
Academic Editor: James Jianqiao Yu

Received: 25 August 2025

Revised: 2 October 2025

Accepted: 6 October 2025

Published: 8 October 2025

Citation: Xu, M.; Yan, Y.; Wang, Q.;

Chen, H.; Zhang, Z. TRed-GNN: A

Robust Graph Neural Network with

Task-Relevant Edge Disentanglement

and Reverse Process Mechanism.

Algorithms 2025, 18, 632. https://

doi.org/10.3390/a18100632

Copyright: © 2025 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

algorithms

Article

TRed-GNN: A Robust Graph Neural Network with
Task-Relevant Edge Disentanglement and Reverse
Process Mechanism
Menghui Xu 1, Yang Yan 2,*, Qiuyan Wang 3,4, Hanning Chen 1,5,* and Zhao Zhang 6

1 School of Artificial Intelligence, Tiangong University, Tianjin 300387, China
2 School of Information Technology and Engineering, Tianjin University of Technology and Education,

Tianjin 300222, China
3 School of Computer Science and Technology, Tiangong University, Tianjin 300387, China
4 Fujian Key Laboratory of Financial Information Processing, Putian University, Putian 351100, China
5 College of Artificial Intelligence, Tianjin University of Science and Technology, Tianjin 300457, China
6 College of Mechanical Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
* Correspondence: yangyan@tute.edu.cn (Y.Y.); chenhanning@tiangong.edu.cn (H.C.)

Abstract

Graph Neural Networks (GNNs) capture complex information in graph-structured data
by integrating node features with iterative updates of graph topology. However, they
inherently rely on the homophily assumption—that nodes of the same class tend to form
edges. In contrast, real-world networks often exhibit heterophilous structures, where edges
are frequently formed between nodes of different classes. Consequently, conventional
GNNs, which apply uniform smoothing over all nodes, may inadvertently aggregate
both task-relevant and task-irrelevant information, leading to suboptimal performance
on heterophilous graphs. In this work, we propose TRed-GNN, a novel end-to-end GNN
architecture designed to enhance both the performance and robustness of node classification
on heterophilous graphs. The proposed approach decomposes the original graph into a task-
relevant subgraph and a task-irrelevant subgraph and employs a dual-channel mechanism
to independently aggregate features from each topology. To mitigate the interference
of task-irrelevant information, we introduce a reverse process mechanism that, without
compromising the main task, extracts potentially useful information from the task-irrelevant
subgraph while filtering out noise, thereby improving generalization and resilience to
perturbations. Theoretical analysis and extensive experiments on multiple real-world
datasets demonstrate that TRed-GNN not only achieves superior classification performance
compared to existing methods on most benchmarks, but also exhibits strong adaptability
and stability under graph structural perturbations and over-smoothing scenarios.

Keywords: graph neural networks (GNNs); heterophilous graphs; disentangled representation
learning; reverse process

1. Introduction
Graph-structured data are ubiquitous in real-world scenarios. Examples include social

networks, which store and represent interpersonal relationships, interactions, and infor-
mation flow [1], as well as biological networks, which describe complex relationships
and interactions within biological systems [2]. Due to the inherent complexity of graph
structures and the irregularity of relationships between nodes, learning from graph data

Algorithms 2025, 18, 632 https://doi.org/10.3390/a18100632

https://doi.org/10.3390/a18100632
https://doi.org/10.3390/a18100632
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a18100632
https://www.mdpi.com/article/10.3390/a18100632?type=check_update&version=1

Algorithms 2025, 18, 632 2 of 16

has long been an important research focus. Graph Neural Networks (GNNs), particu-
larly Graph Convolutional Networks (GCNs) have emerged as powerful algorithms for
processing graph-structured data, capable of capturing rich graph representations by ag-
gregating information from neighboring nodes. Owing to their remarkable performance,
GNNs have been widely applied to a variety of graph-based learning tasks, such as node
classification [3], link prediction [4], and graph classification [5].

However, many GCNs are designed under the homophily assumption, wherein nodes
of the same class tend to be connected by edges. Some studies have shown that GCNs
can also perform well on heterophilous graphs with low homophily rates. To learn node
representations in heterophilous graphs, GNNs often need to capture long-range interac-
tions between nodes, which typically require stacking multiple message-passing layers [6].
Nevertheless, both empirical and theoretical studies have demonstrated that GNNs tend to
over-smooth node representations across layers, significantly limiting their generalization
ability beyond homophily [7]. Recently, GCNs have been extended to heterophilous graphs.
For example, GCN-IED updates the graph topology to introduce direct edges and employs
scalable neighborhood aggregation to explore latent edges from multi-hop neighbors [8].
Similarly, LAAH leverages label information from different neighborhoods to guide adap-
tive aggregation. However, such approaches cannot fully avoid the influence of inter-class
information, which may be inadvertently aggregated into the representations of nodes
from different classes, thereby causing class indistinguishability [9].

One potential reason for the suboptimal performance of GNNs on heterophilous
graphs lies in the mismatch between node labels and graph links. The former serves as
the target for the classification task that GNNs aim to predict, while the latter determines
how messages are propagated between nodes to achieve this objective. In homophilous
graphs, the two are closely aligned, as most connected nodes belong to the same class.
However, in heterophilous graphs, the motivation for establishing connections between
nodes may be ambiguous with respect to the classification task. For example, in social
networks, numerous connections exist between users with different interests, backgrounds,
or professions [10]. This means that, during information propagation over the network,
harmful or distracting information may be introduced. Existing state-of-the-art GCN
models often fail to fully identify and differentiate such irrelevant or harmful information
in the local neighborhood, making node representations prone to entanglement with
incorrect signals and thus reducing robustness. An effective classification design should be
able to identify task-irrelevant connections while extracting the most relevant information
for prediction. However, in real-world datasets, node features are often noisy, and the
connections between nodes may not reflect their class relationships. Existing techniques
typically parameterize the weights of node pairs to indicate similarity or dissimilarity,
but such approaches do not effectively assess the correlation between node connections
and downstream task objectives.

In this paper, we propose an end-to-end node classification framework named TRed-
GNN. We assume that the primary reason two nodes are connected is their similarity in
features, and such features are not necessarily related to the target task. Some studies have
divided the edges of a graph into two complementary sets, each representing potential rela-
tionships between nodes [11]. However, this division is not entirely accurate, as there may
still exist useful information in connections between two task-irrelevant nodes. Therefore,
we categorize node connections as task-relevant or task-irrelevant. In the implementa-
tion, we design a residual mechanism to distinguish between these types of edges. Node
features are then aggregated separately over these connections to produce disentangled
representations. Furthermore, a reverse process is introduced to extract latent information
from task-irrelevant connections. To theoretically support our proposed algorithm, we

Algorithms 2025, 18, 632 3 of 16

conduct extensive experiments on real-world datasets and provide a detailed analysis of
the feasibility of our model. In summary, the main contributions of this work are as follows:

• We propose TRed-GNN, a novel framework for node classification. By disentangling
graph edges into task-relevant and task-irrelevant subgraphs, TRed-GNN mitigates
noise from edge heterogeneity and processes information through independent chan-
nels. This dual-path design improves classification accuracy, especially on graphs
with complex heterogeneous structures.

