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Abstract: The problem of finding the best path trajectory in a graph is highly complex due to its
combinatorial nature, making it difficult to solve. Standard search algorithms focus on selecting the
best path trajectory by introducing constraints to estimate a suitable solution, but this approach may
overlook potentially better alternatives. Despite the number of restrictions and variables in path
planning, no solution minimizes the computational resources used to reach the goal. To address
this issue, a framework is proposed to compute the best trajectory in a graph by introducing the
mathematical morphology concept. The framework builds a lattice over the graph space using
mathematical morphology operators. The searching algorithm creates a metric space by applying the
morphological covering operator to the graph and weighing the cost of traveling across the lattice.
Ultimately, the cumulative traveling criterion creates the optimal path trajectory by selecting the
minima/maxima cost. A test is introduced to validate the framework’s functionality, and a sample
application is presented to validate its usefulness. The application uses the structure of the avenues
as a graph. It proposes a computable approach to find the most suitable paths from a given start and
destination reference. The results confirm that this is a generalized graph search framework based on
morphological operators that can be compared to the Dijkstra approach.

Keywords: graph search; logistical process; routing algorithms; shortness path trajectory; mathematical
morphology; morphological covering operator

1. Introduction

Path planning in a graph represents one of the most fundamental tasks in a graph
space. In the literature, several approaches deal with this task by limiting and conditioning
it to particular contexts, rendering it computable in closed scenarios [1–5]. In this context,
the main approaches developed to deal with the problem of best-searching path planning
are the following.

Global search approaches: This approach considers the full graph as the solution space,
where the origin and destination are known, and it uses a global directional cost function
such that it minimizes/maximizes in terms of the best direction. The traveling path across
the graph is performed by local navigation using the most reliable direction provided by
the global cost function. The global approach has the disadvantage that it might grow,
becoming difficult to analyze with specific computer resources [6–8]; however, it has the
advantage that it is always looking for the best path solution, making it less likely to fall into
loops or diverge from the destination. These approaches produce a general representation
with a low level of detail, prioritizing the global searching reference, making it suitable for
scenarios with fixed computational resources [9–11].
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Local search approaches: These approaches assume that local optimization might drive
the global solution. They use a local neighborhood, and it begins by locating the best solu-
tion. Each step forward updates the local searching neighborhood by adding new evidence
to search for the best path solution. However, these approaches are computationally re-
stricted; they might fall into loops, diverge from the global solution, or locate a sub-optimal
solution. The computational complexity depends on the size of the neighborhood and the
criterion function cost [12–14]. These approaches are helpful when there is no previous
knowledge about the scenario, making them feasible in uncertain environments. The low
complexity makes it possible to obtain subgraph partitions and instantiate in several initial
states [15–17].

Hybrid approaches: These combine the above two types of approaches with the local
analysis neighborhood, which results in a method that is computationally tractable. Adding
some restrictions helps to reflect the global direction to locate the solution. Additionally,
prior knowledge can be used several times to define additional criteria as a heuristic for
specific scenarios and contexts. Most studies, including [3,18,19], have proposed mixed
strategies that combine well-accepted local and global approaches. The cost function can
be modified with the introduction of reset criteria whenever partial solution are reached.

Nature-inspired approaches: Finally, this type of approach involves using optimization
techniques that are inspired by the principles of nature, including the theory of evolution
and the behaviors of living organisms, to efficiently solve problems across various fields of
application. This is achieved by imitating the ways in which nature tackles these challenges.
Some examples of such techniques are the particle swarm algorithm [20,21], evolutionary
algorithms [22], ant colonies [8], and neural networks [23].

On the other hand, mathematical morphology provides a conceptual foundation for
the morphological analysis (inner structures) of abstract objects, such as numbers, shapes,
or graphs. The morphological analysis consists of defining two basic operators named
dilation and erosion. The mixture of basic operators defines other new operators and filters,
which are used to detect structures of interest, e.g., in the case of image applications [24]
or volumetric reconstructions [25–28]. Nowadays, morphology represents a generalized
framework to manage finite structures disposed into a given space [29,30]. In this context,
it has been used in a wide range of image analysis applications [31] where the spaces are
expressed as grid structures that might be associated with lattices using morphological
operators [32].

A city’s infrastructure requires several electronic, communication, storage, and data
analysis resources. Various studies throughout history have adopted technological ap-
proaches to sense and monitor urban variables. These urban variables allow, through
analysis, the selection of the best decision in an urban context regarding the different
events involved. In this context, good communication balances the resources needed and
the time response. This situation involves searching for the most reliable path to travel
into the city to reach a destination. This task might refer to the transportation of people,
traffic, electrical devices, or other goods from a source to a destination via a specific net. A
city can be represented as a graph of interconnections. However, the computation of the
best-planning path is considered a graph search or traveler’s agent process and represents
an NP-algorithm [33–36]. On the other hand, in recent years, studies have considered the
autonomy of electric vehicles, considering variables such as speed, charge, and distance, in
the context of energy consumption and the possible carbon emissions associated with these
technologies [37,38].

Mathematical morphological operators induce, in a discrete space, an order criterion,
which provides the basis for this work, proposing a generalized graph search framework
based on morphological operators. The initial reference and the morphological operators
induce a lattice such that it is possible locate possible path trajectories in the graph. The
approach defines the morphological operators by starting from the minimum connected
subgraph denoted for the infimum and by considering the supremum as the total space.
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The continuous covering of dilation in the graph space gives the order relation. Next,
a bijective mapping is performed on the natural numbers from the covering order induced,
which helps to locate the possible path trajectories. The weighted cost applies several
morphological operators to generalize the morphological context and provide a general
weighted approach to travel within the graph.

