)
i (t) < F(1)

i (t− 1) ∧ j ∈ p(1)
i (t)

wi,j(t) + 1 if F(2)(t) < F(2)(t− 1) ∧ i ∈ R(t) ∧ j ∈ p(2)(t)

0 ∀i if τ = Nτ ∧ j ∈ B(t)
1 ∀i if τ = Nτ ∧ j /∈ B(t)
wi,j(t) else,

(30)

where R(t) is a set of uniformly distributed random nodes (without repetition) with
random cardinality.

3.3. Saturated Sigmoid Switch Functions

Saturated sigmoids are employed as compact binary comparators (switches) with
explicit tie handling through a small ϵ > 0. The parameter ϵ is taken as a fixed tolerance
(machine epsilon, eps) and is used to disambiguate equalities [44]. Let x = (a− b) denote
the comparison residual. The ideal steep-slope limit is indicated by “·∞” (in code, a large
gain g≫ 1 is used).

S1(x) =
1

1 + e(x+ϵ)·∞ =


1, x < 0,

0, x > 0,

0, x = 0,

“<” switch. (31)

S2(x) = 1− 1
1 + e(x−ϵ)·∞ =


1, x > 0,

0, x < 0,

0, x = 0,

“>” switch. (32)

S3(x) =
1

1 + e(x−ϵ)·∞ =

1, x ≤ 0,

0, x > 0,
“≤” switch. (33)

S4(x) = 1− 1
1 + e(x+ϵ)·∞ =

1, x ≥ 0,

0, x < 0,
“≥” switch. (34)

Non-constancy of the switches in the proposed rules. The value of x depends on random draws
and evolving state/memory variables, so both activation and deactivation are produced:
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• In the cardinality rule (Equation (35)), S3(µ1 − zj) compares a uniform draw µ1∈ [0, 1]
with cumulative weights zj∈ [0, 1]; across j, both cases x < 0 and x > 0 are obtained,
so S3 toggles. The quantity ∑q S2(wi,q(t)) counts strictly positive success weights
wi,q(t), and S2 is activated only when wi,q(t) > 0.

• In node selection (Equation (36)), S3(µ2 − zj) operates analogously with a fresh µ2∈
[0, 1] and cumulative weights derived from wi(t), yielding both x ≤ 0 and x > 0.

• In the clipping function (Equation (39)), S3(β
(2)
j − x) and S4(β

(1)
j − x) compare the

current value x with the moving upper and lower bounds β
(2)
j and β

(1)
j ; depending on

the outcome, x is passed through or snapped to the nearest bound.

The ϵ offsets enforce a consistent tie policy: equality is included in S3 (≤) and S4 (≥) and
excluded in S1 and S2. This policy is applied consistently in all the referenced rules.

3.4. Offspring: Phymastichus

This subsection delves into the process governing the generation of new offspring of
P. coffea agents. As previously discussed, PHA–MD introduces the capability to block nodes,
reducing the pool of available nodes. This attribute materially influences the decision-
making of each P. coffea agent through the memory M. Situations may arise where the
number of available nodes is fewer than the destinations desired by an agent. To avoid this
condition, the cardinality of each agent pi(t) is defined as

ci(t) = min

{
min

j∈[1,Nn ]

nj

S3
(
µ1 − zj

) , ∑ S2
(
wi(t)

)}
,

z(M) =
[
z1, . . . , zNn

]
, zk =

k

∑
j=1

mi,j(t)

∑ mi(t)
,

n =
[
1, . . . , Nn

]
.

(35)

where S2(·) and S3(·) are the saturated sigmoid switch functions defined in Section 3.3,
and µ1∈ [0, 1] is a uniformly distributed random number. Once ci(t) is selected, the set of
pinning nodes is defined (Figure 3) so that the j-th node visited by agent pi(t) is

pi,j(t) = min
j∈[1,ci(t)]

nj

S3
(
µ2 − zj

) ,

z(W) =
[
z1, . . . , zNn

]
, zk =

k

∑
j=1

ωj

∑ ω
,

ω = wi(t), n =
[
1, . . . , Nn

]
.

(36)

where S3(·) is defined in Section 3.3 and µ2∈ [0, 1] is uniformly distributed. If node nj is
selected, its corresponding wi,j(t) during iteration t is set to 0 so that nj is not re-selected
by the same agent. The auxiliary vector ω is used for this purpose, allowing temporary
modification without altering the original wi.

3.5. Offspring: Hypothenemus

In this subsection, the generation process of the offspring in the population H(t)
is described. The population H(t) evolves under random perturbations and position
increments, and is given by

hi,j(t + 1) =

β
(1)
j (0) +

(
β
(2)
j (0)− β

(1)
j (0)

)
µ3, if t = 1∨ τ = 1,

o
(
hi,j(t) + ρ3∆i,j(t)

)
, else,

(37)
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where µ3∈ [0, 1] is uniformly distributed. The position increment of the i-th individual is

∆i,j(t + 1) =

0, if t = 1∨ τ = 1,

∆i,j(t) + ρ1µ4
(
h(1)i,j (t)− hi,j(t)

)
+ ρ2µ5

(
h(2)j (t)− hi,j(t)

)
, else,

(38)

where ρ1 is the local-influence constant (two-female births), ρ2 is the global-influence con-
stant (female–male births), ρ3 is an inertial constant, and (µ4, µ5)∈ [0, 1]2 is uniformly dis-
tributed.

