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Abstract: Renovation of buildings has become a major area of development for the construction
industry. In the building construction sector, generating a precise and trustworthy cost estimate before
building begins is the greatest challenge. Emphasizing the value of using ANN models to forecast
the total cost of a building renovation project is the ultimate objective. As a result, building firms
may be able to avoid financial losses as long as there is as little discrepancy between projected and
actual costs for remodeling works in progress. To address the gap in the research, Greek contractors
specializing in building renovations provided a sizable dataset of real project cost data. To build
cost prediction ANNs, the collected data had to be organized, assessed, and appropriately encoded.
The network was developed, trained, and tested using IBM SPSS Statistics software 28.0.0.0. The
dependent variable is the final cost. The independent variables are initial cost, estimated completion
time, actual completion time, delay time, initial and final demolition-drainage costs, cost of expenses,
initial and final plumbing costs, initial and final heating costs, initial and final electrical costs, initial
and final masonry costs, initial and final construction costs of plasterboard construction, initial and
final cost of bathrooms, initial and final cost of flooring, initial and final cost of frames, initial and
final cost of doors, initial and final cost of paint, and initial and final cost of kitchen construction. The
first procedure that was employed was the radial basis function (RBF). The efficiency of the RBFNN
model was evaluated and analyzed during training and testing, with up to 6% sum of squares error
and nearly 0% relative error in the training sample, which accounted for roughly 70% of the total
sample. The second procedure implemented was the method called the multi-layer perceptron (MLP).
The efficiency of the MLPNN model was assessed and examined during training and testing; the
training sample, which made up around 70% of the overall sample, had a relative error of 0–7% and
a sum of squares error ranging from 1% to 5%, confirming specifically the efficacy of RBFNN in
calculating the overall cost of renovations.

Keywords: building cost estimation models; artificial neural network; multilayer perceptron
algorithm; radial basis function algorithm; buildings renovation; cost estimation

1. Introduction

The neural network using artificial intelligence, which originated in the 1940s as part
of a widespread computerization effort, is a sophisticated bionic computational structure
that is able to resolve complicated logical and nonlinear issues. It has a structure made
up of a variety of small, simple neurons that are interrelated with one another in specific
ways [1].

ANNs have widely been used throughout forecasting models in the building sector
during the past several decades. Scientists utilized this approach across every facet of the
building industry to maximize the benefits associated with its superiority over traditional
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modelling techniques. Some of the instances of ANNs utilized in the building sector are
financial performance prediction, risk analysis, resources improvement, and procurement
predicted results including performance evaluation [2].

ANN is a flexible computational tool that simulates the human mind’s capacity to use
reasoning and methods of pattern identification efficiently. Although knowledge of ANNs
has already been present for a while, their utilization in civil engineering only really began
in the late 1980s, predominantly within the construction industry [3].

Two aspects of neural networks bear similarities to the human’s brain: Learning is the
method by which a neural system gets information: Knowledge of a neural network is held
in what are called synaptic weights, which are inter-neuron interaction strengths [4]. Neural
network representation that includes linear as well as non-linear relations, along with the
capacity to infer such relationships based on modelled data oneself, are the actual charac-
teristics and advantages of neural networks as a tool. For the goal of modelling data with
non-linear features, conventional linear mathematical models are merely insufficient [4].

In addition to providing an overview of the uses of artificial intelligence (AI) and
neural networks (ANNs) in many fields, Elmusalami [5,6] and Naqvi et.al [7] also attempted
to investigate novel applications of these technologies.

Regarding building projects, cost will frequently be the initial factor that must be
taken into account. The accomplishment of any construction project depends critically on
a reliable estimation of the materials and expenditures involved [8]. The intricate design
of the construction business and the uniqueness of each project endeavor suggest that a
variety of factors could influence the project’s total cost [8].

In order to obtain the most accurate results in this field, the aim of this paper was to
compare two ANN-based tools for cost prediction focused on building renovation projects
in Greece. This is since, as far as the authors are cognizant, no such models exist, which led
to an extensive literature review.

To create a comparable type of cost estimating model, information from prior re-
modeling projects needs to be collected. As ANN models are able to identify patterns
and relationships, they can generate projections that are more precise when they use his-
torical project data. Whenever there are few project details accessible, they may require
adjustments even in the early phases of a project.

Comparing by using ANN models to estimate renovation costs necessitates making
adequate use of data for model training and validation. Builders and engineers may
benefit from the most optimal ANN model by using its realistic forecasts after it has been
implemented and identified. As of this writing, no such model which resulted from the
comparison of RBF and MLP approaches in order to implement it in a building’s renovation
cost estimation based on a particular set of work packages exists.

A substantial dataset of actual project cost data was obtained from a Greek contractor
involved in building renovations in order to fill the gap in the field of research. In order
to create ANNs for cost prediction, the information gathered was organized, evaluated,
and suitably encoded. The network was developed, trained, and tested using IBM SPSS
Statistics software 28.0.0.0. Finally, the dependent variable is the final cost. The initial
cost, estimated completion time, actual completion time, delay time, initial demolition-
drainage costs, final demolition-drainage costs, cost of expenses, initial plumbing costs,
final plumbing costs, initial heating costs, final heating costs, initial electrical costs, final
electrical costs, initial masonry costs, final masonry costs, initial construction costs of
plasterboard construction, final cost of plasterboard construction, initial cost of bathrooms,
final cost of bathrooms, initial cost of flooring, final cost of flooring, initial cost of frames,
final cost of frames, initial cost of doors, final cost of doors, initial cost of paint, final cost
of paint, initial cost of kitchen construction, and final cost of kitchen construction are the
independent factors. First, the radial basis function (RBF) is the process that is used. With
up to 6% sum of squares error and nearly 0% relative error in the training sample—which
makes up approximately 70% of the entire sample—the model’s efficiency throughout
training and testing was assessed and analyzed. Secondly the multi-layer perceptron (MLP)
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is the approach that is applied. The model’s efficiency throughout training and testing
was evaluated and analyzed, with the sum of squares error to be ranged between 1% and
5% and 0–7% relative error in the training sample, which accounts for roughly 70% of the
total sample. As an instance, it has been shown that ANNs are a very useful technique for
estimating total costs, especially for building renovation projects. Specifically, there is the
highly precise RBF approach, in which the error value in the model with 43 units in the
hidden layer remains steady.

In this regard, and centered on what is presented above, in the construction sector,
building renovation is a primary importance, yet accurate cost estimation is a major chal-
lenge. To decrease economic disparities, the usage of artificial neural network (ANN)
models is highlighted for forecasting the costs of renovations. ANN models were devel-
oped and tested, according to the substantial real project cost data that Greek contractors
provided. Radial basis function (RBF) and multi-layer perceptron (MLP) are two ANN
techniques that were evaluated in the present research. The RBF model was far more
accurate in cost estimation than the MLP model.

The sections of this article are organized as follows: A comprehensive assessment of
the literature is given in Section 2 regarding RBF and MLP ANNs as a tool for building
projects in particular and the construction industry in general. The problem formulation
is presented in Section 3. The methodology as the data collection and analysis processes
for developing the RBF and MLP ANN models to predict and compare the ultimate costs
of building renovations are outlined in Section 4. Section 5 present the results as well as
clarifying them. Conclusions, limitations, and recommendations for additional study are
included in Section 6.

2. Literature Review

In the twentieth century, there has been a dramatic increase in academics’ interest
in utilizing ANNs for estimation. ANNs have a lot of potential, but there are a lot of
unknowns as well, according to Zhang et al. [9] who held this belief even in 1998. It is still
unknown to researchers what significant components mean in terms of ANN prediction
efficacy. However, as the subsequent paragraphs will explain, ANNs have been utilized
extensively in construction research [10].

