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Abstract

Cancer classification using high-dimensional genomic data presents significant challenges
in feature selection, particularly when dealing with datasets containing tens of thousands of
features. This study presents a new application of the Simultaneous Perturbation Stochastic
Approximation (SPSA) method for feature selection on large-scale cancer datasets, rep-
resenting the first investigation of the SPSA-based feature selection technique applied
to cancer datasets of this magnitude. Our research extends beyond traditional SPSA
applications, which have historically been limited to smaller datasets, by evaluating its
effectiveness on datasets containing 35,924 to 44,894 features. Building upon established
feature-ranking methodologies, we introduce a comprehensive evaluation framework that
examines the impact of varying proportions of top-ranked features (5%, 10%, and 15%) on
classification performance. This systematic approach enables the identification of optimal
feature subsets most relevant to cancer detection across different selection thresholds. The
key contributions of this work include the following: (1) the first application of SPSA-based
feature selection to large-scale cancer datasets exceeding 35,000 features, (2) an evaluation
methodology examining multiple feature proportion thresholds to optimize classification
performance, (3) comprehensive experimental validation through comparison with ten
state-of-the-art feature selection and classification methods, and (4) statistical significance
testing to quantify the improvements achieved by the SPSA approach over benchmark
methods. Our experimental evaluation demonstrates the effectiveness of the feature selec-
tion and ranking-based SPSA method in handling high-dimensional cancer data, providing
insights into optimal feature selection strategies for genomic classification tasks.

Keywords: high dimensional data; classification models; SPSA; feature selection; machine
learning; cancer genomics

1. Introduction

The information technology industry uses the buzzword Big Data for high-dimensional
data with a large number of features. Big Data has three characteristics, which are simply
called the 3Vs—volume, velocity, and variety. This means that Big Data has a large volume,
a huge variety, and changes rapidly [1]. Data are divided into numerous categories based
on the data size, and certain datasets up to sizes of 10 terabytes or more can be considered as
Big Data. Most industries, such as the internet, biomedicine, and astronomy, have massive
data with a great number of features [2]. Scaling large databases is a huge issue in Big Data
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systems, as they usually contain lots of redundant and irrelevant data, which consumes
computing resources and also contributes to performance reduction. Thus, it is important
to reduce the unnecessary features and extract the necessary and valuable features in order
to build good models based on this Big Data. The dimensionality reduction will lower the
consumption of computer resources and also improve the model’s performance [3].

There are algorithms that reduce the dimensionality of the data that can make the
learning model more generalized and denser [4]. Dimensionality reduction is divided into
two types—feature extraction and feature selection [5]. The feature extraction technique
aims to convert high-dimensional data into a low-dimensional space. Features of low-
dimensional data are a linear or nonlinear combination of the original features. The feature
selection technique selects the best feature subsets from the original features using a certain
process. Usually, feature extraction is said to improve the model performance, but they tend
to compress and transform the original features, leading to data distortion and affecting the
efficiency of data processing [6]. On the other hand, feature selection retains the semantic
meaning of the original features and thus has better interpretability. In the feature selection
technique, the most relevant features are chosen from the original dataset, whereas feature
extraction creates new features by transforming the existing ones. This will reduce the cost
of the feature collection [7].

Feature selection is divided into three categories—filter, wrapper, and embedded.
The filter feature selection technique assumes that data is completely independent of
the classifier algorithm and forms the subset of features according to their measurement
of contribution to class attributes [8]. For the wrapper feature technique, the domain
knowledge is needed, and a performance metric is employed on the classification algorithm
for feature subset evaluation, and based on the results, it searches for an optimal feature
subset [9]. The embedded feature selection technique incorporates feature selection into
the learning process of the classifier, and then searches for a feature subset by a functional
optimization that is designed in advance. The embedded technique thus deletes the features
that have a minor influence on the outcome of the model result and only retains good
features that are essential for the model result [10].

The rest of the paper is organized as follows: Section 2 discusses related work and
highlights the shortcomings. Section 3 introduces and describes our proposed feature
selection model as well as the comparison models, and also describes different classification
models used in this research. Section 4 explains the experiment setup, statistical analysis,
and results. Finally, Section 5 concludes the paper.

2. Related Work

Many researchers in the past have carried out experiments to use feature selection
techniques and applied classification methods on reduced-dimensional data to improve
the performance of the models. The authors in [11] proposed the integration of Gradient
Boosting (GB), Random Forest (RF), Logistic Regression with Lasso Regularization, Logistic
Regression with Ridge Regression, and SVM with the K-Means-Clustering-based feature
selection method. They applied the proposed model to the Coimbra breast cancer dataset.
The authors developed a gene expression-based cancer classification network in [12]. In
this network, they used AlexNet-based transfer learning to extract the features and then
used a hybrid fuzzy ranking network to rank and select the features and finally used a
multi kernel Support Vector Machine for multiclass classification on colon, ovarian, and
lymphography cancer data.

Traditional gradient-based methods such as Forward Selection, Backward Elimina-
tion, and Stepwise Regression represent classical approaches to feature selection [13,14].
However, these methods often struggle with high-dimensional datasets due to compu-
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tational complexity and local optima issues [15]. Derivative-free optimization methods,
including Random Search [16] and Bayesian Optimization [17], have gained attention for
their ability to handle discrete and non-convex optimization landscapes typical in feature
selection problems.

The Boruta method [18] represents a notable wrapper-based approach that utilizes
Random Forest as a base classifier to identify relevant features. Boruta addresses the fea-
ture selection problem by comparing the importance of original features with randomly
permuted shadow features, providing statistical significance testing for feature relevance.
While Boruta has demonstrated effectiveness in identifying truly relevant features and
handling feature interactions [19,20], the method is computationally heavy, particularly
when applied to high-dimensional datasets with tens of thousands of features. The com-
putational burden stems from the need to repeatedly train Random Forest models with
augmented feature sets, including shadow features, making it less practical for large-scale
genomic datasets [21].

Other ensemble-based methods include Recursive Feature Elimination (RFE) with var-
ious base classifiers [22], stability selection [23], and bootstrap-based feature ranking [24].
These methods often provide robust feature selection but at increased computational cost.

In [25], the authors integrated Binary Particle Swarm Optimization (BPSO) and Grey
Wolf Optimizer (GWO) algorithm for feature selection on the Breast Cancer Wisconsin
dataset. Another approach, introducing a guided PSO approach, was presented in [26].
In [27], the authors used the Krill Herd (KH) optimization algorithm to address problems
in feature selection methods. They incorporated adaptive genetic operators to enhance the
KH algorithm.

A Genetic Algorithm-based feature selection model (GA-FS) is proposed in [28] and
was applied on a breast cancer dataset. The authors combined GA-FS with different
classification models and compared the Accuracy before and after GA-FS. Authors in [29]
proposed a two-stage feature selection method to classify colon cancer. In the filtering
phase, they used ReliefF for feature ranking and then selected the best gene expression
subset from 2000 features. Then finally applied the Support Vector Machine classifier for
classifying colon cancer.

The authors applied Recursive Feature Selection (RFE) on different classification
models to compare the performance of the models with regard to Accuracy, Precision, and
F-measures [30]. The authors used five types of feature selection methods to classify gene
expression datasets for ovarian, leukemia, and central nervous system (CNS) cancer in [31],
and after discovering the minimal feature sets, applied five classifiers for classifying the
data. In [32], authors proposed the Gradient Boosting Deep Feature Selection (GBDEFS)
algorithm to reduce the feature dimension of omics data, and thus, improved the classifier
Accuracy of gastric cancer subtype classification.

James Spall introduced the Simultaneous Perturbation Stochastic Approximation
(SPSA), which is a pseudo-gradient descent stochastic optimization algorithm in [33].
Initially, Spall introduced the SPSA method into the control area to tune a large number of
neurons of a neural network controller with applications in a water treatment plant. In the
beginning, SPSA was used in many successful applications in control problems, such as
traffic signal control [34], robot arm control [35], etc.

In [36], the authors adopted Spall’s SPSA approach for the first time to perform feature
selection for a Nearest Neighbor classifier with the Minkowski distance metric for Artificial
Nose and Golub Gene datasets. Later in [37], the authors introduced the concept of Binary
SPSA (BSPSA). The feature selection problem is treated as a stochastic optimization problem
where the features are represented as binary variables. BSPSA is used for feature selection
on both small and large datasets. In [38], the authors proposed the Simultaneous Perturba-
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tion Stochastic Approximation (SPSA) algorithm that mitigates the slow convergence issue
of BSPSA in feature selection and feature ranking. The authors compared SPSA with the
four wrapper methods on eight datasets (the largest dataset contains 2400 features) and
further applied classification on the datasets using four classifiers’ mean classification rates.

In [39], the authors also used SPSA with Barzilai and Borwein (BB) non-monotone
gains on various public datasets with Nearest Neighbors Naive Bayes classifiers as wrap-
pers. They compared the proposed method with full features against seven popular
meta-heuristics-based FS algorithms. SPSA-BB converges to a good feature set in about
50 iterations on average, regardless of the number of features (the largest dataset contains
1000 features). The authors in [40] generated subsets using Simultaneous Perturbation
Stochastic Approximation (SPSA), migrating birds optimization, and Simulated Annealing
algorithms. The subsets generated by the algorithms are evaluated by using correlation-
based FS, and the performance of the algorithms is measured using a Decision Tree (C4.5)
as the classifier. The computational experiments are conducted on the 15 datasets taken
from the UCI machine learning repository. The authors concluded that the SPSA algorithm
outperforms other algorithms in terms of Accuracy values, and all algorithms reduce the
number of features by more than 50%.

The authors in [41] present SPFSR, a novel stochastic approximation approach for
performing simultaneous k-best feature ranking (FR) and feature selection (FS) based on
Simultaneous Perturbation Stochastic Approximation (SPSA) with Barzilai and Borwein
(BB) non-monotone gains. The proposed method is performed on 47 public datasets, which
contain both classification and regression problems, with the mean Accuracy reported
from four different classifiers and four different regressors, respectively. The authors
concluded that for over 80% of classification experiments and over 85% of regression exper-
iments, SPFSR provided a statistically significant improvement or equivalent performance
compared to existing, well-known FR techniques.

As seen by the related work in the paragraphs above, the SPSA method for feature
selection has traditionally been applied to smaller datasets. In this research, we investigate
its effectiveness on large-scale datasets used for cancer classification. Our approach builds
on prior work, particularly [41], which employed feature ranking; however, we extended
this by evaluating the impact of using varying proportions of the top-ranked features (5%,
10%, and 15%). Specifically, we apply feature selection and ranking via the SPSA method
to datasets containing over 35,000 features (ranging from 35,924 to 44,894), with the goal
of identifying features most relevant to cancer detection. To the best of our knowledge,
this is the first study to apply the SPSA-based feature selection technique to such large
cancer datasets. We conducted a comprehensive experimental evaluation and analysis,
including comparisons with state-of-the-art feature selection and classification methods.
Additionally, we assessed whether SPSA yields statistically significant improvements over
ten benchmark methods.

3. Proposed Approach and Comparison Methods

In this section, we discuss our proposed methodology of feature selection based on
the SPSA algorithm. Then, we discuss other popular feature selection models—RelChaNet,
ReliefF, Genetic Algorithm, Mutual Information, Simulated Annealing, and Minimum Re-
dundancy Maximum Relevance feature selection types that we are going to use to compare
our SPSA feature selection method with. Further, we explain all the classification models
we used in this research—Decision Tree, K-Nearest Neighbors, Light Gradient Boosting
Machine, Logistic Regression, Support Vector Machine, and Extreme Gradient Boosting.

As illustrated in Figure 1, all ten cancer datasets were first divided into training (80%)
and testing (20%) subsets. Feature selection was performed only on the training data
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using all seven feature selection methods. From each training set, the top 5%, 10%, and
15% of features were selected, resulting in 30 reduced feature subsets across all datasets.
These selected feature subsets were then applied to the corresponding test sets. Next,
classification models were trained on the reduced training sets and evaluated on the held-
out test sets. Performance was assessed using Accuracy, Precision, Recall, F1 Score, and
Balanced Accuracy.
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SPSA-FS
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RelChaNet
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KNN
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ReliefF
Calculate Accuracy,
Ten Cancer LR Precision, Recall,
> g g F1 score and

Datasets (split
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XGB
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LGBM
MRMR
—

Feature
Selection (Top
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Figure 1. Overview of the proposed methodology workflow.

3.1. Proposed Methodology
3.1.1. Simultaneous Perturbation Stochastic Approximation (SPSA) Algorithm as Feature
Selection (FS) Method

Spall introduced the Simultaneous Perturbation Stochastic Approximation (SPSA) [33],
which is a pseudo-gradient descent stochastic optimization algorithm. The algorithm first
starts with a random solution of a vector, and it gradually moves towards the optimal
solution during iterations, where the current solution is perturbed simultaneously by offsets
that are random and generated from a specific probability distribution.

Let us say £ : R? — R is a real-valued objective function. Gradient descent search
starts from an arbitrary initial solution and iteratively moves toward a local minimum of
the objective function L. At each step, the gradient of the objective function is evaluated,
and the algorithm updates the solution in the direction of the negative gradient —V L. The
process continues until converging to a local minimum, where the gradient is zero. In the
language of machine learning, £ can be called as loss function for the minimization problem.
This gradient descent method cannot be applied where the loss function and loss function’s
gradient are unknown. Therefore, stochastic pseudo-gradient descent algorithms such as
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SPSA are used, so that the gradient from noisy loss function measures is approximated and
does not need the loss function information.

At each iteration «, SPSA evaluates three noisy measurements of loss functions Y and
Ve. Y& and Yy are used for gradient approximations, and J(Wj 1) is used to measure
the performance of the next iteration Wii1.

As per [33], the functions for tuning the parameters are shown in Equations (1) and (2):

a
ag = m (1)
= %zc 2)

where a, A, «, ¢, and v are algorithmic hyperparameters of SPSA. Here, a is the initial
scaling constant for the step size, A is the stability constant that shifts the denominator
to reduce large updates in early iterations, « is the decay rate of the step size, typically
chosen in (0.5, 1] for convergence guarantees, c is the initial perturbation constant control-
ling the magnitude of random offsets, and v is the decay factor controlling how quickly
perturbations decrease across iterations.

These parameters are dimensionless and require tuning for the problem at hand.
Following the SPSA literature [33,42], we set the initial values via preliminary experi-
ments, and then performed a sensitivity analysis by varying one parameter at a time
within a reasonable range while keeping the others fixed. For each configuration, we ran
10 independent trials and reported the mean results.

SPSA does not have an automatic stopping rule; thus, we specify the maximum
number of iterations as the stopping rule. The iteration sequence specified here as the
stopping criterion must be monotone and satisfy the condition

lim a; = 0.
k—ro0

Let us illustrate how the SPSA algorithm is used as a feature selection technique.
Assume X is a data matrix with dimensions n x p, where n represents observations and
p represents features. Assume Y is a response vector with dimensions n x 1. The vector
{X, Y} constitutes a dataset. Let {X = X1, X5 ... X))} denote a feature set where the jth feature
in X is represented by X;. For a subset that is non-empty, represented as X' C X, we define
Lc(X,Y) as the true value of the performance criterion of a wrapper classifier denoted by
C on the dataset. We train the classifier C albeit with an unknown £ and compute the
error rate denoted by yc(X, Y).

In this study, the wrapper classifier C is implemented as a linear Support Vector
Machine (SVM) with class-weighted loss to handle imbalance across datasets. This choice
is motivated by the small-n, large-p nature of our datasets (p ~ 36,000-45,000 features
vs. n < 600 samples), where linear models with regularization provide stable estimates
and reduce the risk of overfitting. For robustness, we also verified results using logistic
regression with an elastic net penalty, which promotes sparsity while maintaining stability
under correlated features.

Since the true error L¢ is unknown, we instead compute the empirical error rate
denoted by yc (X',Y), which can be expressed as yc = L¢ + €, where ¢ represents the noise
arising from finite-sample estimation, variability in cross-validation splits, and stochastic
elements of training. Thus, y¢c serves as a noisy but unbiased estimate of £, and SPSA
leverages this noisy feedback in approximating the gradient. The feature selection problem
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can therefore be defined by the non-empty feature set X*, and it can be determined by
Equation (3).
X* = argmin yC(X,, Y) 3)
x'cx

3.1.2. Barzilai-Borwein (BB) Method

According to the non-monotone methods concept, the non-monotone feature remem-
bers the data provided by previous iterations. One of the first non-monotone search
methods, the Barzilai-Borwein (BB) method, is described as a gradient method with a
two-point step size [43]. With the motivation from Newton’s method, the BB method
targets to approximate the Hessian matrix instead of doing the direct computation. Thus,
it computes the series of objective values that are decreasing monotonically, and hence,
the BB method performs better than the classical steep-descent methods in terms of both
performance and cost of computation.

A lot of research has happened in steepest descent methods like the BB method and
the Cauchy method [44], and the research concluded that the convergence analysis of the
BB method found to linearly converge in a convex quadratic form [45,46]. The famous BB
methods, well studied in different research areas, are Cauchy BB and cyclic BB. Cauchy
BB is the combination of BB and the Cauchy methods, which performs better than the
original BB and reduces the computation complexity by half, but it includes the steepest
descent method, whereas cyclic BB has an extra process that determines the appropriate
cycle length. Due to this shortcoming, we use the original BB method with a smoothing
effect for our SPSA feature selection (SPSA-FS) algorithm.

3.1.3. Using the BB Method in SPSA-FS

In the SPSA feature selection algorithm, we improved the speed of the convergence
by adopting a non-monotone BB step size strategy. Let @, € R? denote the estimated
parameter vector that is the feature weights at iterations k. §, = ¢(@y) represents the
estimated gradient of objective function with respect to @y. The gradient estimates here are
noisy because of the stochastic nature of the optimization; thus, we apply the smoothing to
stabilize the updates.

The BB step size at iteration k, denoted 4y, can be computed as shown in Equation (4).
This approximates the inverse Hessian using differences between the gradients and consec-
utive parameter vectors without computing the second derivatives.

o= @— 1) (8 — 8k1) s
k — A A T/(4 A ( )
(8 — &k—1) " (8 — 8—1)
For the reduction in the step size fluctuations, we smooth the step size by taking the
average of window T iterations. It is shown in Equation (5):

L1 ¢
be== ), dn )

T n=k—1+1
where B in the above equation is the smoothed step size at iteration k.

Likewise, to stabilize the gradient estimates, we average the current gradient with the
previous m gradients as shown in Equation (6), where g is the smoothed gradient that is
used to update .

1 k
s _ L A 6

n m
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By using the smoothed step size and gradient estimates, the SPSA algorithm achieves
more stable estimates and converges faster, especially in the cases of optimizing complex
or noisy functions.

As explained above, the SPSA algorithm is an iterative stochastic optimization algo-
rithm, regardless of the number of features, that approximates the gradients of the objective
function with only a few functional evolutions per iteration, which gives SPSA scalability,
noise tolerance, global search tendency, and computational efficiency. SPSA works well for
high-dimensional features without exponential cost. It handles noisy evaluation metrics
better than deterministic methods. Also, SPSA perturbs multiple features simultaneously,
which helps to avoid getting easily trapped in local optima. Finally, SPSA required fewer
evaluations than the methods that compute gradients or the methods that evaluate fitness
scores feature by feature. The hyperparameters used for SPSA are described in Table 1.

Table 1. Hyperparameters for SPSA.

Hyperparameter Values

Number of iterations (max_iters) 500

Initial step size (a) 0.01

Perturbation size (c) 0.05

Learning rate decay 0.602 (alpha), 0.101 (gamma)

3.2. Feature Selection Algorithms for Comparison
3.2.1. Neural Network Feature Selection Using Relative Change Scores (RelChaNet)

Network Pruning is a technique that identifies the less relevant features or neurons
and removes them. This technique has been extensively studied since 1988 [47]. Among
the recent advances in the pruning technique, the Neural Network Feature Selection Using
Relative Change Scores (RelChaNet) method builds upon these foundational concepts by
measuring the induced change in network parameters to guide the feature selection [48].
The authors introduced a lightweight feature selection algorithm that uses the pruning of
neurons and input layer regrowth of a dense neural network. The neuron pruning happens
when a gradient sum metric measures the relative change that occurs in a network once the
feature enters, and in the meantime, the neurons grow again randomly. Figure 2 illustrates
the relative change score calculation that is embedded in RelChaNet.

(1) first |
G, S rst layer neurons

O

Ty, Mini-batches
-

high scores

normalize

features | ¥

update

input layer neurons
input layer neurons | &

. Top K features . Random candidates

Figure 2. RelChaNet relative change scores calculation illustration [48].