The clipping function o(x) prevents H. hampei agents from exceeding the search
space bounds:

o(x) = x S3
(

β
(1)
j − x

)
S4
(

β
(2)
j − x

)
+ S4

(
β
(1)
j − x

)
β
(1)
j + S3

(
β
(2)
j − x

)
β
(2)
j , (39)

where S3(·) and S4(·) are the saturated sigmoid switch functions defined in Section 3.3.
In this way, values inside the interval [β(1)

j , β
(2)
j ] are preserved, whereas values attempting

to cross a bound are snapped to the closest limit. This mechanism ensures that the popula-
tion remains within the feasible search space while adapting to the evolving influence cues.

3.6. Flowchart Analysis of the PHA-MD Algorithm

Figure 6 sketches the overall control flow of PHA-MD. It highlights, at a high level,
the cycle that repeats across iterations and epochs: (i) initialization at the start of each
epoch; (ii) agent-driven updates—Phymastichus constructs the candidate pinning set via the
inheritance memories, while Hypothenemus refines the continuous gains through the borer
and clipping functions; and (iii) the epoch-end blocking step, where visits and successes
are evaluated to update the blocking set. The diagram intentionally omits low-level details
to emphasize data flow and stage interactions. For completeness, Algorithm 1 provides the
corresponding pseudocode, aligned with Section 3, which can be read in parallel with the
equations to recover the full procedural detail.

The steps that describe the Phymastichus Agent Behavior stage are as follows. “Initial-
ization”: Each agent initializes with a random set of potential pinning. “Node Selection”:
Using cumulative probabilities, the agent selects nodes to visit based on the success memo-
ries (W(t)) and counts (M(t)). “Objective Function Evaluation”: The selected nodes are
evaluated using the objective function to determine their effectiveness in controlling the
network. “Memory Update”: The agent updates its success memories and counts based on
the evaluation results (Figure 7).

The steps that describe the Hypothenemus Agent Behavior stage are as follows. “Pa-
rameter Adjustment”: The agents adjust their parameters (β(2) and β(1)) using the sigmoid
functions based on the iteration count. “Delta Update”: Each agent updates its delta values,
incorporating local and global influences. “Node Evaluation”: Nodes are evaluated using
the clipping function to ensure they remain within the bounds of β(1) and β(2). “Update
Influence”: The agents update the network influence values based on their evaluations
(Figure 8).

The steps that describe the Update and Evaluation of the Blocking Group stage are as
follows. “Epoch Check”: The algorithm checks if the current epoch or iteration limit has
been reached. “Node Blocking”: Nodes are blocked based on their visitation and success
rates. “Reset Counters”: Visitation and success memories are reset for the next iteration.
“Stability Check”: The algorithm checks the stability of the network and updates the best
blocking group if stability is achieved. In summary, these flowcharts provide a visual
representation of the PHA-MD algorithm’s structure and operations, offering insights into
the systematic and iterative processes that underlie its effectiveness in optimizing pinning
control for complex networks (Figure 9).



Algorithms 2025, 18, 637 15 of 33

Figure 6. General loop.
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Algorithm 1 PHA-MD

Data: Nn, Nt, Nτ , Nλ+ , Na, bounds β(1)(0) = l0, β(2)(0) = u0, ζ, (ρ1, ρ2, ρ3)

Result: ϕ(2) (global best), ϕ(3) (best under blocking), B, Bmax
1: Init: t←1, τ←1, B←∅, Bmax←∅
2: W←1Na×Nn , M←1Na×Nn with M(:, 1:Nλ+ )←0, V←0
3: Records: ϕ (current), ϕ(1) (per-agent best), ϕ(2) (global best), ϕ(3) (blocked best)
4: while t ≤ Nt do
5: if t = 1 or τ = 1 then ▷ epoch start
6: Initialize H within [l0, u0] as in Equation (37); set ∆←0
7: end if
8: for i=1 to Na do ▷ Phymastichus: node selection via memories
9: Compute ZM =cumsum

(
M(i, :)/ ∑ M(i, :)

)
10: ci ← CARDINALITYBY Equation (35) using ZM, S2, S3
11: ω ←W(i, :) ▷ temporary copy to avoid reselection
12: pi ← ∅
13: for j = 1 to ci do
14: ZW =cumsum

(
ω/ ∑ ω

)
15: Select p← SELECTNODEBY Equation (36) using ZW , S3; set ω(p)←0 ▷ no reselection
16: pi ← pi ∪ {p}; V(i, p)←V(i, p)+1
17: end for
18: Evaluate Fi, hi by Equation (15); form ϕi(t) (Equation (13))

19: Update ϕ
(1)
i by Equation (23); if improved then W(i, pi)+=1, M(i, |pi|)+=1

20: if hi = 0 then ▷ stable at current size
21: M(:, |pi|+1:Nn)←0 ▷ prune larger cardinalities
22: end if
23: end for
24: Update ϕ(2) by Equation (24) using F(1)

min(t) and argmin k
25: Broadcast ϕ(2).H ←

(
ϕ(1).H at row k

)
replicated to Na rows

26: if ϕ(2) improved this step then ▷ as in code: only if fmin improves
27: Draw random subset R ⊂ {1, . . . , Na}; set W(R, ϕ(2).p)←W(R, ϕ(2).p) + 1
28: end if
29: Hypothenemus: borer & clipping
30: Update lower/upper bounds β(1), β(2) by Equations (21) (lower), (22) (upper) using

