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Abstract: Accuracy of electro-mechanical actuator in aircraft is susceptible to variable operation
conditions such as electromagnetic interference, changeable temperature or loss of maintenance,
leading in turn to flight performance degradation. This paper proposed an unified control paradigm
that aims to keep aircraft’s velocity in a safe boundary and shorten the system stabilizing time in
presence of actuator deviation. The controller is derived following a practical finite-time-convergence
(FTC) with extended dynamics, and an integrated state-constraint structure so as to restrict air
vehicle’s attitude rate or translation velocity. It is proved that the system state converges to a sphere
near the origin in a finite time, the state trajectory is always remain within the prescribed range, and
all signals of the closed-loop system are uniformly ultimately bounded. Compared simulation with
the quadratic Lyapunov-based FTC method and an asymptotic convergence controller are conducted
on an unmanned helicopter prototype. Results show that the proposed controller enhances the
dynamic and fault-tolerant performance of resisting actuator fluctuation.

Keywords: aircraft actuator deviation; finite-time-convergence; state constraint; fault tolerance
capability; helicopter control

1. Introduction

The control-stability of aircraft depends on actuator operating condition, its stable
output is the prerequisite to achieve reliable flight, high speed flight vehicles are partic-
ularly sensitive to actuator performance. Accuracy of electro-mechanical or hydraulic
actuators is easily deteriorated in complex flight environment such as electromagnetic
interference, low temperature or leakage. In this situation, a fault-tolerant control is ex-
pected to accommodate actuator deviation within a certain range [1]. Research works of
dealing with actuator failure are presented in a variety of ways, for instance, the model
prediction control [2], multi-variable integral terminal sliding mode control [3], incremental
nonlinear FTC [4], and intelligent methods [5,6]. Estimation and compensation to system
failures are the key thoughts in active FTC strategy. Guan [7] developed an intelligent fault
diagnosis approach and corresponding disturbance compensation control for hypersonic
vehicles. One primary problem is that a high convergence speed of fault estimation module
will amplify the noisy signal, further, Ref. [8] proposed an output-feedback fault-tolerance
method for the non-affine actuator faults, thus input nonlinearity of system is considered.
Zhang [9] reconstructed the unmatched actuator faults in sliding-mode control scheme,
which can keep a rapid convergence speed to some certain faults. An online dynamics
reconstruction scheme is established for more broader actuator failure based on adaptive
observer [10]. Gerardo [11] developed a quasi linear-parameter-varying observer to achieve
fault detection and isolation for the quad-rotor vehicles. Other studies such as the faults
estimators [12,13] and fuzzy nonlinear observer [14] are also very effective. The main
characteristic of estimation and compensation frame lies in an additional system module,
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and its stability depends on carefully parameters selection. Therefore, direct FTC methods
have also been paid attention.

Yan [15] designed a robust FTC framework by introducing back-stepping control
technique in unmanned helicopters. Linear parameter varying (LPV) methodology [16]
showed the robust performance to aileron and rudder loss-of-efficiency faults, based on
it, a virtual actuators was reconfigured to mitigate fault effects [17]. Generally, adaptive
control schemes are often designed together with a recurrent neural networks [18], linear
quadratic regulator [19], dynamic control allocation [20] in active fault-tolerant control.
It is worth noting that there needs a trade-off between robustness of close-loop system
and convergence speed in direct FTC schemes. Obviously, the rapid stabilizing ability
is one of the goals even failure occurs, especially for the inner-loop attitude dynamics
in aircraft, thereby finite-time-convergence theory on the autonomous systems is often
introduced into the attitude controller [21,22]. Compared with the exponential convergence
methods, it has faster convergence rate while usually along with a large instantaneous
output. Meanwhile, Flight manage system needs to limit the kinematic speed of air vehicle
once the capability fade of actuators to ensure states are always in the safe boundary to a
flawed system, it is deemed to be a regulation problem of nonlinear system together with
state restriction. The barrier-Lyapunov function is an effective analysis tool [23–25] to this
kind of issue, it has applied to different rigid body objects including the quadrotor [26],
underwater vehicle [27], and hypersonic aerocraft [28]. The main contribution in this paper
lies in unifying the practical FTC approach and barrier-Lyapunov tool into a new control
paradigm, then establishing a finite-time-convergence fault-tolerant (FTC-FT) controller,
and it has an adaptive mechanism to balance the robustness and dynamic capability for a
flawed system.