• To handle edge heterogeneity and node-level noise, TRed-GNN introduces a reverse
process on the task-irrelevant subgraph. This mechanism recovers useful information
while suppressing noise, effectively alleviating over-smoothing.

• We conducted systematic experiments on multiple real-world datasets (e.g., Cora,
Citeseer, Chameleon) to evaluate TRed-GNN, demonstrating its superior performance
over existing graph neural network methods across graphs with varying levels of
homogeneity and heterogeneity.

2. Related Work
In this section, we review the fundamental research on Graph Neural Networks

(GNNs) and their extensions to heterophilous graph scenarios. We also discuss recent
advances in task-relevance modeling and disentangled representation learning and analyze
the causes of the over-smoothing problem along with existing mitigation strategies. These
studies lay the theoretical foundation for the proposed TRed-GNN framework and high-
light our innovations in task-relevance modeling and robustness enhancement. As shown
in Table 1, by comparing with existing methods, we clearly demonstrate the unique mecha-
nism and advantages of the TRed GNN model in dealing with these problems.

Table 1. Comparative table: task relevance, heterophily handling, and over-smoothing mitigation.

Methods Task Relevance Handling Heterophily Handling Over-Smoothing Mitigation

GCN Does not explicitly handle task relevance.
All neighbors are treated equally.

Assumes homophily (same class nodes
are connected), struggles
with heterophily.

Over-smoothing becomes a major issue
in deeper layers.

GAT
Uses attention to weigh the importance
of neighbors, but does not separate
task-relevant and irrelevant edges.

Self-attention helps focus on more
relevant neighbors, but still fails with
heterophily in certain cases.

Attention may reduce over-smoothing,
but it is still problematic with
deep layers.

FactorGNN
Factorizes node representations,
but does not explicitly separate
task-relevant information.

Handles heterophily with factorization,
but no direct mechanism for isolating
task-irrelevant information.

Does not address
over-smoothing effectively.

MixHop
Mixes features from different
neighborhood levels, but task relevance
is not explicitly modeled.

Captures higher-order neighbors but
may struggle with heterophily where
connections do not align with
node labels.

The mixing of high-order features leads
to over-smoothing as layers increase.

FAGCN

Uses frequency-based aggregation to
improve task relevance, but lacks explicit
separation of relevant and
irrelevant edges.

Improves handling of heterophilous
graphs but does not model task
relevance clearly.

Frequency aggregation reduces
over-smoothing but can still be an issue
with deeper layers.

ACM-GNN
Adapts the aggregation process but does
not explicitly split task-relevant from
irrelevant edges.

Self-adaptive channel mixing improves
performance on heterophilous graphs
but does not isolate irrelevant edges.

Combines different filter types but does
not completely mitigate over-smoothing.

TRed-GNN
Explicitly separates task-relevant and
task-irrelevant edges, ensuring that only
relevant information is used.

Uses a reverse process to recover useful
information from task-irrelevant edges,
specifically designed for
heterophilous graphs.

Uses a reverse diffusion process to
recover information and prevent
over-smoothing, ensuring effective
message passing even in deep layers.

Algorithms 2025, 18, 632 4 of 16

2.1. Graph Neural Networks

GNNs are a class of neural networks that operate directly on graph structures. The core
idea of most GNNs is to utilize the information from a node’s neighborhood to construct
its task-specific representation. Based on this principle, numerous variants have been
developed, such as GCN [12], GAT [13], and GraphSAGE [14]. Among them, Graph Con-
volutional Networks primarily operate in the spectral and spatial domains. The spectral
approach defines graph convolution as a filtering operation on graph signals in the fre-
quency domain [15], while the spatial approach interprets it as an aggregation operation
between nodes [16]. In the spectral domain, convolution operations are defined via the
graph Fourier transform based on spectral graph theory. For example, BernNet employs
Bernstein polynomials to construct graph filters capable of learning arbitrary filter types,
enabling convolution to better adapt to different graph structures [17]. ChebNet further
approximates graph convolution using Chebyshev polynomials, which allows efficient
signal processing in the frequency domain while avoiding the computationally expensive
eigen-decomposition operation [18]. On the other hand, spatial-based GNNs perform
convolution operations directly on the spatial structure of the graph. For instance, GAT
applies an attention mechanism to learn the weights between each node and its neighbors,
automatically assigning importance to different neighbors [13]. GraphSAGE proposes a
framework for sampling and aggregating neighbor features [14]. However, these methods
are generally designed under the homophily assumption and largely ignore the structural
relationships in heterophilous graphs, which can lead to non-smooth variations of node
features and labels across the graph.

2.2. GNN for Heterophilous Graphs

In recent years, GCNs have been increasingly extended to heterophilous graphs, where
nodes tend to connect with others that have dissimilar features. Heterophilous graphs
emphasize the dissimilarity between a node and its neighbors, indicating that edges may
form between nodes of different types. To adapt GNNs to heterophilous graphs, several
studies have exploited remote information beyond the immediate neighborhood. For ex-
ample, Geom-GCN proposes a two-level aggregation method that leverages geometric
neighborhood selection and multi-region information aggregation to address the issue of
information mixing in conventional GNNs on heterophilous graphs [19]. H2GCN incorpo-
rates higher-order neighborhood aggregation and skip connections to better accommodate
heterophilous structures [20]. ACM-GNN enhances the flexibility of convolution through
an adaptive channel-mixing mechanism, enabling the model to select appropriate informa-
tion propagation strategies based on the characteristics of the graph, thereby improving
performance across different types of graphs [21]. GEN estimates a graph structure suitable
for GNN learning to compute node embeddings, incorporating multi-order neighborhood
information and using Bayesian inference as guidance [22].

However, these methods often overlook the underlying motivation for the connection
between two nodes and fail to associate such connections with the learning task. This
motivates the need for a model that explicitly distinguishes between task-relevant and
task-irrelevant connections. Such a design would allow us to leverage this information as
guidance, separating and extracting additional information from task-irrelevant connec-
tions with respect to the final prediction objective, thereby improving the performance of
GNNs on heterophilous graphs.

2.3. Consider Task Relevance and Disentanglement Representation Learning

The concept of task relevance has been employed in many areas of GNN research
to address various problems, such as contrastive learning [23], structure learning [24,25],

Algorithms 2025, 18, 632 5 of 16

and topology denoising [26,27]. Given that this work focuses on classification tasks, we
next review studies in this domain to highlight the unique contribution of TRed-GNN
to task-relevance modeling in GNN development. For example, GCN-LPA introduces
task-relevant structural information via label propagation to improve classification perfor-
mance and interpretability [28]. PGIB incorporates prototype learning into the information
bottleneck framework to identify critical subgraphs in the input graph that are relevant to
the classification task, using them as key prototypes [29]. These methods focus on selecting
task-relevant edges to facilitate the extraction of task-related information, but they lack
mechanisms to handle task-irrelevant information, and their modeling of task relevance is
typically one-sided and static. In contrast, TRed-GNN adopts a disentangled paradigm
that separates both the network topology and node features into task-relevant and task-
irrelevant components. Specifically, it explicitly models task-irrelevant information to
reduce noise while enhancing feature extraction within task-relevant information. By ana-
lyzing the graph topology from a more comprehensive perspective, our approach improves
classification performance.