This paper proposes a new framework to calculate the shortest path in a complex
graph. The main contribution is the creation of a lattice that tracks the frequency of the
mathematical operators used. This lattice provides a basis for the analysis of complex
graphs and the development of algorithms using a theoretical discrete approach. The
proposed morphological framework offers a novel way to navigate graphs and create
schemes that can be used to solve problems. The proposal consists of two algorithms:
(a) the first assumes that there is at least one solution (the entire space is connected),
and (b) in the second, there is no guarantee of a solution (there are regions that are not
connected). Finally, an experiment shows the capabilities of the algorithm. This experiment
uses the framework to search for the most suitable path trajectories from the geographical
image layer of a city in order to study the best trajectory planning. Finally, we discuss the
use of the proposed framework as a general search framework based on morphological
operators and compare it with another well-accepted approach.

The content is organized into several sections. Section 2 explains the theoretical con-
cepts of mathematical morphology and graph theory. Section 3 presents the experimental
analysis and the results obtained from the experiments. Section 4 discusses the findings.
Finally, Section 5 provides the conclusions, discusses the proposed framework’s limitations,
and outlines any future work that may be required.

2. Morphological Search Framework

In this section, we discuss the framework for a family of morphological search algo-
rithms in graphs. The proposed framework introduces a lattice that begins with a reference
point and uses a morphological dilation operator in the graph space. Furthermore, three
new operators are defined: the covering dilation, the dilation frequency, and the weighted
dilation. These new operators provide the foundation for the development of an algorithm
for general searching.

2.1. Preliminary Concepts

Consider a set of nodes N = {n1, . . . , nk} and a set of edges E = {e1, . . . , el}. A graph
consists of N × E, which is denoted by G = (N, E), and the definition is represented by
an enumerated set G = {(n, e)|n ∈ N, e ∈ E}. An arbitrary graph G represents the coding
of a scenario [10,39]. The G graph represents a net topology of connections, where the
nodes and edges denote the available places and steps. A particular lattice is denoted by
a two-tuple O = (L,≤G), where L ⊆ 2G is an arbitrary subset and ≤G is a partial-order
relation in 2G. The partial-order relation ≤G considers an arbitrary x0 ⊆ G reference and
denotes the allowed movements and directions in the navigation of L. In our case, we
consider a lattice that covers all subsets of adjacent nodes that cover the graph space starting
from the x0 ⊆ G reference. The order by which adjacent nodes are covered, resulting in
subgraphs, depends on L, where the reference x0 defines the order relation. In other words,
the supreme element of the lattice is the entire graph L. The intimum represents the element
e ⊆ G such that there is no other e′ that belongs to (e′, e) ∈≤G; for simplicity, it is expressed
as sup ≤G and inf ≤G, respectively.

As a complement, a path lattice in L is a set of graphs of the step incremental connected
graph starting from the x0 ⊆ G reference and ending at references xk ⊆ G. The path is
covered by all steps over ≤G to reach the xk graph. Regarding the order relation ≤G, the
reference x0 becomes a subset of xk. The path lattice is expressed as an ordered collection
p = {p1, . . . , pk} and describes the incremental step cover path resulting from adding the
graph neighborhood under a connectivity criterion denoted by the connection order in the
graph space. Two subgraphs xi ∈ p, xi+1 ∈ p become adjacent under the ≤G whenever
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it is found that the relation (xi, xi+1) ∈≤G belongs to the order relation. For simplicity,
the path can be expressed as the number of steps from a reference x0 to the ending xk as
x0 ≤G . . . ≤G xk︸ ︷︷ ︸

k-times

. These steps represent all intermediate adjacent steps in p.

The lattice denotes the directionality and availability transitions over the allowed
subgraph in G. The graph topology and the order relation ≤G depend on the context of
each scenario. Using morphological operators in the graph space G, we can define a partial
order≤G criterion, establishing the incremental criterion from the boundaries of the current
subgraph. As mentioned above, mathematical morphology (MM) introduces two basic
operators known as dilation and erosion. Both use a graph structure to navigate the graph
neighborhood, called a structural element. The λ parameter denotes the structural element
representing the step-up/-down reached/dismissed nodes from the current subgraph
across the basic MM operators.

The operator of dilation (δ) is an increasing function that denotes a step forward
x0 ≤G x1 following increasing coverage for a given lattice (L,≤G) with a unitary step λ.
The dilation on a complete lattice is expressed as follows:

δλ(A) =
⋃
b∈λ

ab (1)

where A ∈ L and all nodes a ∈ A; ab denotes the addition of the b isomorphic node
referring to a if and only if ab ∈ G, from a given neighborhood λ, where λ is a graph that
denotes the homomorphic structure and G represents the graph space. λ represents the
step forward in the (L,≤G) order to cover G, i.e., the dilation operator indicates that the
following subset belongs to ≤G, which includes the nodes adjacent to the boundary nodes
of the A subset. In a complementary definition, the opposite operator is the erosion (ε),
which is defined as follows, taking as a reference the dilation operator:

ελ(A) =
⋃
b∈λ

ab (2)

where A ∈ L, and, for all nodes, a ∈ A. ab denotes the addition of the b isomorphic node
referring to a if and only if ab ∈ A or a null element adds ∅, from the given neighborhood λ,
where λ is a graph that denotes the homomorphic structure that represents a step backward
in the (L,≤G) relation. Figure 1 illustrates both operators (dilation and erosion) when they
are applied in a given graph. The dilation moves a step-forward subgraph across the lattice
under the step criterion λ. In contrast, the erosion operator discards elements with a lower
connection criterion defined by the structural element making a step backward.

(a) (b)

Figure 1. Morphological basic operators: (a) dilation operator and (b) erosion operator.