Consider a neural network that consists of an input layer whose size is equal to the
total number of features that need to be selected (K) and some candidate features. Multiple
mini-batches are determined by the 7,,, hyperparameter. The first layer gradients G' are
combined in the matrix S. In the next step, this sum of gradients is normalized by the L!
norm with regard to each input neuron. This is followed by applying Z-standards to the
resulting vector, which produces the score vector s. The candidate scores are then used to
update the high scores h.



Algorithms 2025, 18, 622

9 of 61

Ultimately, all the features with K high scores remain in the network while the other
features are redrawn randomly. Before training, the first layer weights are reinitialized, and
the two hyperparameters used in RelChaNet adapt to the dataset characteristics fed to the
network. RelChaNet overcomes the general drawbacks by allowing candidate features
multiple mini-batches to demonstrate their relevance potential in the network and compares
that relevance as an induced change rather than their absolute weights. The algorithm
considers the network of the multi-layer perceptron with feed-forward architecture. This
architecture is integrated into back-propagation training using the Adam optimizer.

Let us consider a dataset with features N, selected features K, and the number of
hidden layer neurons #y;44.,. The hyperparameters for the algorithm are the ratio of
candidate features c,4;, considered at each iteration, and total mini-batches n,,,. Let us
initialize the candidate features K, with Equation (7).

Ke = round(cmtio(N - K)) (7)

The input layer size is calculated as the number of selected features K plus K.. First,
we choose the features randomly to populate the input layer; then, we start training the
neural network that runs for n,,, mini-batches. The first-layer gradients are aggregated by
addition. These gradient sums are normalized later, which results in a relative change score
s;, which is calculated by Equation (8).

Mhidden

si= ). |ISyllfori € {1,..., K+Kc} ®)
j=1

These scores are used for candidate features to update their high scores h. These
features with high scores remain, and then new feature candidates are drawn randomly.
This cycle will be repeated to gather as many features with a high score /1, and also
compare this score with incoming new features that are added in the next iterations. The
hyperparameters used for RelChaNet are described in Table 2.

Table 2. Hyperparameters for RelChaNet.

Hyperparameter Values
Number of layers 2
Hidden units per layer 50
Learning rate 0.01
Batch size 128
Number of epochs 200

3.2.2. ReliefF

ReliefF is a popular feature selection algorithm that is widely used in many industry
data applications. It is a filter-based feature selection method that selects the best features
by feature weight calculations [49]. Relief was proposed by Kira in their 1992 paper [50],
and the proposed algorithm is limited to two-class classification problems. The Relief
algorithm assigns different weights to the data features based on the correlation between
classes and the features. The feature whose weight is greater than the set threshold will be
selected as an important feature.

The main limitation of the Relief algorithm is that it only handles two-class classifica-
tion problems. In 1994, Kononenko proposed the ReliefF algorithm, which is an extension
of the Relief algorithm [51]. ReliefF can handle multiclass classification problems.

Let us assume that we have class labels of a certain training dataset C ={c1,c;, ...,
cr}. A sample R; is selected randomly from this training dataset; then, ReliefF searches for
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K-Nearest Neighbors, which are also called hits of R; from the same class, that is H]- (G=12,
..., k), and hits of R; from the different classes that is M;(c) (j =1, 2, ..., k). This procedure
repeats m times. Therefore, the feature A weight is updated using Equation (9):

k. diff(AR;H;)

W(A) = W(A) - & =505

" 9

+ : { p(c) o HFF(ARM;(c) )
cgclass(R) j=1 1—p(class(R)) mxk

where m is the total number of iterations and dif f(A, Ry , Rp) denotes the difference
between samples R; and R; in feature A. This difference is calculated using Equation (10).

% if A is continuous
dif f(A, Ry, R2) = {0, if A is discrete and R[A] = Ry[A] (10)
1, if A is discrete and R [A] # Ry[A]

The hyperparameters used for ReliefF are described in Table 3.

Table 3. Hyperparameters for ReliefF.

Hyperparameter Values
Number of neighbors (k) 20
Sample size full dataset

3.2.3. Genetic Algorithm Based Feature Selection Method (GA)

The Genetic Algorithm is an evolutionary algorithm that is inspired by the process
of natural selection and genetics for finding optimal solutions in a vast solution space.
According to the natural selection theory, the fittest individuals are selected, and then they
are used to produce the offspring. The fittest parents’ characteristics are passed on to the
offspring using crossover and mutation for a better chance of survival. The GA contains two
types of components. The first one defines the meta-parameters fitness function, selection
strategy, crossover, mutation rates, and population size. The second component is an
iterative evolutionary loop that applies the first component repeatedly so that it improves
the population [52]. In this loop, the algorithm performs the following steps: (1) Fitness
evaluation of each individual in the current population. (2) Select parents based on fitness
values. (3) Offspring generation through crossover and mutation. (4) Producing the next
generation. This evolutionary loop continues until a stopping criterion, such as the value
of the maximum number of generations, is met.

Initial Population Generation

This is the first step in the GA implementation. The initial population consists of
50 chromosomes, each representing a randomly generated feature subset. For each chro-
mosome, the genes are assigned randomly as 0 or 1, which indicates either exclusion
or inclusion of corresponding features. In order to avoid redundancy, duplicates in the
initial population are minimized. This results in diverse candidate feature subsets for the
evolutionary algorithm to explore. The length of the chromosome is the total number of
features in the subset.

Fitness Function

The fitness function evaluates each of the chromosome’s feature subsets” quality based
on the classification performance. In this step, we use the KNN (K-Nearest Neighbor)
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accuracy, which is trained and tested on selected features. We set the KNN parameters as
k = 5 and Euclidean distance as the metric. Before we proceed to classification, the features
are normalized using z-score scaling for comparability across the dimensions. The fitness
score of each chromosome is calculated as the average classification accuracy from 5-fold
cross-validation on training data.

Selection

This is an important step in the process in which parent chromosomes are selected
from the current population based on their fitness scores using tournament selection. In the
selection method, a subset of individuals is selected randomly, and the fittest individual
among them is selected as a parent. We selected tournament selection as a selection criterion,
which ensures that the fittest individuals have more chances to get selected while also
maintaining diversity. This selected parent then proceeds to the next step.

Crossover and Mutation

In this step, offspring chromosomes that form the next generation are generated by
the crossover and mutation process. Here, we implement two-point crossover, where two
crossover points are randomly selected along the parent chromosomes. The segments
between points are swapped to produce offspring. Here, we set the crossover rate as 0.5,
which means fifty percent of parents that are selected go through the crossover process,
and the rest of the parents are unchanged. During the mutation process, random alter-
ations are introduced to offspring for genetic diversity and to explore the search space. A
mutation flips the individual genes with a mutation rate of 0.01 per gene. For example, if
there are 40,000 features, then due to this mutation rate, approximately 400 mutations per
chromosome per generation happen, which results in balancing the exploration.

Creating Next Generation

The next generation is created by the replacement of the whole current population
with newly created offspring. This replacement will make sure that only new chromosomes
will survive for the next iteration. Among all the individuals in the final generation, the
most fitted chromosomes (the feature subset that yields the best classification accuracy) are
selected as the optimal feature set.

Stopping Criterion

There should be a general stopping criterion for terminating the process of GA. Here,
we used a fixed number of iterations as the stopping criterion, which we set to 20. Once
the limit is reached, the GA execution is terminated, and the best-performing chromosome
from the last generation returns as the selected feature subset.

The hyperparameters used for GA are described in Table 4.

Table 4. Hyperparameters for the Genetic Algorithm.

Hyperparameter Values

Population size 50

Number of generations 50

Crossover rate 0.5

Mutation rate 0.01

Selection method Tournament Selection

Total Iterations 20
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3.2.4. Mutual Information-Based Feature Selection (MI)

The filter-based feature selection methods rank features based on their association
with the target class. In simple filter approaches, the features are individually scored,
and the features with high scores are selected. But in greedy methods, dependencies
between features are considered by selecting features iteratively, which provides the highest
incremental contribution, given that the features are already selected. At each step, the
feature, together with the previously selected set, maximizes the relevance and is added.
This process continues until the desired number of features is selected. In this research, the
MI feature selection uses a simple ranking approach where features are ranked based on
MI scores with class label, without considering dependencies among features.

MI of two random variables is a quantitative measurement of dependency between the
variables [53]. This will be defined by the probability density function (PDF) of variables,
say X, Y and joint (X, Y) as fx, fy and fx y, respectively, [54].

M{X;Y} = / / Fer(x7) 1og<m>dxdy (11)

If the variables X and Y are completely independent, then the joint PDF is equal to the
product of the PDF of X and the PDF of Y, which will be equated as fx y = fx * fy, and MI
becomes zero.

MI(X;Y) =0 (12)

Entropy is a measure of the uncertainty or randomness in a random variable. For a
variable X, entropy is defined as:

hX) = — / Fx(x)log fx (x)dx (13)
Ml is expressed in terms of entropy as:
MI(X;Y) = h(Y) — h(Y|X) (14)

where h(Y/X) is the uncertainty of Y when X is known. If Y and X are independent, then
h(Y/X) =h(Y)and MI(X;Y) = 0.

In feature selection problems, usually the features X are continuous and the class label
Y is discrete including ours. So, here we estimate the MI between the continuous features
and discrete labels, which requires computing the conditional PDF of the feature given each
class. This can be carried out using techniques like kernel density estimation or histogram
binning [55]. The MI between X and Y with possible ) is calculated by Equation (15):

MI(Y) = B P(Y =) [ fe(xl) og P i (15

where P(Y = y) is the prior probability of class y, fx|y(x[y) is the conditional PDF of
X given Y = y, and fx(x) is the marginal PDF of X. By using this estimation, features
are ranked based on MI scores with a class label. The hyperparameters used for MI are
described in Table 5.
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Table 5. Hyperparameters for Mutual Information.

Hyperparameter Values

Number of bins (discretization) 10

Estimator type K-Nearest Neighbor
k-neighbors 10

3.2.5. Simulated Annealing (SA)

Simulated Annealing (SA) is a stochastic technique that is inspired by statistical
mechanics. SA is used for finding globally optimal solutions to large optimization problems.
The SA algorithm works with the assumption that some parts of the current solution belong
to a potentially better one, and thus, these parts should be retained by exploring the current
solution’s neighbors. With the assumption of minimizing the objective function, SA jumps
from hill to hill, and thus, escapes or avoids sub-optimal solutions. When a system, say S,
contains a set of possible states in thermal equilibrium at a temperature T, the probability
that it is in a certain state s is called Pr(s). Pr(s) depends on T and E(s) of state s. That
probability follows the Boltzmann distribution.

Ml is expressed in terms of entropy as:

ol-5)

Pr(s) = —

(16)

where k is Boltzmann constant and Z acts as a normalization factor and it is defined as:

Z = Zexp(—Ek(;)> (17)

seS

Consider s a current state as described above, and s’ as neighboring state. The proba-
bility of the transition from s to s’ can be formulated as:

/
Pr(s —s') = I;TT((SS)) =exp <—§]{5> (18)
where AE = E(S") — E(S).

If Pr(s") > Pr(s), then the move is accepted and, if Pr(s’) < Pr(s), then the move
is accepted with probability of Pr(s,s’) < 1. The probability depends on the current
temperature T, and it decreases when T does. There is a probability of T being lower at the
end, in which the state is called the freezing point, and at this state, the transition is unlikely
and the system is considered frozen. At this state, to increase the chance of maximizing the
probability of finding the minimal energy state, thermal equilibrium should be reached.
In order to reach equilibrium, annealing is scheduled to escape becoming stuck at a local
minimum. Hence, the SA algorithm is introduced, and in SA, T is initially set at a high value
to approximate thermal equilibrium. Then, small decrements of T are performed, and the
process is iterated until the system is considered frozen. Reaching a near-optimal solution
depends on how well the cooling schedule is designed, but it results in an inherently slow
process because of the thermal equilibrium requirements at every point of temperature T.

To perform SA, we need four components to be performed. The components are
configuration, move set, objective function, and cooling schedule. In the configuration step,
the model represents all the possible solutions that the system can take, and then, it is used
to find a near-optimal solution. Move sets are the computations that we need to perform to
move from one state to another as part of the annealing process. The objective function
is used to measure how good and optimal a given current state is. The cooling schedule
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anneals the problem from a random solution to a good solution. This component schedules
when to reduce the current temperature and when to stop the annealing process.

At the beginning of the SA process, an initial solution is selected randomly and is
assumed to be an optimal solution. If T does not satisfy the termination condition, then the
neighboring solution is selected and the cost is calculated for that solution. If the cost of the
newly selected neighbor solution is less than or equal to the current optimal solution, then
the current optimal solution is replaced by the newly selected neighbor solution [56].

The hyperparameters used for SA are described in Table 6.

Table 6. Hyperparameters for Simulated Annealing.

Hyperparameter Values

Initial temperature 300

Cooling schedule Exponential decay
Number of iterations 1000
Neighborhood size 5

3.2.6. Minimum Redundancy Maximum Relevance (MRMR)

The Minimum Redundancy Maximum Relevance (MRMR) method was first intro-
duced by Ding and Peng in [57] to address redundancy problems with high dimensional
and high-throughput datasets related to cancer. The MRMR method helps in identifying
the features that are most relevant to the class labels and less redundant with respect to
each other, and thus, results in improving the classification performance.

The MRMR algorithm works in a filter-based framework using Mutual Information
(MI) to evaluate two criteria. The first criterion is relevance, which is quantified as Mutual
Information I(f;c) between a candidate feature f and the target class label c. The features
are selected based on high Mutual Information. The second criterion is redundancy, which
is defined as the average MI I(f;; f;) between the candidate feature and each feature that
has been selected already. The features are selected based on the minimum average MI to
avoid the highly correlated (redundant) features [55].

At each step, a new feature is selected from the unselected features by maximizing the
following condition:

Score(f):I(f;c)—iZI(f;s) (19)
|S‘ seSs
where S is the current feature set that is selected within the subset of size |S|. The MRMR
optimization is formulated as:

MRMR(S) = |§|fz I(firc) - |51|sz2 1(fi £7) (20)
€S ifi€S

The greedy incremental process continues until a predefined number of features are
selected. The greedy incremental algorithm follows the steps below:

* Initialize S as empty;

*  Ateach step, evaluate the remaining candidate features using the above score condi-
tion;

*  Add the feature that maximizes the score;

*  Repeat the process until the desired number of features is selected.

The hyperparameters used for MRMR are described in Table 7.
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Table 7. Hyperparameters for MRMR.

Hyperparameter Values
Number of features to select 5%, 10%, 15% of total features
Feature scoring function Mutual Information (MI)

3.3. Classification Models

After generating the feature subsets from seven feature selection methods defined in
the above section, we pass those feature subsets to different classification models in order
to see how the features generated from different feature selection algorithms affect the
classification model performance. The classifier’s objective is to learn how to classify the
objects by analyzing the dataset, where we know which classes the instance belongs to. We
used six different classification models in this research, and we briefly describe each of the
models in the subsections below.

3.3.1. Decision Tree (DT)

The instances are representations of attribute value vectors, and the input data that is
fed to the classifiers has such types of vectors where each vector belongs to a class. The
output typically consists of mapping from attribute values to classes, and with learning,
the model is able to classify known and unseen instances [58].

The Decision Tree method is an example model of representation of mappings that
contains attribute nodes linked to multiple sub-trees or leaves or decision nodes that are
labeled with classes. The decision node computes the outcome or decision based on an
attribute value, and each decision is associated with one sub-tree. In DT, an instance at the
root node is classified, and the outcome of that node will be a sub-tree. This process will
continue until the outcome of that instance is determined. The depth of the Decision Tree is
based on how many sub-trees it was divided into, and this determines the total conditions
used in the decision rules, which is not a fixed number [59]. The hyperparameters used for
DT are described in Table 8.

Table 8. Hyperparameters for Decision Tree.

Hyperparameter Values
max_depth 20
min_samples_split 10
min_samples_leaf 5
criterion gini
max_features sqrt

3.3.2. K-Nearest Neighbors (KNN)

KNN is one of the popular machine learning classification methods, which works on
the principle of classifying unlabeled data based on its Nearest Neighbors. The concept of
the KNN method was first proposed by Fix and Hodge in 1951 [60], and later developed by
Cover and Heart in 1967 [61]. KNN is also used for prediction problems in which the label
of the sample is predicted as the one with the majority label among its Nearest Neighbors.

KNN classifies the objects according to the distance between two samples. In general,
the Euclidean distance formula is used to calculate the distance between two training or
testing objects [62]. The formula is given in Equation (21).

n
dyy = Z (x; — yz‘)z (21)

i=1

The hyperparameters used for KNN are described in Table 9.
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Table 9. Hyperparameters for K-Nearest Neighbors.

Hyperparameter Values

n_neighbors 10

weights distance

metric minkowski (p = 2 default)
leaf_size 20

3.3.3. Extreme Gradient Boosting (XGB)

The XGBoost algorithm, an ensemble learning method introduced by Chen and
Guestrin [63] in 2016, improved Gradient Boosting by optimizing computational effi-
ciency and scalability. XGB has been implemented in several programming languages
and software libraries since its introduction and makes it accessible for performing both
regression and classification tasks.

This method is a hybrid model of multiple base learners. It explores different base
learners and picks a learning function that reduces the loss. The idea of ‘ensembling’ the
additive models is to train the predictors sequentially, and correct the predecessor by fitting
the new predictor to the residual errors made by the previous predictor. In each step, the
model optimizes the parameters. The inference and training of this learning method can be
expressed by Equations (22) and (23):

1 XN ) . .
NP § i) (D). g) 400
0, f argrgl}n N izz 1 L {f (x\V;0),y } (22)

pylx;67) = f7(0,x) (23)

where 0 and f represent both the model set and its parameter set. £ is the model train
loss function. p(y | x;6%) is the predicted conditional probability of the output y given
input x and optimized parameters 6*. The hyperparameters used for XGB are described in
Table 10.

Table 10. Hyperparameters for Extreme Gradient Boosting (XGB).

Hyperparameter Value
Booster gbtree
Learning rate 0.1
Maximum depth 6
Number of estimators 100
Subsample 0.8
Column sample by tree 0.8
Gamma 0
Minimum child weight 1
Regularization parameter (L2) 1
Regularization parameter (L1) 0

3.3.4. Logistic Regression (LR)

LR is used frequently for binary and linear classification tasks [64]. LR is used for
estimating the probabilities of classes because it models the associations with the logistic
data distribution. LR performs well with linearly separable classes, and this method is best
used to identify the class decision boundaries [65]. This method focuses on the relationship
between independent variables (xg, x1, ..., x4) and a dependent variable Y. The logistic
function, which is a sigmoid function, is used for the logistic model calculation. In this
calculation, each value between negative infinity and positive infinity is generated as the
range of input and output values between 0 and 1 [66].
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Logistic regression is able to interpret the vector variables in the data and to conduct
the coefficient or weight evaluation for each of those input variables, and in turn is able to
predict the class that the vector belongs to. LR is the method used for the datasets in which
the independent variables are known the results. The hyperparameters used for LR are
described in Table 11.

Table 11. Hyperparameters for Logistic Regression.

Hyperparameter Values
penalty lasso

C 5

solver Ibfgs
max_iter 200
class_weight balanced

3.3.5. Support Vector Machine (SVM)

SVM determines an optimal hyperplane that maximizes the margin between the
hyperplane and the closest data point to that hyperplane. The patterns observed in the
optimal hyperplane are called support vectors. Identifying a hyperplane that is optimal
using SVM can be seen in Figure 3.
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Figure 3. Support Vector Machine (SVM) data classification [67].
The SVM hyperplane is the set of points x satisfying Equation (24):
glx) =wx+b0=0 (24)

where w is the weight vector orthogonal to the hyperplane and b is an offset from the origin.
In the case of linear SVMs, ¢(x) > 0 is considered the closest point of a class, and g(x) < 0
is considered as the closest point of another class [68].

The distance between two support vectors is defined by Equation (25):

(25)

]

where w is the optimal weight vector orthogonal to the seperating hyperplane, which is
obtained through SVM optimization.
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d should be increased for better separation, and proportionally w should be reduced
using the Lagrange function in Equation (26):

ar{y (Whx +b) — 1} (26)

1
Lp(w,b,a) = 2Jw]> -
1

n
1=

where yl(WTxl +b)>1i=1,2,...,nand y; = {+1, —1} represent the class labels and «,
is the Lagrange multiplier. L, should be reduced for optimal w and b computation. The
hyperparameters used for SVM are described in Table 12.

Table 12. Hyperparameters for Support Vector Machine.

Hyperparameter Values

C 5

kernel rbf
gamma scale
class_weight balanced
max_iter -1

3.3.6. Light Gradient Boosting Machine (LGBM)

LGBM is a variant method based on the Gradient Boosting Decision Tree (GBDT)
and has better optimization than the XGB method. GBDT is an ensemble algorithm that
combines multiple Decision Trees as base learners [69]. Each newly added tree pays
increased attention to the samples that are misclassified by the previous trees. Through
repetitive training of new Decision Trees and increasing their weights, GBDT gradually
reduces model error and improves classification accuracy [70].