Adeli [11] attempted to demonstrate multiple uses for ANNs. The ANNs focused
on managing, engineering for construction, and building engineering categories. The
simple backpropagation technique represents the foundation for an increasing amount of
ANN usages in building engineering. The current research has primarily concentrated on
methods to integrate ANN into various other approaches of programming, including fuzzy
logic, evolutionary algorithms, and wavelet. The combinations that result improved the
effectiveness of models based on ANN.

In contrast to traditional causality and effect theories, Buscema [12] claims that ANNs
represent multifarious, complicated, and dynamic phenomena that are unanticipated and
uncontrollable. It is likely that in their basis, they are nonlinear. Whenever linear-based
methodologies apply to planned interventions involving nonlinear dynamics, they claim,
it is conceivable to employ ineffective approaches to intervention and make incorrect
conclusions regarding what has transpired [12].

ANNs are considered indispensable in the building industry. Time series, classification,
and forecasting are the three types of challenges that ANNs have already been used to solve.
The ANN needs to be trained in order this process to occur. Considering that the qualities
of ANNs are not dependent on a formal development procedure, there is a well-established
technique. An ANN’s typical form is a multi-layer perceptron. Several instances have
demonstrated their flexibility [13]. A type of supervising ANN called radial basis function
structures is significant because it utilizes guided machine learning (ML) to operate as a
nonlinear categorization method. A more thorough evaluation is performed by nonlinear
approaches to classification as by basic techniques by using complicated equations.
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The primary reasons for inaccurate cost estimation remain to be the following: inade-
quate time to create cost estimates, inadequate paperwork for tenders, and a large range
of pricing from contractors. These factors have been related to the estimating function’s
inadequate practical knowledge about the process of building [14].

Cost estimate is usually a multidisciplinary process that involves feedback from the
design team and is based on previous information. The category of project will influence
the cost estimation, which is linked to evolving elements of construction and expertise [14].

Advances in models for predictions have been made possible by the combination of
fundamental computational methods including fuzzy logic (FL), ANNs, and evolutionary
algorithms (EAs). Different hybrid systems have been developed as a result of such
comprehensive simulations, which allow the shortcomings of one approach to be offset by a
variety of techniques. It is dependent on the software sector and the unique characteristics
of the data available to decide which structure is best and provides accurate information
for cost estimation [2].

In fact, a very prevalent category of construction projects, for which there are numerous
cost prediction models, remains building. This was discovered in that 40 of the 92 papers
that were examined made reference to buildings in the relevant review of literature that
Hashemi et al. [15] collected. Furthermore, Antoniou et al. [16] discovered in their research
that 31 further articles out of 51 that were published in 2021 and 2022 included models for
estimating construction costs for building projects. Eleven studies out of the thirty-one
included ANNs in the models they developed. Once an illustrative non-exhaustive content
evaluation was conducted on the research projects that were determined to be able to
generate cost of construction predictions over buildings utilizing ANNs, the subsequent
research findings were identified as distinguished.

It is well acknowledged that construction companies utilize cost estimation mostly to
determine the price to assess for estimates of quantities that are created using a standard
technique of measurement.

According to Chua et al. [17], it is critical for developers, suppliers, and stakeholders
to recognize and comprehend particular traits that may be crucial to a building construc-
tion’s ultimate completion. In an attempt to identify the critical managerial characteristics
associated with successful financial efficiency, they then used an ANN approach. They
recommended several of factors, such as the quantity of organizational levels between the
project leader and the builders, the quantity of thorough planning finished before building,
the extent of managerial discussions during constructing, the rate of funds revisions, the
implementation of a constructability plan, group employee turnover, the amount of income
allocated for project leadership, and the supervisor’s expertise in the field.

Forty-eight building initiatives from builders and twenty-seven from shareholder
organizations were included in Chua et al.’s study [17]. Upon completion of training, the
finished model was applied as a predictor for estimating the manner in which a building
cost will function. Even if the functional connection amongst the inputs and their results
are not clearly defined, a financial performance model continues to be constructed through
to this methodology [17].

Using data from 300 structures, Emsley et al. [18] employed ANNs to forecast the
overall cost of construction. The data from building costs, construction documents, and
the outcomes of a widely circulated interview questionnaire comprised the information
that was gathered. The ultimate sum totals in the data allowed for the creation of a model
that could evaluate the customer’s overall expenses, which included both internal and
external expenses in addition to building expenditures. The ANN approach’s ability to
simulate nonlinearity in the data was found to be its main advantage, as they used linear
regression (LR) techniques to construct additional models to evaluate the models built using
ANN. With an uncertain degree of accounting for customer modifications, the best model
generated a mean absolute percentage error (MAPE) of 16.6%. The standard estimating
method, which finds that the MAPE results fluctuate between 20.8% to 27.9%, differs
sharply via findings.



Algorithms 2024, 17, 390 5 of 27

Günaydin and Doh̄an [19] investigated the effectiveness of ANN techniques in resolv-
ing cost estimating problems in the early phases of building planning processes. Utilizing
cost and architectural information coming from 30 projects, an ANN-based simulation that
included eight design factors was created and validated to determine the square meter cost
of a building’s concrete reinforcement support systems for four- to eight-story apartment
buildings in Turkey. The model achieved a 93% accuracy rate.

In addition, Kim et al. [20] evaluated into the effectiveness of three cost estimation
methods in an effort to show how important realistic cost forecasting could be for building
tasks. They employed ANNs, multiple regression analysis (MRA), and case-based reason-
ing (CBR) utilizing past cost information for 530 structures. Construction companies in
Seoul, Korea, built the household structures between 1997 and 2000. Although the most
effective ANN forecasting model produced more precise forecasting outcomes compared
to either the MRA as well as the CBR forecasting versions, the CBR estimating structure
accomplished more in terms of lengthy utilization, time in addition to accuracy decisions,
and available data derived from outcomes.

To improve the precision of cost estimation, Cheng et al. [21] proposed the AI process
known as the evolutionary fuzzy neural inference model (EFNIM). In order to help the
EFNIM locate workable solutions in difficult circumstances, the advantageous properties
of ANNs, evolutionary algorithms, and fuzzy logic were successfully added to the model.
Whenever these approaches were combined, they enhanced the advantages of each ap-
proach and somewhat offset any shortcomings that resulted from using them alone. Fuzzy
logic (FL) handled risks as well as roughly inferences, genetic algorithms (GA) have been
utilized for optimization, and ANNs were implemented for fuzzy input–output visualiza-
tion. Because of the above, Cheng et al. [21] provided two approaches that might be used
to determine conceptual building expenses prior to projects even starting.

An early-stage building initiative’s cost was estimated using an ANN-based model by
Arafa and Algedra [22]. Seventy-one building projects across the Gaza Strip were taken
from a database. These included household buildings, schools, preschools, and government
or NGO buildings. Key characteristics from architectural plans were identified. These
were used to calculate building costs. The parameters included the number of stories, area,
basement space, groundwork type, column quantity, elevators, and typical flooring size.
An ANN model was developed with these inputs. It approximated building costs with a
single output neuron, one hidden layer, and seven input neurons. The model showed that
ANNs could estimate early construction costs using basic data. The most important factors
were the number of stories, ground level dimensions, groundwork type, and elevator count.