Disentangled representation learning aims to learn interpretable and independent
representations, where each dimension or subspace corresponds to a distinct factor of
the data [30]. In recent years, disentangled representation learning has been increasingly
applied to GNNs to address graph-related tasks. For example, IPGDN enhances model
performance by promoting independence among decomposition factors and integrating
global graph information [31]. DisenGCN introduces a neighborhood routing mechanism
that iteratively partitions each node’s neighborhood into different segments, thereby dis-
entangling node information [32]. FactorGNN takes a generative perspective, decoupling
node representations into multiple factor graphs to capture higher-order semantics [33].
IDGCL employs multi-channel disentangled modeling to accurately distinguish multiple
independent factors in a graph, effectively improving interpretability in graph classification
tasks [34]. It is worth noting that our model shares certain similarities with FactorGNN in
that both decompose the original network topology into multiple subgraphs. However,
there are fundamental differences between the two. First, FactorGNN merely partitions
neighboring nodes into multiple semantic factors without explicitly modeling task rel-
evance. Second, it allows an edge to belong to multiple subgraphs, which may lead to
potential overlaps. In contrast, TRed-GNN adopts an edge-separation strategy to generate
two complementary subgraphs representing task-relevant and task-irrelevant topologies. It
then introduces a reverse process mechanism within the subgraphs to enhance classification
capability and generalization.

2.4. The Problem of Over-Smoothing in GNNs

Many empirical and theoretical studies have shown that GNNs tend to smooth node
representations across layers, ultimately leading to learned representations that become
overly similar. During the aggregation process, information from neighboring nodes be-
comes increasingly alike, and as this balance is reached, node representations become
indistinguishable. However, existing studies have proposed various hypotheses to address
this issue. For instance, CPGNN introduces a learnable compatibility matrix to capture
information from non-adjacent but label-consistent nodes [35]. FSGNN proposes soft
feature selection, which adaptively aggregates features from neighboring and multi-hop
nodes [36]. LRGNN employs a low-rank approximation to compute a label relationship
matrix, which is then used for signed message passing [37]. Despite these advances, many
methods still cause global node representations to converge toward similarity, which de-
grades classification performance. To address this, Ordered GNN retains non-aggregated
information by extracting and preserving it separately and proposes ordering message

Algorithms 2025, 18, 632 6 of 16

passing to prevent the mixing of messages from different hops [38]. FAGCN introduces a
self-gating mechanism that adaptively leverages both low-frequency and high-frequency
signals [39]. ACM-GCN uses a combination of low-pass and high-pass filters to adap-
tively capture node-level local information [21]. GRAND strengthens the understanding of
over-smoothing by drawing analogies between GNN architectures and the heat diffusion
equation [40]. DropEdge randomly removes edges from the graph to cut off message propa-
gation between adjacent nodes [41]. While these methods may mitigate the over-smoothing
problem to some extent, learning discriminative representations between adjacent nodes
remains challenging. In our approach, we introduce a reverse process mechanism to al-
leviate over-smoothing. Notably, we apply this mechanism only to the task-irrelevant
subgraph. This is because the task-relevant subgraph is used for the main task learning and
should directly participate in forward information propagation, whereas the task-irrelevant
subgraph is not intended to enhance classification performance directly. Instead, it serves to
extract useful information from the latent structure and filter out noise without interfering
with the main task learning, thereby improving robustness and generalization.

3. Notations and Preliminaries
In this section, we represent an undirected graph as G = (V, E), where V denotes the

set of nodes and E ⊆ |V| × |V| denotes the set of edges. Let X ∈ Rn×d denote the node
feature matrix, where d is the dimensionality of node features and n is the number of nodes.
We use X[i,:] to denote the i-th row of X, corresponding to node vi. Let A ∈ Rn×n be the
adjacency matrix of G, where Ai,j = 1 indicates that there exists an edge between node i
and node j, and Ai,j = 0 otherwise. The degree matrix D is obtained by summing each row
of A and placing the results along the diagonal. The adjacency matrix with self-loops is
defined as Ã = A + I, and the corresponding degree matrix is D̃ = D + I. In this paper,
we decompose the original graph into two subgraphs: a task-relevant subgraph and a task-
irrelevant subgraph, whose adjacency matrices are denoted as AR and AIR, respectively.
For node classification tasks, each node is assigned with a label ci out of C ≤ N classes
and have a ground truth one-hot vector yi ∈ RC. In this context, real-world graphs can be
divided into homophilous and heterophilous ones based on the extent of similarity in class
labels among connected nodes. The homophily ratio is shown in Table 2.

Table 2. Statistics of experimental datasets.

Dataset Nodes Edges Features Classes Homophily (%)

Cora 2708 1433 1433 7 81
Citeseer 3327 3703 3703 6 74
Chameleon 2277 31,421 2325 5 23
Squirrel 5201 198,493 2089 5 22
Film 7600 26,752 931 5 22
Cornell 183 280 1703 5 31
Wisconsin 251 466 1703 5 21
Texas 183 295 1703 5 11

4. The Proposed Method
In this section, we present an end-to-end graph learning framework, TRed-GNN,

which extends Graph Neural Networks to heterophilous graphs. An overview of the
model is shown in Figure 1. The core idea is to decompose the original GNN graph
structure into two subgraphs and process them separately, using the graph topology to
guide task-relevant and task-irrelevant node features.

Algorithms 2025, 18, 632 7 of 16

GCN(ZR, AR)

Reverse(ZIR)

Task-Relevant Topology

Task-Irrelevant Topology

Z`R

Z`IR

Figure 1. Illustration of TRed-GNN framework where A and X denote the adjacency matrix and
feature matrix of nodes, respectively. First, X is passed through a fully connected layer to learn
node representations more suitable for the task. Then, it is mapped to different latent subspaces via
separate channels, R and IR. Next, an edge splitting operation is performed to divide the original
graph edges into two complementary sets. Node information can then be aggregated separately on
the different edge sets to produce disentangled representations for the subsequent edge splitting in
the next layer. By extracting latent information from Z′

IR, the task is then predicted by combining it
with Z′

R.

4.1. Dynamically Update Graph Topology

Before updating the graph topology, the original node features X may be irregularly
distributed and not directly related to the task. Therefore, we first apply a fully connected
layer to learn node representations that are more suitable for the task. Specifically, the fea-
ture matrix X is passed through a fully connected neural network (FCNN) parameterized
by fθ , as formulated below:

H0 = fθ(X) (1)

where fθ denotes a FCNN, which is then applied to the feature matrix using the ReLU
activation function.