The LGBM uses the GBDT concept in its method, and the core concept involves sorting
and bucketing the attributes to ensure all split points are checked. In training, LGBM
selects leaf nodes for splitting and growing, and thus reduces the loss function. LGBM
also introduces Gradient-Based One-Side Sampling (GOSS) to improve the effectiveness
of model training. GOSS basically concentrates on the samples that have larger gradients,
ignores the samples with low gradients, and amplifies the small gradient data weight. This
process allows for effective utilization of large gradient samples and also retains some
information from small gradient data samples that are disregarded [71].

The hyperparameters used for LGBM are described in Table 13.

Table 13. Hyperparameters for LightGBM classifier.

Hyperparameter Values
num_leaves 128
max_depth -1
learning_rate 0.01
n_estimators 100
min_data_in_leaf 50
feature_fraction 1.0
bagging_fraction 1.0
bagging_freq 1

3.4. Description of Datasets

The datasets used in this study were obtained from the Cancer Genome Atlas (TCGA)
repository. TCGA is a cancer genomics program that characterizes 20,000 primary cancer
and matched normal samples of 33 cancer types in total. This genomics program started
in 2006 as a joint effort of both the National Cancer Institute and the National Human
Genome Research Institute in the United States of America, and brought researchers from
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several institutions together. Due to the efforts of this program, TCGA was able to create
2.5 petabytes of data of transcriptomics, epigenomics, genomics, and proteomics data [72].

From this website, we collected a total of 10 types of cancer genomic datasets to use in
this paper: the Colon and Rectal Adenocarcinomas (COAD), Head and Neck Squamous Cell
Carcinoma (HNSC), Kidney Chromophobe (KICH), Kidney Renal Papillary (KIRP), Liver
Hepatocellular Carcinoma (LIHC), Lung Squamous Cell (LUSC), Prostate Adenocarcinoma
(PRAD), Stomach Adenocarcinoma (STAD), Thyroid Cancer (THCA), and Uterine Corpus
Endometrioid Carcinoma (UCEC). All datasets are high-dimensional data that have features
between 35,924 to 44,878. We used the datasets without applying additional preprocessing
or normalization steps. This decision was made to ensure that all feature selection methods
were evaluated on identical input data, thereby isolating the effect of feature selection from
any influence of preprocessing techniques. While data normalization and transformation
are often applied in research studies, our focus was on the comparative evaluation of
feature selection algorithms under a consistent setting.

The summary of each dataset is shown in Table 14.

Table 14. Summary of Cancer datasets.

Dataset Samples Features Class 1 Class 2
COAD 522 37,677 509 13
HNSC 564 35,958 535 29
KICH 91 43,806 60 31
KIRP 322 44,874 236 86
LIHC 421 35,924 322 99
LUSC 553 44,894 494 59
PRAD 553 44,824 472 81
STAD 448 44,878 358 80
THCA 564 36,120 380 184
UCEC 588 36,086 345 243

3.5. Experiment Setup

We passed all ten cancer datasets and fed them as input to all seven feature selection
methods that we considered in this research—SPSA (our proposed model), RelChaNet,
ReliefF, GA, MI, SA, and MRMR. We selected the top 5%, 10%, and 15% of features from
each of the ten datasets. We used all the 30 dimensionally reduced datasets (top 5%, 10%,
and 15% feature subsets in each of the 10 cancer datasets) and passed them as input to six
classification models and calculated the performance metrics. We divided each dataset for
training and testing with a split of 80% and 20%, respectively.

3.6. Evaluation Metrics

To compare how the subsets of data produced by different feature selection algorithms
as well as how they perform with the classification models, we considered performance
metrics such as Accuracy, Precision, Balanced Accuracy, Recall, and F1 Scores [73].

Accuracy is the ratio of all classifications that are correct, whether they are negative or
positive. It is calculated using Equation (27).

TP+ TN

TP+TN+FP+FN @7

Accuracy =

Recall is also known as the true positive rate, which calculates all positives that are
classified as positives. It is calculated using Equation (28).
TP

Recall = TPTEN (28)
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Precision is the proportion of all positive classifications that are actually positive. It is
calculated using Equation (29).
TP
Precision = —— 2
recision = w55 (29)
F1 Score is a harmonic mean of both Precision and Recall, which balances both. This
metric is preferred over Accuracy for class-imbalanced datasets. It is calculated using

Equation (30).
2TP

T 2TP+FP+FN

Sensitivity is the same as Recall explained above, and Specificity is used to measure the

F1 (30)

proportion of True Negatives over the Total Negatives. It is calculated using Equation (31).

Specificity = TNTifFP (31)

Balanced Accuracy is the arithmetic mean of sensitivity and specificity. It is used in
cases of imbalanced data. It is calculated using Equation (32).

Sensitivity + Specificity
2

Balanced Accuracy = (32)
In all the above evaluation metric equations, TP is True Positive, TN is True Negative,
FP is False Positive, and FN is False Negative.

3.7. Computational Resource Consumption Measurement

For the experiments, we used the Python (version 3.12.11) programming language to re-
implement all the feature selection methods and classification models. For the experiments,
we used the Center for Computationally Assisted Science and Technology (CCAST), an
advanced computing infrastructure at North Dakota State University. We ran all the
experiments on a JupyterLab setup of a 16-Core CPU with 128 GB memory with a GPU
allocation. Table 15 provides the average execution runtime (in seconds) of the feature
selection algorithms across all ten datasets, as well as the average execution runtime of the
classifiers combined with the feature selection algorithms across the same datasets.

Table 15. Average total runtime (in seconds) for feature selection algorithms and classifiers, averaged
across all ten datasets.

Task Feature Selection Algorithms Total Runtime (in Seconds)
SPSA 2108
RelChaNet 2529
ReliefF 2646
Feature Selection Algorithms GA 2123
MI 1963
SA 4986
MRMR 7395
SPSA 3609
RelChaNet 4050
ReliefF 4171
Feature Selection Algorithm + Classifiers GA 3643
MI 3460
SA 8496

MRMR 11,974
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4. Results

We applied seven feature selection methods on the cancer datasets and extracted
the top attributes that will help to improve the performance of the classification models.
According to all the tables in the Appendix A, we can see that our model SPSA achieved
mostly higher Balanced Accuracy compared to ReliefF, RelChaNet, GA, and Ml in case of
all the top 5%, 10%, and 15% of feature subsets.

For the DT classification, SPSA achieved a 100% Accuracy for COAD’s and KICH’s top
5, 10, 15 percent feature sets as shown in Tables A1, A2, and A3, respectively. SPSA often
achieves near-perfect or perfect results across the datasets and different feature selection
percentages, suggesting that SPSA is effective and robust in selecting features across
different datasets. As for RelChaNet, its performance is generally good but varies more
significantly between datasets. For example, Accuracy and F1 Score drop notably for certain
datasets (e.g., THCA and UCEC). Regarding ReliefF, it shows competitive results, generally
close to SPSA’s performance, although there is some variation, such as slightly lower F1
Scores and Recall for certain datasets. GA scored average to very well in performance
metrics with the small feature set (5%) with all the datasets, but it did not do better with
the 10% and 15% feature sets. With the MI, the feature selection performance is good with
the 10% feature set among most of the datasets, but with smaller and larger feature sets, it
did not show good performance compared to other feature selection methods, and in some
cases, it performed worse on most of the datasets. SA shows gradual improvement with
higher feature subsets (10% and 15%). This feature selection method is slightly less stable in
performance compared to SPSA or MI feature selection methods. MRMR is more consistent
and has better values for Accuracy, Precision, F1 Score, and Balanced Accuracy, but lower
and less consistent Recall scores for the 10% feature subset, and average values of Recall for
the 15% feature subset. In particular, SPSA consistently ranks among the top methods for
most datasets and subsets, with its strongest performance on COAD, KICH, LIHC, STAD,
and THCA, while in a few cases (e.g., PRAD and UCEC), MRMR or SA slightly surpass its
results. This shows that SPSA provides stable and reliable feature selection across subsets,
often matching or outperforming traditional methods.

For the KNN classification, SPSA achieved 100% Accuracy for COAD’s and KICH's
top 5 and 10 percent feature sets as shown in Tables A4, A5, and A6, respectively. ReliefF
also achieved 100% Accuracy for the same feature sets on COAD. SPSA shows consistently
good values across different datasets, maintaining high classification performance even
with a reduced number of features, whereas ReliefF shows slightly less consistent results,
but still offers competitive performance and high Accuracy for many datasets. RelChaNet,
on the other hand, tends to underperform, particularly with fewer features, and appears to
be less robust across datasets compared to the other two methods. The GA feature selection
method did not work well with KNN and scored low on all the datasets except for COAD,
where it performed best. MI worked well with most of the small feature sets on all the
datasets, but it performed occasionally average and, most of the time, worse than the 15%
feature set. The results for SA indicate that the feature subsets that are generated have
lower Accuracy and Precision compared to other methods in most cases, except for very
few datasets where the Precision is high. The Balanced Accuracy is lowest across all feature
subset sizes and the datasets. The MRMR feature subset performance is more variable. It
shows high Accuracy and Recall for the KIRP and PRAD datasets, and for other datasets, it
performed poorly for Balanced Accuracy and Recall. The Balanced Accuracy is frequently
lower than SPSA and ReliefF. Overall, SPSA shows strong and consistent performance
across datasets, especially at 5% features, where it often achieves near-perfect Accuracy
and Recall compared to other methods. At 10% and 15%, it remains competitive, though
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in some datasets, MRMR or GA slightly surpass it, indicating SPSA’s advantage is most
pronounced with smaller feature subsets.

For the LGBM classification, SPSA, RelChaNet, and ReliefF feature selection methods
achieved 100% Accuracy for all COAD’s feature sets as shown in Tables A7, A8, and A9,
respectively. SPSA tends to be the most stable and highest-performing method across the
different datasets and feature levels. RelChaNet occasionally showed variability and lower
performance, suggesting potential dataset-specific challenges. ReliefF was comparable to
SPSA in many cases, but occasionally showed variability, particularly for smaller feature
sets. GA did not perform well on all datasets except for the COAD and KICH datasets,
where it performed on par with SPSA on the 10% feature set. MI also worked well with
COAD, but it performed poorly with the other datasets compared to the other feature
selection methods. The SA feature subsets performed poorly for some datasets, like COAD
and LUSC, at 15%, but were excellent in a few cases. The Balanced Accuracy is lowest
among all feature selection methods, especially for the 15% feature subsets across the
ten datasets. The MRMR feature subsets generated mixed results, where the Accuracy
and Balanced Accuracy were lowest, especially for the 15% subset. Some datasets show
decent Recall but poor F1 and Balanced Accuracy. Overall, SPSA demonstrates consistently
strong performance across 5%, 10%, and 15% feature subsets, often matching or surpassing
other methods in Accuracy and F1 while maintaining higher Balanced Accuracy. Unlike
methods such as SA or MRMR that show variability, SPSA remains stable and reliable
across all datasets.

For the LR classification, SPSA achieved 100% Accuracy for all KICH’s top 5 and
10 percent feature sets, as shown in Tables A10, A11, and A12, respectively. SPSA emerges
as the most robust method, maintaining high performance with fewer features. RelChaNet
offers a good balance, with strengths at mid-level feature percentages, but some sensitivity
to feature set size. ReliefF shows potential in specific datasets but lacks the broad consis-
tency demonstrated by the other two methods. GA is effective on the LIHC dataset and
showed good results with 10% and 15% feature sets for the majority of the datasets. MI
also performed and achieved good scores on the KICH dataset; however, the performance
was worse with most of the 10% and 15% feature sets. The SA feature subsets produced
high Accuracy, Precision, Recall, and F1 Score results across most datasets. It frequently
achieved perfect scores for the UCEC, KIRP, and HNSC datasets and has a strong Balanced
Accuracy across all datasets. The MRMR feature subsets have very strong performance
with perfect or near-perfect Precision, Recall, and F1 Scores. This feature selection method
generated excellent results for the THCA, UCEC, HNSC, and PRAD datasets for all feature
subsets. Overall, SPSA shows stable and competitive performance across all subsets. At 5%,
it secures strong results—often surpassing RelChaNet, ReliefF, and MI—while remaining
close to GA. At 10%, it maintains reliable Accuracy and Recall across datasets, outperform-
ing weaker methods though occasionally behind SA and MRMR. By 15%, SPSA continues
to deliver high scores, particularly in THCA and UCEC, confirming its robustness and
consistent competitiveness with other leading methods.

For SVM classification, SPSA achieved 100% Accuracy for only COAD’s top 5 percent
feature set but outperformed ReliefF and RelChaNet for all the other datasets’ feature
sets as shown in Tables A13, Al14, and A15, respectively. SPSA often leads in Precision
and Recall metrics across most datasets, showcasing its ability to identify high-importance
features that strongly influence classification. RelChaNet provides more stable but generally
moderate performance, sometimes closing in on SPSA’s results but also demonstrating
variable results with feature changes. ReliefF’s performance suggests it is less effective in
filtering out critical features, leading to consistently lower performance results. GA did not
perform well overall among most of the datasets, but it scored well on the PRAD dataset,
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and with the 15% feature set of the STAD dataset. MI performed well with the 15% feature
set on most datasets, but produced low Accuracy among the 5% and 10% feature sets for
all datasets. The SA feature subsets are among the best performers, especially for the 15%
subset, with an Accuracy of above 0.99 among the KIRP, PRAD, STAD, and UCEC datasets.
The Precision, F1 Score, and Recall are high in many datasets, but the Balanced Accuracy is
slightly behind SPSA and MRMR feature selection methods. The MRMR feature subsets
have variable Accuracy and F1 Scores and are less consistent across the datasets. The
Recall drops significantly, and the Balanced Accuracy achieved mixed results—with some
datasets, it is good, but it is poor in others. Overall, SPSA shows strong and consistent
performance across 5%, 10%, and 15% feature subsets. At 5%, it achieves near-perfect
results on several datasets, clearly outperforming ReliefF, RelChaNet, and GA. With 10%
features, SPSA maintains robust Accuracy and balanced results, especially in LIHC, THCA,
and UCEC. At 15%, it remains competitive—particularly in THCA and UCEC—though SA
and MRMR occasionally surpass it.

For the XGB classification, SPSA achieved 100% Accuracy for COAD’s and KICH’s
top 5, 10, 15 percent feature sets, and THCA’s top 5 percent feature set as shown in
Tables A16, A17 and A18, respectively. SPSA generally achieves very high Accuracy
and consistent metrics across the different datasets. RelChaNet displays lower Accuracy
and performance metrics compared to SPSA and ReliefF in most cases. ReliefF generally
performs on par with SPSA, often showing similarly high Accuracy and metrics across
most datasets and feature percentages. Most of the time, GA did not perform well across
most of the datasets, but performed well in Accuracy and Precision for the UCEC and
COAD datasets. MI performed subpar across all datasets except KIRP, where it achieved
a score as good as SPSA’s. The SA feature subsets performed occasionally decently and
achieved perfect values for the 15% feature subset for the LUSC dataset, but they have high
inconsistency, often with poor Balanced Accuracy and Recall, and struggle with most of
the datasets, which we can interpret due to the lack of robustness across the datasets. The
MRMR feature subsets performed well for the PRAD dataset at 5%, and for STAD at 10%,
but they have poor performance for Balanced Accuracy and Precision, especially for the
KICH and KIRP datasets. Overall, SPSA consistently delivered strong and stable results
across 5%, 10%, and 15% subsets, often matching or outperforming ReliefF, GA, and MI,
with perfect scores in datasets like COAD, KICH, and THCA. While MRMR occasionally
surpassed SPSA at higher subsets (e.g., PRAD, STAD), SPSA generally proved more reliable
and robust than SA and RelChaNet, maintaining high Accuracy and balanced performance
across datasets.

A colored heat map table representation of the Balanced Accuracy scores for each
classification model used in this research across all ten cancer datasets is shown in Figure 4
for the 5% feature set. Please note that we opted to only display the best values, which are
the 5% feature set results.
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Classifier Feature Selection COAD HNSC KICH KIRP LIHC LUSC PRAD STAD THCA UCEC
SPSA 0.9722
RelChaNet

DT ReliefF

GA
Mi
SA
MRMR

SPSA

RelChaNet
KNN  ReliefF k X 0.7934 0.7956 0.8257 0.8459

GA ) [0.7677 0.7727 0.8678

Mi A 0.8076 0.8023 0.7369 8 0.8064 0.8403 0.8496

SA 0.6743 0.7395

MRMR

SPSA
RelChaNet } 0.8047 0.8296 0.8429

LightGBM ReliefF 0.8976 0.8368 0.8486 0.8285 0.8158 0.8168 0.8196 0.8494 0.8694 0.8195|
GA 0.8597 0.8076 0.7986 0.8487 0.8185 0.8594 0.8396 0.8589 0.8789|
M 0.8175 0.8538 0.8478 0,
SA
MRMR

0.7296 0.8591

0.8219

SPSA

RelChaNet ; ) . 0.7290
LR ReliefF

GA

Mi

SA

MRMR

SPSA 0.8594
RelChaNet 0.8417
SVM  ReliefF 0.8398
GA 0.8193 0.7632 0.7496 0.583
M .6 0.8295 0. 0.7943- 0.7975
SA ] : 0.8257 0.7246 0.7950

MRMR 0.8056 0.8256 0.7549 0.8084

SPSA
RelChaNet
XGB  Relieff 0.8594 0.8475 0.8647
GA : 0.8485/0,8238 0.8465 0.8625
M 0.8593 0.8645 0.8392 0.8939
SA 0.8519 0.7829
MRMR

Figure 4. Heat map table representing Balanced Accuracy scores for all the classifiers on 5% Feature
Subset.

4.1. Statistical Analysis

Next, we study the effects of the features selected from the seven feature selection
methods on Accuracy among the ten cancer datasets. We used the Friedman test, which is a
non-parametric statistical test, to determine whether or not there is a statistically significant
difference between the paired treatments, where treatments are arranged in a randomized
repeated-measure design.

We are doing this statistical test only for the top 5% feature selection data. The
Friedman test for this research uses the following null and alternative hypotheses:
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The null hypothesis (Hp): The seven feature selection methods used in this research
have an equal effect on Accuracy among the ten cancer datasets.

The alternative hypothesis (H;): At least one feature selection method used in
this research has a different effect from the others based on Accuracy among the ten
cancer datasets.

41.1. DT

First, we calculated the summary statistics of the DT balanced classifier Accuracy
scores of all ten datasets after applying the feature selection algorithms. We visualized the
above summary with a violin plot in Figure 5.

Later, we applied the Friedman test and we obtained the test statistic of 32.61, and
the p-value of 0.00001. Since the p-value is less than 0.05, which is statistically significant,
the null hypothesis should be rejected. Therefore, we have sufficient evidence to conclude
that the type of feature selection method used leads to statistically significant differences in
Accuracy scores between the ten cancer datasets.

‘944

Accuracy

0.6
0.5 1
0.4
SPISA ReICF;aNet RelilefF GIA I\;II SIA MR'MR
Featuselect

Figure 5. Representation of DT’s Accuracy scores as a violin plot.

Next, we performed the Nemenyi post hoc test to identify which feature selection meth-
ods have different effects on Accuracy. The Nemenyi post hoc test returns the following
p-values for each pairwise comparison of means as shown in Table 16.

Table 16. p-values for each pairwise comparison of means for DT classifier.

SPSA RelChaNet ReliefF GA MI SA MRMR
SPSA 1.000000 0.255021 0.830311 0.003006 0.001625 0.000173 0.679535
RelChaNet 0.255021 1.000000 0.967552 0.744477 0.645473 0.309844 0.994057
ReliefF 0.830311 0.967552 1.000000 0.184945 0.129608 0.031322 0.999975
GA 0.003006 0.744477 0.184945 1.000000 0.999999 0.994057 0.309844
MI 0.001625 0.645473 0.129608 0.999999 1.000000 0.998617 0.230008
SA 0.000173 0.309844 0.031322 0.994057 0.998617 1.000000 0.066581
MRMR 0.679535 0.994057 0.999975 0.309844 0.230008 0.066581 1.000000

At a = 0.05, the pairs below have statistically significant differences in the Accuracy
scores among the ten cancer datasets.
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e SPSA vs. GA;
e SPSA vs. MI;
e  SPSA vs. SA;
e  ReliefF vs. SA.

4.1.2. KNN

The summary statistics of the KNN classifier balanced classifier scores of all ten
datasets after the applied feature selection algorithms are visualized as a violin plot in
Figure 6.

For the Friedman test, we obtained the test statistic as 34.37 and the p-value as 0.000006.
Since the p-value is less than 0.05, which is statistically significant, the null hypothesis
should be rejected. Therefore, we have sufficient evidence to conclude that the type of
feature selection method used leads to statistically significant differences in Accuracy scores
among the ten cancer datasets.