Works are arranged as follows, we firstly build the FTC-FT method for a class of strict-
feedback multiple-input and multiple-output (MIMO) system in Section 2, the stability and
convergence time of closed-loop system signals are analyzed strictly in Section 3. Next, the
proposed paradigm is applied to channels of the strong coupling yaw and vertical motion
of unmanned helicopter considering actuator oscillation. In Section 5, its effectiveness and
superiority are validated by compared simulation with the quadratic Lyapunov-based FTC
and asymptotic convergence controllers.

2. A Class of Aircraft Dynamic Model Considering Actuator Deviation

Let us consider a class of strict-feedback MIMO autonomous system with actuator
deviation,

ẋi = fi(xi) + gi(xi)xi+1, i = 1, 2, . . . , n − 1

. . .

ẋn = fn(xn) + (gn(xn) + ∆gn(xn, t))u + ξc(xn, t)
y = x1

(1)

where system state x ∈ Rm, xi = [x1, x2, . . . , xi]
T , i = 1, 2, . . . , n. The fi(x̄i) ∈ Rm, gi(x̄i) ∈

Rm×m are known smooth function and control matrix respectively. ∆g(t) represents
unknown bounded perturbation of control matrix, which is the result of actuator failure.
ξc(x̄n, t) ∈ Rm is the unknown time-varying disturbance. u ∈ Rm denotes the control
input signal, y ∈ Rm is system output vector signal. Next, we will design a practical
finite-time-convergence fault-tolerant controller to make the closed-loop system resistant to
actuator losses, and system output can converge to reference signal yd, all states of system
are restricted in the predefined range |xi| < kbi, i = 1, 2, . . . , m.

Before controller design, some necessary lemmas about barrier-Lyapunov function
and FTC theory are introduced as follows,

Lemma 1 ([29,30]). For a class of barrier-Lyapunov function V(x) = ln k2

k2−x2 , k ∈ R+, x ∈ R,
and |x| < k, the following inequality is true,
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V(x) <
x2

k2 − x2 <
k2

k2 − x2 (2)

further, the inequality holds for µ ∈ (0, 1):

Vµ(x) <
(

x2

k2 − x2

)µ

(3)

Lemma 2. For ∀x, y ∈ Rn, inequality xTy ≤ 1
2γ2 xTx + γ2

2 yTy, γ ∈ R+ holds [31].

Lemma 3. To noiseless signal α0, take the following slide mode differentiator [32],

ż0 = v

v = −λ0|z0 − α0|1/2 sign(z0 − α0) + z1

ż1 = −λ1 sign(z1 − v)

(4)

and selecting properly parameters λ0 and λ1, then z0, z1 will approximate the α0, α̇ after a certain
time respectively.

Definition 1. To µ ∈ R+, define calculation rule: ⌈x⌉µ = |x|µ sign(x), ∀x ∈ R, where the sign
operator defined as sign(x) = 1, x > 0; sign(x) = 0, x = 0; sign(x) = −1, x < 0.

Assumption 1. Actuator outputs in system (1) are bounded, ∥u∥ ⩽ umax, and the term of control
matrix perturbation ∆g(xn, t) is also bounded, where ∥∆g∥ ⩽ ϱ, umax and ϱ are known, there is
an unknown upper bound of disturbance ξc(x̄n, t) ∈ Rm.

3. Unified Control Framework

A finite-time-convergence fault-tolerant controller with state constraints is designed
for the system (1) based on the integral back-stepping method.

Step 1: Define the tracking error vector,

x̃1 = x1 − yd, x̃i = xi − αi−1, i = 2, 3, . . . , n (5)

where state xi = [xi1, xi2, . . . , xim]
T, i = 1, 2, . . . , n, and a following barrier-Lyapunov function as

V1(x̃1) =
1
2

m

∑
i=1

ln

(
k2

1i
k2

1i − x̃2
1i

)
(6)

Its derivative along the trajectory of the system is obtained.