These operators represent the step forward/backward to navigate over the lattice
(L,≤G). In terms of a graph space, for a given subgraph xi ⊂ G such that xi belongs to L
and xi ̸= sup ≤G or xi ̸= inf ≤G, where the initial position represents the infinitum inf
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≤G and the supremum sup ≤G is denoted by the entire space G, there are other elements
xi−1, xi+1 ⊆ G where xi−1 ≤G xi ≤G xi+1. Both elements are represented by the dilation
xi+1 ← δλ(xi) and erosion xi−1 ← ελ(xi) operations, respectively.

2.2. Prior Definitions

Any lattice L resulting from the graph space G represents an order relation with an
initial reference subgraph x0 ⊆ G, and the set of subsequent step-forward sorted subgraphs
that need to cover the graph space G following a set of finite steps denotes the order ≤G.
The subgraph x0 covers the entire space in the intermediate steps and is defined by the
homomorphic structure defined in λ. Any intermediate step i provides a subgraph xi that
denotes how the consecutive finite states cover the space G.

Initially, two subgraphs are considered as x0, x∗ ∈ L such that x0 ⊆ x∗ ⊆ G. Here, x0
and x∗ are defined as the start and goal nodes in G, respectively. The subgraph x∗ can be
approximated starting from x0 by applying successive dilation operators, even if x∗ does
not belong to the order relation. This approximation is obtained via the definition of the
covering dilation operator as follows:

coverλ(x0, x∗)← δk
λ · . . . · δ1

λx0 (3)

such that k represents the number of times that the dilation operator δλ is composed
successively, and · denotes the compositional operator. The k-th dilation represents the first
step forward until the condition (δk

λ · . . . · δ1
λx0) ∩ x∗ = x∗ holds. The successive dilation

subgraphs x0, x1, . . . to reach the condition represent a step-forward path to x∗.
For all particular nodes involved in reaching x∗, the number of times that each node

becomes dilated as a result of coverλ(x0, x∗) is denoted as a set of nodes as |coverλ(x0, x∗)|.
The function becomes | · | : 2G → {G× f } such that, for all nodes nj ∈ xi, the cumulative
frequency f j for a particular node is expressed as a (nj, f j) tuple. Each f j counter is
computed for all nodes in a given graph.

f j =
k

∑
l=1

b(nj, δl
λ · . . . · δ1

λx0) (4)

where b is a function defined as follows

b(nj, δ
j
λ · . . . · δ1

λx0) =

{
+1 if nj ∈ δ

j
λ · . . . · δ1

λx0

0 Other case
(5)

where nj is a node. By notation, the expression |coverλ(x0, x∗)nj | refers to the particular
frequency f j for the node nj. Figure 2 depicts the graph’s node dilation frequency during
the coverage process. The graph starts from an initial reference x0 (black node) and a
destination x∗ (double-circle node). The dilated nodes are shown in gray and the available
nodes in white. Under successive dilations, the number of times that a node becomes
dilated increases. The reference becomes the node with the maximum frequency, and
the boundaries represent the lowest frequencies. The morphological coverage by dilation
applies successive dilations until the destination is reached; the frequency counter has a
zero or greater value.

For weighted graphs, the definition extends as a three-tuple G = (N, E, ω), adding the
ω ∈ R parameter. The formalism remains similar, with the addition of a weighted covering
dilation operator, which is denoted by ||coverλ(x0, x∗)nj ||, and the ωj weight is defined
as follows:

ωj =
k

∑
l=1

bω(nj, δl
λ · . . . · δ1

λx0) (6)

where bω is a function defined as follows:
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bωj(nj, δl
λ · . . . · δ1

λx0) =

{
ω if nj ∈ δl

λ · . . . · δ1
λx0

0 Other case
(7)

and nj is a weighted node. ωj represents the weight required to travel across them. This
weight ωj can be accumulated, representing the cost of traveling through a given set of
nodes, giving the total cost of the solution path.

Figure 2. Covering dilation operator and the frequency with which each node is dilated.

2.3. Search Criterion

The morphological search criterion uses the dilation and erosion operators to conform
to a lattice. The reference (initial state) represents a subgraph that indicates where the
trajectory starts in the lattice. All subsequent subgraphs resulting from dilating the reference
represent a lattice that denotes all possible paths to search a trajectory. After reaching the
destination node, the optimal path trajectory is estimated by following the natural order
constituted by the successive dilations and the frequency counters of each dilated node,
starting from the destination node to the origin (inverse order).

The proposed framework consists of a given graph x0 ⊆ G, as the origin, for the
location of a path trajectory of connected nodes P = {(n1, n2),(n2, n3), . . . , (nk−1, nk)}
covered by a two-tuple element ni, ni+1 ∈ G that denotes, under a specific criterion C, the
most reliable path to travel from the n1 ∈ x0 node to the destination nk ∈ x∗ node, both
in G.

The algorithm applies a morphological covering operator starting from the x0 node
until successive dilations reach the objective D. The intersection of x0 and D is usually
an empty set x0 ∩ D = {∅}. In terms of semantics, whenever the intersection of both
elements becomes a non-empty set x0 ∩ D ̸= {∅}, the starting and destination locations in
the graph are the same. The covering dilation generates a graph denoted by x∗, such that
x∗ ∩ (x0 ∪ D) = x0 ∪ D, i.e., the destination D has been reached via successive dilations
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starting from x0. The algorithm takes as an input a G graph space; x∗ ⊆ G represents the
coverage by dilation to reach destination D ⊆ G starting from x0 ⊆ G, which represents
the initial position (or reference); and D ⊆ x∗ represents the destination. The last input
is a structural graph connection neighborhood. It represents a homomorphic structure
for the lattice navigation λ ⊆ x∗. The algorithm outputs a path that follows the search
criterion and the total cost associated with displacement along this path. The complete
algorithm is described in Algorithm 1. This algorithm computes the best trajectory under
the assumption that there are one or more solutions. In spaces without a solution, the
algorithm becomes computationally infeasible. An example in which the covering dilation
operator reaches the minimum path trajectory is presented in Appendix A, as well as other
complementary consequences of these definitions.