ϕ(2).H, ζ, l0, u0
31: ∆← ∆ + ρ1 rand◦ (ϕ(1).H−H) + ρ2 rand◦ (ϕ(2).H−H) ▷ Equation (38)
32: H ← o

(
H + ρ3∆, β(1), β(2)) ▷ Equation (39) with S3, S4

33: if τ = Nτ or t = Nt then ▷ blocking stage

34: b← arg maxi ∑j
V(j, i)
W(j, i)

▷ Equation (28)

35: Reset epoch counters: V←0, W←1, M←0, τ←0
36: if ϕ(2).h = 0 then ▷ stability at epoch end
37: if B=∅ then
38: ϕ(3)←ϕ(2); B←{b}; Bmax←B
39: else
40: If |ϕ(2).p| < |ϕ(3).p| or (tie & F(2)<F(3)): ϕ(3)←ϕ(2)

41: If |B| ≥ |Bmax|: Bmax←B
42: if Nn − |B| > Nλ+ then
43: B←unique(B ∪ {b})
44: end if
45: end if
46: W(:,B)←0; M(:, Nn−|B|−1 : Nn−|B|)←1
47: else if B ̸=∅ and ϕ(2).h ̸=0 then ▷ recover best blocking if no stability
48: B←Bmax; W(:,B)←0; M(:, Nn−|B|−1 : Nn−|B|)←1
49: end if
50: end if
51: t← t+1; τ←τ+1
52: end while
53: return ϕ(2), ϕ(3), B, Bmax
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Figure 7. Phymastichus agent behavior.

Figure 8. Hypothenemus agent behavior.
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Figure 9. Updating and evaluation of the blocking group.

3.7. Spatial Complexity Analysis

The spatial complexity of the proposed algorithm is determined by analyzing the
memory usage in relation to the input parameters, specifically the number of agents Na

and the number of nodes Nn in the complex network. The key data structures contributing
to memory consumption include matrices and cell arrays that are dynamically allocated
during the algorithm’s execution.

The primary matrices W, M, V, and ϕ, as well as the matrices β(1) and β(2), each have
a size of Na × Nn. Each of these matrices contributes O(Na × Nn) to the spatial complexity.
Since there are six such matrices, their combined complexity is O(6× Na × Nn).

The cell array p, where each cell contains a vector of selected nodes, also contributes to
the spatial complexity. In the worst case, the memory required is O(Na × Nn). Additional
vectors, such as F, h, and their counterparts in ϕ(1), ϕ(2), and ϕ(3), have a size of Na,
contributing O(6× Na) in total. When combined, the total spatial complexity is

S(n) = O(6× Na × Nn) + O(Na × Nn) + O(6× Na). (40)

Given that the term O(Na × Nn) dominates, the spatial complexity can be simplified
to S(n) = O(Na × Nn). This indicates that the memory usage of the algorithm increases
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linearly with both the number of agents and the number of nodes in the complex network,
demonstrating the algorithm’s spatial efficiency.

4. Simulation Study
It is important to note that the proposed PHA-MD algorithm features variable di-

mensions across its agents, with each agent having a different number of dimensions.
This characteristic initially precluded a direct comparison with other algorithms, such
as ALO [21], TLBO [22], GWO [23], AMO [24], PSO [25], ABC [26], GSK [27], BBO [28],
WOA [29], ACO [30], OOA [31], MA [32], AOA [33], CHIO [34], and DTBO [35]. These
algorithms assume a fixed number of dimensions throughout the optimization process,
which is not compatible with the dynamic dimensionality of PHA-MD.

The optimization problem addressed by PHA-MD involves both combinatorial and
continuous elements, further complicating the use of traditional algorithms. PHA-MD
was specifically designed to handle the dynamic dimensionality needed to identify the
minimum number of pinning nodes, a task that requires agents to propose different sets
of nodes. This flexibility in dimension handling is not supported by the aforementioned
algorithms, which rely on a fixed dimension setup. For instance, initializing agents with
a predefined number of dimensions for both gain constants and potential pinning nodes
imposes assumptions that may not be accurate.

To allow a fair comparison, a reconditioning function was introduced. This function
adjusts the dimensions by rounding them to the nearest integer corresponding to node
indices in the matrix K and selecting unique elements. This approach standardizes the
input, enabling fixed-dimension algorithms to adapt to the variable dimensionality required
by PHA-MD.

All runs were performed on a single workstation under Ubuntu 22.04.3 LTS (64-bit)
using MATLAB R2023b in double precision. Default multithreaded BLAS (Intel oneMKL)
was enabled; GPU acceleration was not used. Randomness was controlled with MATLAB’s
rng(’twister’,2024). The population size, iteration budget, and epoch length followed the
values stated in Section 3, PHA-MD Algorithm, and the figure set Convergence curves for the
Networks. The hardware and software stack is summarized in Table 1.