Next, the updated feature matrix is fed into two separate channels to extract task-
relevant and task-irrelevant information from the nodes. We project the above feature
matrix into different subspaces:

Z(0)
s = σ(WT

s H0 + bs) (2)

where Ws ∈ Rd×d and bs ∈ Rd are learnable parameters in channel s ∈ {R, IR}, d denotes
the dimension of the node hidden states, and σ represents the non-linear activation function.

First, we assume that the connection between two nodes is primarily due to their
similarity in certain features. However, such feature similarity may be relevant to the
current learning task, irrelevant, or even harmful. Based on this assumption, we can adopt
a flexible approach by assigning continuous weights ranging from 0 to 1 to soften the
node connections, reflecting the varying degrees of task relevance or irrelevance of each
edge. However, determining AR and AIR independently based on node similarity metrics
may fail to fully capture the complex interactions between the two channels and may
reduce attention to topological distinctions. To address this issue, for an edge A(i,j), we
parameterize the difference between AR(i,j) and AIR(i,j) by solving the following equation:AR(i,j) − AIR(i,j) = αi,j

AR(i,j) + AIR(i,j) = 1
(3)

Algorithms 2025, 18, 632 8 of 16

where AR(i,j) =
1+αi,j

2 and AIR(i,j) =
1−αi,j

2 , with −1 ≤ αi,j ≤ 1. To effectively quantify the
interaction between the task-relevant and task-irrelevant aspects of each edge, we introduce
a residual mechanism:

αi,j = tanh
(

g
[

ZR[i,:] ⊕ ZIR[i,:] ⊕ ZR[j,:] ⊕ ZIR[j,:]

]T
)

(4)

where g is a learnable convolution function, and tanh is the hyperbolic tangent activation
function, which constrains the output within the range [−1, 1].

4.2. Neighborhood Aggregation

Since the split graph topologies reveal partial relationships between nodes in dif-
ferent latent spaces, they can be used to aggregate information between different nodes.
Specifically, we first use GCN to aggregate task-relevant node information, as given by the
following equation:

Z(l+1)
R = σ

(
Z(l)

R W(l)
m + D− 1

2 ARD− 1
2 Z(l)

R W(l)
n

)
(5)

where Wm and Wn are learnable weight matrix, σ is the activation function, and D is the
degree matrix associated with the adjacency matrix A.

Next, we aim to learn to recover the information from the input space based on a
certain output space. However, in traditional GNNs, node representations are typically
obtained by aggregating information from neighboring nodes through message passing.
This process tends to push the representations of adjacent nodes toward similarity, and the
over-smoothing phenomenon becomes more severe as the number of graph layers increases.
To alleviate this issue, we propose using a reverse diffusion model, whose core idea is to
invert the diffusion process in traditional GNNs. Specifically, the reverse diffusion process
attempts to “trace back” the node representations to their pre-diffusion state, thereby
avoiding over-smoothing. Based on this idea, we apply the reverse diffusion process to
the task-irrelevant graph topology so that it can re-extract useful information from the
topological structure. The formula is as follows:

Z(l+1)
IR = R(Z(l)

IR) (6)

where R is a reverse-process function. In this paper, we implement it by using an MLP as
the reverse mapping function through structural design.

Next, we incorporate the useful information from task-irrelevant nodes into the
task-relevant node representations through weighted fusion, as expressed by the follow-
ing equation:

Z = λZR + γZIR (7)

where ZR and ZIR denote the task-relevant and task-irrelevant representations, respectively,
and λ, γ ∈ R are hyperparameters controlling their weights.

Finally, we use the cross-entropy loss function to compute the loss and improve the
model performance by minimizing the following training objective.

L = − 1
|Vtrn| ∑

vi∈Vtrn

yT
i log(ŷi) (8)

where vi denotes a training node, Vtrn is the number of training nodes, yi ∈ RC is the
ground-truth label of the i-th node (one-hot encoded), and ŷi ∈ RC is the predicted
probability distribution of the i-th node (typically obtained via softmax), where C is the
number of classes.

Algorithms 2025, 18, 632 9 of 16

4.3. Computational Complexity Analysis

Let the graph be G = (V, E), where the adjacency matrix A ∈ Rn×n and the feature
matrix X ∈ Rn×d. In each layer, TRed-GNN requires the following operations: (1) feature
projection and the reverse process MLP with complexity O(n2d); (2) edge disentanglement
with residual coefficient computation αi,j, costing O(|E|d); (3) message passing on both task-
relevant and task-irrelevant subgraphs, with a total cost of O(|E|d); (4) weighted fusion,
which costs only O(nd) and can be neglected in asymptotic analysis. Therefore, the overall
time complexity per layer of TRed-GNN is O(n2d + |E|d). To assess the computational
efficiency of all compared methods, we provide a comparison for the time complexities of
the compared algorithms, outlined in Table 3.

Table 3. A comparison for computational complexity of all compared methods, where |E| is the
number of edges.

Methods GCN GAT FAGCN MixHop GPR-GNN

Time complexity O(|E|d) O(n2d + |E|d) O(|E|d) O(n2d + |E|d) O(|E|d)

Methods SGC ACM-GNN FactorGNN Geom-GCN TRed-GNN

Time complexity O(n2) O(n2 + nd) O(n2d) O(n2d) O(n2d + |E|d)

5. Experiments
Datasets: In this section, we evaluate TRed-GNN on real-world datasets. We use the
following real-world datasets: Cora, Citeseer, Cornell, Chameleon, Squirrel, Wisconsin,
Texas, and Film.
Data Splits: For homophilous graphs, we follow the standard setting of selecting 20 nodes
per class for training, 500 nodes for validation, and 1500 nodes for testing. For heterophilous
graphs, we split the data into training, validation, and test sets with ratios of 60%, 20%,
and 20%, respectively.
Baselines and Implementation Details: To assess the performance of our model, we com-
pare it against several state-of-the-art GNN models and task-specific models. Specifically,
the baseline models include GCN [12], GAT [13], SGC [42], GraphSAGE [14], APPNP [43],
Geom-GCN [19], ACM-GCN [21], H2GCN [20], FAGCN [39], GPR-GNN [44], LRGNN [37],
and MixHop [45]. For all baselines and TRed-GNN, we set d = 64 as the number of hidden
units to ensure a fair comparison, use Adam as the optimizer, and tune hyperparameters for
each dataset using Optuna on the validation set. For the multi-layer perceptron, the hidden
feature dimension is set to 512, and training is performed for 200 runs. After obtaining
the optimal hyperparameters, we train the model for 1000 epochs with an early stopping
strategy of 100 epochs patience. The final performance is reported as the average over
10 runs with different random data splits on the test set.

5.1. Classification Results

Table 4 presents the node classification accuracy of various models on real-world
datasets. We observe that, compared to the strongest baseline model, TRed-GNN achieves
improvements of 4.62 percentage points, 7.85 percentage points, 4.00 percentage points,
and 6.56 percentage points on the Citeseer, Wisconsin, Texas, and Squirrel datasets, re-
spectively. On the Cora, Chameleon, and Film datasets, it yields smaller gains of 2.03 per-
centage points, 2.47 percentage points, and 0.57 percentage points, respectively. How-
ever, on the Cornell dataset, its performance is lower than that of the ACM-GNN model,
which we attribute to the relatively low edge density and sparser topology of Cornell,
limiting our model’s ability to extract sufficient useful information when partitioning the
graph topology.