Accuracy

T T T

SPSA RelChaNet ReliefF GA Ml SA MRMR
Featuselect

Figure 6. Representation of KNN’s Accuracy scores as a violin plot.

Next, the Nemenyi post hoc test returns the following p-values for each pairwise
comparison of means as shown in Table 17.

Table 17. p-values for each pairwise comparison of means for KNN classifier.

SPSA RelChaNet ReliefF GA MI SA MRMR
SPSA 1.000000 0.042787 0.877672 0.000051 0.000439 0.005411 0.009475
RelChaNet 0.042787 1.000000 0.575532 0.610712 0.877672 0.996166 0.999241
ReliefF 0.877672 0.575532 1.000000 0.009475 0.042787 0.206646 0.281653
GA 0.000051 0.610712 0.009475 1.000000 0.999241 0.932179 0.877672
MI 0.000439 0.877672 0.042787 0.999241 1.000000 0.996166 0.987221
SA 0.005411 0.996166 0.206646 0.932179 0.996166 1.000000 0.999999
MRMR 0.009475 0.999241 0.281653 0.877672 0.987221 0.999999 1.000000

At a = 0.05, the pairs below have statistically significant differences in the Accuracy
scores among the ten cancer datasets.

e SPSA vs. RelChaNet;
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e SPSA vs. GA;

e SPSA vs. MI;

e  SPSA vs. SA;

e  SPSA vs. MRMR;
¢ ReliefF vs. MI.

4.1.3. LGBM

The summary statistics of the LGBM classifier balanced classifier scores of all ten
datasets after feature selection algorithms applied are visualized as a violin plot in Figure 7.

For the Friedman test, we obtained the test statistic as 47.06 and the p-value as
0.00000001. Since the p-value is less than 0.05, which is statistically significant, the null
hypothesis should be rejected. Therefore, we have sufficient evidence to conclude that
the type of feature selection method used leads to statistically significant differences in
Accuracy scores among the ten cancer datasets.
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Figure 7. Representation of LGBM’s Accuracy scores as a violin plot.

Next, the Nemenyi post hoc test returns the following p-values for each pairwise
comparison of means as shown in Table 18.

Table 18. p-values for each pairwise comparison of means for LGBM classifier.

SPSA RelChaNet ReliefF GA MI SA MRMR
SPSA 1.000000 0.679535 0.957723 0.001625 0.022624 0.000014 0.000024
RelChaNet 0.679535 1.000000 0.996166 0.230008 0.679535 0.013551 0.019133
ReliefF 0.957723 0.996166 1.000000 0.049754 0.281653 0.001316 0.002001
GA 0.001625 0.230008 0.049754 1.000000 0.991137 0.945976 0.967552
Ml 0.022624 0.679535 0.281653 0.991137 1.000000 0.575532 0.645473
SA 0.000014 0.013551 0.001316 0.945976 0.575532 1.000000 1.000000
MRMR 0.000024 0.019133 0.002001 0.967552 0.645473 1.000000 1.000000

At o« = 0.05, the pairs below have statistically significant differences in Accuracy scores
among the ten cancer datasets.

e SPSA vs. GA;
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e SPSA vs. MI;

e SPSA vs. SA;

e  SPSA vs. MRMR;
e RelChaNet vs. SA;

e  RelChaNet vs. MRMR;

e ReliefF vs. GA;
e  ReliefF vs. SA;
e  ReliefF vs. MRMR.

414.LR

The summary statistics of the LR classifier balanced classifier scores of all ten datasets
after the applied feature selection algorithms are visualized with a violin plot in Figure 8.
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Figure 8. Representation of LR’s Accuracy scores as a violin plot.
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For the Friedman test, we obtained the test statistic as 30.59 and the p-value as 0.00003.
Since the p-value is less than 0.05, which is statistically significant, the null hypothesis
should be rejected. Therefore, we have sufficient evidence to conclude that the type of
feature selection method used leads to statistically significant differences in Accuracy scores

among the ten cancer datasets.

Next, the Nemenyi post hoc test returns the following p-values for each pairwise

comparison of means as shown in Table 19.

Table 19. p-values for each pairwise comparison of means for the LR classifier.

SPSA RelChaNet ReliefF GA MI SA MRMR
SPSA 1.000000 0.436086 0.230008 0.000051 0.000856 0.002001 0.049754
RelChaNet 0.436086 1.000000 0.999823 0.087853 0.339510 0.470241 0.957723
ReliefF 0.230008 0.999823 1.000000 0.206646 0.575532 0.712624 0.996166
GA 0.000051 0.087853 0.206646 1.000000 0.996166 0.982115 0.575532
MI 0.000856 0.339510 0.575532 0.996166 1.000000 0.999993 0.916230
SA 0.002001 0.470241 0.712624 0.982115 0.999993 1.000000 0.967552
MRMR 0.049754 0.957723 0.996166 0.575532 0.916230 0.967552 1.000000
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At o = 0.05, the pairs below have statistically significant differences in Accuracy scores
among the ten cancer datasets.

e SPSA vs. GA;
e SPSA vs. MI;
e SPSA vs.SA;
e SPSA vs. MRMR.

4.1.5. SVM

The summary statistics of the SVM classifier balanced classifier scores of all ten datasets
after feature selection algorithms applied are visualized with a violin plot in Figure 9.
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Figure 9. Representation of SVM’s Accuracy scores as a violin plot.

For the Friedman test, we obtained the test statistic as 28.51 and the p-value as 0.000075.
Since the p-value is less than 0.05, which is statistically significant, the null hypothesis
should be rejected. Therefore, we have sufficient evidence to conclude that the type of
feature selection method used leads to statistically significant differences in Accuracy scores
among the ten cancer datasets.

Next, the Nemenyi post hoc test returns the following p-values for each pairwise
comparison of means as shown in Table 20.

Table 20. p-values for each pairwise comparison of means for SVM classifier.

SPSA RelChaNet ReliefF GA MI SA MRMR
SPSA 1.000000 0.470241 0.087853 0.000439 0.000439 0.001625 0.022624
RelChaNet 0.470241 1.000000 0.982115 0.230008 0.230008 0.402786 0.855064
ReliefF 0.087853 0.982115 1.000000 0.744477 0.744477 0.898068 0.999241
GA 0.000439 0.230008 0.744477 1.000000 1.000000 0.999928 0.945976
MI 0.000439 0.230008 0.744477 1.000000 1.000000 0.999928 0.945976
SA 0.001625 0.402786 0.898068 0.999928 0.999928 1.000000 0.991137
MRMR 0.022624 0.855064 0.999241 0.945976 0.945976 0.991137 1.000000

At a = 0.05, the pairs below have statistically significant differences in Accuracy scores
among the ten cancer datasets.
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e SPSA vs. GA;
e SPSA vs. MI;
e  SPSA vs. SA;
e  SPSA vs. MRMR.

4.1.6. XGB

The summary statistics of the XGB classifier balanced classifier scores of all ten datasets
after feature selection algorithms applied are visualized as a violin plot in Figure 10.
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Figure 10. Representation of XGB’s Accuracy scores as a violin plot.

For the Friedman test, we obtained the test statistic as 36.31 and the p-value as 0.000002.
Since the p-value is less than 0.05, which is statistically significant, the null hypothesis
should be rejected. Therefore, we have sufficient evidence to conclude that the type of
feature selection method used leads to statistically significant differences in Accuracy scores
among the ten cancer datasets.

Next, the Nemenyi post hoc test returns the following p-values for each pairwise
comparison of means as shown in Table 21.

Table 21. p-values for each pairwise comparison of means for the XGB classifier.

SPSA RelChaNet ReliefF GA MI SA MRMR
SPSA 1.000000 0.339510 0.945976 0.000220 0.006543 0.000220 0.004462
RelChaNet 0.339510 1.000000 0.932179 0.255021 0.774849 0.255021 0.712624
ReliefF 0.945976 0.932179 1.000000 0.013551 0.146463 0.013551 0.114268
GA 0.000220 0.255021 0.013551 1.000000 0.982115 1.000000 0.991137
MI 0.006543 0.774849 0.146463 0.982115 1.000000 0.982115 1.000000
SA 0.000220 0.255021 0.013551 1.000000 0.982115 1.000000 0.991137
MRMR 0.004462 0.712624 0.114268 0.991137 1.000000 0.991137 1.000000

At o = 0.05, the pairs below have statistically significant differences in Accuracy scores
among the ten cancer datasets.

e SPSA vs. GA;
e SPSA vs. MI;
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e SPSA vs. SA;

e  SPSA vs. MRMR;
¢ ReliefF vs. GA;

e  ReliefF vs. SA.

5. Conclusions

This research successfully demonstrated the effectiveness of the Simultaneous Pertur-
bation Stochastic Approximation (SPSA) method for feature selection in large-scale cancer
classification tasks, making an advancement in the application of the SPSA technique to
high-dimensional genomic datasets. Our comprehensive experimental evaluation across
datasets containing over 35,000 features establishes SPSA as a viable and superior alter-
native to existing feature selection methodologies for cancer detection applications. The
experimental results provide compelling evidence for the efficacy of the SPSA-based ap-
proach. Through systematic evaluation using six diverse classification algorithms (Decision
Trees, K-Nearest Neighbors, LightGBM, Logistic Regression, XGBoost, and Support Vector
Machines), we demonstrated that SPSA-generated feature subsets consistently achieve
superior classification performance compared to four state-of-the-art feature selection meth-
ods. Our approach yielded mostly higher and often perfect classification Accuracy across
nearly all ten reduced-dimensional datasets, while maintaining competitive computational
efficiency with average and frequently lower computation times.

The robustness of our findings is underscored by the comprehensive evaluation frame-
work employing multiple performance metrics, including Accuracy, Balanced Accuracy,
Precision, Recall, and F1 Score. The consistent advantage of SPSA-based feature selection
across these diverse metrics and multiple classifier architectures validates the method’s
reliability and generalizability for high-dimensional cancer classification tasks.

Our investigation revealed that while SPSA maintains consistently high performance
across most classifier combinations, there are isolated instances of reduced performance
when integrated with certain classifiers. However, these cases represent minimal exceptions
rather than systematic limitations, and the overall performance profile strongly favors the
SPSA approach.

The successful application of SPSA to datasets exceeding 35,000 features establishes
a new benchmark for feature selection in high-dimensional biomedical data analysis. We
believe that researchers working with high-dimensional genomic, proteomic, or other
biomedical datasets can leverage the SPSA-based feature selection method to significantly
improve the Accuracy and reliability of their machine learning models.

This work opens several avenues for future research, including the exploration of
hybrid approaches combining SPSA with other optimization techniques, the investigation
of adaptive parameter tuning for different dataset characteristics, and the extension to
multiclass cancer classification problems.
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Appendix A

Table A1. Decision Trees with 5% feature selection.

Dataset Feature Selection Method Accuracy Precision Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 1.0000
RelChaNet 1.0000 1.0000 1.0000 1.0000 1.0000
ReliefF 1.0000 1.0000 1.0000 1.0000 1.0000
COAD GA 1.0000 1.0000 1.0000 1.0000 0.9385
MI 1.0000 1.0000 1.0000 1.0000 0.9722
SA 0.9703 0.9664 0.9398 0.9524 0.8605
MRMR 1.0000 1.0000 1.0000 1.0000 1.0000
SPSA 0.9764 0.9879 0.7778 0.8510 0.9289
RelChaNet 0.9588 0.7853 0.8734 0.8224 0.9413
ReliefF 0.9705 0.8302 0.9320 0.8731 0.7920
HNSC GA 0.9705 0.8302 0.9320 0.8731 0.8575
MI 0.9647 0.8119 0.8765 0.8406 0.8130
SA 0.9606 0.9502 0.9397 0.9448 0.8394
MRMR 0.9823 0.9821 0.9775 0.9797 0.8647
SPSA 1.0000 1.0000 1.0000 1.0000 0.9722
RelChaNet 0.9285 0.9167 0.9444 0.9251 0.9444
ReliefF 0.9285 0.9167 0.9444 0.9251 0.7569
KICH GA 1.0000 1.0000 1.0000 1.0000 0.9275
MI 1.0000 1.0000 1.0000 1.0000 1.0000
SA 0.9823 0.9821 0.9775 0.9797 0.8654
MRMR 0.9823 0.9778 0.9822 0.9799 0.8749
SPSA 0.9278 0.8991 0.9263 0.9112 0.8039
RelChaNet 0.8247 0.7803 0.7584 0.7679 0.7920
ReliefF 0.9175 0.8829 0.9315 0.9016 0.8535
KIRP GA 0.9278 0.8991 0.9263 0.9112 0.8075
MI 0.8247 0.7803 0.7584 0.7679 0.7974
SA 1.0000 1.0000 1.0000 1.0000 1.0000
MRMR 0.9823 0.9821 0.9775 0.9797 0.8654
SPSA 0.9212 0.8909 0.8909 0.8909 0.8575
RelChaNet 0.9055 0.8754 0.8576 0.8659 0.8678
ReliefF 0.8976 0.8497 0.8869 0.8656 0.8175
LIHC GA 0.9055 0.8754 0.8576 0.8659 0.7635
MI 0.9055 0.8754 0.8576 0.8659 0.8157
SA 0.9481 0.9240 0.9120 0.9178 0.8278
MRMR 0.9285 0.9500 0.9000 0.9181 0.9053
SPSA 0.9277 0.8308 0.7643 0.7925 0.7541
RelChaNet 0.9096 0.7702 0.7297 0.7476 0.8130
ReliefF 0.9156 0.7819 0.7819 0.7819 0.8280
LUSC GA 0.9277 0.8308 0.7643 0.7925 0.8459
MI 0.9277 0.8308 0.7643 0.7925 0.8459
SA 0.9448 0.9279 0.9179 0.9227 0.8185
MRMR 0.9823 0.9313 0.8858 0.9071 0.8195
SPSA 0.9457 0.9437 0.8298 0.8748 0.8503
RelChaNet 0.9277 0.8726 0.8192 0.8428 0.8609
ReliefF 0.8855 0.7681 0.7773 0.7726 0.8375
PRAD GA 0.9277 0.8726 0.8192 0.8428 0.8839
MI 0.9457 0.9437 0.8298 0.8748 0.8849
SA 0.9285 0.9500 0.9000 0.9181 0.8495
MRMR 1.0000 1.0000 1.0000 1.0000 0.9862
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Table Al. Cont.

Dataset Feature Selection Method  Accuracy Precision Recall F1 Score Balanced Accuracy
SPSA 0.9481 0.9146 0.9259 0.9201 0.8981
RelChaNet 0.8962 0.8289 0.8796 0.8500 0.7239
ReliefF 0.9407 0.9074 0.9074 0.9074 0.8852
STAD GA 0.9481 0.9146 0.9259 0.9201 0.9305
MI 0.9481 0.9146 0.9259 0.9201 0.8823
SA 0.9823 0.9821 0.9775 0.9797 0.8629
MRMR 1.0000 1.0000 1.0000 1.0000 0.9721
SPSA 0.9647 0.9597 0.9597 0.9597 0.9197
RelChaNet 0.5407 0.4891 0.4896 0.4889 0.4375
ReliefF 0.9588 0.9650 0.9411 0.9518 0.8621
THCA GA 0.9647 0.9597 0.9597 0.9597 0.8943
MI 0.9647 0.9597 0.9597 0.9597 0.8746
SA 0.9457 0.9287 0.7744 0.8300 0.8294
MRMR 0.9285 0.9500 0.9000 0.9181 0.9053
SPSA 0.9152 0.9120 0.9136 0.9127 0.8086
RelChaNet 0.8474 0.8423 0.8437 0.8429 0.7424
ReliefF 0.8813 0.8815 0.8725 0.8762 0.7943
UCEC GA 0.9152 0.9120 0.9136 0.9127 0.8462
MI 0.8813 0.8815 0.8725 0.8762 0.7460
SA 0.9690 0.9661 0.9545 0.9601 0.8293
MRMR 0.9941 0.9969 0.9444 0.9690 0.9586
Table A2. Decision Trees with 10% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 1.0000
RelChaNet 0.9872 0.9935 0.7500 0.8301 1.0000
ReliefF 1.0000 1.0000 1.0000 1.0000 0.9722

COAD GA 0.9872 0.9935 0.7500 0.8301 0.8949
MI 0.9872 0.9935 0.7500 0.8301 0.8949
SA 0.9448 0.9199 0.9294 0.9245 0.8517
MRMR 0.9638 0.9805 0.8333 0.8901 0.8493
SPSA 0.9764 0.9879 0.7778 0.8510 0.8764
RelChaNet 0.9647 0.8119 0.8765 0.8406 0.7746
ReliefF 0.9647 0.8045 0.9289 0.8542 0.8357

HNSC GA 0.9705 0.8302 0.9320 0.8731 0.8678
MI 0.9705 0.8302 0.9320 0.8731 0.8057
SA 0.9285 0.9500 0.9000 0.9181 0.8926
MRMR 0.9823 0.9313 0.8858 0.9071 0.8195
SPSA 1.0000 1.0000 1.0000 1.0000 0.9444
RelChaNet 0.9642 0.9545 0.9722 0.9619 0.5000
ReliefF 0.8928 0.8846 0.9167 0.8893 0.8295
KICH GA 0.9705 0.8302 0.9320 0.8731 0.8742
MI 0.9647 0.8045 0.9289 0.8542 0.9257
SA 0.9491 0.9505 0.9445 0.9472 0.9017
MRMR 0.9882 0.9939 0.8889 0.9344 0.9273
SPSA 0.9381 0.9141 0.9334 0.9230 0.8231
RelChaNet 0.8556 0.8161 0.8161 0.8161 0.8130
ReliefF 0.9072 0.8745 0.9001 0.8858 0.7954
KIRP GA 0.9647 0.8045 0.9289 0.8542 0.7658
MI 0.8556 0.8161 0.8161 0.8161 0.8549
SA 1.0000 1.0000 1.0000 1.0000 0.9893
MRMR 0.9823 0.9313 0.8858 0.9071 0.8836
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Table A2. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9448 0.9380 0.9064 0.9208 0.9075
RelChaNet 0.9291 0.8985 0.9076 0.9029 0.9063
ReliefF 0.8976 0.8522 0.8754 0.8628 0.8175

LIHC GA 0.8865 0.8499 0.8738 0.8604 0.8450
MI 0.9291 0.8985 0.9076 0.9029 0.9592
SA 0.9882 0.9939 0.8889 0.9344 0.9273
MRMR 1.0000 1.0000 1.0000 1.0000 0.9483
SPSA 0.9337 0.8435 0.7920 0.8149 0.6261
RelChaNet 0.9277 0.8131 0.8131 0.8131 0.7920
ReliefF 0.8433 0.6089 0.6194 0.6137 0.7585
LUSC GA 0.9448 0.9380 0.9064 0.9208 0.8459
MI 0.9277 0.8131 0.8131 0.8131 0.7850
SA 1.0000 1.0000 1.0000 1.0000 0.9721
MRMR 1.0000 1.0000 1.0000 1.0000 1.0000
SPSA 0.9397 0.8782 0.8782 0.8782 0.8644
RelChaNet 0.9216 0.8387 0.8504 0.8444 0.8711
ReliefF 0.9096 0.8199 0.8087 0.8141 0.7936
PRAD GA 0.8975 0.7359 0.7474 0.7415 0.8238
MI 0.9216 0.8387 0.8504 0.8444 0.8936
SA 1.0000 1.0000 1.0000 1.0000 1.0000
MRMR 1.0000 1.0000 1.0000 1.0000 1.0000
SPSA 0.9555 0.9216 0.9444 0.9324 0.9166
RelChaNet 0.9259 0.8777 0.8981 0.8873 0.8540
ReliefF 0.9333 0.8857 0.9167 0.8999 0.8239
STAD GA 0.9216 0.8387 0.8504 0.8444 0.8346
MI 0.9259 0.8777 0.8981 0.8873 0.8923
SA 1.0000 1.0000 1.0000 1.0000 0.9382
MRMR 1.0000 1.0000 1.0000 1.0000 1.0000
SPSA 0.9647 0.9752 0.9455 0.9584 0.9600
RelChaNet 0.9470 0.9414 0.9372 0.9392 0.9259
ReliefF 0.9529 0.9401 0.9557 0.9472 0.8852
THCA GA 0.9555 0.9216 0.9444 0.9324 0.7832
MI 0.9529 0.9503 0.9415 0.9457 0.8861
SA 0.9484 0.9392 0.9282 0.9335 0.8296
MRMR 0.9823 0.9313 0.8858 0.9071 0.8195
SPSA 0.8926 0.8887 0.8903 0.8895 0.8519
RelChaNet 0.8644 0.8612 0.8581 0.8595 0.7210
ReliefF 0.8587 0.8577 0.8492 0.8527 0.6954
UCEC GA 0.8587 0.8577 0.8492 0.8527 0.7349
MI 0.8587 0.8577 0.8492 0.8527 0.7239
SA 0.9629 0.9611 0.9213 0.9396 0.8475
MRMR 0.9491 0.9505 0.9445 0.9472 0.9017
Table A3. Decision Trees with 15% feature selection.
Dataset Feature Selection Method  Accuracy Precision Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 0.9967
RelChaNet 0.9936 0.9968 0.8750 0.9269 0.9289
ReliefF 0.9936 0.9968 0.8750 0.9269 0.5000
COAD GA 0.9936 0.9968 0.875 0.9269 0.9500
MI 0.9647 0.8119 0.8765 0.8406 0.9367
SA 0.9882 0.9939 0.8889 0.9344 0.8593
MRMR 0.9484 0.9392 0.9282 0.9335 0.8296
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Table A3. Cont.