Wang et al. [23] presented an intriguing perspective. They innovated by developing
models that used support vector machine (SVM) models and ANNs to anticipate construc-
tion costs as well as performance utilizing early planning information as parameter inputs.
By gathering preliminary scheduling and building feedback from 92 building endeavors
via a pertinent business questionnaire research, they found that the initial preparation stage
could potentially effectively be employed to forecast successful completion of projects via
ANNs. The 92 building initiatives consisted of 80 novel building endeavors and 12 renova-
tions, of which 32 were private and 60 public. It was demonstrated that models constructed
with bootstrap-aggregated ANNs proved more reliable and precise than models made from
single ANNs.

A wide range of both qualitative and quantitative measures were implemented to
identify ANN algorithms by Shehatto and by El-Sawalhi and Shehatto [24,25] in order
to obtain cost information for each phase of the building process and precise building
construction expenditure estimates. The database consisted of 169 accomplished building
initiatives in the region of Gaza. Past projects of building examples from districts, federal
offices, engineering education institutions, outside contractors, and specialists served as
the source material for the structures. As independent input variables, eleven significant
parameters were taken into consideration, and the overall project cost was considered the
dependent output parameter. The software called NeuroSolutions was utilized to train
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the created models. As the mean inaccuracy for the improved model remained overall
acceptable, or less than 6%, their ANN models additionally showed that an ANN could
accurately calculate building project expenses despite demanding major definite drawings.
The sensitivity analysis’s findings showed that the number of stories and the typical ground
area provided the most effects on building costs. Eleven elements should be considered
distinct inputs that impact the overall project price, the researchers concluded.

It was firmly held by Elfaki et al. [26] that a number of unique elements influence
cost estimation in construction projects. The factors unique to estimation methods and
the variables unique to concepts and projects could be separated into two distinct groups.
They centered on the necessity of developing a cost forecast methodology that could take
into consideration all predicting elements from every standpoint and included a standard
validation technique that might have been utilized to assess the level of precision of cost
prediction proposition.

In order to predict the total architectural cost of building projects in the Philippines,
Roxas and Ongpeng [27] also used an ANN model. Thirty building projects’ worth of
data were collected and divided into three categories: sixty percent for training, twenty
percent for performance verification, and twenty percent for an entirely independent test
of network generalization. They included six independent variables in their ANN model,
which was carried out in MATLAB for simulation: the overall ground region, the number
of floors and basements, the total cement, the size of the structure, and the whole weight
of the reinforcing steel. Applying the feedforward backpropagation method, the optimal
model for the total building cost was developed. The amount of surface area, quantity of
the flooring and foundations, amount of concrete, size of structure, thickness of reinforcing
steel, post-tensioned sector, number of piles, etc., are some of the factors that the scientists
proposed affect structural or civil engineering costs. However, additional building costs
involve architectural fees, which vary according to the type and quality of supplies chosen
for the exterior walls, ceilings, windows and doorways, flooring, the painting process,
and other architectural elements. In conclusion, the building’s entire construction cost is
completed by the setting up of elevators, electricals, climate control, heating infrastructure,
and wastewater and water supply networks.

In a determination to use ANNs for building project cost planning, Ambrule and
Bhirud [28] looked into and addressed problems in cost estimation at the very beginning of
building planning during the preliminary design stage. For upgraded buildings made of
concrete, a graphical user interface (GUI) cost prediction model was also developed and
validated during the early design phase. As early as the engineering process, Ambrule
and Bhirud [28] demonstrated that the ANN GUI model might be useful for managers in
advising on the project’s completion.

Utilizing the first estimations of the costs of 25 construction factors, Abd and Naseef [29]
created an ANN-based mathematical model to calculate the total price of building devel-
opment. They collected data from 501 building endeavors in Iraq that were completed
among 2005 and 2015. The data contained the entire amount invested in different kinds of
construction, such as excavation of foundations, filling landfills, filling them with subbase,
creating moisture-proof layers, elements of construction, regular concrete for boundaries,
building foundations, etc. With respect to the estimation of construction project costs in
Iraq, the ANN algorithm demonstrated exceptional performance, as evidenced by the
correlation values between the variable results of almost 100%, the error rate of roughly
5.81%, and a level of accuracy that was 94.19%.

An ANN approach to forecast building construction costs was also developed by
Indian researchers. In particular, using survey questionnaires and the guidance of building
developers and experts, Chandanshive and Kambekar [30] gathered the amount and cost
information from 78 buildings, comprising cottages and smaller and mid-sized homes
developed near and inside Mumbai, India, between 2017 and 2019. The following 11
independent variables were linked to the quantities of particular construction functions:
the number of levels, the standard surface area, the elevator wall size, the wall’s exterior
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size, the external plaster amount, the amount of floor area, the quantity of columns, the
foundation’s category, and the number of homes. The entire project’s total expenditure
was the sole outcome parameter. They utilized a backpropagation approach to build a
multilayer feedforward artificial neural network for their model. To increase the ANN’s
generalization performance and avoid overfitting, early ending and Bayesian regularization
procedures were applied. It was shown that early stopping during the building cost forecast
was not as effective as the Bayesian regularization process. The results showed that the
trained ANN model could accurately predict the overall cost of building construction [30].

With the help of historical information from 136 structures built between 2011 and 2015,
a study was conducted in Yemen, another growing economy, to present a cost forecasting
tool using ANN models via Hakami and Hassan [31]. To provide an initial estimate of
the entire building expense, they incorporated 17 independent factors into their model.
The project’s classification, number of stories, length of floors, kind of foundation, number
of lifts, outside finishing structure, decorating style, air conditioning category, HVAC,
bottom floor, flooring height, foundation type, location region, tile kind, electrical and
mechanical installations, and project’s address were the 17 independent factors. Using the
NeuroSolutions 6 tool, they designed, trained, tested, and conducted sensitivity assessments
on the building. The results of the evaluation, sensitivity analysis, and education were
quite satisfactory, having less than 1% inaccuracy and good effectiveness and validity.

The cost predicted model that was determined to be specific to public buildings was
offered by Sitthikankun et al. [32]. They indicated that there are two commonly used meth-
ods for determining the expenditures for publicly owned buildings: a thorough prediction
that has the benefits of a more accurate cost approximation, yet negative consequences
concerning the demand for a definitive successful completion and a related demand for
an extended period to complete, and consequently being absent of set financing deadlines.
The study employed data from 50 governmental buildings that were finished in Thailand
in 2020. There were eleven independent variables that were considered: total space usable,
mean perimeter size, mean story height, entire height of the construction, the number of
floors, total area under roofing, total area in bathrooms, ground surface slab, entire area
of apertures, the kind of roof, and kind of slab construction. Utilizing a model with two
hidden layers of ten and eight nodes, the artificial neural network (ANN) approach was
employed to forecast the outcomes. With a correlation coefficient (R2) of 0.914 and a root
mean square error (RMSE) of 0.331, the model’s accuracy was demonstrated. For estimating
building costs, lowering tolerances, and minimizing effort, this approach provides a safe
option for public tendering.

Building Cost Estimation—The Present State of Research: The Special Issue of Building
Renovation Cost Estimation

The issue of cost estimation in the construction sector has been extensively studied over
the past few decades by many researchers from a variety of professions [16,18,20,33–43]
who designed and developed a variety of models.

One considerable gap involves the fact that neither of the previously mentioned studies
address cost estimation in building renovation projects during the predesign process [10,44].
Furthermore, as long that it is aware, the accuracy of the final cost after completing a
building renovation project has also not been confirmed. This testing is essential to verify
the model’s accuracy and prevent future forecasting errors. The comparative evaluation
of two ANN methods, radial basis function and multi-layer perceptron, for prediction
is remarkable. Specifically, the evaluation of outcomes, using initial and final costs as
independent variables, is interesting as it resulted in the following paragraphs. Moreover,
upon completion of a project, a verification may be conducted to ensure that the model
remains capable of accurately estimating the project’s final cost.