Algorithms 2025, 18, 632 10 of 16

Table 4. Performance (%) comparison of 8 real heterophilous datasets. The best and second-best
results are highlighted in bold and underlined, respectively. Error reduction gives the average
improvement of TRed-GNN upon baselines w/o Basic GNNs.

Method Cora Citeseer Chameleon Wisconsin Texas Squirrel Cornell Film

GCN 79.74± 1.2 69.56± 1.5 67.69± 1.9 59.51± 3.3 61.74± 3.8 55.25± 1.5 52.85± 6.0 31.26± 1.1
GAT 79.13± 1.1 69.91± 1.2 67.96± 2.4 57.72± 4.5 55.43± 5.4 54.76± 2.2 51.24± 5.0 30.97± 1.3
SGC 82.21± 1.0 69.92± 1.9 67.34± 2.3 57.91± 3.5 55.42± 2.2 54.86± 1.3 50.42± 1.0 30.58± 0.8
GraphSAGE 86.88± 1.3 76.72± 1.4 62.24± 2.0 77.25± 3.1 71.84± 3.0 44.25± 1.1 62.24± 3.2 34.17± 1.2
APPNP 87.36 ± 0.6 75.29± 1.6 54.39± 1.9 45.69± 2.9 58.92± 2.5 35.11± 1.5 58.65± 2.6 26.53± 1.1
GeomGCN 84.83± 0.9 75.41± 1.3 60.92± 1.0 64.51± 4.1 68.38± 3.5 38.09± 1.8 59.45± 2.9 31.65± 1.5
ACM-GCN 86.71± 1.0 77.09 ± 1.7 66.47± 2.2 76.47± 5.9 74.05± 1.3 54.38± 4.9 84.86 ± 1.0 36.12± 1.1
H2GCN 81.46± 1.4 68.72± 2.0 62.91± 1.9 82.63 ± 4.0 79.81± 7.3 45.13± 1.9 79.62± 4.9 38.46 ± 1.0
FAGCN 82.65± 1.3 70.34± 1.6 68.09± 1.8 82.35± 4.4 80.35± 5.5 50.46± 2.6 79.42± 5.5 37.94± 1.4
GPR-GNN 81.51± 1.5 69.63± 1.7 69.62± 1.7 82.32± 4.1 81.76 ± 4.9 54.12± 1.6 79.95 ± 5.3 38.30± 1.1
LRGNN 72.65± 1.3 60.53± 1.1 77.16± 2.9 78.25± 3.2 71.14± 3.1 56.75 ± 2.2 56.86± 4.0 21.65± 1.3
MixHop 81.93± 0.6 71.45± 0.9 81.21 ± 2.2 79.81± 3.2 77.24± 1.9 55.31± 1.6 78.3 ± 2.4 37.32± 0.9

TRedGNN 89.13 ± 1.1 80.65 ± 1.7 83.22 ± 2.1 86.48 ± 4.3 85.03 ± 4.0 60.47 ± 1.5 76.12± 3.5 38.68 ± 0.8
w/o ZIR 76.65± 0.8 70.23± 1.2 73.67± 2.5 78.11± 4.5 75.41± 4.2 48.87± 1.9 67.21± 2.9 30.54± 1.2
w/o R 83.22± 1.1 77.08± 1.4 79.12± 2.9 80.53± 5.1 78.24± 4.1 54.96± 1.4 73.32± 3.1 34.23± 1.3

Importantly, beyond mean accuracy, we also report 95% confidence intervals across
10 random runs to ensure fairness and statistical robustness in Table 5. The intervals show
that the improvements in TRed-GNN over baselines are consistent and remain significant
within the estimated uncertainty ranges. For example, on Citeseer and Texas, TRed-GNN
not only achieves higher mean accuracy but also exhibits tighter confidence intervals,
indicating both stability and reliability. This further demonstrates that the observed perfor-
mance gains are not due to randomness but reflect the inherent advantage of disentangling
task-relevant and task-irrelevant structures.

Table 5. Accuracy (%) with 95% confidence intervals across 10 runs. Bold indicates the best performance.

Method Cora Citeseer Chameleon Wisconsin Texas Squirrel Cornell Film

GCN 79.74 ± 0.74 69.56 ± 0.93 67.69 ± 1.18 59.51 ± 2.05 61.74 ± 2.36 55.25 ± 0.93 52.85 ± 3.72 31.26 ± 0.68
GAT 79.13 ± 0.68 69.91 ± 0.74 67.96 ± 1.49 57.72 ± 2.79 55.43 ± 3.35 54.76 ± 1.36 51.24 ± 3.10 30.97 ± 0.81
SGC 82.21 ± 0.62 69.92 ± 1.18 67.34 ± 1.43 57.91 ± 2.17 55.42 ± 1.36 54.86 ± 0.81 50.42 ± 0.62 30.58 ± 0.50
GraphSAGE 86.88 ± 0.81 72.02 ± 1.24 62.24 ± 1.49 62.71 ± 2.60 58.92 ± 1.55 55.25 ± 0.99 52.31 ± 0.74 30.86 ± 0.74
APPNP 87.36 ± 0.37 75.29 ± 0.99 54.39 ± 1.18 45.69 ± 1.80 58.92 ± 1.55 35.11 ± 1.12 58.65 ± 1.61 26.53 ± 0.68
GeomGCN 84.83 ± 0.56 75.41 ± 0.80 60.92 ± 0.62 64.51 ± 0.68 68.38 ± 2.17 38.09 ± 1.12 59.45 ± 1.80 31.65 ± 0.93
ACM-GCN 86.71 ± 0.62 77.09 ± 1.05 66.47 ± 1.36 76.47 ± 3.65 74.05 ± 0.80 54.38 ± 3.04 84.86 ± 0.62 36.12 ± 0.68
H2GCN 81.46 ± 0.87 78.62 ± 1.24 82.63 ± 2.48 82.63 ± 2.48 79.48 ± 2.29 50.43 ± 0.81 79.62 ± 3.04 38.46 ± 0.99
FAGCN 82.65 ± 0.81 70.34 ± 0.99 69.08 ± 1.12 65.32 ± 2.71 60.35 ± 3.41 50.46 ± 1.61 79.25 ± 3.41 37.94 ± 0.87
GPR-GNN 81.51 ± 0.93 69.63 ± 1.05 69.68 ± 1.05 82.32 ± 2.54 81.76 ± 3.05 55.16 ± 0.74 79.95 ± 3.47 38.31 ± 0.68
LRGNN 72.65 ± 0.81 70.53 ± 0.68 77.16 ± 1.80 78.25 ± 1.99 71.14 ± 1.92 56.75 ± 1.36 56.86 ± 2.48 21.65 ± 0.80
MixHop 81.36 ± 0.56 71.45 ± 0.56 81.03 ± 0.87 79.71 ± 2.60 77.24 ± 1.18 55.31 ± 1.05 62.34 ± 2.60 32.37 ± 0.56

