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Abstract

Air pollution poses significant risks to built heritage, yet traditional methods for diagnosing
degradation patterns remain largely fragmented, often relying on isolated data streams
and/or subjective comparative interpretations. This study proposes a novel modular
workflow that integrates Raman spectroscopy and micro-XRF spectrometry data with
user-defined contextual metadata to automate the characterisation of pollution-induced
degradation layers on monuments. This method utilises algorithms for peak detection,
dimensionality reduction, unsupervised machine learning clustering, variance analysis
across centroids, and correlation analysis, as well as steps for data re-encoding and visual-
isation of the results, allowing for scalable and reproducible analyses on heterogeneous
multidimensional datasets. Applied to case studies from Athens, Piraeus, and Eleusis,
Greece, the workflow successfully identified pollution sources and degradation patterns,
while also quantifying the contribution of features, including contextual variables such
as surface orientation and sampling height. The results validate the method’s capacity
to combine molecular and elemental data streams, to enhance interpretive clarity, and to
minimise manual effort and subjectivity. This work showcases the potential of algorithmic
approaches in cultural heritage diagnostics to adapt dynamically and incorporate addi-
tional datasets and informs future applications of automated methods in the broader field
of heritage science.

Keywords: air pollution; data fusion; statistical analysis; machine learning; heritage science

1. Introduction

The preservation of cultural heritage (CH), particularly historic monuments, has be-
come increasingly urgent in the face of rapid urbanisation, industrial activity, and evolving
air pollution dynamics [1-4]. Atmospheric pollutants such as sulphur oxides, nitrogen
compounds, volatile organic compounds (VOCs), and particulate matter contribute to the
formation of complex degradation layers on exposed stone surfaces, which compromise
both the aesthetic and structural integrity of historic building materials [5-7].

There have been numerous efforts to address these issues from various angles, while
facing both the threats from air pollution and the capabilities of new technologies, especially
with the use of artificial intelligence (Al) and, subsequently, algorithms. The main focus
of these efforts in the last decade has been on 3D modelling, virtual reality (VR) and aug-
mented reality (AR), classification, and internet of things (IoT) platform configuration [8,9].
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For example, ref. [10] showcased the use of VR tools for the preservation of CH through
digitisation. Similar studies have implemented algorithms for 3D scanning [11] and mod-
elling [12], as well as assessing the seismic vulnerability of monuments [13]. Regarding the
investigation of degradation layers, the use of Al-assisted imaging has proven successful,
both with supervised and unsupervised machine learning techniques [14-16]. Other studies
have attempted to map the impact of air pollution on built heritage and its susceptibility,
using fuzzy k-means [17], and Inverse Distance Weighting (IDW) algorithms [18,19]. Clas-
sification of historic buildings has been attempted through deep learning algorithms [20],
and quantification of the contribution of atmospheric pollutants to degradation processes
has been achieved through phenomenological models [21], although with a noted lack
of measurements on physical samples from the monuments. Reversely, the estimation of
the environmental impact on monuments has been conducted through physical samples
without utilising algorithmic workflows [22].

The importance of using portable instrumentation, such as Raman spectroscopy and
X-ray fluorescence (XRF) spectrometry, to perform non-destructive analyses on CH materi-
als is documented [23-25]. Algorithms have been successfully applied to Raman datasets
for spectral preprocessing [26,27], spectral searching and matching [28], and Principal
Component Analysis (PCA) for dimensionality reduction [29]. These approaches have
offered valuable solutions, with deep learning techniques reportedly offering the best re-
sults [30]. Similarly, machine learning algorithms have been used for quantitative elemental
analyses on ceramics [31], and both qualitative and quantitative XRF measurements on
archaeological materials [32,33]. In general, the use of machine learning algorithms in
analytical methods for CH materials has focused mainly on case studies involving pig-
ments, paper, metals and ceramics, with a significant lack of similar approaches regarding
monuments. Furthermore, the use of highly complex models, such as neural networks,
has been proven to make it impossible to determine which feature of the input data was
affecting the outcomes of the models [34].