Dataset Feature Selection Method  Accuracy Precision Recall F1 Score Balanced Accuracy
SPSA 0.9764 0.8827 0.8827 0.8827 0.9289
RelChaNet 0.9647 0.8045 0.9289 0.8542 0.8826
ReliefF 0.9705 0.8302 0.9320 0.8731 0.8245
HNSC GA 0.9647 0.8045 0.9289 0.8542 0.9063
MI 0.9647 0.8119 0.8765 0.8406 0.9256
SA 0.9448 0.9199 0.9294 0.9245 0.8517
MRMR 1.0000 1.0000 1.0000 1.0000 0.9364
SPSA 1.0000 1.0000 1.0000 1.0000 1.0000
RelChaNet 0.9285 0.9500 0.9000 0.9181 0.4972
ReliefF 1.0000 1.0000 1.0000 1.0000 1.0000
KICH GA 0.9285 0.9500 0.9000 0.9181 0.8043
MI 0.9285 0.9500 0.9000 0.9181 0.8623
SA 0.9448 0.9199 0.9294 0.9245 0.8385
MRMR 0.9527 0.9441 0.9230 0.9330 0.8496
SPSA 0.9175 0.8949 0.8949 0.8949 0.8423
RelChaNet 0.8556 0.8202 0.8039 0.8114 0.8130
ReliefF 0.8865 0.8499 0.8738 0.8604 0.7423
KIRP GA 0.8556 0.8161 0.8161 0.8161 0.8249
MI 0.8865 0.8499 0.8738 0.8604 0.8256
SA 0.9555 0.9306 0.9306 0.9306 0.8364
MRMR 1.0000 1.0000 1.0000 1.0000 0.9591
SPSA 0.9448 0.9279 0.9179 0.9227 0.9127
RelChaNet 0.9212 0.8852 0.9024 0.8933 0.8575
ReliefF 0.8976 0.8522 0.8754 0.8628 0.8349
LIHC GA 0.9212 0.8852 0.9024 0.8933 0.8395
MI 0.9448 0.9380 0.9064 0.9208 0.8409
SA 0.9823 0.9313 0.8858 0.9071 0.8195
MRMR 1.0000 1.0000 1.0000 1.0000 1.0000
SPSA 0.9156 0.7795 0.8063 0.7920 0.8340
RelChaNet 0.9096 0.7651 0.8273 0.7913 0.8374
ReliefF 0.8975 0.7359 0.7474 0.7415 0.7836
LUSC GA 0.9156 0.7819 0.7819 0.7819 0.8035
MI 0.9277 0.8308 0.7643 0.7925 0.7829
SA 0.9941 0.9969 0.9444 0.9690 0.9586
MRMR 0.9698 0.9830 0.8958 0.9332 0.8196
SPSA 0.9397 0.8782 0.8782 0.8782 0.8538
RelChaNet 0.9337 0.8703 0.8574 0.8637 0.8782
ReliefF 0.9216 0.8387 0.8504 0.8444 0.8579
PRAD GA 0.9216 0.8387 0.8504 0.8444 0.8592
MI 0.9216 0.8387 0.8504 0.8444 0.8936
SA 0.9823 0.9313 0.8858 0.9071 0.8836
MRMR 0.9629 0.9611 0.9213 0.9396 0.8475
SPSA 0.9555 0.9216 0.9444 0.9324 0.9351
RelChaNet 0.9407 0.8996 0.9213 0.9099 0.9259
ReliefF 0.9481 0.9240 0.9120 0.9178 0.8720
STAD GA 0.9481 0.9240 0.9120 0.9178 0.8823
MI 0.9481 0.9240 0.9120 0.9178 0.8843
SA 0.9448 0.9199 0.9294 0.9245 0.8385
MRMR 0.9882 0.9939 0.8889 0.9344 0.9656
SPSA 0.9529 0.9503 0.9415 0.9457 0.9411
RelChaNet 0.9352 0.9245 0.9285 0.9264 0.7943
ReliefF 0.9352 0.9245 0.9285 0.9264 0.8345
THCA GA 0.9352 0.9245 0.9285 0.9264 0.8289
MI 0.9529 0.9503 0.9415 0.9457 0.8340
SA 0.9851 0.9769 0.9769 0.9769 0.8296

MRMR 1.0000 1.0000 1.0000 1.0000 1.0000
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Table A3. Cont.

Dataset Feature Selection Method  Accuracy Precision Recall F1 Score Balanced Accuracy
SPSA 0.8870 0.8887 0.8773 0.8818 0.8416
RelChaNet 0.8587 0.8542 0.8635 0.8565 0.7214
ReliefF 0.8870 0.8821 0.8875 0.8843 0.7529
UCEC GA 0.8870 0.8821 0.8875 0.8843 0.7560
MI 0.8870 0.8821 0.8875 0.8843 0.7540
SA 0.9638 0.9805 0.8333 0.8901 0.8493
MRMR 0.9823 0.9313 0.8858 0.9071 0.8195
Table A4. K-Nearest Neighbors with 5% feature selection.

Dataset Feature Selection Method Accuracy  Precision Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 0.9275
RelChaNet 0.9936 0.9968 0.8750 0.9269 0.8647
ReliefF 1.0000 1.0000 1.0000 1.0000 0.9179

COAD GA 1.0000 1.0000 1.0000 1.0000 0.8954
MI 1.0000 1.0000 1.0000 1.0000 0.8754
SA 0.9745 0.4873 0.5000 0.4935 0.8596
MRMR 0.9588 0.9792 0.6111 0.6712 0.8691
SPSA 0.9882 0.9939 0.8889 0.9344 0.8562
RelChaNet 0.9705 0.9849 0.7222 0.8000 0.8346
ReliefF 0.9882 0.9939 0.8889 0.9344 0.8296

HNSC GA 0.9705 0.9849 0.7222 0.8000 0.8523
MI 0.9705 0.9849 0.7222 0.8000 0.8426
SA 0.9647 0.9692 0.9502 0.9589 0.8821
MRMR 0.8474 0.8477 0.8355 0.8401 0.7195
SPSA 0.8928 0.8918 0.8722 0.8805 0.7653
RelChaNet 0.7857 0.7667 0.7667 0.7667 0.6589
ReliefF 0.8571 0.8625 0.8222 0.8363 0.7346
KICH GA 0.7857 0.7667 0.7667 0.7667 0.6587
MI 0.9285 0.9500 0.9000 0.9181 0.8076
SA 0.9717 0.9718 0.9698 0.9708 0.8936
MRMR 0.9548 0.9577 0.9493 0.9530 0.8563
SPSA 0.8969 0.8852 0.8443 0.8616 0.7594
RelChaNet 0.8144 0.7788 0.7148 0.7355 0.6946
ReliefF 0.7731 0.7095 0.6988 0.7036 0.6358
KIRP GA 0.8144 0.7788 0.7148 0.7355 0.6595
MI 0.9175 0.9033 0.8827 0.8922 0.8023
SA 0.8074 0.9030 0.5185 0.4820 0.6743
MRMR 0.9642 0.9737 0.9500 0.9602 0.8745
SPSA 0.9291 0.9398 0.8615 0.8927 0.8056
RelChaNet 0.8740 0.9012 0.7448 0.7876 0.7590
ReliefF 0.9055 0.9236 0.8115 0.8506 0.8236
LIHC GA 0.8503 0.8826 0.6948 0.7340 0.7295
MI 0.8740 0.9012 0.7448 0.7876 0.7369
SA 0.8975 0.9485 0.5278 0.5255 0.7395
MRMR 0.8554 0.4277 0.5000 0.4610 0.7295
SPSA 0.9216 0.8908 0.6633 0.7188 0.8167
RelChaNet 0.8975 0.7534 0.5766 0.6029 0.7640
ReliefF 0.9156 0.8370 0.6599 0.7079 0.7934
LUSC GA 0.9216 0.8908 0.6633 0.7188 0.8158
MI 0.9096 0.8565 0.6077 0.6496 0.7798
SA 0.9661 0.9650 0.9650 0.9650 0.8295
MRMR 0.9647 0.9820 0.6667 0.7409 0.8736
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Table A4. Cont.

Dataset Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9397 0.9010 0.8436 0.8690 0.8276
RelChaNet 0.8975 0.8236 0.7151 0.7530 0.7649
ReliefF 0.9156 0.8891 0.7430 0.7920 0.7956

PRAD GA 0.9156 0.8891 0.7430 0.7920 0.7677
MI 0.9216 0.9581 0.7292 0.7924 0.8064
SA 0.8975 0.9485 0.5278 0.5255 0.8384
MRMR 0.8975 0.9465 0.6458 0.6976 0.7854
SPSA 0.9629 0.9371 0.9491 0.9429 0.8746
RelChaNet 0.9259 0.9035 0.8565 0.8773 0.8195
ReliefF 0.9481 0.9358 0.8981 0.9154 0.8257
STAD GA 0.8880 0.8654 0.7639 0.8000 0.7727
MI 0.9629 0.9371 0.9491 0.9429 0.8403
SA 0.9294 0.9528 0.8909 0.914 0.8547
MRMR 0.9294 0.9449 0.8957 0.915 0.8469
SPSA 0.9882 0.9915 0.9818 0.9864 0.8953
RelChaNet 0.6148 0.5537 0.5424 0.5382 0.5043
ReliefF 0.9647 0.9692 0.9502 0.9589 0.8459

THCA GA 0.9882 0.9866 0.9866 0.9866 0.8678
MI 0.9647 0.9692 0.9502 0.9589 0.8496
SA 0.8897 0.9378 0.7667 0.8067 0.7934
MRMR 0.9647 0.9692 0.9502 0.9589 0.8821
SPSA 0.9322 0.9483 0.9178 0.9280 0.8497
RelChaNet 0.7175 0.8377 0.6575 0.6427 0.6195
ReliefF 0.8248 0.8852 0.7877 0.8004 0.7058

UCEC GA 0.9096 0.9333 0.8904 0.9027 0.7698
MI 0.8757 0.9127 0.8493 0.8635 0.7596
SA 0.8814 0.9001 0.7176 0.7652 0.7397
MRMR 0.9745 0.4873 0.5000 0.4935 0.8596
Table A5. K-Nearest Neighbors with 10% feature selection.
Dataset Feature Selection Method  Accuracy Precision Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 0.9275
RelChaNet 0.9936 0.9968 0.8750 0.9269 0.8974
ReliefF 1.0000 1.0000 1.0000 1.0000 0.9195
COAD GA 1.0000 1.0000 1.0000 1.0000 0.8678
MI 1.0000 1.0000 1.0000 1.0000 0.8659
SA 0.8370 0.7511 0.6898 0.7118 0.7937
MRMR 0.8975 0.9485 0.5278 0.5255 0.8384
SPSA 0.9882 0.9939 0.8889 0.9344 0.8434
RelChaNet 0.9823 0.9909 0.8333 0.8954 0.8534
ReliefF 0.9764 0.9879 0.7778 0.8510 0.8436
HNSC GA 0.9823 0.9909 0.8333 0.8954 0.8734
MI 0.9882 0.9939 0.8889 0.9344 0.8256
SA 0.9294 0.9449 0.8957 0.9150 0.8075
MRMR 0.9588 0.9792 0.6111 0.6712 0.8296
SPSA 0.9285 0.9500 0.9000 0.9181 0.8076
RelChaNet 0.7857 0.7667 0.7667 0.7667 0.6589
ReliefF 0.8214 0.8099 0.7944 0.8009 0.7068
KICH GA 0.8928 0.8918 0.8722 0.8805 0.7824
MI 0.8571 0.8444 0.8444 0.8444 0.7246
SA 0.9745 0.4873 0.5000 0.4935 0.8396
MRMR 0.8556 0.8351 0.7795 0.8005 0.7847
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Table A5. Cont.

Dataset Feature Selection Method  Accuracy Precision Recall F1 Score Balanced Accuracy
SPSA 0.8762 0.9008 0.7814 0.8177 0.7329
RelChaNet 0.8453 0.8541 0.7359 0.7681 0.7267
ReliefF 0.8144 0.7788 0.7148 0.7355 0.6926
KIRP GA 0.7731 0.7095 0.6988 0.7036 0.6106
MI 0.8144 0.8025 0.6904 0.7166 0.6967
SA 0.7319 0.3660 0.5000 0.4226 0.6057
MRMR 0.9527 0.9709 0.9000 0.9294 0.8295
SPSA 0.9212 0.9195 0.8564 0.8824 0.8396
RelChaNet 0.8503 0.8826 0.6948 0.7340 0.7496
ReliefF 0.9055 0.9236 0.8115 0.8506 0.7560
LIHC GA 0.8897 0.9126 0.7782 0.8202 0.7649
MI 0.8503 0.8826 0.6948 0.7340 0.7296
SA 0.9647 0.9820 0.6667 0.7409 0.8594
MRMR 0.9647 0.9820 0.6667 0.7409 0.8736
SPSA 0.9156 0.8370 0.6599 0.7079 0.7967
RelChaNet 0.8915 0.6982 0.5244 0.5212 0.7814
ReliefF 0.9036 0.7714 0.6288 0.6662 0.7745
LUSC GA 0.9156 0.8370 0.6599 0.7079 0.7893
MI 0.9216 0.8908 0.6633 0.7188 0.7935
SA 0.9588 0.9792 0.6111 0.6712 0.8691
MRMR 0.8504 0.9212 0.6834 0.6784 0.7694
SPSA 0.9397 0.9010 0.8436 0.8690 0.8315
RelChaNet 0.9156 0.9551 0.7083 0.7706 0.8064
ReliefF 0.9036 0.8712 0.7013 0.7508 0.7697
PRAD GA 0.9397 0.9010 0.8436 0.8690 0.7957
MI 0.9397 0.9010 0.8436 0.8690 0.8069
SA 0.8975 0.9485 0.5278 0.5255 0.8175
MRMR 0.9717 0.9718 0.9698 0.9708 0.8936
SPSA 0.9407 0.8996 0.9213 0.9099 0.8694
RelChaNet 0.8880 0.8654 0.7639 0.8000 0.7695
ReliefF 0.9037 0.8815 0.8009 0.8326 0.7946
STAD GA 0.9407 0.8996 0.9213 0.9099 0.8248
MI 0.8880 0.8654 0.7639 0.8000 0.7610
SA 0.8975 0.9485 0.5278 0.5255 0.7395
MRMR 0.9588 0.9792 0.6111 0.6712 0.8691
SPSA 0.9941 0.9911 0.9957 0.9933 0.9017
RelChaNet 0.9647 0.9692 0.9502 0.9589 0.8470
ReliefF 0.9941 0.9911 0.9957 0.9933 0.8756
THCA GA 0.9882 0.9915 0.9818 0.9864 0.8678
MI 0.6148 0.5537 0.5424 0.5382 0.4975
SA 0.9588 0.9651 0.9411 0.9518 0.6257
MRMR 0.9470 0.4735 0.5000 0.4864 0.8905
SPSA 0.9096 0.9333 0.8904 0.9027 0.8560
RelChaNet 0.7514 0.8514 0.6986 0.6970 0.6396
ReliefF 0.8079 0.8768 0.7671 0.7780 0.6849
UCEC GA 0.8022 0.8741 0.7603 0.7703 0.6978
MI 0.7175 0.8377 0.6575 0.6427 0.5949
SA 0.9745 0.4873 0.5000 0.4935 0.8492

MRMR 0.8503 0.9181 0.6833 0.7237 0.7493
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Table A6. K-Nearest Neighbors with 15% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9936 0.9968 0.8750 0.9269 0.8974
RelChaNet 0.9936 0.9968 0.8750 0.9269 0.8974
ReliefF 0.9936 0.9968 0.8750 0.9269 0.8753

COAD GA 0.9936 0.9968 0.8750 0.9269 0.8652
MI 0.9936 0.9968 0.8750 0.9269 0.8935
SA 0.7142 0.6875 0.6667 0.6725 0.5945
MRMR 0.9764 0.9693 0.9779 0.9734 0.8417
SPSA 0.9823 0.9909 0.8333 0.8954 0.8567
RelChaNet 0.9705 0.9849 0.7222 0.8000 0.8325
ReliefF 0.9764 0.9879 0.7778 0.8510 0.8436

HNSC GA 0.9764 0.9879 0.7778 0.8510 0.8236
MI 0.9823 0.9909 0.8333 0.8954 0.8167
SA 0.9209 0.9278 0.9102 0.9169 0.8536
MRMR 0.8915 0.4458 0.5000 0.4713 0.7804
SPSA 0.8928 0.9286 0.8500 0.8733 0.7549
RelChaNet 0.7857 0.7667 0.7667 0.7667 0.6395
ReliefF 0.8571 0.8444 0.8444 0.8444 0.7368

KICH GA 0.8928 0.8918 0.8722 0.8805 0.7368
MI 0.7857 0.7667 0.7667 0.7667 0.6634
SA 0.7216 0.3646 0.4930 0.4192 0.6295
MRMR 0.7637 0.3819 0.5000 0.4330 0.6349
SPSA 0.9175 0.9033 0.8827 0.8922 0.7950
RelChaNet 0.8144 0.8025 0.6904 0.7166 0.6754
ReliefF 0.8659 0.8570 0.7866 0.8119 0.7387
KIRP GA 0.7731 0.7095 0.6988 0.7036 0.6495
MI 0.8762 0.9008 0.7814 0.8177 0.7523
SA 0.8975 0.9465 0.6458 0.6976 0.7854
MRMR 0.9764 0.9693 0.9779 0.9734 0.8417
SPSA 0.9212 0.9344 0.8448 0.8791 0.8265
RelChaNet 0.8897 0.9126 0.7782 0.8202 0.7694
ReliefF 0.8976 0.9181 0.7948 0.8356 0.7694
LIHC GA 0.9212 0.9195 0.8564 0.8824 0.8059
Ml 0.9055 0.9236 0.8115 0.8506 0.7567
SA 0.8975 0.9485 0.5278 0.5255 0.8275
MRMR 0.9745 0.4873 0.5000 0.4935 0.8596
SPSA 0.9216 0.8908 0.6633 0.7188 0.8192
RelChaNet 0.8975 0.7534 0.5766 0.6029 0.7943
ReliefF 0.9096 0.8565 0.6077 0.6496 0.7983
LUSC GA 0.9156 0.8370 0.6599 0.7079 0.7893
MI 0.9216 0.8908 0.6633 0.7188 0.8084
SA 0.9527 0.9709 0.9000 0.9294 0.8295
MRMR 0.7716 0.8849 0.5167 0.4672 0.6493
SPSA 0.9397 0.9174 0.8263 0.8637 0.8315
RelChaNet 0.9216 0.9581 0.7292 0.7924 0.8186
ReliefF 0.8915 0.8487 0.6596 0.7051 0.7694
PRAD GA 0.9036 0.8712 0.7013 0.7508 0.759%4
MI 0.9156 0.8891 0.7430 0.7920 0.7939
SA 0.9647 0.9820 0.6667 0.7409 0.8594
MRMR 0.9529 0.9609 0.9320 0.9446 0.8327
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Table Aé6. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9259 0.9173 0.8426 0.8733 0.8075
RelChaNet 0.8880 0.8654 0.7639 0.8000 0.7695
ReliefF 0.8962 0.8511 0.8102 0.8282 0.7843

STAD GA 0.9037 0.8815 0.8009 0.8326 0.7850
MI 0.8962 0.8511 0.8102 0.8282 0.7740
SA 0.7500 0.8600 0.6500 0.6494 0.6987
MRMR 0.9291 0.9575 0.8500 0.8896 0.8528
SPSA 0.9941 0.9911 0.9957 0.9933 0.8794
RelChaNet 0.9882 0.9866 0.9866 0.9866 0.8653
ReliefF 0.9823 0.9821 0.9775 0.9797 0.8657