V̇1 =
m

∑
i=1

x̃1i ˙̃x1i

k2
1i − x̃2

1i
(7)

Define the following intermediate variables

R(x̃1) = diag

([
1

k2
11 − x̃2

11
,

1
k2

12 − x̃2
12

, . . . ,
1

k2
1m − x̃2

1m

])
(8)

then, the Equation (7) can be represented as

V̇1 = x̃T
1 R(x̃1) ˙̃x1 = x̃T

1 R(x̃1)( f1 + g1(α1 + x̃2)− ẏd) (9)

Define the virtual control function α1
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α1 = g−1
1

(
ẏd − f1(x1)− K1 x̃1 − R(x̃1)

µ−1[x̃1]
2µ−1 − 1

2
R(x̃1)x̃1

)
(10)

where µ ∈ (0, 1), and K1 is a diagonal positive definite matrix, further, we can obtain

V̇1 =− x̃T
1 R(x̃1)K1 x̃1 − x̃T

1 R(x̃1)
µ⌈x̃1]

2µ−1

− 1
2

∥∥∥x̃T
1 R(x̃1)

∥∥∥2
+ x̃T

1 R(x̃1)g1 x̃2

⩽−
m

∑
i=1

K1,ii
x̃2

1i
k2

1i − x̃2
1i
−

m

∑
i=1

(
x̃2

1i
k2

1i − x̃2
1i

)µ

+
1
2
∥g1 x̃2∥2

(11)

Based on Lemma 1, the following inequalities hold,

k2
1i

k2
1i − x̃2

1i
⩾

x̃2
1i

k2
1i − x̃2

1i
⩾ ln

(
k2

1i
k2

1i − x̃2
1i

)
(

x̃2
1i

k2
1i − x̃2

1i

)µ

⩾

[
ln

(
k2

1i
k2

1i − x̃2
1i

)]µ (12)

therefore, inequality (11) can be rewritten as

V̇1 ≤ −2λmin(K1) · V1 −
m

∑
i

[
ln

(
k2

1i
k2

1i − x̃2
1i

)]µ

+
1
2
∥g1 x̃2∥2

⩽ −a1V1 − b1Vµ
1 +

1
2
∥g1 x̃2∥2

(13)

where λmin(K1) denotes the minimum eigenvalue of matrix K1, and b1 = 2µ.
Step i: Define the barrier-Lyapunov function as

Vi(x̃i) =
1
2

m

∑
j=1

ln

(
k2

ij

k2
ij − x̃2

ij

)
(14)

and also the virtual function αi as

αi =g−1
i (xi)

(
− fi(xi)−

1
2

R(x̃i)
−1gT

i−1(xi−1)gi−1(xi−1)x̃i

−Ki x̃i − R(x̃i)
µ−1[x̃i]

2µ−1 − 1
2

R(x̃i)x̃i + α̇i−1

) (15)

where i = 2, 3, . . . , n − 1, α̇i−1 can be approximated by differentiator in Lemma 3. Take the
derivative of Vi along the system trajectory and substitute in the virtual function αi to get

V̇i(x̃i) =
m

∑
j=1

x̃ij ˙̃xij

k2
ij − x̃2

ij
= x̃T

i R(x̃i)
(

fi(xi) + gi(αi + x̃i+1)− α̇i−1
)

=− x̃T
i R(x̃i)Ki x̃i − x̃T

i R(x̃i)
µ⌈x̃i⌉2µ−1 − 1

2
∥gi−1 x̃i∥2

− 1
2

∥∥∥x̃T
i R(x̃i)

∥∥∥2
+ x̃T

i R(x̃i)gi x̃i+1 ⩽ −
m

∑
j=1

Ki,jj
x̃2

ij

k2
ij − x̃2

ij

−
m

∑
j=1

(
x̃2

ij

k2
ij − x̃2

ij

)µ

− 1
2
∥gi−1 x̃i∥2 +

1
2
∥gi x̃i+1∥2

⩽− aiVi − biV
µ
i − 1

2
∥gi−1 x̃i∥2 +

1
2
∥gi x̃i+1∥2

(16)
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where ai = 2λmin(Ki), bi = 2µ.
Step n: Define the perturbation term caused by power loss or overshoot of the actuator,

Ξ(x̃n) = ϱumax∥R(x̃n)x̃n∥ (17)

Design system extended dynamic as follows

Ψ̇(x̃n) = − Ψ(x̃n)Ξ(x̃n)

∥Ψ(x̃n)∥2 + ∥R(x̃n)x̃n∥2 − η1Ψ(x̃n)− ⌈Ψ(x̃n)]
2µ−1 (18)

where η1 > 0, Ψ = [Ψ1, Ψ2, . . . , Ψm]
T . Finally, a finite-time-convergence fault-tolerant

controller for system (1) is designed as

u =g−1
n (xn)