Aiming to offer cost estimation methods for new building development, the studies
mentioned previously all made this endeavor. A research project examining the cost
performance of renovation projects, also referred to as building reconstruction, was located.
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Attalla et al. [45] attempted to examine this difficult setting and suggested an ANN-based
model to compute a cost performance score using information known at the start of the
building process. They conducted a survey among industry experts. The goal was to
understand overspending and subpar work in 50 reconstruction programs. They recorded
every real expense variation from the estimated numbers. They also noted the project
control techniques used. Two measures of financial deviation were employed: client fee
delays and building constructor repair expenses. Out of 36 independent variables, 18 were
selected. These were believed to impact cost-effectiveness. The variables were related to
project management methods and tools. These included timeline, quality, cost, safety, and
interaction methods and tools. They also included scope definition, bidding, and project
completion methods. To construct their models, they used statistical analysis (Systat) and
an ANN (Neuro Shell2). The ANN’s model proved more sensitive to a greater variety of
factors, even if the two techniques’ performance was equivalent. Utilizing the schedule and
cost predictions given at the beginning of construction, this study served as the inspiration
for research work to design an ANN model for actual cost prediction and mostly ex-post
verification of building renovation projects in the field to predict and mostly verify final
cost variances.

In the field of building renovation project cost estimation, an effort was made by the
authors [44] that utilizes IBM SPSS Statistics tools to create, train, and test an ANN model.
It relies on extensive review of the literature and actual renovation data from construction
businesses. The model employs starting cost, projected duration, and initial demolition
cost as a radial basis function technique to provide the foundation for inputs. The model
demonstrates excellent accuracy with near 0% relative error and up to 2% sum of squares
error, proving the practicality of the ANN in estimating the overall cost of renovations. It
was the initial ANN model for building renovation project final cost prediction that has
been published, as far as the authors are aware.

Table 1 provides an overview of the methods, sources of data, and other components
that the aforementioned researchers and more employed.
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Table 1. An overview of the available literature’s ANN techniques for estimating building costs.

Year of
Publication Authors/Ref. Land Source of Database Data Quantity Data Category Research Object

ANN
Architecture/Training

Algorithm
ANN Tools

1997 Chua et al. [17] Singapore, USA Questionnaires 75 buildings Qualitative
Project financial

performance–cost
estimation

MLP/BP Neural Works
Professional II/PLUS

1998 Borghese and Ferrari [46] Italy Not specified Not specified Not specified Local parameters
estimate RBF Not specified

1998 Elhag and Boussabaine [47] UK
Building Cost

Information Service
(BCIS) database

30 school projects Quantitative and
qualitative Lowest tender price MLP/BP Not speciefied

2002 Emsley et al. [18] UK Real project data,
questionnaires 288 buildings Quantitative and

qualitative

Construction cost
estimation and the

client’s inner and outer
expenses

MLP, RBF, and GRNNs Trajan NN Simulator
Release 4.0E

2003 Attalla and Hegazy [45] Canada Questionnaires 50 buildings Quantitative and
qualitative

Reconstruction project
cost estimation

Statistical analysis and
MLP/BP

Neuro Shell 2 and
Systat software

2004 Kim et al. [20] South Korea Real project data 530 buildings Quantitative Project cost estimation MLP (GAs)/BP

Neuro Solutions for
Excel Release 4.2; Neuro
Dimension, Inc. Florida

USA

2004 Gunaydın and Dogan [19] Turkey Real project data 30 buildings Quantitative and
qualitative

Cost estimation for the
four- to eight-story
housing building’s
concrete-supported

building components

MLP /BP NeuroSolutions by
Neuro Dimensions Inc.

2009 Cheng et al. [21] Taiwan Real project data 28 buildings Quantitative and
qualitative Project cost estimation EFNISM/MLP,

((EWCCE)/BP
EWCCE system via

World Wide Web

2011 Arafa and Alqedra [22] Palestine Real project data 71 buildings Quantitative and
qualitative

Early evaluation of
construction costs MLP/BP Matlab v.2009b

2012 Wang et al. [23] Taiwan Questionnaires 92 buildings Quantitative
Ultimate cost

estimation, timetable
accomplishment

SVMs and ANNs *
ensemble techniques

* Bootstrap aggregating
and adaptive boosting

ANNs classifiers

1. NeuroSolutions TM
by Neuro Dimension
2011, 2. LS-SVMlab

2012 Bouabaz et al. [48] Algeria Real project data Not specified Not specified
Cost estimation of
defined repair and

maintenance projects
MLP/BP Not specified

2012 Minli and Shanshan [1] China Real project data 30 cases Quantitative and
qualitative Cost estimation MLP/BP Madlab, year 1998

2013 Amusan et al. [49] Nigeria Not specified Not specified Not specified Not specified
MLP/Levenberg–

Marquardt network
training function

Not specified
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Table 1. Cont.

Year of
Publication Authors/Ref. Land Source of Database Data Quantity Data Category Research Object

ANN
Architecture/Training

Algorithm
ANN Tools

2013 Odeyinka et al. [50] UK Quastionnaire and real
project data

11 identified significant
risk factors

Quantitative and
qualitative Cost estimation MLP/Sigma transfer

function/BP SmartLab software

2014 Roxas and Ongpeng [27] Philippines Real project data 30 buildings Quantitative Project cost estimation

MLP/BP, weights and
bias values updated

according to
Levenberg–Marquardt

network training
function

Matlab (R2010a)

2014 El-Sawalhi and Shehatto [25] Gaza
Questionnaire,

interviews, literature
review

169 buildings Quantitative and
qualitative Totality cost estimation

MLP/BP (Tanh transfer
function and

momentum learning
rate)

NeuroSolutions 5.07

2014 Zahran et al. [51] Egypt
Interviews, literature

review, and
questionnaires

18 buildings Quantitative Predicted cost MLP/BP

Microsoft Excel
2010-Evolver v. 5.1.1

produced by Palisade
Corporation. Denver

USA

2014 Bala et al. [52] Nigeria
Real project data,

questionnaire, expert
interviews

260 buildings Quantitative Final cost estimation MLP/BP MS/Excel

2014 Amade et al. [53] Nigeria Questionnaire and
interviews 53 project profetionals Quantitative and

qualitative Cost estimation Various SPSS 17.0.

2015 Naik and Kumar [54] India Real project data 513 houses Quantitative and
qualitative

Final cost and duration
estimation MLP/BP Excel and Neuroshell

software

2015 Naik and Kumar [4] India Real project data 512 houses Quantitative and
qualitative

Final cost estimation
and duration MLP/BP Excel and Neuroshell

software

2016 Bayram et al. [55] Turkey Real project data 232 buildings Quantitative Project cost estimation MLP and RBF Matlab v.7.9.0

2016 Bayram and Jibouri [56] Turkey Real project data 420 public building
projects Quantitative Actual cost estimation RCF, MLP, RBF, GPA

ANFIS, and SLRA Not specified

2016 Yadav et al. [8] India Real project data 23 residential buildings Quantitative and
qualitative Final cost estimation MLP/BP NeuroXL Version 2.1

2017 Amprule and Bhirud [28] India Not specified Not specified Not specified Initial cost estimation ANN GUI model in
general Not specified

2019 Abbas Mahde Abd et al. [29] Iraq Real project data 501 projects Quantitative and
qualitative Project cost estimation ANN not specified Matlab

2019 Chandanshive et al. [30] India Questionnaires 78 buildings Quantitative and
qualitative Project cost estimation

MLP/BP Bayesian
regularization

Levenberg–Marquardt
Matlab v. R2015a

2019 Hakami and Hassan [31] Yemen Real project data,
literature review 136 buildings Quantitative and

qualitative Project cost estimation MLP/BP
SPSS IBM

v.19.0-NeuroSolutions
v.6



Algorithms 2024, 17, 390 11 of 27

Table 1. Cont.