It is evident that traditional CH diagnostics have largely relied on isolated data streams
from complementary analytical techniques and human-driven comparative interpretation
of the results. This approach, while valuable, remains labour-intensive, subjective in various
degrees, and often incapable of integrating heterogeneous multidimensional datasets.
Notable efforts have been made in recent years for fusing data from complementary
techniques, for example, for the characterisation of minerals [35] and soils [36]. To the best
of our knowledge, there is a gap for such efforts focused on CH materials, thus showing
the need for unified algorithmic frameworks that can handle data fusion, analysis, and
interpretation in an automated process.

In response to these challenges, this study proposes a novel modular method that au-
tomates preprocessing and fusion of heterogeneous multidimensional datasets, advanced
statistical analysis, dimensionality reduction, and unsupervised machine learning clus-
tering, as well as visualisation of the results. It is designed to be fully reproducible and
adaptable to new datasets with minimal adjustments.

Rather than focusing on analytical- and site-specific interpretations, which are under
consideration for submission in an additional research article, the present study emphasises
the algorithmic workflow design and innovative approach. Case studies from the Temple
of Hephaestus and the Church of Ag. Theodoroi in Athens, marble sculptures in Piraeus
and the archaeological site of Eleusis, Greece, are employed to validate the method. The
hypothesis framing this work is that data fusion, when structured appropriately and
coupled with algorithmic methods, can reveal pollution sources and pollution-induced
degradation patterns on monuments, quantify the contribution of diverse variables in these
patterns, and automate the analytical processes.
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2. Materials and Methods
2.1. Overview of the Workflow

The proposed pipeline is developed in the Python programming language (version
3.9) and implemented entirely within Jupyter Notebook (version 7.3.2), a free web-based
interactive computational environment. It utilises compartmentalised iterative code cells
across separate kernels to ensure transparency, modularity, scalability, and repeatability.
The Python libraries used within the context of this study are the following:

Pandas, for data manipulation, creation of DataFrames and correlation matrices;
Numpy, for numerical operations and array handling;

Matplotlib, for creating visualisations;

Scikit-learn, for machine learning algorithms;

Scipy, for spectral processing and statistical analysis;

SANRCLN- S

Seaborn, for enhanced statistical data visualisation.

The workflow integrates Raman spectroscopy and micro-XRF spectrometry data with
user-defined contextual metadata (i.e., surface orientation, sampling height, construction
chronology, macroscopic evaluation of preservation state) into a unified DataFrame. Subse-
quent steps include spectral preprocessing, feature extraction, dimensionality reduction,
advanced statistical analysis, unsupervised machine learning clustering and visualisation
of the results in multiple stages (Figure 1).

Programming language: Python 3.9

Coding environment: Jupyter Notebook
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Figure 1. Schematic representation of the proposed workflow, including all the steps followed
throughout the pipeline.

2.2. User Input DataFrame

The initial steps of the workflow aim to create and populate a User Input DataFrame,
in the form of a .csv file. All steps are implemented through the use of custom-built code
scripts (as described in Section 2.1), with the user required to insert contextual metadata
and run the automated kernels for each subsequent step in the workflow. More specifically,
the user is required to insert values for samples’ identification numbers (which are used as
vertical placeholders), the sample’s surface orientation on the monument, the sampling
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height, the chronology of the monument, and a subjective condition rating after macroscopic
visual inspection. Subsequent columns are populated gradually after separate analyses,
which are described in detail in Sections 2.3-2.5. The structure of the User Input DataFrame
is presented in Table 1.

Table 1. Example of the structure of the created User Input DataFrame with sample data.