The function C criterion (line 8 of the algorithm) takes as an input a given node n
and a set of adjacent nodes expressed as N = {ei such that (n, ei) ∈ G}. The output is the
node that denotes the best transition from the current node n to any node belonging to its
neighborhood. The function C analyzes the neighborhood, selecting the best node (minima
or maxima) to construct the path.

Algorithm 1 Morphological search with the constraint of x0 ⊆ x∗ and D ⊆ x∗

1: procedure SEARCHPROCESS(x0, D, x∗, G, λ)
2: M← coverλ(x0, D) ▷ Iterates covering the search space x∗ until the goal D is

reached.
3: Mn = ||M|| or Mn = |M| ▷ Cost of traveling across ≤G order.
4: Starting in any si ∈ S0
5: C ← Mnx0 ▷ Initial cost with the weight of node ni.
6: P← {∅} ▷ Initial path trajectory.
7: while a node ni ∈ D is not reached do ▷ Repeat until a solution is found.
8: ni+1 ← C(ni) ▷ Advance in the best path according to C.
9: P = P ∪ {(ni, ni+1)} ▷ Adds current traveling node.

10: ni ← ni+1 ▷ Further state becomes current state.
11: C ← C + Mnni ▷ Update cost xi.
12: end while
13: return P, C ▷ Return path trajectory P and cost C.
14: end procedure

The algorithm assumes that the destination is a subgraph denoted by D ⊆ x∗. In a
blind search, the guarantee of at least one path from x0 to D becomes complicated. In the
particular case that D ∩ x∗ = {∅}, Algorithm 1 becomes infeasible (it falls into an infinite
loop), which can be considered a disadvantage. An enhanced algorithm can overcome this
based on the modification of the coverage of the dilation operator, as shown in Equation (8):

cover∼λ (x0, x∗, k)← δk
λ · . . . · δ1

λx0 (8)

such that k represents the number of fixed times that the dilation operator δλ is composed
successively, and · denotes the compositional operator. The covering operator performs k
dilation and the condition (δk

λ · . . . · δ1
λx0) ∩ x∗ = x∗ might not be satisfied. Consequently,

the |cover∼λ (x0, x∗, k)| and ||cover∼λ (x0, x∗, k)|| functions are similar, with the difference
that k denotes the upper bound for the number of times that a given node might be dilated.

The enhanced algorithm becomes useful whenever there is no guarantee of locating
a solution because the destination makes it unreachable. Whenever the destination D
becomes unreachable by the coverage of the dilation operator expressed by x∗, it indicates
that D belongs to a non-connected graph with the reference x0. There may be no path
solution. In contrast, x∗ ∩D = {∅}means that there is at least one possible connected path
from x0 to the destination. Finally, Algorithm 2 refers to the generalized search process. This
algorithm returns an empty set whenever no path solution exists in an unknown scenario.
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This algorithm is always computationally feasible (i.e., under any input, it generates a
response), which makes it suitable for several search applications.

Algorithm 2 Morphological search with the constraint of x0 ⊆ x∗

1: procedure SEARCHPROCESS(x0, D, x∗, G, λ)
2: k← 1
3: loop
4: M← cover∼λ (x0, D, k) ▷ Cover by k dilation.
5: if min |M| > 1 then state return P = {∅}, C = {∅} ▷ Return an empty path

trajectory because the destination is unreachable.
6: end if
7: k← k + 1 ▷ Increment the covering steps by one.
8: end loop min |M| = 1 ▷ A path solution is discovered.
9: Mn = ||M|| or Mn = |M| ▷ Cost of traveling across ≤G order.

10: Starting in any ni ∈ x0
11: C ← Mnn0 ▷ Initial cost with the weight of node ni.
12: P← {∅} ▷ Initial path trajectory.
13: while not reaches a node ni ∈ D do ▷ Repeat until a solution is found.
14: ni+1 ← C(ni) ▷ Advance in the best path according to C.
15: P = P ∪ {(ni, ni+1)} ▷ Adds current traveling node.
16: ni ← ni+1 ▷ Further state becomes current state.
17: C ← C + Mnni ▷ Update cost ni.
18: end while
19: return P, C ▷ Return path trajectory P and cost C.
20: end procedure

2.4. Implementation Issues

A discussion about the computational complexity of the two above algorithms is
presented in the following paragraphs.

The implementation is mainly affected by the expected order of connections in the
graph G. A graph is expressed as a finite list of nodes, and its analysis consists of a
sequential process operating over one-to-one elements. The computational complexity is
addressed in three main stages: (1) the morphological operators (covering dilation and
frequency/weighted calculation); (2) the complexity in estimating the best path trajectory;
and (3) the evaluation process for the selection of the best forward step from a given node.

For (1), the complexity depends on the number of nodes |x∗| that denotes the cardi-
nality of the x∗ set and the expected order of all nodes involved in x∗ expressed by the
constant o∗, which represents the structural element size of |λ|. Then, the complexity is
expressed as O(|x∗| × o∗ × |λ|). The final complexity multiplies the previous complexity
by a factor of k, representing the worst number of dilations needed to cover the search
space x∗. In conclusion, the covering dilation complexity is O(|x∗| × o∗ × |λ| × k).

The computational complexity of the frequency and weighted operators | · | and || · ||
operators is the same. In real scenarios, the covering and frequency/weighted operators
might compute simultaneously, reducing the necessary computing time. In each iteration,
the list of nodes for dilation might be computed separately because the dilation is performed
independently; this makes it possible to segment them into m chunks (sublist) for the
implementation of a parallel approach, reducing the final complexity by 1

m . Whenever the
graph order is homogeneous across all elements, the computational complexity for a given
dimensionality becomes O(n2m). The factor m denotes the space dimensionality. These
spaces represent structures such as images, volumes, or any grid space.