(
− fn(xn)− Kn x̃n − R(x̃n)

µ−1⌈x̃n]
2µ−1 − γ2

2
R(x̃n)x̃n

−1
2

R(x̃n)
−1gT

n−1gn−1 x̃n −
R(x̃n)x̃nΞ(x̃n)

∥Ψ(x̃n)∥2 + ∥R(x̃n)x̃n∥2 + α̇n−1

) (19)

further, given an extended barrier-Lyapunov function as

Vn(x̃n, Ψ(x̃n)) =
1
2

m

∑
j=1

ln

(
k2

nj

k2
nj − x̃2

nj

)
+

1
2

Ψ(x̃n)
TΨ(x̃n) (20)

thus, its derivative can be obtained by substituting the proposed controller (19),

V̇n =
m

∑
i=1

x̃ni ˙̃xni

k2
ni − x̃2

ni
+ Ψ(x̃n)

TΨ̇(x̃n) = x̃T
n R(x̃n)[ fn(xn)

+(gn(xn) + ∆gn(xn, t))u + ξc(xn, t)− α̇n−1
]
+ Ψ(x̃n)

TΨ̇(x̃n)

⩽− x̃T
n R(x̃n)Kn x̃n − x̃T

n R(x̃n)
µ⌈x̃n⌉2µ−1 − 1

2
∥gn−1 x̃n∥2

+
∥∥∥x̃T

n R(x̃n)
∥∥∥ϱumax −

∥R(x̃n)x̃n∥2Ξ(x̃n)

∥Ψ(x̃n)∥2 + ∥R(x̃n)x̃n∥2

− γ2

2
∥R(x̃n)x̃n∥2 + x̃T

n R(x̃n)ξc(xn, t) + Ψ(x̃n)
TΨ̇(x̃n)

⩽−
m

∑
j=1

Kn,jj
x̃2

nj

k2
nj − x̃2

nj
−

m

∑
j=1

(
x̃2

nj

k2
nj − x̃2

nj

)µ

+
1

2γ2 ∥ξc(xn, t)∥2

− 1
2
∥gn−1 x̃n∥2 +

∥Ψ(x̃n)∥2Ξ(x̃n)

∥Ψ(x̃n)∥2 + ∥R(x̃n)x̃n∥2 + Ψ(x̃n)
TΨ̇(x̃n)

⩽− λmin(Kn)
m

∑
j=1

ln

(
k2

nj

k2
nj − x̃2

nj

)
−
[

m

∑
j=1

ln

(
x̃2

nj

k2
nj − x̃2

nj

)]µ

− η1∥Ψ(x̃n)∥2 − ∥Ψ(x̃n)∥2µ − 1
2
∥gn−1 x̃n∥2 +

1
2γ2 ∥ξc(xn, t)∥2

⩽− anVn − bnVµ
n − 1

2
∥gn−1 x̃n∥2 +

1
2γ2 ∥ξc(xn, t)∥2

(21)

where an = min{2λmin(Kn), 2η1}, bn = 2µ, γ > 0.
Define the system Lyapunov function as

V(x̃1, x̃2, . . . , x̃n, Ψ(x̃n)) =
n

∑
k=1

Vk (22)
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based on above analysis, its derivative satisfies the following condition

V̇ ⩽ −σ
n

∑
i=1

Vi − ϱ
n

∑
i=1

Vµ
i +

1
2γ2 ∥ξc(xn, t)∥2

⩽ −σV − ϱVµ + ε

(23)

where σ = min{a1, a2, . . . , an}, ϱ = min{b1, b2, . . . , bn}, ε = 1
2γ2 ∥ξc(xn, t)∥2. According to

the theorem in [33,34], it can be concluded that system state tracking error x̃i, i = 1, 2, . . . , n
and the extended state Ψ(x̃n) will achieve finite time stability, if the initial time t0 = 0, the
stabilizing time is

Tr ≤ max
(

1
θ0σ(1 − µ)

ln
θ0σV1−µ(0) + ϱ

ϱ
,

1
σ(1 − µ)

ln
σV1−µ(0) + θ0ϱ

θ0ϱ

)
(24)

and 0 < θ0 < 1. After t ⩾ Tr, tracking error and extended state will enter in bounded range B.