Sa;llljple Height Orientation Chronology II:/Ia.cro Raman Raman Rarr.lan XRF XRF XI?F
ating  Sourcel Source2  Rating Sourcel Source2 Rating

IF1 1.8 N —450 2 1 4 2 1 4 1
IF3 0.4 \ —450 2 1 1 2

AT1 9 SW 1050 1 3 1 1 1 2 2
AT4 7.1 SE 1050 1 1 2 2 1 3 1
EL1 2.1 NE 200 1 5 2 1 1 2 1
EL16 1.7 W —450 2 1 2 1 2 1 0
PE1 0.4 NW —450 2 1 3 2 1 2 1
PE5 0.6 A —450 1 3 1 1 1 3 1

2.3. Analytical Techniques
2.3.1. Raman Spectroscopy

Raman measurements were performed in situ using a BRAVO handheld Raman
spectrometer (Bruker Optics GmbH & Co. KG, Ettlingen, Germany), equipped with dual
excitation lasers (DUO LASER™ technology, with wavelengths at 785 nm and 853 nm) and
a CCD detector, spectral range of 170-3200 cm !, and spectral resolution of 10-12 cm 1.
Data acquisition and processing were carried out by using the free Spectragryph software
(version 1.2.16.1). A total of 174 identified Raman bands were manually cross-referenced
with spectral libraries from the free online RUFF database [37]. Baseline correction was
avoided, as the algorithm used in the instrumentation’s software already performs a similar
step when merging the raw spectral data from both lasers, to exclude fluorescence signals
(Sequentially Shifted Excitation patented technology by Bruker Optics GmbH & Co. KG
(Ettlingen, Germany)). A total of 53 Raman measurements were performed across the four
monuments, covering the four main orientations per site.

Raman spectral data were exported in raw format (.txt file) and processed using both
the Spectragryph software for initial inspection and custom Python scripts for downstream
analysis. Well-established Raman instrumentation and spectral processing methodolog-
ical steps were used as a basis, as described in [38,39]. Smoothing of the spectra was
conducted via a Savitzky-Golay filter algorithm (savgol_filter) from scipy.signal. The
preprocessed data were then inserted through custom code scripts into a newly created
unified DataFrame (.csv file). The range of wavenumber values (170-3200 em ™1, 2em™!
step size) populated the first column, while the Raman intensity values measured for each
wavenumber and for each sample populated the subsequent columns. Sample IDs were
used as horizontal placeholders to represent each sample’s Raman spectrum.

2.3.2. Micro-XRF Spectrometry

Elemental analysis was carried out on 46 physical samples, using a custom-built
portable micro-XRF instrumentation from the X-ray fluorescence Laboratory of the Institute
of Nuclear and Particle Physics at NCSR “Demokritos” (Athens, Greece). Each sample
underwent three line-scan measurements across its cross-section’s profile, using an unfil-
tered 50 kV, 600 pA X-ray beam and a 10 mm? silicon drift detector with a full width at half
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maximum of 140 eV at 5.89 keV. The line-scan’s step size was 0.02 mm, and the acquisition
time was set at 30 s per line-scan point measurement.

The presence of elements was determined after visually inspecting the spectra and
the concentration of each element was calculated using the PYMCA software (version
5.8.0)through an established methodology [40], and their average concentrations for three
line-scans per sample were computed through custom Python code scripts for integration
into a unified dataset. Similarly to the Raman data, a unique DataFrame (.csv file) for each
sample was created. The distance from the surface of the sample’s cross-section (in mm) for
each spot measurement populated the first column and the concentration value for each
element (in weight %) populated the subsequent columns. The elements’ chemical symbols
were used as horizontal placeholders.

2.4. Data Fusion Architecture

This study is using a mid-level data fusion (MLF) (or feature level) approach, as it
integrates a feature extraction step which can hold adequate original information from
the analytical techniques, with the extracted features then combined to build further
quantitative or qualitative outcomes [41,42].

After preprocessing, Raman spectra were transformed into binary matrices. More
specifically, each Raman signal was encoded as the presence (=1) or absence (=0) of the
174 manually identified peaks, to reduce dimensionality. Similarly, elemental concentra-
tions from the micro-XRF measurements were summarised as mean values for each sample.