Year of
Publication Authors/Ref. Land Source of Database Data Quantity Data Category Research Object

ANN
Architecture/Training

Algorithm
ANN Tools

2021 Sitthikankun et al. [32] Thailand Real project data 50 buildings Quantitative and
qualitative Project cost estimation MLP/BP Rapid Miner Studio

2021 Zaki [42] India Real project data 70 buildings Quantitative and
qualitative Cost estimation MLP/BP MATLAB (2015a)

2024 Papadimitriou et.al [44] Greece Real project data 50 buildings Quantitative Cost estimation RBF SPSS 28.1.1.1

Note: ANN for artificial neural network; MLP for multilayer perceptron; RBF for radial basis function; BP for back propagation (algorithm); GA for genetic algorithms; GRNNs for
generalized regression neural networks; SVM for support vector machine; LRV for logistic regression model; GUI for graphical user interface; RCF for ANNs classifiers reference class
forecasting; GPA for grid partitioning algorithm; ANFIS adaptive neuro fuzzy inference system; SLRA for simple linear regression analysis; EFNSM for evolutionary fuzzy neural
inference system mechanisms; EWCCE for process of developing construction cost estimators, when not specified by the relevant researcher.



Algorithms 2024, 17, 390 12 of 27

As the Table 1 illustrates, in the context of the building construction sector, there has
been limited research focusing on the comparative evaluation of radial basis function (RBF)
and multi-layer perceptron (MLP) methods. Notably, researchers such as Bayram et al. [55]
have made contributions in this area. However, it is important to highlight that, to the best
of our knowledge, there has been a significant gap in research specifically targeting the
buildings renovation sector.

MLP neural network models are among the most frequently employed approaches
in these analyses. These models are often utilized alongside other methods, such evolu-
tionary fuzzy neural inference system mechanisms (EFNSM) [21], support vector machines
(SVMs) [23], generalized regression neural networks (GRNNs) [18], adaptive neuro fuzzy
inference system (ANFIS) and simple linear regression analysis (SLRA) [56]. These ap-
proaches are all differentiable and have been applied to various aspects of buildings
construction; at present, there is still a lack of comparative analysis about the relative
efficacy of these approaches, especially in the building renovation sector.

3. Problem Formulation
3.1. Artificial Neural Network Models

Complex nonlinear interactions and approximations of any evaluated function can be
modelled using artificial neural networks (ANNs). An effective method for managing non-
linear issues remains utilizing ANNs, which may also be used to determine associations
among intricate input as well as output data and handle uncertainty [8]. They are especially
useful in situations when there is an intricate link between an input and an output. ANN
models are dependent on data and involve contact using samples of the desirable input
output modelling, which is their primary benefit over traditionally constructed models [8].

ANNs are valued for their ability to manage complicated interrelationships and
handle imprecise input, as well as their capacity to self-organize information gathered from
retraining instances [41].

Models that rely on neural networks are learning their fundamental structural cor-
relations from historical cost data. The volume of data used for training has a significant
impact on the models’ efficacy and prediction. This suggests that neural networks have the
power to capture realistic correlations between cost variables. This ability allows neural-
network-based cost models to expand beyond several of the restrictions that come with
using classic models [41].

3.1.1. Radial Basis Function (RBF)

A prominent type of neural network structure is radial basis function networks, in
which the triggering of a hidden unit is determined by the gap among an input variable
and prototype variable [57].

RBFs possess just one layer that is hidden. Every hidden element function as a point
in the input area. The distance between the hidden unit and the input instance determines
activation. RBFs make use of multivariate Gaussian activation functions and Euclidean
distances. Certain hidden units like adjacent responsive areas determine activating.

The accuracy of RBF was determined to be superior to that of MLP in a study published
in 2015 by Bayram et al. [55] to estimate building costs in Turkey [3].

3.1.2. Multi-Layer Perceptron (MLP)

One other popular category of neural network structures is the multilayer perceptron
(MLP). MLP remains a widely utilized neural network model. Considering this kind of
neural network requires a desired outcome as a way to gain knowledge, it is referred to
as a guided structure. In order to utilize the model to generate the output whenever what
is expected is unknown, this kind of structure aims to build an algorithm that precisely
corresponds to the inputs into the output using previous information [14]. Among the
input and output layers of an MLP, there may be one or more concealed layers.
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Activation functions (such as sigmoid or rectified linear unit) are used after dots
are produced between inputs and weights. Each and every neuron worldwide controls
activation. Backpropagation for every layer is commonly used in training. In the field of
deep learning, MLPs are frequently employed [4].

When back propagation as a methodology is used by the MLP and a few other neural
networks for learning, the input data continue to enter into the neural network. An error is
calculated for each demonstration by comparing the neural network’s output regarding
the intended output. The neural network thereafter utilizes this error to feed back (back
propagate) to its weights, reducing the error with every cycle until the neural model
increasingly approaches the desired result [54].

There are several sets of input parameters and related output variables in the training
group. A neural network will only be as effective as the training data that it utilizes. One is
unlikely to obtain accurate forecasts if they do not enter all of the variables that impact the
outcome into the neural network [54].

A linear relationship among the data entered and the result is initially identified by
the neural network. Neurons that connect the input and output neurons are given weight
values. Following the discovery of those linkages, neurons are introduced into the hidden
layer to enable the identification of nonlinear connections. Data input into the first layer
are transmitted to the next (hidden) layer after being increased by the weights. According
to the total of the weighted quantities that are supplied to them, neurons in the hidden
layer dismiss or generate outputs. The outcome layer generates the intended outcomes
(estimations) based on variables passed from the hidden layer in an identical way. The
data groups of parameters are captured by adding more hidden neurons as needed. A
robust system of weights eventually develops and, provided this issue is learnable, will
yield accurate results for each of the sample decisions or forecasts [54].

As could be seen in the next paragraphs, RBFs are superior in localized learning and
hypersphere-based separation, but MLPs provide flexibility and global learning. Selecting
the appropriate architecture for a given problem is facilitated by an understanding of
their distinctions.

4. Methodology
4.1. Artificial Neural Network Construction for Buildings’ Renovation Cost Estimation

The modelling procedure using neural networks consists of five primary components.
These are (1) collecting, analyzing, and representing data; (2) determining the architecture;
(3) determining the learning method; (4) training the model; and (5) testing the model that
was trained to assess generalization [50].

The current paper produces a number of ANN models. An independent building
firm that specialized in building renovations provided an account of fifty-two renovation
projects. That particular company has decades of knowledge regarding renovations. Given
that the firm used a consistent approach across all its projects, the data were easily processed.
Every one of them was a private undertaking. A thorough survey and measurement of
every building construction produced an analytical cost. Both the owner and the builder
approved the initial price. The additional expenses as described within the Greek legislation
regarding private projects have also been considered to determine the overall cost of
each project.