B :

{
(x̃i, Ψ(x̃n)) | V ⩽ min

[
ε

(1 − θ0)σ
,
(

ε

(1 − θ0)ϱ

) 1
µ

]}
(25)

This means that the output tracking error |y − yd| will remain a sufficiently small neigh-
borhood near the origin after t ⩾ Tr, and the states errors satisfy condition of

∣∣x̃ij
∣∣ < kij,

j = 1, 2, . . . , m in the whole process. Further, it indicates the virtual control functions (15)
and controller (19) signals are bounded, ∥αi∥ ⩽ ρi, i = 1, 2, . . . , n − 1, ∥u∥ ⩽ ρu, so the
system state always lies in the set of

Θ : {xi = (xi1, xi2, . . . , xim) | ∥xi∥ < ∥ki∥+ ρi ⩽ kio} (26)

The above analysis can be summarized as the following theorem, and the FTC-FT
controller framework is as shown in Figure 1.

Figure 1. Diagram of FTC-FT control scheme.

Theorem 1. Consider a class of strict-feedback MIMO system with actuator failure (1), design a
finite-time-convergence fault-tolerant (FTC-FT) controller incorporated with adaptive mechanism
(19), and the virtual functions (10) and (15), then the closed-loop system is practical finite time
stability, and tracking error will enter the origin neighborhood (25), the system state always lies in
the predefined range in whole convergence process.

4. FTC-FT Controller Applied on the Unmanned Helicopter

The yaw motor is highly sensitive to the actuator adjustment of the main rotor for an
unmanned helicopter,so this section built a FTCFT controller according to the proposed
Theorem 1. Firstly, the yaw-vertical channel coupling dynamics model is established as
follows [35]



Algorithms 2024, 17, 196 7 of 16

ψ̇(t) =
Sϕ(t)

Cθ(t)
q(t) +

Cϕ(t)

Cθ(t)
r(t)

ṙ(t) = p(t)q(t)

(
Ixx − Iyy

)
Izz

+

(
Nmr + Nv f + Ntr

)
Izz

ḣ(t) =Cθ(t)Cψ(t)u(t) +
(

Sϕ(t)Sθ(t)Sψ(t) − CϕSψ

)
v(t)

+
(

Cϕ(t)Sθ(t)Cψ(t) + Sϕ(t)Sψ(t)

)
w(t)

ẇ(t) = u(t)q(t)− v(t)p(t) + gCϕ(t)Cθ(t) +
1
m

(
Zmr + Z f us + Zh f

)
(27)

where Ω = {ϕ, θ, ψ} represents Euler angle,Vb = {u, v, w} is the body translation velocity
along X, Y, Z axis, ωb = {p, q, r} is the body angular rate, the h is the vertical position
of the center of gravity described in the ground coordinate. S(·), C(·) denote the sine and
cosine operator. Nmr, Nv f , Ntr, represent the aerodynamic torques generated by main rotor,
vertical fin, and tail rotor in yaw channel respectively. Zmr, Zh f , N f us, denote the vertical
force from main rotor, fuselage and horizon fin. I(·) is the rotational inertia. Consider the
trim in hover state, thus the aerodynamic force can be linearized, and keep the nonlinear
parts of state coupling, the model is simplified as[

ḣ(t)
ψ̇(t)

]
= f1(Ω(t), Vb(t), ωb(t)) + g1(Ω(t))

[
w(t)
r(t)

]
[

ẇ(t)
ṙ(t)

]
= f2(Ω(t), Vb(t), ωb(t)) + (g2(t) + ∆g2(t))δ + ξc(t)

(28)

The control input δ = [ δcol , δtr ]T , ∆g(t) represents the control coefficient matrix
perturbation results from actuator deviation, and satisfies the upper bound condition
|∆g2(t)| ≤ ϖ. ξc(t) = [ ξmr, ξtr ]T is external disturbance, f1, f2, g1, g2 are expressed as

f1 =

(
Cθ(t)Cψ(t)u(t) +

(
Sϕ(t)Sθ(t)Sψ(t) − CϕSψ

)
v(t)

Sϕ(t)q(t)/Cθ(t)

)

g1 =

(
Cϕ(t)Sθ(t)Cψ(t) + Sϕ(t)Sψ(t) 0

0 Cϕ(t)/Cθ(t)

)

f2 =

(
u(t)q(t)− v(t)p(t) + Zww

p(t)q(t)
(

Ixx − Iyy
)
/Izz + Nrr(t)

)
g2 =

(
Zcol 0
Ncol Ntr

)
the Zw, Zcol , Nr, Ncol , Ntr represent the ratio of the aerodynamic force to the inertia.