User-defined variables (surface orientation, sampling height, construction chronol-
ogy, macroscopic condition rating) were numerically encoded and normalised using the
sklearn.preprocessing. MinMaxScaler algorithm. Orientation string values (N, NE, E, SE,
S, SW, W, W or north, northeast, east, southeast, south, southwest, west, northwest) were
circularly encoded via sine and cosine transforms in custom code shells. Chronology had a
numerical user input value (in years) and was then normalised across all samples. Similarly,
height was expressed in metres in user input values, and subsequently normalised to
a 0-1 value range, to decrease domination of the variable in subsequent statistical anal-
yses and machine learning techniques. Condition rating had a string user input value,
based on macroscopic inspection, which was then ordinally encoded (0 = good, 1 = mod-
erate, 2 = poor), to test the correlation between the visible decay on monuments and the
degradation level observed through scientific methods.

A unified DataFrame was generated in the form of a .csv file, with all Raman, micro-
XRE, and user-defined features for each sample. A unique Sample ID was used as an
identifier for each sample and across all the other features. For testing purposes, an initial
score was calculated for all the normalised values in the DataFrame. The feature weights
were then automatically adjusted, based on the initial scores, and applied to the data
utilised in all subsequent analytical steps.

2.5. Feature Extraction, Clustering and Visualisation

The find_peaks algorithm from scipy.signal was implemented for peak detection
in each of the Raman spectra, using dynamic thresholding based on spectrum-specific
min/max Raman intensity values. Negative Raman intensity value artefacts were treated
as zero. The presence of combinations of specific Raman bands (e.g., 1008 cm~! and 1036
cm~! for gypsum) was used to automatically assign materials or molecular groups, to
indicate the two primary pollution sources and provide an additional condition rating
feature (titled “Raman state”), based on the molecular data that suggest degradation
products. Pollution sources were numerically encoded to represent vehicular emissions
(=1), industrial emissions (=2), domestic heating (=3), biological activity (=4), and soil
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dust (=5). The two main pollution sources according to the Raman measurements (Raman
sources 1 and 2) were assigned according to the prevalence of specific pollutants” molecular
compounds in the resulting Raman k-means clusters.

Selected elemental concentration ratios (e.g., Cu/Zn, Zn/Pb, Mn/Fe, S5/Ca) were
calculated for the micro-XRF measurements to identify the two primary pollution source
indicators based on literature [43—45], and to assess condition ratings through selected
elemental correlation scores, using the scipy.stats.pearsonr algorithm. Additionally, a
Pearson’s correlation matrix was created using the pandas.DataFrame.corr() algorithm for
the elemental concentrations, to show the correlation between the distributions of elements
across the samples’ profiles.

Subsequently, PCA was applied via the sklearn.decomposition.PCA algorithm, to
reduce dimensionality and eventually visualise principal axes of variance through scatter
plots. A k-means clustering algorithm (sklearn.cluster. KMeans) was used to create group-
ings of samples explaining the variances of features across the dataset and to investigate
the level of clarity using different types of datasets. These algorithms were applied in
multiple stages of the workflow. More specifically, they were applied: (a) in the Raman
dataset for each monument separately, (b) in the unified Raman dataset for all monuments
with the exclusion of micro-XRF analyses, and (c) in a final step including both analytical
techniques, all including the contextual metadata. The optimal number of clusters (k)
for the k-means algorithm was determined after calculating silhouette scores (using the
sklearn.metrics.silhouette_score algorithm) for a range of k values (1-10). The five most con-
tributing features to each cluster centroid were calculated via the pandas.DataFrame.var()
algorithm. Correlation scores between features were then calculated to identify poten-
tial underlying links between pollution source fingerprints, degradation patterns, and
contextual metadata.