Twenty-nine parameters, namely, initial cost, estimated completion time (in days),
actual completion time (in days), delay time (in days), initial demolition-drainage costs,
final demolition-drainage costs, cost of expenses (fuel and parking), initial plumbing costs,
final plumbing costs, initial heating costs, final heating costs, initial electrical costs, final
electrical costs, initial masonry costs, final masonry costs, initial construction costs of plas-
terboard construction, final cost of plasterboard construction, initial cost of bathrooms, final
cost of bathrooms, initial cost of flooring, final cost of flooring, initial cost of frames, final
cost of frames, initial cost of doors, final cost of doors, initial cost of paint, final cost of
paint, initial cost of kitchen construction, and final cost of kitchen construction, were all
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entered into a database. A database with the aforementioned technical specifications was
created using IBM SPSS Statistics software [58]. The buildings are primarily urban resi-
dential apartment complexes located primarily in the region of Thessaloniki, Greece. The
requirement for energy improvement was the primary driver behind the renovations, but
there was also modernity; redevelopment; and, very infrequently, alteration in utilization
factors. Particularly in terms of those located in the historic city center, the buildings are
frequently older by a few decades. The projects had begun in 2018 and were terminated
in 2023.

4.2. Factor Determination and Evaluation Influencing the Estimation of Building
Rehabilitation Costs

Using an ANN model, nonpredictive or inefficient variables could be eliminated
through cutting down from the model, unlike regression methods, which require verifica-
tion of the covariance between the variables. On the other hand, lower correlation values
provide the foundation for the variable choices. Since solely those that are crucial variables
are taken into account, this validates the incorporation in the model and greatly expedites
the training procedure.

The analysis of correlation was accomplished first. Table 2 displays the outcomes.
Table 2 indicates that the dependent variable final cost and the independent variables

related to project such as initial cost, estimated completion time, actual completion time,
delay time, initial demolition-drainage costs, final demolition-drainage costs, cost of ex-
penses, initial plumbing costs, final plumbing costs, initial heating costs, final heating costs,
initial electrical costs, final electrical costs, initial masonry costs, final masonry costs, initial
construction costs of plasterboard construction, final cost of plasterboard construction, ini-
tial cost of bathrooms, final cost of bathrooms, initial cost of flooring, final cost of flooring,
initial cost of frames, final cost of frames, initial cost of doors, final cost of doors, initial
cost of paint, final cost of paint, initial cost of kitchen construction, and final cost of kitchen
construction have a significant link.
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Table 2. Correlation analysis.
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Pearson
correlation

0.989
**

0.826
** 0.224 −0.004 0.482

**
0.905

**
0.705

**
0.531

**
0.464

**
0.522

**
0.324

*
0.985

**
0.975

**
0.929

**
0.915

** 0.166 0.260
*

0.345
** 0.215 0.792

**
0.754

**
0.910

**
0.919

**
0.914

**
0.656

**
0.922

**
0.964

** 0.283 0.241

Correlation
Coefficient

0.760
**

0.480
**

0.319
** 0.093 0.205

*
0.242

**
0.399

**
0.558

**
0.559

**
0.339

**
0.314

**
0.639

**
0.627

**
0.358

**
0.429

**
0.261

**
0.278

**
0.446

**
0.375

**
0.459

**
0.458

**
0.373

**
0.377

**
0.388

**
0.426

**
0.482

**
0.443

**
0.334

**
0.367

**

Sig.
(1-tailed) <0.001 <0.001 <0.001 0.166 0.017 0.006 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.005 0.003 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.021 0.043

N 52 52 52 52 52 52 52 52 52 52 51 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52

Notes: ** Correlation is significant at the 0.01 level (1-tailed), * Correlation is significant at the 0.05 level (1-tailed).
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The intricate connections between numerous variables must be acknowledged when
managing a project. The total performance of the project is impacted by all of the elements
mentioned, including the starting cost, ultimate cost, expected completion time, actual com-
pletion time, delay time, and several other charges. Throughout the course of the project,
they have an impact on one another and are related. A project’s ability to remain within
budget and fulfil deadlines does not constitute its only mark of success. It additionally
entails producing excellent outcomes that are consistent with the project’s goals.

On the contrary hand, efficiency describes achieving these objectives by utilizing the
best advantage of available resources. For example, the cost of demolition per contract
and the total cost of renovations has a modest association. In light of the reason that there
exists a direct proportionality among the tender offer and project agreement period, this
association is significant. An increase in project time results in a raise in construction
costs. The renovation project’s final cost would therefore be impacted. During a building
renovation project, there are numerous categories that could impact the final cost, and the
cost of demolition is just one of them. The other parameters such as the aforementioned
have a significant effect as well. The expected or budgeted cost of a project at its inception is
referred to as the initial cost. The project’s start-up costs encompass expenses for supplies,
labor, machinery, and additional resources. When a project is finished, its final cost is the
entire amount that was actually spent. Along with all other unforeseen charges that might
have come up during the completion of the project, it comprises all direct and indirect costs.

Cost overruns or savings can be discerned from the discrepancy between the initial
and final expenses. The estimated time needed to complete the project in its entirety is
referred to as the estimated completion time. It takes into account the resource’s availability,
dependencies between tasks, and project partition structure. Precise estimation facilitates
scheduling, resource allocation, and project deadline compliance. The real period of time
required for completing the project has been established as the actual completion time. It
takes into consideration any modifications, issues, or delays that happened throughout
implementation. Project performance can be assessed by comparing the expected and actual
completion times. The term delay time denotes the additional period of time that is needed
over the projected completion date as a result of unanticipated events such as bad weather,
a lack of resources, or other problems. Schedule delays have an effect on projects and
might result in cost overruns. The initial expenditures of demolition and disposal involve
cleansing the region of any existing structures or prepare for construction. Any additional
costs incurred throughout the demolition and disposal stages are included in the final
demolition-drainage costs. For precise forecasting and project planning, these expenses are
crucial. The cost of expenses includes all project-related expenditures, including overhead,
administrative fees, licenses, and permits. Monitoring these expenditures provides effective
budgetary management and transparency in finances.

The project’s initial and final water supply, heating, and electrical costs cover the
systems’ installation, upkeep, and repairs. While final costs represent actual expenditures,
initial costs are estimated at the beginning of the project. Masonry expenses are associated
with building walls, foundations, and other structures out of stone, brick, or concrete blocks.

Whereas final expenses take into consideration any variations during building, ini-
tial masonry costs are only estimates. Gypsum-based boards are used in plasterboard
construction for the walls, ceilings, and partitions. Though labor and material estimates
are included in the initial construction costs, the actual costs of installing plasterboard
are taken into account in the final costs. In addition, variables such as initial and final
cost of bathrooms, initial and final cost of flooring, initial and final cost of frames, initial
and final cost of doors, initial and final cost of paint, and initial and final cost of kitchen
construction work together to influence on schedule, cost containment, and the project’s
accomplishment. Project management is enhanced, resource allocation is optimized, and
cost drivers are found by analyzing their association. Throughout the duration of a project,
accurate monitoring, estimation, and adaptability are essential.
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Below, an attempt has been made to verify the correlation between these 29 dependent
parameters and the final cost of a building project.

There is a definition for both the independent and dependent variables. The IBM SPSS
software was utilized to construct, train, and test the models. It was determined to use the
RBF and the MLP in order to compare the results from those two applications. The total
final cost of renovation for each project, as per the company’s reports, is the dependent
variable. Initial cost, estimated completion time (in days), actual completion time (in days),
delay time (in days), initial demolition-drainage costs, final demolition-drainage costs, cost
of expenses (fuel and parking), initial plumbing costs, final plumbing costs, initial heating
costs, final heating costs, initial electrical costs, final electrical costs, initial masonry costs,
final masonry costs, initial construction costs of plasterboard construction, final cost of
plasterboard construction, initial cost of bathrooms, final cost of bathrooms, initial cost of
flooring, final cost of flooring, initial cost of frames, final cost of frames, initial cost of doors,
final cost of doors, initial cost of paint, final cost of paint, initial cost of kitchen construction,
and final cost of kitchen construction are the independent factors. For the training sample,
38 projects in total were selected and 14 of those had been chosen for testing. As per the
results of the literature review indicated above, the percentage of 70% of the project sample
allocated for training and 30% for testing was deemed appropriate. In the hidden layer, the
number of neurons (units) is the main area of change.