TRedGNN 89.13 ± 0.68 80.65 ± 1.05 83.22 ± 1.30 86.48 ± 2.67 85.03 ± 2.48 60.47 ± 0.93 76.12 ± 2.17 38.66 ± 0.50
w/o ZIR 76.65 ± 0.50 70.23 ± 0.74 73.67 ± 1.55 78.11 ± 2.79 75.41 ± 2.61 48.87 ± 1.18 67.21 ± 1.80 30.54 ± 0.74
w/o R 83.22 ± 0.68 77.08 ± 0.87 79.12 ± 1.80 80.53 ± 3.16 78.24 ± 2.54 54.96 ± 0.87 73.32 ± 1.92 34.23 ± 0.80

Overall, TRed-GNN demonstrates superior and statistically robust performance on
most datasets, strongly indicating that our model can effectively reduce inter-class edge
noise propagation during node classification.

5.2. Ablation Experiment

To evaluate the effectiveness of each module in our model, we conducted ablation
experiments on TRed-GNN and its variants across eight real-world datasets. Specifically,
we define two variants: (1) “w/o ZIR”: without the task-irrelevant channel, and (2) “w/o

Algorithms 2025, 18, 632 11 of 16

R”: without the reverse process. From Figure 2, we can draw the following conclusions.
First, when the distinction between task-relevant and task-irrelevant graph topologies is
removed, the model’s performance drops significantly. This confirms that incorporating
the classification task into the topology design helps reduce the interference of irrelevant
information, thereby improving the model’s ability to focus on task-relevant information.
Second, removing the reverse process also leads to a noticeable drop in accuracy, which
validates that the reverse process effectively enhances graph structure learning.

Cora Citeseer Chameleon Squirrel
0

10

20

30

40

50

60

70

80

90

100
A
cc
ur
ac
y(
%
)

 TRed-GNN
 TRed-GNN w/o ZIR
 TRed-GNN w/o Reverse

Figure 2. Ablation study of TRed-GNN on four datasets in node classification.

5.3. Robustness Analysis

To assess the robustness of our model under graph structural perturbations, we con-
ducted structure corruption experiments on standard datasets (Cora, Citeseer, Chameleon,
and Squirrel). Specifically, we randomly rewired different proportions of edges in the origi-
nal graph structure, with perturbation rates ranging from 0 percentage point to 100 percent-
age point in increments of 20 percentage point. This setup simulates real-world scenarios
where graph structures may be incomplete, noisy, or dynamically evolving. As shown in
Figure 3, we compare our model against GCN, GAT, ACM-GNN, H2GCN, and LRGNN.
The results show that our model consistently exhibits superior performance. With increas-
ing random perturbations, false edges are more likely to connect nodes from different labels,
leading to erroneous message passing in conventional methods. This provides strong evi-
dence for the ability of TRed-GNN to distinguish between task-relevant and task-irrelevant
connections. Consequently, even when a large number of false edges are present in the
graph topology, our model can still effectively gather neighborhood information to predict
node labels. These results further demonstrate that our model has a stronger capacity to
remove irrelevant edges while preserving task-relevant structures, thereby enhancing both
robustness and stability.

Algorithms 2025, 18, 632 12 of 16

 GCN
 GAT
 ACM-GCN
 H2GCN
 LRGNN
 TRed-GNN

(a) Cora

 GCN
 GAT
 ACM-GCN
 H2GCN
 LRGNN
 TRed-GNN

(b) Citeseer

 GCN
 GAT
 ACM-GCN
 H2GCN
 LRGNN
 TRed-GNN

(c) Chameleon

 GCN
 GAT
 ACM-GCN
 H2GCN
 LRGNN
 TRed-GNN

(d) Squirrel

Figure 3. Results of different models on perturbed homophilous graphs. TRed-GNN exhibits superior
robustness against disturbances compared to other models. The line charts display the accuracy
of different models under varying levels of perturbed rates in (a) the Cora dataset, (b) the Citeseer
dataset, (c) the Chameleon dataset, and (d) the Squirrel dataset. TRed-GNN is able to identify
the falsely injected (the task-irrelevant) graph edges, and exclude these connections from the final
predictive learning, thereby displaying relative robust performance against adversarial edge attacks.

5.4. Relieve the Problem of Excessive Smoothness

To evaluate the over-smoothing behavior of TRed-GNN, we varied the number of
layers in the model and compared its performance with GCN and GAT. As shown in
Figure 4, when the number of layers reaches two, both GCN and GAT achieve their highest
performance. However, as the number of layers increases, their accuracy gradually declines.
In contrast, TRed-GNN exhibits a curve that rises steadily before leveling off. Although it
starts with relatively lower accuracy, the performance of TRed-GNN improves consistently
as the number of layers increases, ultimately achieving accuracy significantly higher than
that of GCN and GAT. We attribute this to the fact that TRed-GNN can adaptively utilize
edges from different layers to produce results aligned with the target task. Furthermore,
by incorporating the reverse process to gather hidden node information, the model enriches
node representations and thereby alleviates the over-smoothing problem.

Algorithms 2025, 18, 632 13 of 16

 GCN
 GAT
 MLP
 TRed-GNN
 w/o ZIR

(a) Cora

 GCN
 GAT
 MLP
 TRed-GNN
 w/o ZIR

(b) Citeseer

 GCN
 GAT
 MLP
 TRed-GNN
 w/o ZIR

(c) Chameleon

 GCN
 GAT
 MLP
 TRed-GNN
 w/o ZIR

(d) Squirrel

Figure 4. Accuracy comparison of GCN, GAT, MLP, TRed-GNN, and its variant w/o ZIR on
four datasets ((a) Cora, (b) Citeseer, (c) Chameleon, and (d) Squirrel) as the number of layers increases,
illustrating the impact of model depth on performance and over-smoothing.

In addition, we include the variant “w/o ZIR”, which removes the dual-channel
disentanglement and propagates messages over a single graph structure. As illustrated in
the figure, “w/o ZIR” performs similarly to GCN in the shallow regime, but its accuracy
stabilizes at a slightly higher level when the depth increases, showing that the reverse
process can still alleviate part of the over-smoothing. However, compared with the full
TRed-GNN, the gap is significant, especially on heterophilous datasets such as Chameleon
and Squirrel, where dual-channel disentanglement is crucial. This clearly demonstrates that
separating task-relevant and task-irrelevant edges plays an indispensable role in enhancing
model robustness against over-smoothing.