Remark 2. The number of runs required to obtain a representative solution cannot be specified
a priori in a universal manner, since the selection of pinning nodes constitutes a combinatorial
NP–hard problem. Consequently, the evaluation protocol is grounded in a theoretical feasibility
criterion: under the V-stability of Xiang and Chen, the number of pinned nodes cannot be less than
the number of non–negative eigenvalues of the characteristic matrix; thus, Nλ+ is a natural lower
bound. Operationally, each method was executed up to the point at which the baseline algorithms
exhibited instability, whereas PHA–MD preserved feasible solutions. Accordingly, a finite iteration
budget was adopted as the stopping criterion; its value was selected experimentally to reach a
regime in which baseline methods typically displayed instability in their solutions, while PHA–MD
continued to yield feasible trajectories. Stability therefore informs the choice of iteration budget,
although simulations are not terminated upon the detection of instability itself.

Figure 10 illustrates the reconditioning function used in the simulation study. This
function is essential for aligning fixed-dimension algorithms with the variable dimension-
ality necessary for pinning node selection in complex networks. The properties of the
six complex networks analyzed are presented in Table 2. These properties include the
number of edges (Ne), positive eigenvalues (Nλ+ ), average connection degree (cd), average
coupling strength (c), average passivity degree (θ), average initial conditions (x0), and their
respective distribution intervals (Ic,θ,x0). Additionally, the search space (SS) defines the
feasible region for selecting control gains during the optimization process.
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Table 1. Hardware and software used for all computations.

Component Specification

CPU Intel Core i7-12700K (12 cores: 8P+4E, 20 threads, 3.6–5.0 GHz)
Memory 32 GB DDR4-3200
GPU NVIDIA GeForce RTX 3060, 12 GB VRAM (not used)
Storage 1 TB NVMe SSD
Operating system Ubuntu 22.04.3 LTS (64-bit), Linux kernel 5.15
MATLAB R2023b (double precision)
Toolboxes Optimization, Global Optimization; Parallel Computing (installed, disabled)
Math kernel Intel oneMKL (default in MATLAB R2023b)
Threading Default multithreaded linear algebra; no GPU acceleration
Random seed rng(’twister’,2024)
Measurement MATLAB tic/toc; single-process execution

Figure 10. A flowchart of the reconditioning function.

The six synthetic networks were sampled uniformly within the intervals reported in
Table 2 under two design criteria: (i) passivity degrees θ and coupling strengths cij chosen
to yield a nonzero count of positive eigenvalues Nλ+ in the V-stability analysis, and (ii) a rel-
atively large Nλ+ compared to Nn, which increases the theoretical lower bound on the num-
ber of required pinning nodes. This produces challenging instances where stability is non-
trivial and energy–cardinality trade-offs are visible. Although synthetic, these topologies
are representative of interaction patterns commonly found in signed social influence graphs
(trust/distrust) [45], neuronal microcircuits with mixed excitatory/inhibitory synapses [46],
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gene-regulatory subnetworks with activation/repression [47], distribution grids with grid-
connected power-electronic converters exhibiting impedance interactions [48,49], and an-
tagonistic ecological webs (predator–prey) [50]. Thus, “Network 1–6” should be read as
topology classes that capture these motifs, rather than as single specific datasets.

Table 2. Complex network data analyzed.

Network 1 Network 2 Network 3 Network 4 Network 5 Network 6

Nn 10 20 30 40 50 60
Ne 18 93 224 383 653 876

Nλ+ 3 7 5 21 25 33
cd 3.6 9.3 14.93 19.15 26.12 29.2

min{cd} 2 5 10 12 19 19
max{cd} 7 13 20 24 34 38

c 10.92 5.78 9.53 −11.35 −6.90 −4.64
Ic [−4, 30] [−2, 15] [−2, 20] [−40, 20] [−24, 10] [−24, 16]
θ 6.69 6.31 45.93 −6.31 0.46 −7.69
Iθ [−1, 13] [−10, 15] [−4, 80] [−23, 8] [−16, 12] [−56, 35]

x0

 16.85
−10.73
−10.2

 −22.13
1.03
−12.59

 [
−0.01
2.02

] [
2.02
2.21

] [
−2.33
−2.83

] 23.83
26

31.85


Ix0 [−80, 70] [−90, 55] [−8, 9] [−2, 7] [−14, 8] [−23, 80]

SS
[

10
1× 1010

] [
1× 104

2× 105

] [
1× 102

1× 107

] [
1× 104

1× 106

] [
1× 105

1× 107

] [
1× 107

1× 109

]

The parameter settings used in the simulations for the various algorithms are sum-
marized in Table 3. For each baseline, hyperparameters were taken from the authors’
recommended operating conditions in their original sources; no per-benchmark retuning
was performed to avoid overfitting to the synthetic networks. The population size and num-
ber of iterations were kept constant across all methods to enforce a common computational
budget. A reconditioning wrapper was employed to standardize candidate representations
so fixed-dimension heuristics could accept the variable-cardinality solutions produced
by PHA–MD. Because the control objective was stability-first, candidates that failed the
stability test are reported as unstable and are not considered acceptable low-energy optima.
This protocol separates algorithmic design differences (fixed versus variable dimensionality
with stability feedback) from hyperparameter tweaks and supports a fair comparison.

As mentioned, the performance of the proposed PHA-MD algorithm is compared
with several other heuristic optimization algorithms across six different complex network
topologies. These topologies were generated uniformly at random within the intervals
specified in Table 2. The networks were designed to challenge current optimization algo-
rithms and reveal scenarios where stability is difficult to achieve. The aim was to create
increasingly complex networks to showcase the superior capability of the PHA-MD algo-
rithm. If a network were encountered where even PHA-MD could not find stable solutions,
the algorithm would need to be reconfigured to address these new challenges.