Generally, unmanned helicopters fly at low altitudes, often cruising below a certain
value, vertical speed should also be limited in order to prevent the fuselage stall, which
needs to be further reduction once occurring of collective pitch actuator fluctuation, sim-
ilarly, yaw rate should restricted in an appropriate range. We have already built the all
state-constraint FTC-FT controller design method in above section, this part will establish
a partial state constraint controller for yaw and vertical motion in a simple way of mod-
ifying intermediate matrix. The restriction of altitude, vertical velocity and yaw rate of
aircraft are defined as: |h(t)| < h̄, |w(t)| < w̄, |r(t)| < r̄, giving the expected outputs signal
yd = [hd(t), ψd(t)]

T . The controller is designed in two steps as following. The system state
x1 = [h, ψ]T , x2 = [w, r]T , errors h̃ = h − hd, ψ̃ = ψ − ψd, bound of altitude tracking error
kh̃ . Design the BL function as

V1(x̃1) =
1
2

ln
k2

h̃

k2
h̃
− h̃2

+
1
2

ψ̃2 (29)
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and define the intermediate matrix

R(x̃1) = diag

(
1

k2
h̃
− h̃2

, 1

)
(30)

the virtual control function is designed as

α1 = g−1
1

(
ẏd − f1 − K1 x̃1 − R(x̃1)

µ−1⌈x̃1]
2µ−1 − 1

2
R(x̃1)x̃1

)
(31)

where K1 = diag
(
k1,h, k1,ψ

)
. Therefore, the derivative of BL function is

V̇1(x̃1, x̃2) =x̃T
1 R(x̃1)( f1 + g1(x̃2 + α1)− ẏd)

=− x̃T
1 R(x̃1)K1 x̃1 − x̃T

1 R(x̃1)
µ⌈x̃1⌉2µ−1

− 1
2

∥∥∥x̃T
1 R(x̃1)

∥∥∥2
+ x̃T

1 R(x̃1)g1 x̃2

⩽
−k1,h h̃2

k2
h̃
− h̃2

− k1,ψψ̃2 −
(

h̃2

k2
h̃
− h̃2

)µ

−
(

ψ̃2
)µ

+
1
2
∥g1 x̃2∥2

⩽− a1V1 − 2µVµ
1 +

1
2
∥g1 x̃2∥2

(32)

where a1 = 2 min
{

k1,h, k1,ψ
}

.
Secondly, let us define the vertical velocity and yaw rate bounds, with kw̃, kr̃ respec-

tively, and intermediate variable

R(x̃2) = diag
(

1
k2

w̃ − x̃2(1)2
,

1
k2

r̃ − x̃2(2)2

)
(33)

and the maximum perturbation aroused by actuator is given as

Ξ(x̃2) = ϖδmax∥R(x̃2)x̃2∥. (34)

Design the auxiliary state of system

Ψ̇(x̃2) = − Ψ(x̃2)Ξ(x̃2)

∥Ψ(x̃2)∥2 + ∥R(x̃2)x̃2∥2 − ηΨ(x̃2)− ⌈Ψ(x̃2)⌉2µ−1 (35)

therefore, the controller is designed as

δ = g−1
2

(
− f2 − K2 x̃2 − R(x̃2)

µ−1[x̃2]
2µ−1 − 1

2
R(x̃2)

−1gT
1 g1 x̃2

− R(x̃2)x̃2Ξ(x̃2)

∥Ψ(x̃2)∥2 + ∥R(x̃2)x̃2∥2 − γ2

2
R(x̃2)x̃2 + α̇1

) (36)

where K2 = diag(k2,w, k2,r), and the extended BL function is

V2(x̃2) =
1
2

ln
k2

w̃
k2

w̃ − w̃2
+

1
2

ln
k2

r̃
k2

r̃ − r̃2
+

1
2

Ψ(x̃2)
TΨ(x̃2) (37)
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Take the derivative of it and put it into the controller (36) and the additional dynamic
(35) to obtain

V̇2(x̃2, Ψ(x̃2))

= x̃T
2 R(x̃2)

(
f2 + (g2 + ∆g2)δ + ξc(t)− α̇1

)
+ Ψ(x̃2)

TΨ̇(x̃2)