5.5. Limitations

While TRed-GNN demonstrates robust performance in classification tasks, several
limitations and challenges must be considered when deploying the model in practical
scenarios. Many real-world graph datasets exhibit sparse connectivity between nodes,
particularly in highly heterogeneous graphs where limited edge connectivity may lead to
less pronounced performance of TRed-GNN compared to its performance on conventional
graphs. A key limitation is the model’s performance degradation on highly sparse graphs,
such as the Cornell dataset. In graphs with limited edges, the model struggles to effectively
distinguish between task-relevant and task-irrelevant edges due to insufficient structural

Algorithms 2025, 18, 632 14 of 16

information. The reverse-process mechanism may not fully compensate for this connectivity
sparsity, potentially resulting in suboptimal performance, as observed in our experiments.
Future work will focus on enhancing the model’s capability to handle sparse graphs by
incorporating additional structural priors or refining the reverse-processing mechanism for
graphs with deficient edge structures.

6. Conclusions
In this paper, we proposed a novel TRed-GNN model that leverages task-relevant and

task-irrelevant graph topologies, together with a reverse process mechanism, to effectively
address noise interference in node representations, insufficient generalization, and the
over-smoothing problem in heterophilous graphs. Extensive experiments demonstrate that
the proposed method achieves excellent performance on a variety of both homophilous
and heterophilous graph datasets. Furthermore, ablation studies confirm the necessity
of task-relevance modeling and the reverse process mechanism. For future work, we
plan to explore more fine-grained edge separation strategies and extend the framework to
graph-level tasks and dynamic scenarios.

Author Contributions: Conceptualization, M.X. and Z.Z.; methodology, M.X.; software, Z.Z.; valida-
tion, M.X., Q.W. and Y.Y.; formal analysis, Y.Y.; investigation, M.X.; resources, H.C.; data curation,
M.X.; writing—original draft preparation, M.X.; writing—review and editing, M.X.; visualization,
M.X.; supervision, Y.Y.; project administration, H.C.; funding acquisition, H.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This work was supported by the Open Research Fund of Fujian Key Laboratory of Financial
Information Processing, Putian University (NO. JXJS202507).

Data Availability Statement: Data derived from public domain resources. The data supporting this
study are openly available at https://lig-membres.imag.fr/grimal/data.html.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could be construed as influencing the work reported in this paper.

References
1. Costa, A.R.; Ralha, C.G. AC2CD: An actor–critic architecture for community detection in dynamic social networks. Knowl.-Based Syst.

2023, 261, 110202. [CrossRef]
2. Li, D.X.; Zhou, P.; Zhao, B.W.; Su, X.R.; Li, G.D.; Zhang, J.; Hu, P.W.; Hu, L. Biocaiv: An integrative webserver for motif-based

clustering analysis and interactive visualization of biological networks. BMC Bioinform. 2023, 24, 451. [CrossRef] [PubMed]
3. Li, Y.; Lin, B.; Luo, B.; Gui, N. Graph representation learning beyond node and homophily. IEEE Trans. Knowl. Data Eng. 2022,

35, 4880–4893. [CrossRef]
4. Zheng, Q.; Zhang, Y. Tagnn: Time adjoint graph neural network for traffic forecasting. In Proceedings of the International

Conference on Database Systems for Advanced Applications, Tianjin, China, 17–20 April 2023; Springer: Cham, Switzerland,
2023; pp. 369–379.

5. Li, W.; Wang, C.h.; Cheng, G.; Song, Q. Optimum-statistical Collaboration Towards General and Efficient Black-box Optimization.
arXiv 2021, arXiv:2106.09215.

6. Rusch, T.K.; Bronstein, M.M.; Mishra, S. A survey on oversmoothing in graph neural networks. arXiv 2023, arXiv:2303.10993.
[CrossRef]

7. Chen, D.; Lin, Y.; Li, W.; Li, P.; Zhou, J.; Sun, X. Measuring and relieving the over-smoothing problem for graph neural networks
from the topological view. Proc. AAAI Conf. Artif. Intell. 2020, 34, 3438–3445. [CrossRef]

8. He, L.; Bai, L.; Yang, X.; Liang, Z.; Liang, J. Exploring the role of edge distribution in graph convolutional networks. Neural Netw.
2023, 168, 459–470. [CrossRef]

9. Liu, L.; Wang, Y.; Xie, Y.; Tan, X.; Ma, L.; Tang, M.; Fang, M. Label-aware aggregation on heterophilous graphs for node
representation learning. Displays 2024, 84, 102817. [CrossRef]

10. Chen, Y.; Jiang, D.; Tan, C.; Song, Y.; Zhang, C.; Chen, L. Neural moderation of ASMR erotica content in social networks.
IEEE Trans. Knowl. Data Eng. 2023, 36, 275–280. [CrossRef]

https://lig-membres.imag.fr/grimal/data.html
http://doi.org/10.1016/j.knosys.2022.110202
http://dx.doi.org/10.1186/s12859-023-05574-9
http://www.ncbi.nlm.nih.gov/pubmed/38030973
http://dx.doi.org/10.1109/TKDE.2022.3146270
http://dx.doi.org/10.48550/arXiv.2303.10993
http://dx.doi.org/10.1609/aaai.v34i04.5747
http://dx.doi.org/10.1016/j.neunet.2023.09.048
http://dx.doi.org/10.1016/j.displa.2024.102817
http://dx.doi.org/10.1109/TKDE.2023.3283501

Algorithms 2025, 18, 632 15 of 16

11. Guo, J.; Huang, K.; Zhang, R.; Yi, X. ES-GNN: Generalizing graph neural networks beyond homophily with edge splitting.
IEEE Trans. Pattern Anal. Mach. Intell. 2024, 46, 11345–11360. [CrossRef]

12. Kipf, T. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
13. Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
14. Hamilton, W.; Ying, Z.; Leskovec, J. Inductive representation learning on large graphs. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017.
15. Bruna, J.; Zaremba, W.; Szlam, A.; LeCun, Y. Spectral networks and locally connected networks on graphs. arXiv 2013,

arXiv:1312.6203.
16. Gilmer, J.; Schoenholz, S.S.; Riley, P.F.; Vinyals, O.; Dahl, G.E. Neural message passing for quantum chemistry. In Proceedings of

the International Conference on Machine Learning, Sydney, NSW, Australia, 6–11 August 2017; PMLR; pp. 1263–1272.
17. He, M.; Wei, Z.; Huang, z.; Xu, H. Bernnet: Learning arbitrary graph spectral filters via bernstein approximation. Adv. Neural Inf.

Process. Syst. 2021, 34, 14239–14251.
18. Defferrard, M.; Bresson, X.; Vandergheynst, P. Convolutional neural networks on graphs with fast localized spectral filtering. In

Proceedings of the 30th International Conference on Neural Information Processing System, Barcelona, Spain, 5–10 December
2016.

19. Pei, H.; Wei, B.; Chang, K.C.C.; Lei, Y.; Yang, B. Geom-gcn: Geometric graph convolutional networks. arXiv 2020, arXiv:2002.05287.
[CrossRef]

20. Zhu, J.; Yan, Y.; Zhao, L.; Heimann, M.; Akoglu, L.; Koutra, D. Beyond homophily in graph neural networks: Current limitations
and effective designs. Adv. Neural Inf. Process. Syst. 2020, 33, 7793–7804.