THCA GA 0.9882 0.9866 0.9866 0.9866 0.8594
MI 0.9882 0.9866 0.9866 0.9866 0.8693
SA 0.9527 0.9709 0.9000 0.9294 0.8639
MRMR 0.8975 0.9465 0.6458 0.6976 0.7854
SPSA 0.8757 0.9127 0.8493 0.8635 0.7957
RelChaNet 0.8022 0.8741 0.7603 0.7703 0.7594
ReliefF 0.7909 0.8688 0.7466 0.7548 0.6594

UCEC GA 0.8757 0.9127 0.8493 0.8635 0.7496
MI 0.7909 0.8688 0.7466 0.7548 0.6597
SA 0.8554 0.4277 0.5000 0.4610 0.7295
MRMR 0.8614 0.9303 0.5208 0.5025 0.7964
Table A7. LightGBM with 5% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 0.9265
RelChaNet 1.0000 1.0000 1.0000 1.0000 0.8769
ReliefF 1.0000 1.0000 1.0000 1.0000 0.8976

COAD GA 1.0000 1.0000 1.0000 1.0000 0.8597
MI 1.0000 1.0000 1.0000 1.0000 0.8695
SA 0.7228 0.6406 0.8446 0.6275 0.6289
MRMR 0.8453 0.8171 0.8944 0.8290 0.7257
SPSA 0.9941 0.9969 0.9444 0.9690 0.9056
RelChaNet 0.9823 0.8969 0.9382 0.9164 0.8658
ReliefF 0.9882 0.9413 0.9413 0.9413 0.8368

HNSC GA 0.9823 0.8969 0.9382 0.9164 0.8459
MI 0.9882 0.9413 0.9413 0.9413 0.8495
SA 0.8433 0.7493 0.9164 0.7739 0.7296
MRMR 0.8373 0.7450 0.9037 0.7729 0.7504
SPSA 0.9642 0.9545 0.9722 0.9619 0.9670
RelChaNet 0.9285 0.9500 0.9000 0.9181 0.8047
ReliefF 0.9642 0.9545 0.9722 0.9619 0.8486
KICH GA 0.9285 0.9500 0.9000 0.9181 0.8076
MI 0.9642 0.9545 0.9722 0.9619 0.8175
SA 1.0000 1.0000 1.0000 1.0000 0.8691
MRMR 0.8373 0.7450 0.9037 0.7729 0.7504
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Table A7. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9690 0.9661 0.9545 0.9601 0.8898
RelChaNet 0.9381 0.9309 0.9090 0.9192 0.8296
ReliefF 0.9381 0.9212 0.9212 0.9212 0.8285

KIRP GA 0.9175 0.9033 0.8827 0.8922 0.7986
MI 0.9793 0.9737 0.9737 0.9737 0.8538
SA 0.8433 0.7493 0.9164 0.7739 0.7296
MRMR 0.9717 0.9700 0.9719 0.9709 0.8318
SPSA 0.9606 0.9412 0.9512 0.9461 0.9284
RelChaNet 0.9527 0.9441 0.9230 0.9330 0.8429
ReliefF 0.9291 0.8931 0.9191 0.9050 0.8158
LIHC GA 0.9685 0.9670 0.9448 0.9553 0.8487
MI 0.9606 0.9412 0.9512 0.9461 0.8478
SA 0.7228 0.6406 0.8446 0.6275 0.6289
MRMR 0.9642 0.9545 0.9722 0.9619 0.8219
SPSA 0.9578 0.9774 0.8056 0.8678 0.8743
RelChaNet 0.9397 0.9212 0.7466 0.8050 0.8157
ReliefF 0.9397 0.9212 0.7466 0.8050 0.8168
LUSC GA 0.9518 0.9356 0.8022 0.8534 0.8185
MI 0.9518 0.9744 0.7778 0.8440 0.8276
SA 0.8453 0.8171 0.8944 0.8290 0.7285
MRMR 0.9278 0.8953 0.9572 0.9176 0.7968
SPSA 0.9819 0.9897 0.9375 0.9614 0.9076
RelChaNet 0.9759 0.9669 0.9340 0.9495 0.8645
ReliefF 0.9698 0.9624 0.9131 0.9357 0.8196
PRAD GA 0.9698 0.9460 0.9305 0.9380 0.8594
MI 0.9759 0.9669 0.9340 0.9495 0.8438
SA 0.9259 0.8649 0.9537 0.8976 0.8196
MRMR 0.8373 0.7450 0.9037 0.7729 0.7504
SPSA 0.9777 0.9716 0.9583 0.9648 0.8896
RelChaNet 0.9777 0.9716 0.9583 0.9648 0.8494
ReliefF 0.9777 0.9716 0.9583 0.9648 0.8494
STAD GA 0.9777 0.9716 0.9583 0.9648 0.8396
MI 0.9851 0.9769 0.9769 0.9769 0.8754
SA 0.8433 0.7493 0.9164 0.7739 0.7296
MRMR 0.9212 0.8750 0.9485 0.9014 0.8659
SPSA 0.9941 0.9957 0.9909 0.9932 0.9048
RelChaNet 0.6518 0.6002 0.5618 0.5509 0.5296
ReliefF 0.9941 0.9957 0.9909 0.9932 0.8694

THCA GA 0.9941 0.9957 0.9909 0.9932 0.8589
MI 0.9764 0.9731 0.9731 0.9731 0.8965
SA 0.8433 0.7493 0.9164 0.7739 0.7296
MRMR 1.0000 1.0000 1.0000 1.0000 0.8695
SPSA 0.9661 0.9650 0.9650 0.9650 0.8959
RelChaNet 0.9491 0.9505 0.9445 0.9472 0.8195
ReliefF 0.9491 0.9532 0.9424 0.9470 0.8195

UCEC GA 0.9661 0.9650 0.9650 0.9650 0.8789
MI 0.9491 0.9532 0.9424 0.9470 0.8478
SA 0.9887 0.9952 0.9959 0.9963 0.8591
MRMR 0.8352 0.6256 0.9147 0.6593 0.7089
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Table A8. LightGBM with 10% feature selection.

Dataset Feature Selection Method Accuracy Precision  Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 0.9527
RelChaNet 1.0000 1.0000 1.0000 1.0000 0.8850
ReliefF 1.0000 1.0000 1.0000 1.0000 0.8858

COAD GA 1.0000 1.0000 1.0000 1.0000 0.8965
MI 1.0000 1.0000 1.0000 1.0000 0.8958
SA 0.8373 0.7450 0.9037 0.7729 0.7504
MRMR 0.9259 0.8649 0.9537 0.8976 0.7846
SPSA 0.9941 0.9969 0.9444 0.9690 0.9168
RelChaNet 0.9823 0.8969 0.9382 0.9164 0.8749
ReliefF 0.9882 0.9413 0.9413 0.9413 0.8068

HNSC GA 0.9882 0.9413 0.9413 0.9413 0.8345
MI 0.9882 0.9413 0.9413 0.9413 0.8697
SA 0.8373 0.7450 0.9037 0.7729 0.7504
MRMR 0.9823 0.9741 0.9870 0.9801 0.8569
SPSA 0.9642 0.9545 0.9722 0.9619 0.8948
RelChaNet 0.9285 0.9500 0.9000 0.9181 0.7968
ReliefF 0.9642 0.9545 0.9722 0.9619 0.8368

KICH GA 0.9642 0.9545 0.9722 0.9619 0.8486
MI 0.9285 0.9500 0.9000 0.9181 0.7924
SA 0.9823 0.9741 0.9870 0.9801 0.8694
MRMR 1.0000 1.0000 1.0000 1.0000 1.0000
SPSA 0.9793 0.9737 0.9737 0.9737 0.8947
RelChaNet 0.9587 0.9475 0.9475 0.9475 0.8267
ReliefF 0.9278 0.9122 0.9020 0.9069 0.8176
KIRP GA 0.9690 0.9661 0.9545 0.9601 0.8496
MI 0.9381 0.9212 0.9212 0.9212 0.8196
SA 0.9212 0.8750 0.9485 0.9014 0.8659
MRMR 0.9887 0.9952 0.9959 0.9963 0.8689
SPSA 0.9685 0.9670 0.9448 0.9553 0.9059
RelChaNet 0.9527 0.9270 0.9460 0.9360 0.8385
ReliefF 0.9606 0.9412 0.9512 0.9461 0.8489
LIHC GA 0.9606 0.9412 0.9512 0.9461 0.8657
MI 0.9606 0.9502 0.9397 0.9448 0.8594
SA 0.8373 0.7450 0.9037 0.7729 0.7504
MRMR 0.8192 0.6875 0.8986 0.7163 0.7286
SPSA 0.9518 0.9356 0.8022 0.8534 0.8497
RelChaNet 0.9337 0.9126 0.7188 0.7783 0.8106
ReliefF 0.9518 0.9744 0.7778 0.8440 0.8286
LUSC GA 0.9578 0.9774 0.8056 0.8678 0.7945
MI 0.9397 0.9212 0.7466 0.8050 0.8109
SA 0.9212 0.8854 0.9525 0.9036 0.8091
MRMR 0.9212 0.8750 0.9485 0.9014 0.7056
SPSA 0.9819 0.9897 0.9375 0.9614 0.9184
RelChaNet 0.9698 0.9460 0.9305 0.9380 0.8496
ReliefF 0.9337 0.8703 0.8574 0.8637 0.8286
PRAD GA 0.9337 0.8703 0.8574 0.8637 0.8265
MI 0.9698 0.9624 0.9131 0.9357 0.8296
SA 0.9681 0.7234 0.9854 0.8095 0.8494
MRMR 0.7710 0.6607 0.8716 0.6696 0.7056
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Table A8. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9851 0.9769 0.9769 0.9769 0.8946
RelChaNet 0.9777 0.9716 0.9583 0.9648 0.8494
ReliefF 0.9777 0.9716 0.9583 0.9648 0.7956

STAD GA 0.9703 0.9664 0.9398 0.9524 0.8596
MI 0.9777 0.9596 0.9722 0.9658 0.8496
SA 0.8373 0.7450 0.9037 0.7729 0.7504
MRMR 0.8556 0.8250 0.9014 0.8393 0.7195
SPSA 0.9941 0.9957 0.9909 0.9932 0.8960
RelChaNet 0.9764 0.9731 0.9731 0.9731 0.8659
ReliefF 0.9764 0.9731 0.9731 0.9731 0.8567

THCA GA 0.9823 0.9821 0.9775 0.9797 0.8675
MI 0.9941 0.9957 0.9909 0.9932 0.8392
SA 1.0000 1.0000 1.0000 1.0000 0.9067
MRMR 0.9642 0.9545 0.9722 0.9619 0.8219
SPSA 0.9661 0.9670 0.9630 0.9649 0.8469
RelChaNet 0.9604 0.9601 0.9582 0.9591 0.8496
ReliefF 0.9604 0.9601 0.9582 0.9591 0.8754

UCEC GA 0.9604 0.9623 0.9561 0.9589 0.8493
MI 0.9661 0.9650 0.9650 0.9650 0.8156
SA 0.7647 0.5983 0.8824 0.5835 0.6496
MRMR 0.9823 0.9741 0.9870 0.9801 0.8536
Table A9. LightGBM with 15% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 0.8796
RelChaNet 1.0000 1.0000 1.0000 1.0000 0.8694
ReliefF 1.0000 1.0000 1.0000 1.0000 0.8793

COAD GA 0.9823 0.8969 0.9382 0.9164 0.8549
MI 0.9882 0.9413 0.9413 0.9413 0.8437
SA 0.7228 0.6406 0.8446 0.6275 0.6289
MRMR 0.9212 0.8854 0.9525 0.9036 0.8091
SPSA 0.9882 0.9413 0.9413 0.9413 0.8978
RelChaNet 0.9823 0.9909 0.8333 0.8954 0.8569
ReliefF 0.9882 0.9413 0.9413 0.9413 0.8386

HNSC GA 0.9823 0.8969 0.9382 0.9164 0.8695
MI 0.9882 0.9413 0.9413 0.9413 0.8694
SA 1.0000 1.0000 1.0000 1.0000 0.8974
MRMR 0.8373 0.7450 0.9037 0.7729 0.7504
SPSA 0.9642 0.9545 0.9722 0.9619 0.8948
RelChaNet 0.9285 0.9500 0.9000 0.9181 0.8285
ReliefF 0.9642 0.9545 0.9722 0.9619 0.8564
KICH GA 0.9642 0.9545 0.9722 0.9619 0.8275
MI 0.9285 0.9500 0.9000 0.9181 0.7850
SA 0.9604 0.9565 0.9643 0.9596 0.8402
MRMR 0.7228 0.6406 0.8446 0.6275 0.6289
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Table A9. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9690 0.9661 0.9545 0.9601 0.8865
RelChaNet 0.9175 0.9033 0.8827 0.8922 0.7952
ReliefF 0.9587 0.9475 0.9475 0.9475 0.8406

KIRP GA 0.9381 0.9212 0.9212 0.9212 0.8186
MI 0.9175 0.9033 0.8827 0.8922 0.8058
SA 0.9887 0.9952 0.9959 0.9963 0.8506
MRMR 0.8726 0.5833 0.9346 0.6079 0.7495
SPSA 0.9685 0.9670 0.9448 0.9553 0.8697
RelChaNet 0.9606 0.9412 0.9512 0.9461 0.8549
ReliefF 0.9606 0.9502 0.9397 0.9448 0.8539
LIHC GA 0.9291 0.8931 0.9191 0.9050 0.8076
MI 0.9606 0.9412 0.9512 0.9461 0.8386
SA 0.9661 0.9625 0.9691 0.9653 0.8405
MRMR 0.9681 0.7234 0.9854 0.8095 0.8494
SPSA 0.9518 0.9356 0.8022 0.8534 0.8478
RelChaNet 0.9518 0.9744 0.7778 0.8440 0.8368
ReliefF 0.9518 0.9744 0.7778 0.8440 0.8205
LUSC GA 0.9337 0.9126 0.7188 0.7783 0.8429
MI 0.9578 0.9774 0.8056 0.8678 0.8438
SA 0.7000 0.5750 0.8416 0.5363 0.5876
MRMR 0.5421 0.5957 0.7432 0.4880 0.4109
SPSA 0.9759 0.9669 0.9340 0.9495 0.8869
RelChaNet 0.9759 0.9669 0.9340 0.9495 0.8329
ReliefF 0.9698 0.9624 0.9131 0.9357 0.8798
PRAD GA 0.9819 0.9897 0.9375 0.9614 0.8569
MI 0.9698 0.9624 0.9131 0.9357 0.8769
SA 0.9212 0.8750 0.9485 0.9014 0.8659
MRMR 0.5421 0.5957 0.7432 0.4880 0.4076
SPSA 0.9851 0.9769 0.9769 0.9769 0.8759
RelChaNet 0.9777 0.9596 0.9722 0.9658 0.8295
ReliefF 0.9703 0.9664 0.9398 0.9524 0.8459
STAD GA 0.9703 0.9664 0.9398 0.9524 0.8503
MI 0.9777 0.9596 0.9722 0.9658 0.8396
SA 0.5602 0.5989 0.7534 0.5015 0.4892
MRMR 0.8253 0.7264 0.8979 0.7548 0.7195
SPSA 0.9941 0.9957 0.9909 0.9932 0.8869
RelChaNet 0.9823 0.9821 0.9775 0.9797 0.8295
ReliefF 0.9882 0.9866 0.9866 0.9866 0.8439

THCA GA 0.9882 0.9866 0.9866 0.9866 0.8439
MI 0.9882 0.9866 0.9866 0.9866 0.8495
SA 0.8352 0.6256 0.9147 0.6593 0.7295
MRMR 0.8882 0.6607 0.9410 0.7119 0.8056
SPSA 0.9661 0.9650 0.9650 0.9650 0.8374
RelChaNet 0.9604 0.9623 0.9561 0.9589 0.8358
ReliefF 0.9491 0.9468 0.9486 0.9476 0.8295

UCEC GA 0.9491 0.9505 0.9445 0.9472 0.8292
MI 0.9491 0.9505 0.9445 0.9472 0.8295
SA 0.9823 0.9741 0.9870 0.9801 0.8749
MRMR 0.9882 0.9847 0.9928 0.9925 0.8967




Algorithms 2025, 18, 622

45 of 61

Table A10. Logistic Regression with 5% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9808 0.7857 0.9902 0.8587 0.8940
RelChaNet 0.9681 0.7234 0.9854 0.8095 0.8494
ReliefF 0.8726 0.5833 0.9346 0.6079 0.7495

COAD GA 0.9745 0.7564 0.9976 0.8323 0.8539
MI 0.9808 0.7857 0.9902 0.8587 0.8945
SA 0.9823 0.9821 0.9775 0.9797 0.8295
MRMR 0.9578 0.9774 0.8056 0.8678 0.7945
SPSA 0.8882 0.6607 0.9410 0.7119 0.8056
RelChaNet 0.8352 0.6256 0.9147 0.6593 0.7089
ReliefF 0.7000 0.5750 0.8416 0.5363 0.5849

HNSC GA 0.8352 0.6256 0.9147 0.6593 0.7057
MI 0.7647 0.5983 0.8824 0.5835 0.6329
SA 0.9578 0.9774 0.8056 0.8678 0.7945
MRMR 0.9175 0.9033 0.8827 0.8922 0.8058
SPSA 1.0000 1.0000 1.0000 1.0000 0.9058
RelChaNet 0.9642 0.9545 0.9722 0.9619 0.8592
ReliefF 0.9642 0.9545 0.9722 0.9619 0.8305
KICH GA 1.0000 1.0000 1.0000 1.0000 0.8596
MI 1.0000 1.0000 1.0000 1.0000 0.8974
SA 0.9397 0.9212 0.7466 0.8050 0.8168
MRMR 0.9606 0.9412 0.9512 0.9461 0.8657
SPSA 0.9175 0.8854 0.9487 0.9032 0.8495
RelChaNet 0.8453 0.8171 0.8944 0.8290 0.7285
ReliefF 0.9072 0.8714 0.9366 0.8924 0.8694
KIRP GA 0.8556 0.8250 0.9014 0.8393 0.7195
MI 0.8453 0.8171 0.8944 0.8290 0.7098
SA 0.9491 0.9505 0.9445 0.9472 0.8195
MRMR 0.9759 0.9669 0.9340 0.9495 0.8438
SPSA 0.9212 0.8854 0.9525 0.9036 0.8596
RelChaNet 0.8346 0.7941 0.8918 0.8097 0.7290
ReliefF 0.9212 0.8750 0.9485 0.9014 0.7056
LIHC GA 0.8346 0.7941 0.8918 0.8097 0.7098
MI 0.8346 0.7941 0.8918 0.8097 0.7109
SA 0.9642 0.9545 0.9722 0.9619 0.8175
MRMR 0.9882 0.9413 0.9413 0.9413 0.8068
SPSA 0.8192 0.6875 0.8986 0.7163 0.7598
RelChaNet 0.7710 0.6654 0.8732 0.6720 0.6459
ReliefF 0.6144 0.5912 0.7350 0.5311 0.4986
LUSC GA 0.7228 0.6406 0.8446 0.6275 0.6289
MI 0.8192 0.6875 0.8986 0.7163 0.7286
SA 0.9882 0.9413 0.9413 0.9413 0.8495
MRMR 0.9642 0.9545 0.9722 0.9619 0.9670
SPSA 0.8554 0.7500 0.9155 0.7872 0.7698
RelChaNet 0.8373 0.7450 0.9037 0.7729 0.7209
ReliefF 0.7951 0.7069 0.8803 0.7247 0.6792
PRAD GA 0.8433 0.7493 0.9164 0.7739 0.7296
MI 0.7951 0.7069 0.8803 0.7247 0.6589
SA 0.9698 0.9624 0.9131 0.9357 0.8296
MRMR 0.9518 0.9356 0.8022 0.8534 0.8478
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Table A10. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9481 0.8971 0.9676 0.9259 0.8578
RelChaNet 0.9407 0.8952 0.9693 0.9284 0.8395
ReliefF 0.9259 0.8649 0.9537 0.8976 0.8196

STAD GA 0.9259 0.8649 0.9537 0.8976 0.8056
MI 0.9481 0.9053 0.9739 0.9395 0.8194
SA 0.9606 0.9502 0.9397 0.9448 0.8594
MRMR 0.9823 0.9821 0.9775 0.9797 0.8675
SPSA 0.9882 0.9825 0.9913 0.9867 0.8958
RelChaNet 0.5777 0.5968 0.6049 0.5727 0.4896
ReliefF 0.9823 0.9741 0.9870 0.9801 0.8749

THCA GA 0.9882 0.9847 0.9928 0.9925 0.8695
MI 0.9882 0.9847 0.9928 0.9925 0.8967
SA 0.9777 0.9716 0.9583 0.9648 0.8494
MRMR 0.9777 0.9716 0.9583 0.9648 0.8896
SPSA 0.9887 0.9952 0.9959 0.9963 0.8768
RelChaNet 0.9661 0.9620 0.9712 0.9654 0.8589
ReliefF 0.9717 0.9700 0.9719 0.9709 0.8318