The final visualisations include scatter plots, accompanied by interpretive tables as
per the steps described above, heatmaps, and Pearson’s correlation matrices. All steps
described in this section were automated through custom-built code scripts.

3. Results and Discussion
3.1. Raman Data Analysis

Figure 2 shows the PCA scatter plot generated for the archaeological site of Eleusis, af-
ter k-means clustering, with the samples colour-coded by cluster assignment. Additionally,
an adjacent table shows the Sample IDs that are included in each cluster, along with the
five most contributing Raman bands for each cluster centroid, re-encoded again as string
values and presented here as text. For example, a combination of specific Raman bands is
here automatically typed as “nitriles”.

The results show distinct groupings based on gypsum content and specific pollutants,
such as VOCs, polycyclic aromatic hydrocarbons (PAHs), and soot. The resulting scatter
plot and table for each monument gives a clear view of sample groupings, the molecular
phases that vary across the samples, and the pollutants that are associated with their
degradation mechanisms. This is invaluable for both a site-specific conservation strategy,
and for further implementation on additional sites or CH materials groups of samples
in general.
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Figure 2. Generated PCA scatter plot (after k-means clustering) for the archaeological site of Eleusis,

with colour-coded cluster labels, and an adjacent table with Sample IDs groupings in clusters and

most contributing molecular phases for the cluster centroids.
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3.2. Micro-XRF Data Analysis

Pollution source indicators derived from elemental ratios allowed classification of
samples into vehicular emissions, industrial emissions, domestic heating, and soil dust. A
Pearson’s correlation matrix (Figure 3) for sample EL25 from the site of Eleusis, for example,
shows a similar distribution between Ca and other marble constituents (e.g., Sr), as well
as between metal-bearing particulate pollutants (e.g., Pb, Ti, Fe), within the sample. The
adjacent table provides the mean concentration values, correlation scores and ratios of
selected elements, which provide a full profile of the degradation state of the sample and
the pollution sources indicated by the particulate pollutants” elemental composition.

Pearson's correlation matrix — EL25

Ca

Ti

\

E¥) -0.02 -0.15 [=0:221 0.15 §

0.8
-0.17 —0.0Sﬁ—O.ZS 0.13 0.23 0.34 0.13 EOEISS

1.0
m—0.13 -0.02 -0.20 0.13 -0.28 0.45 0.25 -0.12

] 0.33 0.25 0.22 =016 -0.08

1 1 1 1 1
Cr Mn Fe Ni Cu Zn As Sr Y Pb

Figure 3. Generated Pearson’s correlation matrix heatmap for the elemental concentrations measured
via micro-XRF for sample EL25, and the adjacent table with mean concentration values, correlation
scores, and ratios of selected elements.

In the given example, the Ca/S ratio indicates that the degradation level is not high, as
there is superfluous Ca content from fresh marble (other than that existing in gypsum). In
addition, the majority of the elemental ratios indicate vehicular emissions (exhausts, brake
wear, tyre wear, and gasoline combustion) as the main pollution source that participated
in the formation of the degradation layer on the monument, although it is situated in a
heavily industrialized area.

This showcases the proposed method’s capability to reveal patterns that would other-
wise be extremely time-consuming to manually investigate for a high number of samples
and/or measurements or even misinterpreted or ignored through a mere manual view-
ing of XRF spectra. It also enhances the interpretation process via visualisation of the
results, allowing the user to perform a rapid analysis of complex multidimensional data.
Furthermore, the generated outcome can easily be adjusted through minor tweaks in the
modular code.
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3.3. Fused Data Analysis

Figure 4 illustrates the output for the fused dataset for Raman measurements from
all monuments and excluding micro-XRF measurements, with sample labels coloured
according to the surface orientation and sample dots coloured according to the cluster they
were assigned to.
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Figure 4. Generated PCA scatter plot (after k-means clustering) for the fused dataset, including
all Raman measurements and user-defined contextual metadata, and excluding the micro-XRF
measurements. Dots are coloured according to the different cluster assignments, and Sample ID
labels are coloured according to the surface orientation of each sample.

