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Abstract: The pressing need for sustainable development solutions necessitates innovative data-
driven tools. Machine learning (ML) offers significant potential, but faces challenges in centralized
approaches, particularly concerning data privacy and resource constraints in geographically dispersed
settings. Federated learning (FL) emerges as a transformative paradigm for sustainable development
by decentralizing ML training to edge devices. However, communication bottlenecks hinder its
scalability and sustainability. This paper introduces an innovative FL framework that enhances
communication efficiency. The proposed framework addresses the communication bottleneck by
harnessing the power of the Lemurs optimizer (LO), a nature-inspired metaheuristic algorithm.
Inspired by the cooperative foraging behavior of lemurs, the LO strategically selects the most relevant
model updates for communication, significantly reducing communication overhead. The framework
was rigorously evaluated on CIFAR-10, MNIST, rice leaf disease, and waste recycling plant datasets
representing various areas of sustainable development. Experimental results demonstrate that the
proposed framework reduces communication overhead by over 15% on average compared to baseline
FL approaches, while maintaining high model accuracy. This breakthrough extends the applicability
of FL to resource-constrained environments, paving the way for more scalable and sustainable
solutions for real-world initiatives.

Keywords: sustainable development; federated learning (FL); communication-efficient FL; lemurs
optimizer (LO); metaheuristics

1. Introduction

The imperative pursuit of sustainable development, encompassing the multifaceted
dimensions of social, environmental, and economic well-being, demands innovative tools
that effectively address complex challenges [1]. These challenges include broad issues like
poverty and climate change, but also more specific and pressing concerns such as rice leaf
disease [2] and implementing robust waste classification [3]. Tackling these intricacies re-
quires a holistic approach that leverages cutting-edge solutions and embraces technological
advancements to drive positive change and foster a resilient future for our planet. In this
context, machine learning (ML) emerges as a potent force, enabling data-driven insights
and solutions across diverse domains such as renewable energy optimization [4], climate
change mitigation [5], and personalized healthcare [6]. However, traditional centralized
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ML approaches encounter limitations, particularly concerning data privacy concerns and
resource constraints, especially in geographically distributed settings [7].

Federated learning (FL) is a transformative paradigm for sustainable development by
decentralizing the ML model training process to the edges, where data reside on individual
devices or local servers [8,9]. This decentralized approach preserves data privacy and
alleviates resource limitations, all while harnessing the collective power of geographically
dispersed data [10]. Nonetheless, a fundamental challenge in FL lies in the communication
bottleneck between the central server and the myriad of edge devices [11]. The frequent
exchange of model updates during training incurs significant communication overhead,
impeding scalability and sustainability in resource-constrained environments [12].

Metaheuristic algorithms, characterized by their ability to explore solution spaces
efficiently, have become indispensable tools in overcoming challenges associated with
optimization problems [13]. In the context of FL, where communication bottlenecks pose
significant hurdles, leveraging metaheuristic algorithms offers a powerful strategy to
enhance the efficiency of the training process [14].

Metaheuristic algorithms draw inspiration from natural optimization phenomena, of-
ten mirroring the evolutionary processes observed in biological systems, swarm behaviors,
or physical phenomena [15,16]. These algorithms exhibit a capacity for global optimization
by navigating vast solution spaces in search of optimal or near-optimal solutions [17].
Importantly, metaheuristic algorithms are particularly well-suited for complex, non-linear,
and high-dimensional problems, making them invaluable in the realm of ML [18].

The essence of metaheuristic algorithms lies in their ability to strike a delicate balance
between exploration and exploitation [19]. Exploration involves systematically searching
the solution space to discover new potential solutions, while exploitation focuses on
refining and exploiting promising solutions to improve overall performance [20]. This
balance is crucial in achieving a convergence of the algorithm towards optimal solutions
while avoiding premature convergence to suboptimal solutions [21,22]. In the case of
FL, the communication bottleneck arises due to the constant exchange of model updates
between the central server and distributed edge devices [23]. Metaheuristic algorithms offer
an elegant solution by guiding the selection of relevant model updates strategically [24].
By minimizing the communication cost associated with sharing updates, these algorithms
alleviate the strain on the network, enabling more scalable and sustainable FL systems [25].