21. Luan, S.; Hua, C.; Lu, Q.; Zhu, J.; Zhao, M.; Zhang, S.; Chang, X.W.; Precup, D. Revisiting heterophily for graph neural networks.
Adv. Neural Inf. Process. Syst. 2022, 35, 1362–1375.

22. Wang, R.; Mou, S.; Wang, X.; Xiao, W.; Ju, Q.; Shi, C.; Xie, X. Graph structure estimation neural networks. In Proceedings of the
Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 342–353.

23. Xu, D.; Cheng, W.; Luo, D.; Chen, H.; Zhang, X. Infogcl: Information-aware graph contrastive learning. Adv. Neural Inf.
Process. Syst. 2021, 34, 30414–30425.

24. Sun, Q.; Li, J.; Peng, H.; Wu, J.; Fu, X.; Ji, C.; Yu, P.S. Graph structure learning with variational information bottleneck. Proc. AAAI
Conf. Artif. Intell. 2022, 36, 4165–4174. [CrossRef]

25. Yang, M.; Shen, Y.; Qi, H.; Yin, B. Soft-mask: Adaptive substructure extractions for graph neural networks. In Proceedings of the
Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 2058–2068.

26. Zheng, C.; Zong, B.; Cheng, W.; Song, D.; Ni, J.; Yu, W.; Chen, H.; Wang, W. Robust graph representation learning via neural
sparsification. In Proceedings of the International Conference on Machine Learning, Virtual Event, 13–18 July 2020; PMLR,
pp. 11458–11468.

27. Luo, D.; Cheng, W.; Yu, W.; Zong, B.; Ni, J.; Chen, H.; Zhang, X. Learning to drop: Robust graph neural network via topological
denoising. In Proceedings of the 14th ACM International Conference on Web Search and Data Mining, Virtual Event, 8–12 March
2021; pp. 779–787.

28. Wang, H.; Leskovec, J. Unifying graph convolutional neural networks and label propagation. arXiv 2020, arXiv:2002.06755.
[CrossRef]

29. Seo, S.; Kim, S.; Park, C. Interpretable prototype-based graph information bottleneck. Adv. Neural Inf. Process. Syst. 2023,
36, 76737–76748.

30. Higgins, I.; Amos, D.; Pfau, D.; Racaniere, S.; Matthey, L.; Rezende, D.; Lerchner, A. Towards a definition of disentangled
representations. arXiv 2018, arXiv:1812.02230. [CrossRef]

31. Liu, Y.; Wang, X.; Wu, S.; Xiao, Z. Independence promoted graph disentangled networks. Proc. AAAI Conf. Artif. Intell. 2020, 34,
4916–4923. [CrossRef]

32. Ma, J.; Cui, P.; Kuang, K.; Wang, X.; Zhu, W. Disentangled graph convolutional networks. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; PMLR, pp. 4212–4221.

33. Yang, Y.; Feng, Z.; Song, M.; Wang, X. Factorizable graph convolutional networks. Adv. Neural Inf. Process. Syst. 2020,
33, 20286–20296.

34. Li, H.; Zhang, Z.; Wang, X.; Zhu, W. Disentangled graph contrastive learning with independence promotion. IEEE Trans. Knowl.
Data Eng. 2022, 35, 7856–7869. [CrossRef]

35. Zhu, J.; Rossi, R.A.; Rao, A.; Mai, T.; Lipka, N.; Ahmed, N.K.; Koutra, D. Graph neural networks with heterophily. Proc. AAAI
Conf. Artif. Intell. 2021, 35, 11168–11176. [CrossRef]

36. Maurya, S.K.; Liu, X.; Murata, T. Simplifying approach to node classification in graph neural networks. J. Comput. Sci. 2022,
62, 101695. [CrossRef]

37. Liang, L.; Hu, X.; Xu, Z.; Song, Z.; King, I. Predicting global label relationship matrix for graph neural networks under heterophily.
Adv. Neural Inf. Process. Syst. 2023, 36, 10909–10921.

http://dx.doi.org/10.1109/TPAMI.2024.3459932
http://dx.doi.org/10.48550/arXiv.2002.05287
http://dx.doi.org/10.1609/aaai.v36i4.20335
http://dx.doi.org/10.48550/arXiv.2002.06755
http://dx.doi.org/10.48550/arXiv.1812.02230
http://dx.doi.org/10.1609/aaai.v34i04.5929
http://dx.doi.org/10.1109/TKDE.2022.3206875
http://dx.doi.org/10.1609/aaai.v35i12.17332
http://dx.doi.org/10.1016/j.jocs.2022.101695

Algorithms 2025, 18, 632 16 of 16

38. Song, Y.; Zhou, C.; Wang, X.; Lin, Z. Ordered gnn: Ordering message passing to deal with heterophily and over-smoothing. arXiv
2023, arXiv:2302.01524. [CrossRef]

39. Bo, D.; Wang, X.; Shi, C.; Shen, H. Beyond low-frequency information in graph convolutional networks. Proc. AAAI Conf.
Artif. Intell. 2021, 35, 3950–3957. [CrossRef]

40. Chamberlain, B.; Rowbottom, J.; Gorinova, M.I.; Bronstein, M.; Webb, S.; Rossi, E. Grand: Graph neural diffusion. In Proceedings
of the International Conference on Machine Learning, Virtual, 18–24 July 2021; PMLR, pp. 1407–1418.

41. Rong, Y.; Huang, W.; Xu, T.; Huang, J. Dropedge: Towards deep graph convolutional networks on node classification. arXiv 2019,
arXiv:1907.10903.

42. Wu, F.; Souza, A.; Zhang, T.; Fifty, C.; Yu, T.; Weinberger, K. Simplifying graph convolutional networks. In Proceedings of the
International Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; PMLR, pp. 6861–6871.

43. Gasteiger, J.; Bojchevski, A.; Günnemann, S. Predict then propagate: Graph neural networks meet personalized pagerank. arXiv
2018, arXiv:1810.05997.

44. Chien, E.; Peng, J.; Li, P.; Milenkovic, O. Adaptive universal generalized pagerank graph neural network. arXiv 2020,
arXiv:2006.07988.

45. Abu-El-Haija, S.; Perozzi, B.; Kapoor, A.; Alipourfard, N.; Lerman, K.; Harutyunyan, H.; Ver Steeg, G.; Galstyan, A. Mixhop:
Higher-order graph convolutional architectures via sparsified neighborhood mixing. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; PMLR, pp. 21–29.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.48550/arXiv.2302.01524
http://dx.doi.org/10.1609/aaai.v35i5.16514

	Introduction
	Related Work
	Graph Neural Networks
	GNN for Heterophilous Graphs
	Consider Task Relevance and Disentanglement Representation Learning
	The Problem of Over-Smoothing in GNNs

	Notations and Preliminaries
	The Proposed Method
	Dynamically Update Graph Topology
	Neighborhood Aggregation
	Computational Complexity Analysis

	Experiments
	Classification Results
	Ablation Experiment
	Robustness Analysis
	Relieve the Problem of Excessive Smoothness
	Limitations

	Conclusions
	References