The simulation results include two sets of graphs. The first set (Figures 11–13) presents
the convergence curves for each network’s optimization, comparing the performance of
the PHA-MD algorithm with that of other algorithms. The second set (Figures 14–16) of
graphs shows the optimization of energy Et0 against the percentage of unstable solutions,
emphasizing solution stability.
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Table 3. The parameter settings for the algorithms used in the simulations.

Algorithm Parameter Value

ALO Elite rate 0.1
Ant rate 0.9

WOA
Convergence parameter (a) [2, 0]
r (random vector) [0, 1]
l (random number) [−1, 1]

TLBO TF (teaching factor) [(1 + rand)]
rand (random number) [0, 1]

GWO a (convergence parameter) [2, 0]
α (alternative parameter) 2− 2(g/maxg)

AMO Animals in each group 5

PSO ω (inertia weight) 0.6
c1, c2 (cognitive and social constants) 2

ABC Abandonment criteria 25

GSK

P (probability) 0.1
k f (forward coeff) 0.5
kr (return coeff) 0.9
K (number of iters) 10

BBO

Habitat modification probability 1
Immigration probability bounds per gene [0, 1]
Step size for numerical integration 1
Max. immigration and migration rates 1
Mutation probability 0.1

ACO

Initial pheromone value 1× 10−6

Pheromone update constant 20
Exploration constant 1
Global pheromone decay rate 0.9
Local pheromone decay rate 0.5
Pheromone sensitivity 1
Visibility sensitivity 5

PHA

ρ1 (local influence coeff) 0.5
ρ2 (global influence coeff) 0.6
ρ3 (increment coeff) 0.7
ζ (clustering tolerance) 0.02
γ (control gain) 10

OOA Elite rate 0.2
Infection rate 0.1

MA Attraction rate 0.5
Repulsion rate 0.3

AOA Exploration rate 0.4
Exploitation rate 0.6

CHIO Infection probability 0.3
Recovery probability 0.1

DTBO Learning rate 0.1
Feedback rate 0.2

All algorithms Population size 50
Number of iters 500
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Figure 11. Convergence curves for Networks 1 and 2.
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Figure 12. Convergence curves for Networks 3 and 4.

In Figure 11a, the convergence behavior for Network 1 is depicted. Due to the
scale, only the ABC algorithm is prominently visible, with others appearing unchanged.
Figure 11b allows for a comparison across all algorithms, showing similar convergence
except for in the case of GSK and ACO.

The PHA-MD algorithm reaches its minimum value earlier than others, demonstrating
its efficiency. Figure 12a complicates comparisons due to the ABC algorithm’s scale, yet
most algorithms show early convergence, with PHA-MD continuing to converge rapidly.

As shown in Figure 12b, the optimization process becomes more challenging due to
Network 4’s size, with a clear gap between PHA-MD and the others, and only four out of
five epochs observed due to unchanged candidate solutions. Figure 13a displays similar
behavior, with drilling functions proving effective, and BBO and AMO following PHA-MD
in performance. Finally, Figure 13b shows an even greater gap between PHA-MD and the
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other algorithms, highlighting PHA-MD’s superior performance in minimizing the cost
function F.
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Figure 13. Convergence curves for Networks 5 and 6.
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Figure 14. Energy optimization and percentage of unstable solutions for Networks 1 and 2.

In addition to the convergence curves, Figures 14–16 present the optimization of energy
Et0 against the percentage of unstable solutions. Blue bars represent the average energy
consumption of each algorithm’s solutions, with percentages indicating the proportion of
unstable solutions. Figure 14a shows that the ABC algorithm achieves the lowest energy
consumption with 0% unstable solutions, while ACO, despite being energy-efficient, has
94% unstable solutions, highlighting the trade-off between energy efficiency and stability.

In Figure 14b, the ABC algorithm remains the most energy-efficient, but several al-
gorithms, including ALO, GWO, PSO, WOA, GSK, and ACO, present unstable solutions,
with ACO having the highest instability rate at 95%. Figure 15a shows a reduction in unsta-
ble solutions due to Network 3 having fewer states. By Figure 15b, nearly all algorithms
exhibit 100% unstable solutions, despite Network 4 having the same number of states, indi-
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cating that complexity depends on more than just the number of states. Figure 16a shows
some algorithms achieving stable solutions, while Figure 16b highlights that only PHA-MD
provides stable solutions, underscoring its prioritization of stability over energy efficiency.
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Figure 15. Energy optimization and percentage of unstable solutions for Networks 3 and 4.
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Figure 16. Energy optimization and percentage of unstable solutions for Networks 5 and 6.

These results demonstrate the PHA-MD algorithm’s effectiveness in achieving rapid
convergence and superior optimization compared to other algorithms. Its ability to handle
variable dimensionality and combinatorial optimization makes it particularly suitable for
pinning control in complex networks. The simulation results are summarized in Table 4,
which provides a comprehensive overview of each algorithm’s performance across the
six networks.
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Table 4. Simulation results for different algorithms across six networks.