For (2), the loop to build the best trajectory consists of the backward analysis of the
topological structure given by the frequency/weighted calculation. The minimum number
of iterations to reach the goal D is given by |Mx0 |; however, it might change according to
how we implement the C criterion. Then, for practical purposes, the lower bound of the
complexity is O(|Mx0 |) multiplied by the complexity of the C criterion.
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Finally, (3) refers to the criterion C for the step forward to the destination D. This
function requires a complexity of O(|N|) computations to determine the best choice. Then,
the total complexity from stages (1) and (2) is O(|Mx0 |)×O(|N|).

In summary, the total complexity of Algorithm 1 is

O(τ|x∗| × o∗ × |λ| × k)︸ ︷︷ ︸
morphological operators

+O(|Mx0 |)×O(|N|)︸ ︷︷ ︸
best path building

(9)

where τ is a constant that takes values of 2 or 3 if frequency dilation or weighted dilation is
needed. In addition, the general search algorithm (see Algorithm 2) adds further complexity
due to the loop (lines 3 to 9). Each iteration computes a coverage and its frequency.
Hence, for each iteration, the maximum number of computed dilations depends on the
k value. In fact, the complexity of computing a frequency and dilation is expressed as
O(2× |x∗| × o∗ × |λ| × k) for k iterations. Then, the loop requires evaluation 1, . . . , k times,
and Σ = 2× |x∗| × o∗ × |λ| denotes the iterations needed to perform the morphological
process one time. The complexity is expressed as O(Σ× 1+ . . .+Σ× k) for the loop, which,
after factorizing and rewriting the summation results, becomes O

(
Σ× (k+1)×k

2

)
.

Finally, substituting the morphological complexity from Algorithm 1 and replacing
the complexity for Algorithm 2, we have

O
(

Σ× (k + 1)× k
2

)
︸ ︷︷ ︸
morphological operators

+O(|Mx0 |)×O(|N|)︸ ︷︷ ︸
best path building

(10)

with Σ = 2× |x∗| × o∗ × |λ|.

3. Experimental Analysis and Results

An experimental model is presented for the performance evaluation and comparison
to well-accepted approaches.

3.1. Experimental Process

The experimental process consists of the following stages.

1. Testing the location of the best trajectory from a grid topology. This experiment uses the city
map encoded as a single binary image that represents a grid space. The starting and
final path trajectories are selected according to the most representative topologies. The
graph belongs to a part of Querétaro City. This graph is the result of automatic graph
generation from a satellite map via avenue segmentation. The scale and resolution
refer to the real dimensions of maps expressed in terms of pixels.

2. The location of the best trajectory from a graph space. In this stage, the city is encoded
as a graph after computing the avenue intersections as nodes. The tested scenario
becomes the same as that used in the last point. The weighting considers the distance
in a metric space to weigh the graph. The coding process uses the vertex detection
since the detection of the maximum values of the distance transformation is given by
the segmentation of the road into a connected map. All maxima detected represent
the nodes, and the connection arcs result from the connected avenues. Each vertex
represents an avenue intersection.

3. A comparison with other well-accepted approaches. This process evaluates another search
method as a reference. The comparison is considered in terms of their computa-
tional complexity.

3.2. Results

The location of the best trajectory from a grid topology. The neighborhood might represent
the adjacent local connections of a given node, and it defines the structural element. This
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representation has the advantage that the grid uniformity might refer directly to the uniform
sampling of a physical plane space representation.

Figure 3 illustrates the grid space that conforms to a graph search space. The uniformity
of the structure of the connectivity of each node allows a direct association with the image
pixels. The representation of four or eight connections might be applied to images, being
useful for illustration purposes. The avenue’s directionality is bidirectional. In concrete
scenarios, the directionality becomes constrained to the extra layer of information. The
first step consists of selecting the initial (the x0 graph) and the destination (the D graph)
positions in the graph (see Figure 3a). In this case, the origin x0 and the destination D
correspond to the same connected zone, and its intersection is the null set.

The searching algorithm has two principal subprocesses: (1) the morphological cov-
ering of the space until, from a given reference, the destination is reached (see Figure 3b).
This process generates the dilation operator several times, where, with each iteration, the
covering graph increases. The successive dilations represent the searching criterion, such
that it is closely similar to a first-width approach. The approach performs a simultaneous
path search, expanding in terms of the topology of the structural element. In our example,
the border nodes are illustrated in white and represent the dilating nodes. Each node of
the border represents a possible path search to locate the destination. With each successive
iteration, the node of the border is incremented one step forward according to the space
topology. Hence, these increments mean that the border nodes might be divided, merged,
or fused. When the border is divided, the approach introduces one possible path. Whenever
two paths are joined, the dilation frequency defines which of the two paths is more reliable.
Note that when the space limits are reached, a path solution does not exist. This algorithm’s
behavior allows the implementation of parallel approaches to benefit the performance.
Finally, the first algorithm ends whenever the destination D is reached, meaning that the
covering operators introduce a morphological order expressed by a lattice as all covering
subgraphs cover the space.