⩽ −k2,w
w̃2

k2
ŵ − w̃2

− k2,r
r̃2

k2
r̃ − r̃2

−
(

w̃2

k2
w̃ − w̃2

)µ

−
(

r̃2

k2
r̃ − r̃2

)µ

− η∥Ψ∥2 − ∥Ψ∥2µ − 1
2
∥g1 x̃2∥2 +

1
2γ2 ∥ξc(t)∥2

⩽ −a2V2 − 2µVµ
2 − 1

2
∥g1 x̃2∥2 +

1
2γ2 ∥ξc(t)∥2

(38)

where a2 = 2 min{k2,w, k2,r, η} , system BL function is given as

V(x̃1, x̃2, Ψ(x̃2)) = V1 + V2 (39)

easily, we get
V̇ ⩽ −σV − 2µVµ + ε (40)

where σ = 2 min
{

k1,h, k1,ψ, k2,w, k2,r, η
}

, γ > 0, ε = 1
2γ2 ∥ξc(t)∥2.

Obviously, this closed-loop system is practical finite-time-convergence stability based
on Theorem 1, and tracking errors are bounded |h̃| < kh̃, |w̃| < kw̃, so |h| < kh̄ + hd,
|w| < kw̃ + |α1(1)|, |r| < kr̃ + |α1(2)|. Thus, the yaw-vertical channel closed-loop system
with actuator output deviation is regulated by FTC-FT controller. In next section, detailed
simulation will be carried out to verify the validity and superiority of proposed method.

5. Compared Results in a Prototype

This section verifies the proposed yaw-vertical controller based on GTMAX proto-
type [36] simulation platform, meanwhile, controllers of classical FTC and asymptotic
convergence based on quadratic Lyapunov function (QLAC) are also designed to compare
the performance of dynamic response, rate constraint, actuator-deviation rejection. The
controller parameters are given as

BL_PFTC_FT
K1 = K2 = diag(10, 20), µ = 0.8, kh̃ = 2, δmax = 0.28
γ = 2, η = 10, ϖ = 10, kw̃ = 0.2, kr = 0.3

FTC K1 = K2 = diag(10, 20), µ = 0.8
QLAC K1 = K2 = diag(10, 20)

The nominal parameters of the prototype used in the controller design are Ixx = 3.246,
Iyy = 11.229, Izz = 9.856, Nr = −0.59, Ncol = −72.74, Ntr = 69.3, Zw = −0.61, Zcol = −90.89.
The initial state is in hover, tail rotor speed setted as 5700 rpm, the roll and pitch channels
have stabilized by a separate linear controller.

Figure 2 compares the dynamic convergence of BL_PFTC_FT, FTC, and QLAC in the
initial stage. Obviously, the proposed BL_PFTC_FT controller comparing with traditional
FTC and QLAC has faster convergence speed and smaller transient error. Taking Figure 2a,b
as examples, the yaw and vertical motion rates under the control of BL_PFTC_FT achieve
stable within 0.2 s, while the FTC’s convergence time reaches 0.4 s and 0.8 s respectively,
and the maximum transient error exceeds 1.5 deg/s and 0.4 m/s.



Algorithms 2024, 17, 196 10 of 16

(a) (b)

(c) (d)

Figure 2. Transient performance comparison of yaw and vertical motion. (a) Yaw rate; (b) Yaw angle;
(c) Vertical velocity; (d) Height.

Furthermore, the fault-tolerant performance of the three methods is investigated in
simulation experiments. As shown in Figure 3, total control perturbation caused by fluctua-
tion of main rotor pitch mechanism. The vertical rate oscillation controlled by BL_PFTC_FT
is confined in the range of −0.1 m/s to 0.1 m/s as shown in Figure 4, while the oscillation
of FTC and QLAC are all over 0.2 m/s. Similarly, the stable height of BL_PFTC_FT is closer
to the target height of 10 m in Figure 5, and the steady-state error is smaller than FTC and
QLAC. The fault-tolerant capability has been enhanced to accommodate the total distance
aroused by varible-pitch deviation.

Figure 3. Actuator fluctuation of main rotor.
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(a) (b) (c)

Figure 4. Vertical dynamics comparison in case of δcol deviation. (a) BL_PFTC_FT; (b) FTC; (c) QLAC.

Figure 5. Height control comparison in case of δcol deviation.