Algorithm Measure Network 1 Network 2 Network 3 Network 4 Network 5 Network 6

ALO

Avg. CF 5.1× 1060 6.8602× 1068 1.912× 1061 4.6041× 1071 3.6848× 1071 6.132× 1071

Best CF 4× 1060 1.3× 1061 1.7× 1061 1.7079× 1071 1.6174× 1071 3.2368× 1071

Avg. NP 5 15 19 33 40 46
Best NP 4 13 17 30 35 40
Avg. EC 6.2082× 1023 5.9117× 1014 1.7025× 1016 1.2553× 1014 5.7283× 1018 3.6252× 1022

Best EC 1.1201× 1023 2.404× 1014 7.8747× 1015 3.7911× 1013 2.5242× 1018 2.3748× 1022

TLBO

Avg. CF 4× 1060 1.498× 1061 1.962× 1061 6.7339× 1071 4.942× 1071 7.6473× 1071

Best CF 4× 1060 1.4× 1061 1.7× 1061 5.7775× 1071 3.6628× 1071 5.9984× 1071

Avg. NP 4 15 20 31 37 43
Best NP 4 14 17 27 33 37
Avg. E 3.8762× 1023 4.8607× 1014 1.4766× 1016 1.1278× 1014 4.8949× 1018 3.0739× 1022

Best E 4.5673× 1022 1.9126× 1014 8.0718× 1015 5.7146× 1013 2.0877× 1018 1.382× 1022

GWO

Avg. CF 4.75× 1060 2.4728× 1068 1.6844× 1067 6.434× 1071 4.6174× 1071 7.2403× 1071

Best CF 4× 1060 1.2× 1061 1.8× 1061 3.745× 1071 2.6409× 1071 3.9817× 1071

Avg. NP 5 15 20 30 37 43
Best NP 4 12 18 26 33 37
Avg. E 5.2435× 1023 3.9094× 1014 1.3449× 1016 8.5704× 1013 3.7608× 1018 2.3976× 1022

Best E 8.0848× 1022 1.1117× 1014 2.5247× 1015 1.9739× 1013 1.0436× 1018 1.268× 1022

AMO

Avg. CF 4× 1060 1.282× 1061 1.653× 1061 1.8614× 1071 1.9714× 1071 3.3892× 1071

Best CF 4× 1060 1.2× 1061 1.5× 1061 2.5401× 1070 1.624× 1070 2.0201× 1071

Avg. NP 4 13 17 36 44 51
Best NP 4 12 15 34 41 46
Avg. E 3.979× 1023 4.4029× 1014 1.3695× 1016 1.9327× 1014 8.0387× 1018 4.3284× 1022

Best E 5.5216× 1022 1.9064× 1014 7.1131× 1015 1.0368× 1014 5.0968× 1018 2.4297× 1022

PSO

Avg. CF 4.79× 1060 3.4255× 1069 1.4353× 1069 7.4066× 1071 5.4168× 1071 8.231e+71
Best CF 4× 1060 1.3× 1061 2× 1061 6.2805× 1071 4.7809× 1071 6.5008× 1071

Avg. NP 5 15 22 29 35 41
Best NP 4 13 20 24 31 35
Avg. E 5.1762× 1023 5.8063× 1014 2.0949× 1016 1.3113× 1014 5.6448× 1018 3.3657× 1022

Best E 4.7222× 1022 2.3678× 1014 8.6401× 1015 5.8626× 1013 3.1002× 1018 1.9188× 1022

ABC

Avg. CF 7.84× 1060 1.496× 1061 2.659× 1061 1.7899× 1071 1.8478× 1071 6.2455× 1071

Best CF 6× 1060 1.3× 1061 2.4× 1061 3.7× 1061 4.7× 1061 3.7078× 1071

Avg. NP 8 15 27 37 45 48
Best NP 6 13 24 32 39 41
Avg. E 6.0857× 1013 3.8347× 1012 2.0035× 107 4.4134× 1010 1.9193× 1013 1.0839× 1019

Best E 6.3576× 107 3.3042× 1012 1.0895× 107 3.7038× 1010 1.4898× 1013 8.7471× 1018

GSK

Avg. CF 5.7× 1060 4.7397× 1070 2.0125× 1070 7.9435× 1071 5.601× 1071 8.3242× 1071

Best CF 4× 1060 1.6× 1061 1.9× 1061 6.2524× 1071 4.7282× 1071 7.0532× 1071

Avg. NP 6 15 22 29 36 42
Best NP 4 13 19 25 32 36
Avg. E 6.0977× 1023 5.672× 1014 1.8551× 1016 1.1749× 1014 5.1288× 1018 3.27× 1022

Best E 5.7557× 1022 1.4781× 1014 7.3913× 1015 5.3564× 1013 1.9935× 1018 2.2152× 1022

BBO

Avg. CF 4.27× 1060 1.441× 1061 1.733× 1061 1.8776× 1071 1.5097× 1071 2.7855× 1071

Best CF 4× 1060 1.3× 1061 1.5× 1061 3.9× 1061 4.5× 1061 1.2984× 1070

Avg. NP 4 14 17 36 45 52
Best NP 4 13 15 31 41 45
Avg. E 3.8848× 1023 5.0742× 1014 1.3723× 1016 1.5802× 1014 6.4197× 1018 3.9379× 1022

Best E 6.4946× 1022 2.1085× 1014 4.5255× 1015 8.8315× 1013 3.9199× 1018 2.7205× 1022

WOA

Avg. CF 5.09× 1060 7.1636× 1069 1.1383× 1068 6.548× 1071 4.6704× 1071 7.2743× 1071