Consequently, the frequency of dilations applied to each node induces an order re-
lation. The infimum corresponds to the destination D node, denoting the origin. The
order in the step-forward natural direction of the frequency dilation nodes represents the
possible path trajectories, with the cost associated with reaching the reference x0. The
subgraph x0 represents the most dilated nodes, denoting the supremum of the total order.
The solution conforms from the subgraph D to the subgraph x0 direction following the
frequency of dilations. Sometimes, the solution might not be unique (see Figure 3), and
they might all require the same number of steps to reach the destination from the origin;
thus, equivalent minimal path trajectories are provided. For multiple solutions, we focus
on the red rectangle marked at the center of the last frame in Figure 3c. This figure aug-
ments Figure 4, where (a) shows the different solutions located, and, in (b), the frequency
is illustrated as level curves. The red arrows represent the different path trajectories. The
solid-arrow solution navigates via the lower rectangle and the dotted-arrow solution via
the upper rectangle. Both solutions have an equal cost in traveling from the reference to the
destination; it is possible that the cost of traveling via the first and second solutions is the
same. Similarly, scenarios with multiple solutions can locate all solutions simultaneously.
The grid representation becomes practical whenever the dimensions of the maps become
smaller because the computational resources have increased. Meanwhile, a graph space
representation has a non-uniform connection order.
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(a)

(b)

(c)

Figure 3. Example of searching algorithm with (a) avenue scenario with node origin and destination;
(b) frequency with which dilation is applied; and (c) dilations required to reach the goal.
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(a) (b)

Figure 4. Multiple solutions for best path trajectory. (a) shows the different solutions located; (b) the
frequency is illustrated as level curves.

Testing the location of the best trajectory from a graph space. An encoding process is re-
quired to convert a geographical map into a graph. The encoding process takes as input
geographical information such that avenues/crossroads are encoded as a graph. The en-
coding process takes the intersections as nodes and the avenues as arcs. The detection is
performed with the distance transformation and maximum zones detected. This represen-
tation is a compact representation of the geographical avenue layer with the advantage
of requiring minimal computational resources. The avenue intersections denote the local
maxima distances in a distance transformation. The positions of all maxima are the result
of applying the extended morphological distance. The process of coding the image in a
graph is illustrated in Figure 5, where, starting from (a), a geographic binary map layer and
(c) the distance transform, considering the avenue as a connected surface, we can compute
the minimum distance between each active pixel and the nearest border. The distance
transform is illustrated in pseudo-color, where dark zones correspond to small distances,
and white zones represent large distances. Consequently, Figure 5d shows the process of
maximum detection. The resolution and the thinness of the avenue representation might
affect the maxima detection by merging two close maxima. The maximum detection zones
are obtained through morphologically extended maxima transformation. This transfor-
mation offers a robust process to detect maxima on discrete surfaces. Finally, Figure 5b
illustrates the graph representation once the maximum is detected. The connectivity results
from the removal of the dilated maximum zones detected. Each arc detected is dilated
and the maximum regions that overlap are tested. In a weighted version, the geographical
distance might require the conversion of pixel distances into metric units.

Similarly, the graph generated from the avenue information is encoded as a graph
space. Figure 6 illustrates an example of the searching path in the graph space resulting
from encoding a geographical city map. Figure 6 illustrates two positions that represent
the start x0 and destination to reach D. In the following graphs, Figure 6b illustrates the
covering process, representing the city as a graph, where each node is accompanied by
the frequency by which it is dilated. The frequency defines the natural order relation that
reconstructs the shortness trajectory in terms of jumps. The solution is marked in red once
the destination reaches D. In this particular case, it takes 17 iterations (dilations) to reach
the destination. Note that the proposed framework has the advantage of representing a
width-first search, resulting in faster convergence.

A comparison with other well-accepted approaches. The proposed method matches with
well-accepted approaches from the literature. Table 1 shows the main features used to
compute the best trajectory. The best path trajectory, as an open task, has three main
features to denote: (1) the search space; (2) local constraints for specific environments; and
(3) the path searching approach.
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(a) (b)

(c) (d)

Figure 5. Map encoding process: (a) geographical binary map layer; (b) built graph connection;
(c) computation of distance transformation; and (d) detection of maximum zones.

The above features are discussed in the following paragraph and allow the clarification
of the contributions of our proposal. Case (1) can be divided into two classes (workspace
column in Table 1). (i) Approaches based on structured spaces (grid spaces); (ii) approaches
based on non-structured approaches, which establish the upper bound limits to avoid
falling into a combinatorial growing space. Therefore, these approaches based on grid
spaces become limited in the searching space, with an advantage for (ii) approaches that
denote more complicated working spaces.

Table 1. Approaches to computing the best path trajectory.

Approach Workspace Complexity Weighted Remarks

Dijkstra with referenced
graph [10] Graph O(mn + n log n) Yes

An algorithm based on reducing the search
space using the information of the most
common route taken by users.

Node mixing approach [40] Grid O(n2) Yes

The approach uses the information of a
simplified matrix, starting from previously
visited nodes, weighting those nodes that are
most representative.

Dijkstra enhancement [41] Graph O(m + Dmax log(n!)) Yes
Dijkstra enhancement algorithm setting an
upper bound connection criterion (Dmax) in
a huge spare net.

Dijkstra enhancement [4] Graph O((m + n) log n) Yes

Local search into adjacent node sorting
under connectivity criteria and weight cost,
reducing the Dijkstra search space. The
sorting criterion introduces the priority and
computability feasibility of the possible path.
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Table 1. Cont.

Approach Workspace Complexity Weighted Remarks

Local search with
Levenshtein distance [42] Graph O(max{|EG|, |EH |}) Yes

An approach based on a local search aided
by the Levenshtein distance to quantify the
dissimilarity among graphs. The
dissimilarity is used to prioritize in terms of
cost the possible path equivalences.

Contextual heuristic based
on local constraints [43] Graph O(n3 × log n) No

Introduces a framework to locate the best
path trajectories in a net via the introduction
of local heuristics and constraints based on
the process functionality.

Dijkstra enhancement [44] Graph&Grid O(n2) No

Improves the Dijkstra algorithm via the
enhancement of the data structure for the
storage and searching of the sorted nodes.
The matrix node combination is expressed as
a single list for better indexing.