Among the myriad metaheuristic algorithms, the Lemurs optimizer (LO) is particularly
noteworthy for its distinctive qualities [26]. The LO is inspired by the cooperative foraging
behavior of lemurs, showcasing a unique optimization approach. Its efficiency lies in
its ability to dynamically adapt its exploration and exploitation strategies based on the
evolving characteristics of the optimization landscape [27]. This adaptability makes the LO
well-suited for dynamic environments, where the optimization landscape may change over
time [28]. Furthermore, the LO efficiently identifies and exploits promising regions of the
solution space, ensuring that the most relevant and high-quality model updates are selected
for communication [29,30]. This reduces communication overhead and contributes to the
FL framework’s overall effectiveness, enhancing the convergence speed and robustness of
the learning process.

This paper introduces a pioneering communication-efficient FL framework harness-
ing the power of the LO. The proposed framework significantly reduces communication
overhead while preserving model accuracy by dynamically selecting the best client models
to share and updating the global model accordingly. This breakthrough enhances the
scalability and sustainability of FL in resource-constrained scenarios and extends its appli-
cability to real-world sustainable development initiatives. Through empirical studies and
comparisons, we delve into the intricate details of the proposed framework, contributing a
comprehensive understanding of how the integration of FL, metaheuristic algorithms, and,
specifically, the LO can advance the field and foster sustainable solutions in the era of ML.
The primary contributions can be summarized as follows:

• Introduces a novel FL framework employing the LO for efficient communication.
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• Achieves significant communication cost reduction compared to existing methods.
• Maintains comparable or superior model performance on diverse datasets.
• Enables more scalable and sustainable FL applications for real-world development goals.

The structure of this paper is as follows. In Section 2, the relevant literature is reviewed.
A detailed explanation of the Lemurs optimizer is provided in Section 3, and, in Section 4,
the FedLO method is presented. The results are analyzed and discussed in Section 5, the
findings are concluded, and an outline for future work is provided in Section 6.

2. Related Work

The field of FL has witnessed substantial attention in recent years [31,32], driven by
the challenges posed by communication between clients in the context of mobile devices.
Numerous studies have focused on improving FL performance, addressing issues stemming
from the unstable network environment of mobile devices [33]. Problems such as frequent
node crashes, dynamic node group shifts, elevated central server overhead, and increased
latency with a growing number of nodes have been identified [12,34]. Additionally, the use
of multi-layer models to enhance learning accuracy has been explored, albeit accompanied
by challenges related to the increasing number of weights as the layers deepen. The data
size constraint in FL due to network transmission between the server and client has also
been a prominent concern [35].

Efforts to enhance network performance in FL have involved innovative approaches
such as low rank and random mask techniques and temporal weights [36,37]. However,
while aiming to mitigate challenges, these methods may compromise accuracy in unsta-
ble network environments. Furthermore, security threats associated with traditional FL
models have been identified, emphasizing the potential dangers of transmitting all model
weights to the server. Minimizing the collection of weights on the server has emerged
as a critical focus to address these security concerns. Simultaneously, the utilization of
the Particle Swarm Optimization (PSO) algorithm in distributed environments has gained
traction. Various PSO algorithms, including dynamic multi-swarm PSO (DMS-PSO), PSO
for neighbor selection in peer-to-peer (P2P) networks, and gossip-based PSO for main-
taining flexible P2P networks, have been explored [38,39]. Studies have demonstrated
the adaptability of PSO in diverse distributed environments, showcasing its potential in
addressing optimization challenges.