Best CF 4× 1060 1.4× 1061 1.8× 1061 3.6658× 1071 3.512× 1071 5.6986× 1071

Avg. NP 5 15 20 31 37 44
Best NP 4 14 18 26 32 38
Avg. E 6.1491× 1023 5.6463× 1014 1.8316× 1016 1.2598× 1014 5.2791× 1018 3.392× 1022

Best E 4.7187× 1022 1.895× 1014 8.9749× 1015 4.7129× 1013 2.0887× 1018 1.7534× 1022

ACO

Avg. CF 4.5699× 1071 3.7148× 1071 9.3099× 1071 1.4033× 1072 1.0814× 1072 1.4512× 1072

Best CF 8× 1060 1.5× 1061 2.2× 1061 1.2746× 1072 1.0048× 1072 1.2674× 1072

Avg. NP 4 7 8 9 10 12
Best NP 2 4 5 6 7 6
Avg. E 3.0953× 1022 4.0813× 1013 5.9113× 1014 1.751× 1012 3.6959× 1016 4.261× 1020

Best E 4.4537× 105 1.1508× 1012 1.3255× 106 1.957× 1010 1.7838× 1012 7.7962× 1018

OOA

Avg. CF 4.96× 1060 4.7818× 1070 5.1587× 1069 7.7914× 1071 5.4469× 1071 8.1832× 1071

Best CF 4× 1060 1.5× 1061 1.9× 1061 6.0594× 1071 4.679× 1071 6.7698× 1071

Avg. NP 5 15 21 29 36 42
Best NP 4 13 19 25 32 37
Avg. E 9.5457× 1023 6.7351× 1014 2.2913× 1016 1.4039× 1014 5.9964× 1018 3.5683× 1022

Best E 2.0688× 1023 2.1862× 1014 1.129× 1016 7.4459× 1013 2.9095× 1018 1.8181× 1022

MA

Avg. CF 4.43× 1060 1.516× 1061 2× 1061 6.5542× 1071 4.7063× 1071 7.2175× 1071

Best CF 4× 1060 1.3× 1061 1.8× 1061 5.0182× 1071 3.8797× 1071 5.8847× 1071

Avg. NP 4 15 20 31 38 43
Best NP 4 13 18 28 34 37
Avg. E 4.697× 1023 5.641× 1014 1.6752× 1016 1.2139× 1014 5.5114× 1018 3.3116× 1022

Best E 9.1966× 1022 2.7977× 1014 7.8853× 1015 3.1976× 1013 3.5254× 1018 2.0607× 1022
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Table 4. Cont.

Algorithm Measure Network 1 Network 2 Network 3 Network 4 Network 5 Network 6

AOA

Avg. CF 4.69× 1060 3.3716× 1070 1.0224× 1070 7.8676× 1071 5.4175× 1071 8.0266× 1071

Best CF 4× 1060 1.4× 1061 1.8× 1061 5.593× 1071 4.2144× 1071 6.4571× 1071

Avg. NP 5 15 20 28 34 40
Best NP 4 12 17 23 29 34
Avg. E 4.5233× 1023 2.8891× 1014 1.05× 1016 6.0699× 1013 2.7815× 1018 2.0416× 1022

Best E 1.2327× 1023 7.5247× 1013 4.099× 1015 1.6334× 1013 8.9783× 1017 7.737× 1021

CHIO

Avg. CF 4.7× 1060 3.0251× 1070 1.4891× 1070 7.7324× 1071 5.5317× 1071 8.2538× 1071

Best CF 4× 1060 1.4× 1061 1.8× 1061 4.2028× 1071 4.3911× 1071 6.7268× 1071

Avg. NP 5 15 21 29 36 42
Best NP 4 13 18 24 29 35
Avg. E 4.7572× 1023 5.6382× 1014 1.576× 1016 1.0685× 1014 4.7282× 1018 3.0955× 1022

Best E 1.0896× 1023 2.081× 1014 8.5226× 1015 4.7669× 1013 2.0199× 1018 1.8926× 1022

DTBO

Avg. CF 4.43× 1060 2.3611× 1070 4.6668× 1069 6.4274× 1071 4.5929× 1071 6.933× 1071

Best CF 4× 1060 1.3× 1061 1.7× 1061 3.1498× 1071 2.9082× 1071 4.7492× 1071

Avg. NP 4 16 19 30 38 45
Best NP 4 13 17 25 31 37
Avg. E 4.1237× 1023 5.4967× 1014 1.3802× 1016 1.1513× 1014 4.9397× 1018 3.2404× 1022

Best E 1.5942× 1023 2.6794× 1014 7.1215× 1015 6.0937× 1013 3.0635× 1018 2.1081× 1022

PHAMD

Avg. CF 4× 1060 1.324× 1061 1.716× 1061 3.636× 1061 4.502× 1061 5.489× 1061

Best CF 4× 1060 1.2× 1061 1.5× 1061 3.6× 1061 4.4× 1061 5.3× 1061

Avg. NP 4 13 17 36 45 53
Best NP 4 12 15 36 44 50
Avg. E 3.6528× 1023 4.2558× 1014 1.2833× 1016 1.3892× 1014 6.647× 1018 4.0136× 1022

Best E 3.4829× 1022 1.4022× 1014 6.1203× 1015 8.0683× 1013 4.0684× 1018 2.7623× 1022

The Average Cost Function (Avg. CF) represents the mean value of the cost function,
indicating overall performance efficiency. The Best Cost Function Result (Best CF) shows
the lowest cost function value achieved, reflecting the algorithm’s capability to find optimal
solutions. The Best Number of Pinning Nodes (Best NP) and the Average Number of
Pinning Nodes (Avg. NP) provide insight into the algorithm’s effectiveness in minimizing
control nodes. Energy consumption is also evaluated, with the Best Energy Consumption
(Best E) indicating the lowest energy usage, and the Average Energy Consumption (Avg. E)
representing mean energy consumption.