Deciding the number of hidden layers along with nodes on the hidden layers consti-
tutes one of several critical decisions in neural network architecture. In this regard, Li [41]
reports two useful principles: (1) adding nodes to every hidden layer has little influence on
the forecasting success of neural network models; (2) raising the number of hidden layers
advances a neural network’s estimation success to a certain degree; however, it would
lengthen the neural network’s training procedure.

The ideal number of hidden nodes could not be precisely determined, but trial and
error have revealed that it ought to range among the mean and the total of the outputs and
inputs nodes [59].

The hidden layers of an ANN model can display a nonlinear connection among inputs
and outputs, making it more advantageous and straightforward compared to multilinear
and nonlinear regression models, respectively [59].

4.3. Implementation of the Radial Basis Function Method (RBF)

Beginning with the RBF and with one neuron in the hidden layer, the analysis proceeds
on by adding one neuron for each additional time and analysis. The hidden layer activation
function refers to the normalized radial basis function, used to connect the values of the
units in a single layer to the values in the one that follows. The identity function roles as the
output layer’s activation function, and thus the output units are simply the weighted sums
of the hidden units. Within the current design of the model, the normalized radial basis
function serves as the activation function for the hidden layer. This function utilizes the
SoftMax activation function to normalize all concealed unit activations in order to ensure
their sum equals 1. The overlapping factor is the multiplier of the breadth of the radial
basis functions. The overlapping factors were computed automatically. The amount of
input data, denoted by d, is 1 + 0.1d.

The hyperbolic tangent sigmoid transfer function, which specifies the behavior of the
network model and produces output values within −1 and 1, was chosen as the function for
the current model. Equation (1) defines the hyperbolic tangent sigmoid transfer function,
which is the function that has been adopted [58]:

Tansig(x) = (2/(1 + exp(−2x)))− 1 (1)

The search finally arrived at a hidden layer ANN with 50 neurons. The research
essentially yielded fifty models. According to the study, the ANN with 43 neurons in the
hidden layer produced the most accurate outcomes based on relative error and sum of
squares error.
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The data collected by the trained model showed that the method using ANN was
effective in predicting the buildings’ cost estimate with the least amount of construction
data available and without requiring a more detailed architecture. We carefully selected
attributes to maximize the model’s ability to learn from the sparse input. To accomplish
such a feat, the most pertinent independent variables had to be chosen. Additionally,
in an attempt to eliminate errors or variations, we verified using high-quality data that
were as accurate as possible. Ensuring the accuracy and consistency of our data source
was the initial goal. When a building renovation construction company with decades
of expertise provides high-quality data, it may significantly improve the performance
of models, especially when the dataset is small to prevent overfitting. Furthermore, we
employed regularization approaches such as early stopping, notably in the MLP approach.
The proposed methodological approach’s flowchart is shown in Figure 1:
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Figure 1. The recommended methodological procedure. Note: * 29 independent variables for final
cost, estimated completion time, actual completion time, delay time, initial demolition-drainage costs,
final demolition-drainage costs, cost of expenses (fuel and parking), initial plumbing costs, final
plumbing costs, initial heating costs, final heating costs, initial electrical costs, final electrical costs,
initial masonry costs, final masonry costs, initial construction costs of plasterboard construction, final
cost of plasterboard construction, initial cost of bathrooms, final cost of bathrooms, initial cost of
flooring, final cost of flooring, initial cost of frames, final cost of frames, initial cost of doors, final
cost of doors, initial cost of paint, final cost of paint, initial cost of kitchen construction, final cost of
kitchen; RBF for radial basis function; MLP for multi-layer perceptron.
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4.4. Implementation of the Multi-Layer Perceptron Method (MLP)

In a subsequent phase, the multilayer perceptron method (MLP) was implemented.
By using the same input data and, as an output parameter, the final cost of each renovated
building as mentioned in the preview paragraphs, the analysis commenced with one
neuron in the hidden layer and added one neuron for every incremental time and analyses.

The hyperbolic tangent sigmoid transfer function, which specifies the behavior of the
network model and produces output values within −1 and 1, was chosen as the function
for the current model.

The one hidden layer activation function refers to the hyperbolic tangent function,
used to connect the values of the units in a single layer to the values in the one that follows.
Within the current design of the model, the hyperbolic tangent function serves as the
activation function for the hidden layer. This function might be expressed as follows [58]:

γ(c) = tanh(c) =
(e c − e − c)
(e c + e − c)

(2)

The range of values (–1, 1) is obtained by transforming real-valued arguments. It
demonstrates the way each of the units in the hidden levels are activated when automatic
architectural selection is applied.

The hyperbolic tangent function acts as the output layer’s activation function, and
thus the output units are simply the weighted sums of the hidden units. The function can
also be expressed in the same form as described above in (2).

It is necessary to identify more than one scale-dependent variable in order to access the
rescaling of scale dependent variables controls. We adjusted a normalized method of division
by the range

[
2 ∗ (x−min)

(max−min)

]
− 1 [58] by subtracting the minimum. Normalized adjusted

values range from −1 to 1. When the output layer employs the hyperbolic tangent activation
function, then this rescaling approach must be utilized for scale-dependent variables. To
guarantee that all rescaled dependent variable values fall within the activated function’s range,
the adjustment option applies a small number, as an alteration to the rescaling calculation.
Specifically, the uncorrected formula’s values−1 and 1, which at first appear when x reaches its
minimum and maximum value, establish the boundaries of the hyperbolic tangent function’s
spectrum yet exist outside of it

{
2 ∗

[
(x−(min−ε)

(max+ε)−(min−ε)

]}
− 1 [58] is the updated formula. It

should be given an integer that is bigger than or equal to 0.
Decisively, an artificial neural network (ANN) with 50 neurons in its hidden layer

was the final result of the search. A total of fifty models came from the study’s completion.
Relative error and sum of squares error revealed the fact that by applying the MLP method
there is a periodicity as seen in the errors (sum of square and relative error) according to
the analysis.

5. Problem Solution—Results

The data collection encompassed 52 unique initiatives in all. The network had already
formed a testing procedure, and this significant data collection gave it structure. The
primary objective of this testing process was to facilitate the comparison of the actual
project expenses with the ANN model’s cost projections.

Each project in this collection of data was a single occurrence with an individual set of
variables and outcomes. The testing method has a reliable and robust baseline because to
the meticulous collection and assembly of these projects’ actual expenditures.

In order to estimate the accuracy of the ANN model, the sum of squares error and
relative error were utilized in the present research. The relative error is a measure of the
accuracy of a measurement compared to the size of the measurement itself. The relative
error is calculated using the following expression:

Relative Error =
(

Absolute Error
Actual Value

)
× 100% (3)
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where Absolute Error is the difference between the measured or predicted value and the
actual value (actual and estimated cost) and Actual Value is the true value (actual final
cost) [58].

A metric for measuring the difference between values predicted by a model and actual
data points is the sum of squares error, or SSE. The computation involves the summation of
the squares representing the discrepancies between the anticipated and observed values. It
is calculated utilizing the following expression:

SSE = ∑n
i=1

(
yi − ŷi)

2 (4)

where yi represents the actual observed values (actual final cost), ŷi represents the predicted
values (estimated final cost) from the model, and n is the number of observations [58].