UCEC GA 0.9661 0.9620 0.9712 0.9654 0.8478
MI 0.9661 0.9620 0.9712 0.9654 0.8496
SA 0.9175 0.9033 0.8827 0.8922 0.8058
MRMR 0.9291 0.8931 0.9191 0.9050 0.8158
Table A11. Logistic Regression with 10% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9808 0.7857 0.9902 0.8587 0.9285
RelChaNet 0.9681 0.7234 0.9854 0.8095 0.8265
ReliefF 0.8726 0.5833 0.9346 0.6079 0.6589

COAD GA 0.9745 0.7564 0.9976 0.8323 0.8156
MI 0.9745 0.7564 0.9976 0.8323 0.8356
SA 0.9527 0.9441 0.9230 0.9330 0.8429
MRMR 0.9606 0.9412 0.9512 0.9461 0.8549
SPSA 0.8882 0.6607 0.9410 0.7119 0.7596
RelChaNet 0.8352 0.6256 0.9147 0.6593 0.6854
ReliefF 0.7000 0.5750 0.8416 0.5363 0.4596

HNSC GA 0.7000 0.5750 0.8416 0.5363 0.5876
Ml 0.7941 0.6034 0.8923 0.6175 0.6840
SA 0.9703 0.9664 0.9398 0.9524 0.8503
MRMR 1.0000 1.0000 1.0000 1.0000 0.8976
SPSA 1.0000 1.0000 1.0000 1.0000 0.8691
RelChaNet 0.9642 0.9545 0.9722 0.9619 0.8596
ReliefF 0.9642 0.9545 0.9722 0.9619 0.8195
KICH GA 1.0000 1.0000 1.0000 1.0000 0.8695
MI 1.0000 1.0000 1.0000 1.0000 0.9067
SA 0.9685 0.9670 0.9448 0.9553 0.8487
MRMR 0.9397 0.9212 0.7466 0.8050 0.8109
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Table A11. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9175 0.8854 0.9487 0.9032 0.8267
RelChaNet 0.8453 0.8171 0.8944 0.8290 0.7285
ReliefF 0.9072 0.8714 0.9366 0.8924 0.8075

KIRP GA 0.9072 0.8714 0.9366 0.8924 0.7567
MI 0.9175 0.8854 0.9487 0.9032 0.8056
SA 0.9764 0.9731 0.9731 0.9731 0.8965
MRMR 0.9685 0.9670 0.9448 0.9553 0.9059
SPSA 0.9212 0.8854 0.9525 0.9036 0.8749
RelChaNet 0.8346 0.7941 0.8918 0.8097 0.759%4
ReliefF 0.9212 0.8750 0.9485 0.9014 0.7748
LIHC GA 0.9212 0.8750 0.9485 0.9014 0.8295
MI 0.9212 0.8750 0.9485 0.9014 0.8659
SA 0.9882 0.9413 0.9413 0.9413 0.8697
MRMR 1.0000 1.0000 1.0000 1.0000 0.8850
SPSA 0.8192 0.6875 0.8986 0.7163 0.7056
RelChaNet 0.7710 0.6654 0.8732 0.6720 0.5987
ReliefF 0.6144 0.5912 0.7350 0.5311 0.4892
LUSC GA 0.6144 0.5912 0.7350 0.5311 0.5186
MI 0.7048 0.6393 0.8394 0.6193 0.5984
SA 0.9941 0.9969 0.9444 0.9690 0.9056
MRMR 0.9606 0.9412 0.9512 0.9461 0.8549
SPSA 0.8554 0.7500 0.9155 0.7872 0.7504
RelChaNet 0.8373 0.7450 0.9037 0.7729 0.6594
ReliefF 0.7951 0.7069 0.8803 0.7247 0.7297
PRAD GA 0.7289 0.6739 0.8415 0.6639 0.6087
MI 0.8433 0.7493 0.9164 0.7739 0.7285
SA 0.9642 0.9545 0.9722 0.9619 0.8275
MRMR 0.9518 0.9356 0.8022 0.8534 0.8478
SPSA 0.9481 0.8971 0.9676 0.9259 0.8239
RelChaNet 0.9407 0.8952 0.9693 0.9284 0.8168
ReliefF 0.9259 0.8649 0.9537 0.8976 0.8372
STAD GA 0.9481 0.9053 0.9739 0.9395 0.8195
MI 0.9259 0.8649 0.9537 0.8976 0.7846
SA 0.9381 0.9212 0.9212 0.9212 0.8196
MRMR 0.9759 0.9669 0.9340 0.9495 0.8438
SPSA 0.9882 0.9825 0.9913 0.9867 0.9284
RelChaNet 0.5777 0.5968 0.6049 0.5727 0.8567
ReliefF 0.9823 0.9741 0.9870 0.9801 0.8694

THCA GA 0.5777 0.5968 0.6049 0.5727 0.4489
MI 0.9823 0.9741 0.9870 0.9801 0.8569
SA 0.9777 0.9716 0.9583 0.9648 0.8494
MRMR 0.9397 0.9212 0.7466 0.8050 0.8109
SPSA 0.9887 0.9952 0.9959 0.9963 0.8914
RelChaNet 0.9661 0.9620 0.9712 0.9654 0.8402
ReliefF 0.9717 0.9700 0.9719 0.9709 0.8405

UCEC GA 0.9548 0.9506 0.9595 0.9539 0.8285
MI 0.9717 0.9700 0.9719 0.9709 0.8568
SA 0.9606 0.9412 0.9512 0.9461 0.8549
MRMR 1.0000 1.0000 1.0000 1.0000 0.8597
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Table A12. Logistic Regression with 15% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9745 0.7564 0.9976 0.8323 0.8867
RelChaNet 0.7643 0.5488 0.8791 0.5201 0.6496
ReliefF 0.9745 0.7500 0.9869 0.8267 0.8539

COAD GA 0.7643 0.5488 0.8791 0.5201 0.6696
MI 0.9745 0.7564 0.9976 0.8323 0.8495
SA 0.9661 0.9670 0.9630 0.9649 0.8469
MRMR 0.9397 0.9212 0.7466 0.8050 0.8157
SPSA 0.7705 0.5938 0.8789 0.5890 0.6984
RelChaNet 0.7647 0.5983 0.8824 0.5835 0.6496
ReliefF 0.5470 0.5523 0.7609 0.4376 0.4285

HNSC GA 0.8352 0.6256 0.9147 0.6593 0.7295
MI 0.5882 0.5570 0.7826 0.4634 0.4395
SA 0.9337 0.9126 0.7188 0.7783 0.8106
MRMR 0.9606 0.9412 0.9512 0.9461 0.8386
SPSA 0.9642 0.9545 0.9722 0.9619 0.8596
RelChaNet 0.9642 0.9545 0.9722 0.9619 0.8493
ReliefF 0.9642 0.9545 0.9722 0.9619 0.8957

KICH GA 0.9642 0.9545 0.9722 0.9619 0.8219
MI 0.9642 0.9545 0.9722 0.9619 0.8489
SA 0.9285 0.9500 0.9000 0.9181 0.7968
MRMR 0.9604 0.9623 0.9561 0.9589 0.8358
SPSA 0.9175 0.8854 0.9487 0.9032 0.8478
RelChaNet 0.8453 0.8171 0.8944 0.8290 0.7078
ReliefF 0.9175 0.8824 0.9437 0.9035 0.7984
KIRP GA 0.8453 0.8171 0.8944 0.8290 0.7257
MI 0.9278 0.8953 0.9572 0.9176 0.7968
SA 0.9518 0.9744 0.7778 0.8440 0.8276
MRMR 0.9941 0.9957 0.9909 0.9932 0.8960
SPSA 0.9212 0.8854 0.9525 0.9036 0.8296
RelChaNet 0.8425 0.8000 0.8969 0.8175 0.7694
ReliefF 0.8976 0.8488 0.9330 0.8750 0.7639
LIHC GA 0.9212 0.8854 0.9525 0.9036 0.8091
MI 0.8346 0.7941 0.8918 0.8097 0.7257
SA 0.9759 0.9669 0.9340 0.9495 0.8438
MRMR 0.9661 0.9650 0.9650 0.9650 0.8789
SPSA 0.7228 0.6406 0.8446 0.6275 0.6289
RelChaNet 0.7048 0.6393 0.8394 0.6193 0.6176
ReliefF 0.5421 0.5957 0.7432 0.4880 0.4076
LUSC GA 0.7228 0.6406 0.8446 0.6275 0.6096
MI 0.5421 0.5957 0.7432 0.4880 0.4109
SA 0.9777 0.9716 0.9583 0.9648 0.8896
MRMR 0.9882 0.9413 0.9413 0.9413 0.8694
SPSA 0.8433 0.7493 0.9164 0.7739 0.7296
RelChaNet 0.7289 0.6739 0.8415 0.6639 0.6086
ReliefF 0.8253 0.7264 0.8979 0.7548 0.7195
PRAD GA 0.8554 0.7500 0.9155 0.7872 0.7349
MI 0.8554 0.7500 0.9155 0.7872 0.7195
SA 0.9703 0.9664 0.9398 0.9524 0.8596
MRMR 0.9698 0.9624 0.9131 0.9357 0.8798
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Table A12. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9481 0.9053 0.9739 0.9395 0.8239
RelChaNet 0.8666 0.8000 0.9167 0.8295 0.7395
ReliefF 0.9259 0.8649 0.9537 0.8976 0.7946

STAD GA 0.8666 0.8000 0.9167 0.8295 0.7439
MI 0.9481 0.9053 0.9739 0.9395 0.8594
SA 0.9642 0.9545 0.9722 0.9619 0.8948
MRMR 0.9175 0.9033 0.8827 0.8922 0.7952
SPSA 0.9882 0.9847 0.9928 0.9925 0.8597
RelChaNet 0.9705 0.9583 0.9783 0.9671 0.8540
ReliefF 0.9823 0.9741 0.9870 0.9801 0.8375

THCA GA 0.9823 0.9741 0.9870 0.9801 0.8536
MI 0.9823 0.9741 0.9870 0.9801 0.8569
SA 0.9661 0.9650 0.9650 0.9650 0.8789
MRMR 1.0000 1.0000 1.0000 1.0000 0.8796
SPSA 0.9887 0.9952 0.9959 0.9963 0.8506
RelChaNet 0.9548 0.9506 0.9595 0.9539 0.8346
ReliefF 0.9717 0.9687 0.9739 0.9710 0.8589

UCEC GA 0.9887 0.9952 0.9959 0.9963 0.8689
MI 0.9887 0.9952 0.9959 0.9963 0.8591
SA 1.0000 1.0000 1.0000 1.0000 0.8796
MRMR 0.9661 0.9670 0.9630 0.9649 0.8469
Table A13. SVM with 5% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 0.9298
RelChaNet 0.9745 0.4873 0.5000 0.4935 0.8958
ReliefF 0.9745 0.4873 0.5000 0.4935 0.8386

COAD GA 0.9808 0.9904 0.6250 0.6951 0.8756
MI 0.9745 0.4873 0.5000 0.4935 0.8396
SA 0.8453 0.8541 0.7359 0.7681 0.7267
MRMR 0.9096 0.9333 0.8904 0.9027 0.8560
SPSA 0.9647 0.9820 0.6667 0.7409 0.8594
RelChaNet 0.9647 0.9820 0.6667 0.7409 0.8417
ReliefF 0.9470 0.4735 0.5000 0.4864 0.8398

HNSC GA 0.9588 0.9792 0.6111 0.6712 0.8682
MI 0.9588 0.9792 0.6111 0.6712 0.8692
SA 0.8022 0.8741 0.7603 0.7703 0.6978
MRMR 0.9882 0.9866 0.9866 0.9866 0.8594
SPSA 0.9642 0.9737 0.9500 0.9602 0.8745
RelChaNet 0.7142 0.6875 0.6667 0.6725 0.6095
ReliefF 0.7500 0.8600 0.6500 0.6494 0.6285

KICH GA 0.8928 0.9286 0.8500 0.8733 0.7598
MI 0.7500 0.8600 0.6500 0.6494 0.6894
SA 0.9175 0.9033 0.8827 0.8922 0.7950
MRMR 0.9936 0.9968 0.8750 0.9269 0.8974
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Table A13. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.7422 0.6585 0.5680 0.5642 0.6849
RelChaNet 0.7216 0.3646 0.4930 0.4192 0.6295
ReliefF 0.7319 0.5116 0.5305 0.4917 0.6257

KIRP GA 0.7422 0.8698 0.5192 0.4622 0.6295
MI 0.7422 0.6585 0.5680 0.5642 0.6197
SA 0.9156 0.8891 0.7430 0.7920 0.7956
MRMR 0.8762 0.9008 0.7814 0.8177 0.7329
SPSA 0.9527 0.9709 0.9000 0.9294 0.8639
RelChaNet 0.8582 0.6764 0.7000 0.6812 0.7349
ReliefF 0.7637 0.3819 0.5000 0.4330 0.6349
LIHC GA 0.9527 0.9709 0.9000 0.9294 0.8193
MI 0.9527 0.9709 0.9000 0.9294 0.8295
SA 0.7731 0.7095 0.6988 0.7036 0.6495
MRMR 0.9407 0.8996 0.9213 0.9099 0.8248
SPSA 0.8975 0.9485 0.5278 0.5255 0.8275
RelChaNet 0.8975 0.9485 0.5278 0.5255 0.7594
ReliefF 0.8915 0.4458 0.5000 0.4713 0.7697
LUSC GA 0.8975 0.9485 0.5278 0.5255 0.7395
MI 0.8915 0.7057 0.5976 0.6244 0.7941
SA 0.9036 0.8712 0.7013 0.7508 0.7594
MRMR 0.9212 0.9344 0.8448 0.8791 0.8265
SPSA 0.8915 0.9437 0.6250 0.6702 0.8467
RelChaNet 0.8674 0.7708 0.5763 0.5969 0.7548
ReliefF 0.8554 0.4277 0.5000 0.4610 0.7386
PRAD GA 0.8975 0.9465 0.6458 0.6976 0.7632
MI 0.8795 0.9383 0.5833 0.6100 0.7943
SA 0.9481 0.9358 0.8981 0.9154 0.8257
MRMR 0.9291 0.9398 0.8615 0.8927 0.8056
SPSA 0.9555 0.9306 0.9306 0.9306 0.8943
RelChaNet 0.9037 0.9463 0.7593 0.8131 0.7689
ReliefF 0.7481 0.5789 0.5648 0.5693 0.6278
STAD GA 0.9037 0.9463 0.7593 0.8131 0.7496
MI 0.7481 0.5789 0.5648 0.5693 0.6295
SA 0.9936 0.9968 0.8750 0.9269 0.8652
MRMR 0.9882 0.9939 0.8889 0.9344 0.8256
SPSA 0.9352 0.9167 0.9522 0.9294 0.8593
RelChaNet 0.6444 0.3222 0.5000 0.3919 0.5096
ReliefF 0.9294 0.9449 0.8957 0.9150 0.8469

THCA GA 0.6444 0.3222 0.5000 0.3919 0.5837
MI 0.9294 0.9449 0.8957 0.9150 0.7975
SA 0.8571 0.8444 0.8444 0.8444 0.7246
MRMR 0.8928 0.9286 0.8500 0.8733 0.7549
SPSA 0.9661 0.9650 0.9650 0.9650 0.8823
RelChaNet 0.9209 0.9278 0.9102 0.9169 0.8536
ReliefF 0.8474 0.8477 0.8355 0.8401 0.7195

UCEC GA 0.9548 0.9577 0.9493 0.9530 0.8727
MI 0.9717 0.9718 0.9698 0.9708 0.8273
SA 0.9175 0.9033 0.8827 0.8922 0.7950
MRMR 0.9216 0.8908 0.6633 0.7188 0.8084
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Table A14. SVM with 10% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9872 0.9935 0.7500 0.8301 0.8750
RelChaNet 0.9808 0.9904 0.6250 0.6951 0.8697
ReliefF 0.9745 0.4873 0.5000 0.4935 0.8296

COAD GA 0.9745 0.4873 0.5000 0.4935 0.8492
MI 0.9745 0.4873 0.5000 0.4935 0.8290
SA 0.9055 0.9236 0.8115 0.8506 0.7560
MRMR 0.8962 0.8511 0.8102 0.8282 0.7740
SPSA 0.9647 0.9820 0.6667 0.7409 0.8736
RelChaNet 0.9588 0.9792 0.6111 0.6712 0.8358
ReliefF 0.9470 0.4735 0.5000 0.4864 0.8295

HNSC GA 0.9647 0.9820 0.6667 0.7409 0.8385
MI 0.9470 0.4735 0.5000 0.4864 0.7958
SA 0.7857 0.7667 0.7667 0.7667 0.6587
MRMR 0.9882 0.9866 0.9866 0.9866 0.8594
SPSA 0.9285 0.9500 0.9000 0.9181 0.8594
RelChaNet 0.7142 0.6875 0.6667 0.6725 0.5945
ReliefF 0.7500 0.8600 0.6500 0.6494 0.6987

KICH GA 0.7500 0.8600 0.6500 0.6494 0.6295
MI 0.8928 0.9286 0.8500 0.8733 0.7256
SA 0.9156 0.8370 0.6599 0.7079 0.7893
MRMR 0.9096 0.9333 0.8904 0.9027 0.8560
SPSA 0.8556 0.8351 0.7795 0.8005 0.7847
RelChaNet 0.7422 0.8698 0.5192 0.4622 0.6395
ReliefF 0.7989 0.8525 0.6494 0.6314 0.6845
KIRP GA 0.8556 0.8351 0.7795 0.8005 0.7395
MI 0.9042 0.9030 0.8398 0.8650 0.7689
SA 0.9941 0.9911 0.9957 0.9933 0.8794
MRMR 0.6148 0.5537 0.5424 0.5382 0.4975
SPSA 0.9291 0.9575 0.8500 0.8896 0.8496
RelChaNet 0.8504 0.9212 0.6834 0.6784 0.7694
ReliefF 0.7716 0.8849 0.5167 0.4672 0.6493
LIHC GA 0.8504 0.9212 0.6834 0.6784 0.7268
MI 0.9291 0.9575 0.8500 0.8896 0.8195
SA 0.8144 0.7788 0.7148 0.7355 0.6595
MRMR 0.9175 0.9033 0.8827 0.8922 0.8023
SPSA 0.8975 0.9485 0.5278 0.5255 0.8843
RelChaNet 0.8915 0.4458 0.5000 0.4713 0.7804
ReliefF 0.8915 0.4458 0.5000 0.4713 0.7956
LUSC GA 0.8975 0.9485 0.5278 0.5255 0.8384
MI 0.8915 0.7057 0.5976 0.6244 0.7304
SA 0.8928 0.8918 0.8722 0.8805 0.7368
MRMR 0.9397 0.9010 0.8436 0.8690 0.8069
SPSA 0.8975 0.9465 0.6458 0.6976 0.8495
RelChaNet 0.8975 0.9465 0.6458 0.6976 0.7794
ReliefF 0.8614 0.9303 0.5208 0.5025 0.7496
PRAD GA 0.8554 0.4277 0.5000 0.4610 0.7295
MI 0.8614 0.9303 0.5208 0.5025 0.7857
SA 0.9156 0.8891 0.7430 0.7920 0.7677
MRMR 0.9156 0.8891 0.7430 0.7920 0.7677
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Table A14. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9407 0.9455 0.8657 0.8986 0.8495
RelChaNet 0.8814 0.9001 0.7176 0.7652 0.7945
ReliefF 0.7851 0.6521 0.6296 0.6385 0.6495

STAD GA 0.7481 0.5789 0.5648 0.5693 0.6829
MI 0.8370 0.7511 0.6898 0.7118 0.7937
SA 0.9156 0.8370 0.6599 0.7920 0.7677
MRMR 0.9156 0.8891 0.7430 0.7920 0.7677
SPSA 0.9647 0.9692 0.9502 0.9589 0.8821
RelChaNet 0.9294 0.9528 0.8909 0.9140 0.8547
ReliefF 0.9529 0.9365 0.9652 0.9481 0.8367

THCA GA 0.9529 0.9609 0.9320 0.9446 0.8735
MI 0.9647 0.9692 0.9502 0.9589 0.8628
SA 0.9096 0.8565 0.6077 0.6496 0.7983
MRMR 0.8975 0.8236 0.7151 0.7530 0.7649
SPSA 0.9717 0.9718 0.9698 0.9708 0.8936
RelChaNet 0.9322 0.9400 0.9219 0.9287 0.8195
ReliefF 0.9039 0.9149 0.8897 0.8982 0.8287

UCEC GA 0.9717 0.9718 0.9698 0.9708 0.8472
MI 0.9661 0.9650 0.9650 0.9650 0.8295
SA 0.8144 0.7788 0.7148 0.7355 0.6595
MRMR 0.8880 0.8654 0.7639 0.8000 0.7695
Table A15. SVM with 15% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9745 0.4873 0.5000 0.4935 0.9295
RelChaNet 0.9745 0.4873 0.5000 0.4935 0.8596
ReliefF 0.9745 0.4873 0.5000 0.4935 0.8976

COAD GA 0.9745 0.4873 0.5000 0.4935 0.8597
MI 0.9808 0.9904 0.6250 0.6951 0.9056
SA 0.6148 0.5537 0.5424 0.5382 0.4975
MRMR 0.9212 0.9344 0.8448 0.8791 0.8265
SPSA 0.9588 0.9792 0.6111 0.6712 0.8612
RelChaNet 0.9588 0.9792 0.6111 0.6712 0.8296
ReliefF 0.9470 0.4735 0.5000 0.4864 0.8905

HNSC GA 0.9470 0.4735 0.5000 0.4864 0.8295
MI 0.9588 0.9792 0.6111 0.6712 0.8691
SA 0.9941 0.9911 0.9957 0.9933 0.8794
MRMR 0.7731 0.7095 0.6988 0.7036 0.6106
SPSA 0.8928 0.9286 0.8500 0.8733 0.8154
RelChaNet 0.7142 0.6875 0.6667 0.6725 0.5896
ReliefF 0.7500 0.8600 0.6500 0.6494 0.6289
KICH GA 0.7142 0.6875 0.6667 0.6725 0.5986
MI 0.7500 0.8600 0.6500 0.6494 0.6384
SA 0.8144 0.7788 0.7148 0.7355 0.6595
MRMR 0.8975 0.8236 0.7151 0.7530 0.7649
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Table A15. Cont.