Morphological search
(proposed) Graph O(c1|x∗|2 × λ) Yes

It defines a general framework based on
mathematical morphology operators and
introduces two new operators, which help to
build a natural relation for the most
reliable path.

In (2), the feature reduces the search space to improve the computability and tractabil-
ity. However, it might bring further complexity associated with the segmentation of the
searching space, such that, in some cases, it might considerably increase the total complexity.
Particular cases include hybrid approaches [45–47] or mixture approaches [6,43,48], which
include additional constraints to make the searching space more tractable.

The above approaches only reduce the searching space, without contributing to the
computation of the trajectory. In (3), the feature, without loss of generality, uses a Dijkstra-
like algorithm [49–52] at the end to compute the best trajectory. In other words, the
foundations and method used to finally locate the best trajectory rely on a variation of the
Dijkstra algorithm [53]. An extensive comparison with the Dijkstra algorithm is beneficial
because our proposal offers an alternative theoretical framework to deal with this problem.
To compare our proposal with the Dijkstra algorithm [54], we perform a complexity analysis
of both approaches. The complexity of the algorithm is summarized in Equation (11).

O(|V|2 + |A|) = O(|V|2), (11)

where V is the set of vertices and A is the set of arcs. This complexity refers to the basic
algorithm without a priority queue. Several authors denote the computational complexity
as O(|A|log|V|) [54] when using a priority queue. This complexity is incomplete because it
lacks the additional complexity associated with the priority queue building.

The morphological approach has complexity defined by Equation (9), where τ, o∗, λ,
and k are constant values. The k parameter takes values in the worst case |x∗|, where x∗ is
the number of vertices. The τ and o∗ parameters adopt small values. For simplicity, both
are rewritten as a constant value c1. Finally, the λ parameter represents the neighborhood
expressed by the structural element. We assume a constant complexity for path generation
for O(|N|) = c2, and in the worst case, O(|Mx0 |) has a frequency of |x∗|. We rewrite the
complexity equation as

O(c1|x∗|2 × λ) + c2 × |x∗| = O(c1|x∗|2 × λ). (12)
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(a)

(b)

Figure 6. Example of the searching algorithm in a graph space with (a) an avenue scenario, including
the origin and destination nodes, and (b) the frequency with which dilation is applied and the
computation of the best path trajectory.

The final expression becomes simplified to the expression O(n2); the complexity is
comparable to that of the Dijkstra algorithm without a priority queue. Finally, the λ
parameter might increase the complexity; however, this parameter represents the number
of elements at the border to be analyzed by each iteration (structural element dimension).
The considerable increment in the complexity is compensated because, with each iteration,
the number of covering steps is reduced in the best case by a factor of logλ(|x∗|). The
complexity will likely be increased for higher λ values, but the number of iterations needed
to cover the nodes is reduced in a logarithmic ratio. Figure 7 shows the complexity in
terms of the changing λ value. It is concluded that the total complexity is similar to that of
Dijkstra for small λ values. This analysis confirms that the morphological search framework
is equivalent to the Dijkstra algorithm in this particular case.
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Figure 7. Complexity for different λ values, matched with the reference algorithm.

4. Discussion

The results show that the approach is reliable as a general framework to build searching
algorithms in a graph. The proposed approach provides a general framework for path
searching, offering a compact theoretical reference to define a searching process. This
method produces a simplified representation of the searching approach in discrete spaces.

The structural element parameter λ and the neighborhood connectivity parameter
define the criteria for the coverage of the graph space, as mentioned in Section 2 and in
Figure 1. This parameter affects the search velocity in the graph: higher values have faster
coverage. The symmetrical structural elements become more efficient for grid spaces as
compared to irregular shapes, representing the trend in step-forward structures that impose
a search tendency that reflects the solution.

The covering dilation operator provides a travel criterion to the graph that avoids
loops in the searching space due to the induced lattice. In general terms, a morphological
approach is a first-in-width approach to searching; in other words, the first solution is
reached in terms of the width of the tree paths generated from the lattice. This drawback is
also addressed in the final part of Section 3.2, where the total complexity of the proposed
algorithms is analyzed.

The addition of weight values to the graph introduces the possibility to adapt, in terms
of cost, the traveling between a pair of nodes, improving the capabilities of the analysis in
non-uniform step-forward graph spaces. These areas of opportunity will be considered in
future work, as well as improvements applicable to the proposed method.

5. Conclusions

The main objective of this research work was to introduce a search reference framework
in a graph based on morphological mathematics. One of the main contributions consists
of performing a search for the optimal minimum path based on an approach using a new
operator called the dilation coverage operator.

The approach induces a lattice in a graph; it is a result of the definition of the dilation
operator and its associated frequency until the destination is reached. After this, the cover
subgraphs map into a lattice based on natural numbers, such that it represents the dilation
frequencies. Our method defines a criterion to locate the solution path within the context
of the minimum path defined by the dilation frequency. This criterion uses the unitary
descendant travel of the lattice until it reaches the infimum. Our experimental process and
complexity analysis using other approaches demonstrate that the computational complexity
is very similar to that of the Dijkstra algorithm without a priority queue in terms of efficiency,
and the inclusion of morphological operators makes it feasible to paralyze it.

In a dense graph, the complexity can be tracked easily due to the logarithmic growth.
The parameters that affect the complexity also affect the number of neighborhoods consid-
ered. When a large neighborhood is selected, the number of iterations required to reach the
solution decreases exponentially. If the conditions are similar, then the complexity of the
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algorithm is the same as that of the Dijkstra algorithm. This makes standard algorithms
more feasible. In other cases, it becomes an alternative search graph where the exploration
velocity can be controlled by adjusting the neighborhood size.