To emphasize stability, values corresponding to unstable solutions are marked in red,
indicating networks that did not achieve stability, while stable solutions are marked in
black. This color-coding facilitates quick assessment of which algorithms balance energy
efficiency with network stability. Overall, Table 4 underscores the PHA-MD algorithm’s
superior performance, particularly in achieving stable solutions with efficient energy use
and minimal pinning nodes.

Diagnostic Visualization of the Node-Blocking Stage

To illustrate the internal mechanics of the proposed blocking stage—biologically, how
P. coffea wasps cease to visit unpromising nodes—we include the following diagnostic
plots (Figures 17–22). These figures are intended to explain how nodes are progressively
blocked or excluded from the pinning set, rather than to provide additional performance
benchmarks. For clarity, let n∗ denote the current average number of successful visits across
the remaining (non-blocked) nodes; nodes below this running threshold are provisionally
excluded from the pinning set, while blocked nodes become members of B(t). If stability
is still not achieved after blocking or excluding a node, that node can be returned to the
candidate pool, consistent with the update rules in Section 3.2.

As shown in Figure 17, the first network begins without any blocked nodes, but several
nodes lie below the threshold. Figure 18 presents the corresponding behavior for Network 2,
while Figure 19 illustrates a topology that requires fewer pinning nodes. Figures 20–22
summarize the results for the remaining networks.
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Figure 17. Blocked and excluded nodes for Network 1. Before the first epoch, there are no blocked
nodes; however, several nodes lie below the performance threshold n∗. Between iterations 150 and
600, only one node is blocked, indicating that the population had not yet identified which node should
be blocked to guarantee stability. After iteration 900, nodes n10, n8, n2, and n1 are blocked, and nodes
n4 and n5 are excluded from the pinning set; the remaining nodes then ensure network stability.
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Figure 18. Blocked and excluded nodes for Network 2. Between iterations 150 and 900, the blocking
set has a cardinality of six. The blocking node n8 at iteration 750 causes the average number of
successes of node n20 to exceed the threshold, yet node n12 is blocked at iteration 900 and nodes n20

and n10 are subsequently excluded from the pinning set.
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Figure 19. Blocked and excluded nodes for Network 3. Owing to the network topology and initial
conditions, this case requires fewer pinning nodes than Network 2 for stabilization. Between iterations
900 and 1000, the excluded node n18 appears above the threshold n∗ due to randomness and the
local/global influence coefficients of the agents.
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Figure 20. Blocked and excluded nodes for Network 4. In this case, the algorithm finishes the iterative
process with blocked nodes; unlike previous simulations, Network 4 requires a high number of
pinning nodes for stabilization, and the blocked nodes remain below the threshold n∗.
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Figure 21. Blocked and excluded nodes for Network 5. This figure shows one of two permutations of
the final blocked/excluded sets. PHA-MD may vary the order in which nodes are blocked or excluded;
some nodes are excluded because they were previously blocked, and conversely, some are blocked
because they were excluded. Therefore, solutions can differ depending on the blocking/exclusion
order while still satisfying stability.
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Figure 22. Blocked and excluded nodes for Network 6. If stability is not achieved after blocking or
excluding a node, that node can return to the candidate set (e.g., node n17 at iteration 900).

5. Conclusions
The proposed PHA-MD algorithm is an effective method for pinning control of com-

plex networks, eliminating the need for prior information on the minimal number of pinned
nodes. It is designed to solve multi-constraint optimization problems, focusing on opti-
mal node selection with the minimal number of pinned nodes, while ensuring network
stabilization through the V-stability tool.
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A stability-first evaluation has been adopted. In the pinning control setting, feasibility
(stability) is the primary objective; therefore, candidates that are energy-efficient but un-
stable are not considered valid solutions. Cross-method comparisons have been reported
under equal population and iteration budgets and with explicit instability flags, so as not
to conflate algorithmic merit with implementation details or with external enumeration re-
quired by fixed-dimension heuristics. Within this framing, PHA–MD consistently identified
smaller, stable pinning sets and competitive energy levels across increasingly challenging
network topologies.

A key advantage of PHA-MD is its ability to handle variable dimensions for its agents,
unlike current algorithms that operate with fixed dimensions. This adaptability allows
PHA-MD to address challenges related to permutations in pinning node selection, making
it a robust and versatile solution for complex network control. Consequently, the hybrid
nature of the optimization problem tackled by PHA-MD complicates direct comparisons
with other collaborative behavior algorithms.

Future research could explore various weighting methodologies in penalty functions,
analyze convergence times in border functions, and investigate more complex decision
vector dynamics. These studies could further enhance the algorithm’s efficiency and
applicability in more challenging scenarios, reinforcing its role as a leading solution in
complex network control.
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