Dataset Feature Selection Method Accuracy Precision  Recall F1 Score Balanced Accuracy
SPSA 0.7422 0.8698 0.5192 0.4622 0.6891
RelChaNet 0.7371 0.6179 0.5096 0.4424 0.6086
ReliefF 0.7319 0.3660 0.5000 0.4226 0.6057

KIRP GA 0.7371 0.6179 0.5096 0.4424 0.6296
MI 0.7422 0.8698 0.5192 0.4622 0.6285
SA 0.9941 0.9911 0.9957 0.9933 0.8756
MRMR 0.9216 0.9581 0.7292 0.7924 0.8186
SPSA 0.9291 0.9575 0.8500 0.8896 0.8528
RelChaNet 0.8897 0.9378 0.7667 0.8067 0.7934
ReliefF 0.8503 0.9181 0.6833 0.7237 0.7493
LIHC GA 0.8110 0.9015 0.6000 0.5955 0.6967
MI 0.7716 0.8849 0.5167 0.4672 0.6239
SA 0.9036 0.8712 0.7013 0.7508 0.7697
MRMR 0.8915 0.8487 0.6596 0.7051 0.7694
SPSA 0.8975 0.9485 0.5278 0.5255 0.8175
RelChaNet 0.8915 0.7057 0.5976 0.6244 0.8640
ReliefF 0.8915 0.4458 0.5000 0.4713 0.7834
LUSC GA 0.8915 0.7057 0.5976 0.6244 0.7594
MI 0.8975 0.9485 0.5278 0.5255 0.7495
SA 0.8757 0.9127 0.8493 0.8635 0.7596
MRMR 0.9764 0.9879 0.7778 0.8510 0.8436
SPSA 0.8975 0.9465 0.6458 0.6976 0.7854
RelChaNet 0.8795 0.9383 0.5833 0.6100 0.7478
ReliefF 0.8614 0.9303 0.5208 0.5025 0.7964
PRAD GA 0.8975 0.9465 0.6458 0.6976 0.7854
MI 0.8674 0.7708 0.5763 0.5969 0.7395
SA 0.9941 0.9911 0.9957 0.9933 0.8756
MRMR 0.7514 0.8514 0.6986 0.6970 0.6396
SPSA 0.8880 0.9390 0.7222 0.7752 0.7593
RelChaNet 0.8074 0.9030 0.5185 0.4820 0.6743
ReliefF 0.8370 0.7511 0.6898 0.7118 0.7937
STAD GA 0.9555 0.9306 0.9306 0.9306 0.8789
MI 0.8814 0.9001 0.7176 0.7652 0.7397
SA 0.9882 0.9866 0.9866 0.9866 0.8594
MRMR 0.8144 0.7788 0.7148 0.7355 0.6926
SPSA 0.9764 0.9693 0.9779 0.9734 0.8689
RelChaNet 0.9529 0.9609 0.9320 0.9446 0.8327
ReliefF 0.9705 0.9583 0.9783 0.9671 0.8526

THCA GA 0.9764 0.9693 0.9779 0.9734 0.8417
MI 0.9294 0.9449 0.8957 0.9150 0.8075
SA 0.9216 0.9581 0.7292 0.7924 0.8064
MRMR 0.9055 0.9236 0.8115 0.8506 0.7567
SPSA 0.9717 0.9718 0.9698 0.9708 0.8893
RelChaNet 0.9548 0.9577 0.9493 0.9530 0.8388
ReliefF 0.9265 0.9322 0.9171 0.9230 0.8495

UCEC GA 0.9548 0.9577 0.9493 0.9530 0.8563
MI 0.9717 0.9718 0.9698 0.9708 0.8354
SA 0.9941 0.9911 0.9957 0.9933 0.8794
MRMR 0.9823 0.9909 0.8333 0.8954 0.8567
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Table A16. XGBoost with 5% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 1.0000
RelChaNet 0.9936 0.9968 0.8750 0.9269 0.9256
ReliefF 1.0000 1.0000 1.0000 1.0000 0.9862

COAD GA 1.0000 1.0000 1.0000 1.0000 1.0000
MI 1.0000 1.0000 1.0000 1.0000 0.9589
SA 0.9705 0.8302 0.9320 0.8731 0.8678
MRMR 0.9555 0.9216 0.9444 0.9324 0.9166
SPSA 0.9941 0.9969 0.9444 0.9690 0.9586
RelChaNet 0.9823 0.9313 0.8858 0.9071 0.8932
ReliefF 0.9882 0.9939 0.8889 0.9344 0.9273

HNSC GA 0.9823 0.9313 0.8858 0.9071 0.8596
MI 0.9882 0.9939 0.8889 0.9344 0.9285
SA 0.9555 0.9216 0.9444 0.9324 0.8923
MRMR 0.9291 0.8985 0.9076 0.9029 0.8450
SPSA 1.0000 1.0000 1.0000 1.0000 1.0000
RelChaNet 0.9285 0.9500 0.9000 0.9181 0.8495
ReliefF 1.0000 1.0000 1.0000 1.0000 1.0000

KICH GA 0.9285 0.9500 0.9000 0.9181 0.8175
MI 1.0000 1.0000 1.0000 1.0000 0.9486
SA 0.9481 0.9240 0.9120 0.9178 0.8843
MRMR 0.9152 0.9120 0.9136 0.9127 0.8462
SPSA 0.9690 0.9661 0.9545 0.9601 0.8365
RelChaNet 0.9278 0.9122 0.9020 0.9069 0.7947
ReliefF 0.9484 0.9392 0.9282 0.9335 0.8672
KIRP GA 0.9278 0.9122 0.9020 0.9069 0.7648
MI 0.9587 0.9586 0.9353 0.9461 0.8725
SA 0.9337 0.8703 0.8574 0.8637 0.8782
MRMR 0.8865 0.8499 0.8738 0.8604 0.8256
SPSA 0.9527 0.9441 0.9230 0.9330 0.8496
RelChaNet 0.9448 0.9279 0.9179 0.9227 0.8185
ReliefF 0.9133 0.8727 0.8973 0.8839 0.8564
LIHC GA 0.9448 0.9199 0.9294 0.9245 0.8395
MI 0.9133 0.8727 0.8973 0.8839 0.7963
SA 0.9152 0.9120 0.9136 0.9127 0.8086
MRMR 0.8976 0.8522 0.8754 0.8628 0.8349
SPSA 0.9397 0.9212 0.7466 0.8050 0.8946
RelChaNet 0.9397 0.9212 0.7466 0.8050 0.8175
ReliefF 0.9397 0.9212 0.7466 0.8050 0.8305
LUSC GA 0.9397 0.9212 0.7466 0.8050 0.8175
MI 0.9578 0.9774 0.8056 0.8678 0.8283
SA 0.9647 0.8045 0.9289 0.8542 0.9063
MRMR 0.9647 0.9752 0.9455 0.9584 0.9600
SPSA 0.9759 0.9669 0.9340 0.9495 0.8826
RelChaNet 0.9518 0.9295 0.8680 0.8952 0.8284
ReliefF 0.9698 0.9624 0.9131 0.9357 0.8594
PRAD GA 0.9759 0.9863 0.9167 0.9476 0.8485
MI 0.9759 0.9669 0.9340 0.9495 0.8593
SA 0.8813 0.8815 0.8725 0.8762 0.7943
MRMR 0.9555 0.9216 0.9444 0.9324 0.9166
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Table A16. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9851 0.9769 0.9769 0.9769 0.9286
RelChaNet 0.9555 0.9418 0.9167 0.9285 0.8391
ReliefF 0.9629 0.9611 0.9213 0.9396 0.8475

STAD GA 0.9555 0.9306 0.9306 0.9306 0.8238
MI 0.9481 0.9240 0.9120 0.9178 0.8645
SA 0.8926 0.8887 0.8903 0.8895 0.8519
MRMR 0.9156 0.7819 0.7819 0.7819 0.8280
SPSA 1.0000 1.0000 1.0000 1.0000 0.9893
RelChaNet 0.6592 0.6143 0.5862 0.5853 0.5973
ReliefF 0.9823 0.9821 0.9775 0.9797 0.8647

THCA GA 0.9823 0.9821 0.9775 0.9797 0.8465
MI 0.9823 0.9778 0.9822 0.9799 0.8392
SA 0.9277 0.8308 0.7643 0.7925 0.7829
MRMR 0.9647 0.8119 0.8765 0.8406 0.8130
SPSA 0.9717 0.9742 0.9678 0.9707 0.8891
RelChaNet 0.9435 0.9487 0.9356 0.9409 0.8592
ReliefF 0.9322 0.9340 0.9260 0.9294 0.8197

UCEC GA 0.9435 0.9487 0.9356 0.9409 0.8625
MI 0.9717 0.9742 0.9678 0.9707 0.8939
SA 0.9481 0.9240 0.9120 0.9178 0.8823
MRMR 0.9529 0.9503 0.9415 0.9457 0.9411
Table A17. XGBoost with 10% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 0.9735
RelChaNet 0.9936 0.9968 0.8750 0.9269 0.9624
ReliefF 1.0000 1.0000 1.0000 1.0000 0.9625

COAD GA 1.0000 1.0000 1.0000 1.0000 0.9382
MI 1.0000 1.0000 1.0000 1.0000 0.9483
SA 0.9397 0.8782 0.8782 0.8782 0.8538
MRMR 0.9647 0.8045 0.9289 0.8542 0.8826
SPSA 0.9882 0.9939 0.8889 0.9344 0.9629
RelChaNet 0.9823 0.9313 0.8858 0.9071 0.9074
ReliefF 0.9882 0.9939 0.8889 0.9344 0.9627

HNSC GA 0.9823 0.9313 0.8858 0.9071 0.8825
MI 0.9823 0.9313 0.8858 0.9071 0.8836
SA 0.8976 0.8522 0.8754 0.8628 0.8349
MRMR 0.8813 0.8815 0.8725 0.8762 0.7943
SPSA 1.0000 1.0000 1.0000 1.0000 1.0000
RelChaNet 0.9285 0.9500 0.9000 0.9181 0.8829
ReliefF 1.0000 1.0000 1.0000 1.0000 0.9572

KICH GA 1.0000 1.0000 1.0000 1.0000 1.0000
MI 1.0000 1.0000 1.0000 1.0000 1.0000
SA 0.9277 0.8308 0.7643 0.7925 0.8459
MRMR 0.9337 0.8435 0.7920 0.8149 0.6261
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Table A17. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9484 0.9392 0.9282 0.9335 0.8296
RelChaNet 0.9381 0.9309 0.9090 0.9192 0.8173
ReliefF 0.9381 0.9309 0.9090 0.9192 0.8243

KIRP GA 0.9484 0.9237 0.9526 0.9366 0.8395
MI 0.9690 0.9661 0.9545 0.9601 0.8293
SA 0.9285 0.9167 0.9444 0.9251 0.9444
MRMR 0.9647 0.9597 0.9597 0.9597 0.8746
SPSA 0.9606 0.9502 0.9397 0.9448 0.8394
RelChaNet 0.9527 0.9345 0.9345 0.9345 0.8439
ReliefF 0.9606 0.9502 0.9397 0.9448 0.8475
LIHC GA 0.9606 0.9502 0.9397 0.9448 0.8158
MI 0.9448 0.9199 0.9294 0.9245 0.8385
SA 0.9555 0.9216 0.9444 0.9324 0.9166
MRMR 0.9481 0.9240 0.9120 0.9178 0.8823
SPSA 0.9578 0.9774 0.8056 0.8678 0.8720
RelChaNet 0.9457 0.9002 0.7988 0.8399 0.8285
ReliefF 0.9337 0.8801 0.7432 0.7922 0.8147
LUSC GA 0.9457 0.9287 0.7744 0.8300 0.8294
MI 0.9457 0.9002 0.7988 0.8399 0.8167
SA 0.8976 0.8522 0.8754 0.8628 0.8175
MRMR 0.9216 0.8387 0.8504 0.8444 0.8711
SPSA 0.9819 0.9897 0.9375 0.9614 0.8794
RelChaNet 0.9698 0.9830 0.8958 0.9332 0.8294
ReliefF 0.9759 0.9863 0.9167 0.9476 0.8837
PRAD GA 0.9698 0.9624 0.9131 0.9357 0.8836
MI 0.9698 0.9624 0.9131 0.9357 0.8276
SA 0.9481 0.9240 0.9120 0.9178 0.8843
MRMR 1.0000 1.0000 1.0000 1.0000 1.0000
SPSA 0.9777 0.9716 0.9583 0.9648 0.8936
RelChaNet 0.9703 0.9664 0.9398 0.9524 0.8594
ReliefF 0.9481 0.9240 0.9120 0.9178 0.8278
STAD GA 0.9555 0.9418 0.9167 0.9285 0.8187
MI 0.9703 0.9664 0.9398 0.9524 0.8468
SA 0.9337 0.8435 0.7920 0.8149 0.6261
MRMR 1.0000 1.0000 1.0000 1.0000 1.0000
SPSA 0.9823 0.9778 0.9822 0.9799 0.8946
RelChaNet 0.9823 0.9821 0.9775 0.9797 0.8629
ReliefF 0.9764 0.9777 0.9684 0.9729 0.8593

THCA GA 0.9823 0.9821 0.9775 0.9797 0.8583
MI 0.9823 0.9821 0.9775 0.9797 0.8654
SA 0.8865 0.8499 0.8738 0.8604 0.8256
MRMR 0.9457 0.9437 0.8298 0.8748 0.8849
SPSA 0.9548 0.9577 0.9493 0.9530 0.9381
RelChaNet 0.9322 0.9318 0.9280 0.9298 0.8754
ReliefF 0.9548 0.9553 0.9513 0.9532 0.8574

UCEC GA 0.9548 0.9577 0.9493 0.9530 0.8729
MI 0.9378 0.9387 0.9328 0.9355 0.8692
SA 0.8865 0.8499 0.8738 0.8604 0.8256
MRMR 0.9555 0.9216 0.9444 0.9324 0.9166
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Table A18. XGBoost with 15% feature selection.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 1.0000 1.0000 1.0000 1.0000 1.0000
RelChaNet 0.9936 0.9968 0.8750 0.9269 0.8745
ReliefF 1.0000 1.0000 1.0000 1.0000 1.0000

COAD GA 1.0000 1.0000 1.0000 1.0000 0.9018
MI 1.0000 1.0000 1.0000 1.0000 0.9721
SA 0.9216 0.8387 0.8504 0.8444 0.8711
MRMR 0.9481 0.9240 0.9120 0.9178 0.8720
SPSA 0.9882 0.9939 0.8889 0.9344 0.9385
RelChaNet 0.9823 0.9313 0.8858 0.9071 0.8195
ReliefF 0.9882 0.9939 0.8889 0.9344 0.9656

HNSC GA 0.9941 0.9969 0.9444 0.9690 0.9057
MI 0.9882 0.9939 0.8889 0.9344 0.8593
SA 0.9647 0.8045 0.9289 0.8542 0.8826
MRMR 0.9337 0.8703 0.8574 0.8637 0.8782
SPSA 1.0000 1.0000 1.0000 1.0000 0.9591
RelChaNet 0.9285 0.9500 0.9000 0.9181 0.8926
ReliefF 1.0000 1.0000 1.0000 1.0000 0.9364

KICH GA 0.9285 0.9500 0.9000 0.9181 0.9053
MI 1.0000 1.0000 1.0000 1.0000 0.9582
SA 0.9936 0.9968 0.8750 0.9269 0.9500
MRMR 0.9555 0.9216 0.9444 0.9324 0.9351
SPSA 0.9690 0.9661 0.9545 0.9601 0.8794
RelChaNet 0.9484 0.9237 0.9526 0.9366 0.8793
ReliefF 0.9587 0.9586 0.9353 0.9461 0.8729
KIRP GA 0.9484 0.9392 0.9282 0.9335 0.8462
MI 0.9690 0.9661 0.9545 0.9601 0.8521
SA 0.9647 0.8045 0.9289 0.8542 0.8742
MRMR 0.8870 0.8821 0.8875 0.8843 0.7560
SPSA 0.9606 0.9502 0.9397 0.9448 0.8295
RelChaNet 0.9448 0.9199 0.9294 0.9245 0.8517
ReliefF 0.9527 0.9441 0.9230 0.9330 0.8294
LIHC GA 0.9527 0.9441 0.9230 0.9330 0.8275
MI 0.9606 0.9502 0.9397 0.9448 0.8395
SA 0.8870 0.8821 0.8875 0.8843 0.7540
MRMR 0.9647 0.8045 0.9289 0.8542 0.9257
SPSA 0.9638 0.9805 0.8333 0.8901 0.8493
RelChaNet 0.9457 0.9287 0.7744 0.8300 0.8592
ReliefF 0.9457 0.9713 0.7500 0.8186 0.8692
LUSC GA 0.9337 0.8801 0.7432 0.7922 0.7849
MI 0.9337 0.8801 0.7432 0.7922 0.8692
SA 1.0000 1.0000 1.0000 1.0000 1.0000
MRMR 0.9764 0.9879 0.7778 0.8510 0.9289
SPSA 0.9759 0.9863 0.9167 0.9476 0.8639
RelChaNet 0.9698 0.9830 0.8958 0.9332 0.8196
ReliefF 0.9698 0.9624 0.9131 0.9357 0.8526
PRAD GA 0.9518 0.9295 0.8680 0.8952 0.8683
MI 0.9698 0.9624 0.9131 0.9357 0.8481
SA 0.9096 0.7651 0.8273 0.7913 0.8374
MRMR 0.9152 0.9120 0.9136 0.9127 0.8462
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Table A18. Cont.

Dataset  Feature Selection Method Accuracy  Precision  Recall F1 Score Balanced Accuracy
SPSA 0.9703 0.9664 0.9398 0.9524 0.8605
RelChaNet 0.9555 0.9306 0.9306 0.9306 0.8364
ReliefF 0.9703 0.9664 0.9398 0.9524 0.8493

STAD GA 0.9851 0.9769 0.9769 0.9769 0.8296
MI 0.9703 0.9664 0.9398 0.9524 0.8468
SA 0.9216 0.8387 0.8504 0.8444 0.8711
MRMR 0.9397 0.8782 0.8782 0.8782 0.8644
SPSA 0.9823 0.9821 0.9775 0.9797 0.9528
RelChaNet 0.9705 0.9734 0.9593 0.9659 0.8504
ReliefF 0.9823 0.9778 0.9822 0.9799 0.8749
THCA GA 0.6592 0.6143 0.5862 0.5853 0.5295
MI 0.9705 0.9734 0.9593 0.9659 0.8939
SA 0.8247 0.7803 0.7584 0.7679 0.7920
MRMR 0.9152 0.9120 0.9136 0.9127 0.8462
SPSA 0.9491 0.9505 0.9445 0.9472 0.9017
RelChaNet 0.9378 0.9387 0.9328 0.9355 0.8429
ReliefF 0.9491 0.9484 0.9465 0.9474 0.8826
UCEC GA 0.9322 0.9340 0.9260 0.9294 0.8597
MI 0.9435 0.9487 0.9356 0.9409 0.8197
SA 1.0000 1.0000 1.0000 1.0000 0.9385
MRMR 0.9872 0.9935 0.7500 0.8301 0.8949
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