Figure 5 shows the score for all the features, based on variance across cluster centroids,
through a bar chart, and Figure 6 shows the correlation scores between all the features
through a heatmap.

The results show that pollution source assignments dominated the clustering be-
haviour, while orientation and height had a surprisingly minimal effect, although orienta-
tion is traditionally considered a major factor for different types of material degradation [46].
The low contribution score of the “sampling height” parameter can be attributed to the
relatively narrow range of heights available in the dataset. High correlation scores can be
seen between indicated pollution sources and the state of degradation according to Raman
data analysis, as well as between pollution sources and sampling height. Feature-level
fusion produced improved cluster coherence and reduced redundancy.

In a final step, Figure 7 shows the outcome for the fused dataset with both Raman and
micro-XRF data, along with user-defined contextual metadata.
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Figure 5. Generated bar chart with the most contributing features to the formation of clusters,
excluding the micro-XRF data.
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Figure 6. Generated heatmap with correlation scores for all the features in the fused Raman dataset,
excluding the micro-XRF data.
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both Raman and micro-XRF measurements, as well as user-defined contextual metadata. Dots are
coloured according to the different cluster assignments, and Sample ID labels are coloured according
to the surface orientation of each sample.

Figure 8 shows the contribution score for all the features, based on variance across
cluster centroids, through a bar chart, and Figure 9 shows the correlation scores between
all the features through a heatmap.
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Figure 8. Generated bar chart with the most contributing features to the formation of clusters for the
fused dataset.



Algorithms 2025, 18, 619

12 of 16

Orientation Norm. - —0.05 1.00 0.23 -0.23 0.33 S0709] =(L1C) -0.13 0.01 0.12 S 0208

Feature correlation (fused dataset)

1.0
Height Norm. — —0.05 0.17 0.01 0.20 -0.23 -0.20 0.26 -0.38 =023

0.8

Chronology - 0.23 1.00 -0.15 0.43 0.06 —0.30 —0.21 0.39 —0.34 -0.29

-0.5

Macro. Observation - 0.17 =0:23] d G b b =0.17 0.04

-0.2

Raman Cluster - 0.01 0.33 I 5 i 0.01 S0

Raman main source 1 - 0.20 —0.09 M B d 0.10 0.21 -0.0

Raman main source 2 - —0.23 —-0.19 L 0.13 0.01

XRF main source 1 - 0.26 0.01 0.39 0.25 0.04 —-0.08 -0.17 -0.25

Raman State - —0.20 -0.13 . . 0.17 0.24

--0.5
0

XRF main source 2 - —0.38 0.12 —0.34 -0.17 0.01 0.10 0.13 0.17 n 1.00 0.07 _os8

XRF State - —0.23 -0.21 -0.29 0.04 —0.11 0.21 0.01 0.24 0 0.07 1.00

0 ' 0 ' ' ' ' ' ' ' 0 -1.0
. . N & Vv @ N v 2

%o(& o o‘& &OQ fz>°° ¢ & <& c)@‘ <& & o}é

x N S & C & & & & > &
S © o & & S RN < 2 N +
& S & & & & & &
N © & & & & &
N & = S & X
~ Q@é‘ Q:b& + +

Figure 9. Generated heatmap with correlation scores for all the features in the fused dataset.

The inclusion of both analytical techniques’ datasets contributed towards a clearer
clustering of the samples, while also validating the necessary use of complementary tech-
niques for a more complete chemical profile. It is evident that both techniques converge
on the same degradation patterns, even when combined with the user-defined contextual
metadata. The main pollution source indicated by Raman measurements again was the
most contributing feature for the formation of clusters, indicating the variance of molecular
phases as significant across the assemblage of samples. Interestingly, the main pollution
source indicated by both Raman and micro-XRF measurements had good correlation with
sampling height and chronology, indicating that the time of exposure of the samples and
the sampling height are connected to different pollutants” deposition patterns. Additionally,
the degradation state indicated by both Raman and micro-XRF showed good correlation
with each other and the pollution sources indicated by their separate analyses kernels,
indicating a good alignment of molecular and elemental information across all samples
and of separate workflow kernels.