Figures 2 and 3 illustrate how the training sample’s sum of squares error and relative
error are maintained at a low level after RBF implementation.
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Figure 2. Training sample of sum of squares error after the implementation of the RBF approach.
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Figure 3. Training sample of relative error after the implementation of the RBF approach.

The testing sample’s sum of squares error and relative error were kept low with a
concern of overfitting after 43 neurons in the hidden layer following RBF implementation,
as seen in Figures 4 and 5.
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Figures 6 and 7 below show how the relative error of the training sample and the sum
of squares error have a periodic variation with MLP adoption.
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Figure 6. Training sample of sum of squares error after the implementation of the MLP approach.
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Figure 7. Training sample of relative error after the implementation of the MLP approach.

Figures 8 and 9 below illustrate how the implementation of MLP also causes a periodic
fluctuation in both the sum of squares error and the relative error of the testing sample.
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Figure 8. Testing sample of sum of squares error after the implementation of the MLP approach.
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Figure 9. Testing sample of relative error after the implementation of the MLP approach.

Various causes may contribute to the periodic variation seen in Figures 6 and 7 (train-
ing sample) and also Figures 8 and 9 (testing sample), depending on the characteristics of
the figures and the context of the data. The model architecture selection may introduce
periodicity since the results prior in the figures are dependent on model predictions, such as
neural networks. Because of their layered nature, neural networks—including multi-layer
perceptrons (MLPs)—can display complicated behavior. Among the many types of ANNs,
MLPs are particularly intricate and versatile. Their nonlinearity, layered architecture, fea-
ture extraction, and backpropagation algorithm—which computes gradients with respect to
the loss function and modifies weights to minimize prediction errors—all contribute to their
effectiveness and increases in weight. Due to their complicated decision boundaries, MLPs
are able to learn extremely nonlinear and irregular limits on decisions [60]. Complicated
decision districts that encircle various data points can be produced by them for classification
issues. While MLPs are capable of modelling complicated performance, a large number of
hidden neurons and layers in the model might cause overfitting. Improved generalization
and the avoidance of overfitting are two benefits of regularization approaches like dropouts
and weight decaying.

The performance of the models was evaluated via following Figures 10–13, which
illustrate the comparison between the anticipated final costs estimated by the RBF approach,
the MLP method, and the actual costs observed in both the training and testing samples.
The projects selected for this analysis exhibited a significant variation in their real costs,
presenting a challenging scenario for ANNs to develop accurate forecasting models. The
effectiveness of the RBFNN model was assessed and examined both during training and
testing. In the training sample, the sum of squares error ranged up to 0.006 and nearly 0
relative error, while in the testing sample, which made up around 30% of the total sample,
the sum of squares error ranged between 0.02–0.81 and 0.62–22.07 relative error. The
evaluation and analysis of the MLP model’s performance during training and testing
revealed that the training sample’s sum of squares error ranged between 0.001 and 0.005
and had a 0–0.007 relative error, accounting for approximately 70% of the total sample,
while the testing sample’s sum of squares error ranged between 0.001 and 0.1 and had a
0.21–3.15 relative error, accounting for approximately 30% of the total sample. Despite these
challenges, the results depicted in Figures 10–13 demonstrate that the RBF method was
able to make predictions and perform ex-post verifications that closely simulated the actual
costs. This contrasts with the MLP approach, which produced less accurate outcomes.
The superior performance of the RBF method in this context highlights its robustness and
reliability in cost estimation, even when faced with substantial variability in project costs.
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Figure 13. Comparison of actual final cost and estimated final cost with RBF and MLP (testing sample).

6. Discussion, Conclusions, and Future Research

The primary allure of utilizing neural networks is their potential to autonomously
generate information via training data, devoid of preconceived notions. Finding every
relevant component that serves as the logical foundation for choices in cost estimating,
nevertheless, is challenging and demanding on time. One sector that is particularly vul-
nerable to changes in the global economy is the building sector, where cyclical economic
conditions are common. While the developers are currently in an era of low interest rates
and minimal price inflation, data on costs might have been collected during instances of
significant interest rates with elevated inflation in previous years, which would be neces-
sary to construct a useful training database. Undoubtedly, that could influence the high
accuracy on the cost modelling that rely on neural networks. Converging with Li’s [41]
perspective future research efforts should attempt to create a method for normalizing and
softening data used as training to ensure variables like alterations in the economy might be
taken into consideration.

Because project costs and unpredicfi engineering parameters have nonlinear correla-
tions and interactions, it is advised that practitioners adopt ANNs. The training process
allows for deficiencies in the ANN due to its high precision and capacity to learn complex
functions. They speed up and increase the evaluation’s reliability.

The proposed models are in summary accurate, easy to use, and time-saving. An
appropriate method for addressing problems arising from multiple uncertainties, such as
early cost estimation, may be the ANN models used above. Therefore, the findings support
the need for more study on project management that incorporates a hybrid RBF-MLP
model, or fuzzy logic and other cutting-edge methodologies.

In the present research, the ANNs utilizing RBFs and MLPs incorporate known input
variables that have a noteworthy influence on building renovation costs. This study
also demonstrated how these factors are utilized to calculate the building costs of civic
projects in Greece. Consequently, professionals ought to think about using these factors
when evaluating the total cost of building renovation. The results in Section 5 illustrate
an adequate coinciding with the actual cost in the training and testing sample and the
predicted final cost determined using the RBF and MLP methods. The real expenses of the
chosen projects varied significantly. For this reason, the ANNs found it very challenging to
build predicting models that could also have a usage for an ex-post verification of building
renovation total final cost. In contrast to the MLP approach, which yields less accurate
results, the RBF method makes predictions that simulate the real cost. As Bayram et al. also
concluded, the estimated costs derived from RBF showed a 0.28% variance in excess of the
real costs, but the estimated costs derived from MLP showed a 1.11% variance in excess of
the actual values [55].

This emphasizes the necessity to constantly enhance artificial neural network tech-
niques in order to increase their precision and usefulness in the field of building reha-
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bilitation cost prediction and verification. There is an enormous amount of a forum for
improvement, as seen by the present limits found in the predictive models. To better handle
the unpredictability and complexity of real-world data, these procedures could be im-
proved by adding advanced algorithms, integrating new data sources, and using advanced
methods. Rendering this modification could strengthen and bolster the prediction models,
allowing them to be more accurate in estimating costs. Ensuring that the projected costs
accurately resemble the actual end costs would result from this, as well as improving the
models’ ex-post verification efficacy and renovation expense predictions. Ultimately, these
developments would help in renovating buildings more accurately and efficiently in terms
of financial planning.

Through comprehensive project cost estimation, the building sector may experience
significant transformation through the conversion of realistic field data into real-time data.
All measurable functions can be approximated by ANNs that may even imitate complex
non-linear interactions. A user could arrive at more informed planning decisions with the
aid of the predictive estimate of the total cost of a building project. The cost of labor, steel,
cement, and other significant resources could all fluctuate, and different stakeholders might
be interested in investigating the impact of these changes on project costs in the future.

In order to provide their cost-estimating operations as a benchmark, building or-
ganizations should create cost forecasting evaluation standards, as Akintoye et al. also
insists [14].

Additional enhancements might provide additional functions including enhanced
managing databases, a user experience, and clarification capabilities. Continuous mainte-
nance is necessary for networks. It is necessary to document information about recently
completed buildings. To improve its capacity for generalization, the network might need
to be updated utilizing additional data. Currently, the accessibility of training and test
samples as well as the output places restrictions on the architecture of the guided back-
propagation structure. As Bhoka et al. [59] mentioned, further construction samples could
be utilized to train and test models with various output categories.
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