The fault tolerance performance of yaw channel is also investigated separately in the
simulation. The output fluctuation of tail rotor control ∆δped is set to the same amplitude
as of the main rotor ∆δcol . In Figure 6, it can be seen that the yaw rate oscillation of
BL_PFTC_FT is always within in the range of ±0.1 deg/s, which is smaller than FTC
and QLAC methods. Figure 7 shows the yaw angle ψ changing process, obviously, the
amplitude of oscillation controlled by FTC or QLAC is larger than BL_PFTC_FT. Therefore,
the BL_PFTC_FT controller has improved the capability of helicopter’s resistance to the
output fluctuation of tail rotor pitch servo mechanism. Moreover, when yaw-vertical
channels exist maneuvering fluctuations simultaneously, the simulation results verify the
effect of auxiliary state Ψ designed in BL_PFTC_FT to improve the resistance to actuator
fluctuations in Figure 8. The yaw angle and vertical rate are chattering augment without
the auxiliary state as shown in Figure 8a,c, on the contrary in the diagrams of Figure 8b,d.

Further, the fault tolerance performance in yaw motion control is considered suffering
paddle speed fluctuation when the unmanned helicopter is cruising at a horizontal speed
of 40 km/h. the oscillation amplitude of speed ∆ωtr is set to be 500 r/min sinusoidal
wave. Figure 9 illustrates the stabilizing process to yaw channel of the three controllers.
Comparing with FTC and QLAC, the amplitude of yaw rate adjusted by BL_PFTC_FT is
much smaller in whole process, following with FTC, QLAC has the largest rate fluctuation.
It has similar situation for stabilizing the yaw angle in Figure 9b, therefore, BL_PFTC_FT
has the fault tolerance capability to speed fluctuation of tail rotor.
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(a) (b) (c)

Figure 6. Vertical dynamics comparison in case of δtr deviation. (a) BL_PFTC_FT; (b) FTC; (c) QLAC.

Figure 7. Yaw angle control comparison in case of δtr deviation.

(a) (b)

Figure 8. Cont.
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(c) (d)

Figure 8. Vertical dynamics comparison in case of δtr deviation. (a) No compensation of auxiliary
state; (b) After compensation; (c) No compensation of auxiliary state; (d) After compensation.

(a) (b)

Figure 9. Yaw stabilization comparison in case of Tail rotor motor fluctuation. (a) Yaw rate; (b) Yaw angle.

Finally, simulation experiment investigated the tracking capability of proposed con-
troller when both main rotor and tail rotor suffering collective pitch maneuvering deviation
and motor speed oscillation. The linear command tracking performance of yaw channel is
shown in Figure 10, the tracking accuracy of yaw angle keeps well. Figure 10b gives the
response process of yaw rate, amplitude is lower than 10 deg/s, it is much smaller than the
suggested maximum tolerant value of 36 deg/s in reference [37]. Similarly, the helicopter
prototype has high tracking accuracy of flight height illustrated in Figure 11a even under
multi-channel faults. The vertical motion rate in Figure 11b keeps a fast response speed with
a little chattering. In brief, the Proposed BL_PFTC_FT controller guarantees the dynamic
tracking performance of yaw and vertical motion.
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(a) (b)

Figure 10. Yaw channel performance in case of both δcol , δtr and motor deviation. (a) Yaw rate;
(b) Yaw angle.

(a) (b)

Figure 11. Vertical channel performance in case of both δcol , δtr and motor deviation. (a) Height;
(b) Vertical velocity.

6. Conclusions

This paper proposed a barrier-Lyapunov function based practical FTC-FT control
scheme for a class of strict-feedback multi-input and multi-output autonomous system with
actuator faults, theoretical analysis indicates that the states of system are able to converge
to the origin, and trajectories always keep within the given limitation, all signals satisfy
the uniformly ultimate bound. Based on this scheme, we designed a FTC-FT controller
with rate constraints to the yaw and vertical channels, The simulation results on the a
helicopter prototype platform show its effectiveness and superiority, comparing with
the traditional finite-time-convergence control and asymptotic convergence methods, it
improves the yaw and vertical motion dynamics process and their rates are always keeping
in the configured safe ranges. This fault-tolerant controller has the capability to resist pitch
angle and speed fluctuation, and enhances the stability margin to an aircraft in presence of
actuator deviation. Future work will focus on the extension test of other actuator failures
and run on a real flight management computer.
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