In the context of the algorithm operation, the proposal locates all possible best path
trajectories. Some algorithm variations are implemented by changing the structural element
parameter, affecting the search’s convergence velocity and priority directionality. In terms
of practical application, the search algorithm is a reliable path trajectory approach for
geographical maps. This consideration makes it feasible for use in a computationally
limited context, with high efficiency and accuracy for execution.

Despite the above, the proposal presents inherent limitations due to the method used
and the complexity of the graph being solved. This has a direct impact on the computational
cost when calculating the minimum path. Furthermore, using morphological dilation in a
graph-based space may not guarantee the minimum path in all cases.

This approach is based on iteratively covering certain search regions from the origin
point x0, which depends on the complexity, size, and topology of the analyzed scenario. As
a result, routes may be obtained that are not minimal in overall terms of cost or distance.

Furthermore, when using mathematical morphology, it is necessary to arbitrarily
define the size and shape of the structuring element according to the work context, which
may affect the convergence speed of the method, as shown in Figure 7. To address these
limitations, it is proposed to dynamically adapt the size and shape of the structural element
depending on the graph space presented. This involves analyzing different sizes associ-
ated with the desired level of coverage by the dilation operator in each applied iteration.
This strategy could improve the robustness of the proposal against large and complex
search spaces.

Furthermore, the proposal allows the isolation of processes that could be parallelized
in multicore hardware systems. Finally, by including specific variables of the context, such
as the vehicle flow, width of the avenue, number of lanes, and direction of circulation, the
precision of the proposed method could be improved. This would make it applicable in a
wide variety of real-world situations.

Further Works

This framework establishes the basis for a morphological searching approach. Hence,
some future research efforts around it include the following. (1) The discussion of paral-
lelization criteria to enhance the algorithm execution in multi-core hardware. This aspect
is addressed briefly in Section 2.4, being necessary in strategies for the isolation of the
different processes and the execution in parallel of several sub-processes.

(2) The development of graph approach representations from raw data. In the exper-
imental analysis, a single coding scheme was implemented; however, the approach might
be extended to the automatic graphs built from information about the traffic flow density,
velocity, or other urban variables that are expressed as a fluid.

As a final note, the searching framework offers the possibility to locate or not the path
trajectories whenever the destination graph is not reachable. This property represents a
new connectivity criterion that establishes the basis of a covering dilation connection for
graph-dense clustering analysis or any other grid as a new method for the clustering and
labeling of data.
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Appendix A. Minimum Path Trajectory Step Demonstration

This appendix demonstrates that Algorithm 1 and its generalized form, Algorithm 2,
locate the minimum step-forward path trajectory. Previously, the following definitions
were introduced. Consider a function ζ : N → N, where N represents a node, and the
function returns the number of arcs that start in a given particular node, which is defined as

ζ(n) = |{(n, a1), . . .}| (A1)

where | · | is the cardinality of the set. Now, consider the function ζ∗ : G → N that is
implemented as

ζ∗ = max{ζ(n) for all distinct (n, e) ∈ G} (A2)

where G is a graph, n is a node, and e is an arc. The function becomes the maximum order
connection of a given graph. Consider an isomorphic structural element λ of ζ∗ order, a
graph G, a x0 ⊆ G reference, and a destination D ⊆ G. Now, let the demonstration be
performed in the following two steps.

• Base case: Consider that D becomes reachable in one step forward by the dilation-
induced lattice. Algorithm 2 reduces to the one-time application of the dilation
operator. Let x1 ← δλ(x0), and x1 ∩ D ̸= {∅}; this is true. If the intersection is the
empty set, D is not reachable in one step. Consequently, this is the minimum path step
forward in the lattice. Considering that the solution might not be unique, one or more
nodes in one step forward reach the destination.

• Generalized case: Consider the situation in which D becomes reachable in k step forward.
Algorithm 2 reduces to the application of the dilation operator k times. Let xk ←
cover∼k (x0, λ), and xk ∩ D ̸= {∅}; this is true. Consider, by contradiction, that there
is no optimal path. The algorithm reconstructs the path trajectory by the one-step-
forward navigation of the natural order generated by the successive dilation operation.
A better step trajectory must travel by another path that advances in the lattice,
resulting in more than one step. Consequently, this becomes false because it does not
follow the one-step-forward travel condition. Similarly, as in the base case, the path
trajectory might not be unique; however, the steps to reach the destination are the
minimum in all possible paths.

The consequences of these demonstrations generate the two following cases as corollaries.

1. Whenever G becomes a weighted graph. In the case of a weighted graph, consider the same
demonstration considering the weighted step forward as the coding of the weighted
connection via the introduction of a function T : R→ R+, defined as follows:

T(w) = w−min(Gw) (A3)

where min(Gw) denotes the minimum weight value of the connection of a node in
the graph G. This function translates the weighted values into a positive reference,
maintaining the distance relations of the weights. Then, the cost step denotes the
weighted magnitude for all steps forward in the lattice increments. All iterations
now select the best weight choice under the function criterion C without affecting the
number of steps performed.
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2. Whenever ζ(λ) < ζ∗(G). The structural element represents an isomorphism with a
connection order smaller than the maximum connection order of the graph. Then, for
a given reference x0 as x∗1 ← cover∼k (x0, ζ∗(G)), a successive xk ← cover∼k (x0, ζ∗(G))

is equivalent, i.e, x∗1 ∩ xk = x∗1 requires, in the worst case, κ = ⌊⌊ λ
ζ∗(G)

+ 0.5⌋⌋, where
⌊⌊·⌋⌋ is the round operator. The number of extra steps required has, as the lower
bound, one (the optimal case), and, as the upper bound, the factor κ, which denotes
the worst case of dilating each note κ times.
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