The results of this study affirm the central hypothesis: that a modular, algorithmic
approach to multi-analytical data fusion can provide interpretable, reproducible, and
chemically coherent insights into monument degradation patterns. From an algorith-
mic standpoint, the method succeeded on two critical fronts: first, in addressing data
heterogeneity without compromising analytical depth; and second, in maintaining trans-
parency and interpretability across all stages of processing. It also incorporated the inte-
grated contextual metadata and variables that are often omitted or handled post hoc in
traditional methodologies.

Furthermore, unlike prior workflows that rely on isolated outputs or static clustering,
the modular design employed here enables researchers to iteratively adjust feature weights
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and re-run analyses without restructuring the code. This flexibility supports site-specific
research needs, while at the same time preserving methodological consistency. It also
resolves key criticisms in heritage science about the subjectivity of interpretation and the
difficulty of scaling traditional approaches to larger or more complex and multidimensional
datasets [47].

Importantly, this study suggests a shift from the traditional research question of
“what material is present?” to that of “what data architecture best reveals underlying
degradation patterns?”. The current workflow’s potential scalability and inclusion of larger
datasets or additional features (such as measurements from additional analytical techniques
or environmental measurements) could support predictive modelling, comparative site
studies, or real-time monitoring when combined with environmental sensors.

Specific limitations regarding this study, include the lack of quantitative validation
against ground-truth data, such as direct measurements from known pollution sources or
lab-controlled simulated degradation samples. The addition of targeted environmental
data, such as temperature, relative humidity, and concentration of various types of pollu-
tants to the proposed pipeline is included in the immediate future steps and continuation of
this study. The simulation of degradation on sample materials would provide a deeper un-
derstanding of the degradation mechanisms, although it would simultaneously introduce
greatly increased equipment and time costs to the current methodology.

Finally, a Graphical User Interface (GUI) front-end would democratise access to the
pipeline, allowing non-programmers in conservation practice to apply it to their own
datasets. Public release of the codebase with sample datasets and documentation would
support community validation, reproducibility, and future collaboration.

4. Conclusions

This study presented a novel modular algorithmic workflow that integrates Raman
spectroscopy, micro-XRF spectrometry, and user-defined contextual variables to charac-
terise pollution-induced degradation on historic monuments. The pipeline automates
preprocessing, feature encoding and extraction, dimensionality reduction, unsupervised
clustering, and visualisation. It offers an alternative to traditional, manually driven meth-
ods, that reduce subjectivity and manual effort.

Applied to case studies from Athens, Piraeus, and Eleusis, the workflow demonstrated
its capacity to identify pollutant fingerprints and degradation patterns across samples. The
analysis revealed that chemical features, particularly those related to pollution sources,
were the most significant contributors to cluster formation, while contextual spatial param-
eters such as surface orientation and sampling height played a comparatively minor role,
challenging assumptions about their significance.

The results highlight the value of combining molecular, elemental, and contextual
data within a unified algorithmic framework. The pipeline is carefully designed to allow
researchers to adjust feature weights, expand datasets, and integrate additional analytical
techniques with minimal restructuring or coding skills. Furthermore, the computational
resources required for the implementation of the pipeline are limited, as the software and
the computational environments used in this study can be downloaded and used free
of charge, and the methodology was implemented by using a low-end laptop computer.
Future work could build on this approach to support predictive modelling, cross-site com-
parisons, or the development of a user-friendly GUI for broader adoption in conservation
practice. Ultimately, this study underscores the transformative potential of algorithmic
pipelines in CH science, not only in terms of efficiency and accuracy, but also in promoting
more targeted, data-driven conservation strategies.
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