Park et al. [12] identified FL as a method of preserving data privacy by collecting only
learned models on a server. The study highlights the challenges of limited communication
bandwidth in FL clients, especially in unstable network environments. To address this,
the paper introduced the Federated PSO (FedPSO) algorithm, leveraging PSO to transmit
score values instead of large weights. FedPSO demonstrates a significant reduction in
data used in network communication, leading to an average accuracy improvement of
9.47% and a 4% reduction in accuracy loss on an unstable network. In 2022, two papers
introduced new algorithms based on FedPSO, FedGWO [25] and FedSCA [23], extending
the exploration of FL techniques. FedGWO reduces data communications by employing
the Grey Wolf Optimizer (GWO) algorithm, transmitting score principles rather than all
client models’ weights. This approach results in a 13.55% average improvement in global
model accuracy while decreasing the required data capacity for network communication.
Meanwhile, FedSCA proposes a Federated Sine Cosine Algorithm (SCA), utilizing the SCA
mechanism for weight updating. FedSCA demonstrates a significant reduction in data used
in network communication, leading to an average accuracy improvement of 9.87% over
FedAvg and 2.29% over FedPSO, along with a 4.3% improvement in accuracy loss under
unstable network conditions. These studies collectively highlight the evolving landscape of
FL, showcasing a spectrum of innovative algorithms and techniques to address the unique
challenges posed by communication, security, and accuracy in FL environments.

The LO has proven highly effective in optimizing tasks across various domains. This
section provides an overview of current research on the algorithm, showcasing its applica-
tions and advancements. In paddy disease detection, the Modified LO algorithm employs
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a filter-based feature transformation technique inspired by the Sine Cosine Optimization
method [29]. This modification has been demonstrated to improve the accuracy of paddy
disease detection through ML techniques, as seen in a study using thermal images of paddy
leaves. When it comes to feature selection in high-dimensional datasets, the Enhanced
LO (ELO) algorithm integrates Opposition-Based Learning (OBL) and Local Search Algo-
rithm (LSA) to achieve superior accuracy compared to other competitive algorithms across
various datasets [27]. An optimal metaheuristic improvement in arrhythmia classification
using ECG signals involves a hybrid deep learning model with attention-based features
and weighted feature integration [30]. The Recommended Adaptive Risk Rate-based
Lemurs Optimization algorithm (ARR-LO) optimizes weighted fused feature selection,
resulting in superior performance compared to conventional prediction models. The LO
algorithm is vital in developing a transformer-based attention LSTM network tailored for
Alzheimer’s disease detection using EEG signals [28]. The Enhanced Wild Geese Lemurs
Optimizer (EWGLO) embeds the algorithm to optimize weight values and achieve high
accuracy, surpassing other state-of-the-art methods. The LO algorithm is also applied
in medical image fusion via the Enhanced Fitness-aided Election-Based and Lemur Op-
timizer (FEBLO) [40]. The algorithm optimizes parameters in the Adaptive Quaternion
Wavelet Transform (AQWT) model, successfully fusing multi-modal medical images and
overcoming challenges posed by conventional models.

Overall, the LO algorithm’s versatility and effectiveness are demonstrated across
diverse applications, including disease detection, feature selection, classification tasks, and
medical image fusion. Its ability to optimize various computational models positions it as a
valuable tool in different domains.

3. Lemurs Optimizer (LO)

The LO algorithm represents a cutting-edge, nature-inspired metaheuristic explicitly
designed for tackling global optimization problems [26,41–43]. Taking inspiration from
the intricate social behaviors observed in lemurs, a species of prosimian primates native
to Madagascar and neighboring islands, LO mirrors the distinctive locomotive behaviors
of these animals. In organized social groups known as troops, lemurs exhibit two notable
locomotive behaviors: leaping and dance-hopping. The former involves agile, long jumps
between trees, spanning considerable distances to pursue resources and shelter. On the
other hand, dance-hopping refers to a coordinated, communal movement performed by
lemurs within their troops.

LO incorporates these natural lemur behaviors into its optimization process, where an
agent represents each potential solution termed a “lemur”. The positions of these lemurs
correspond to candidate solutions within the defined search space. To initiate the algorithm,
a population of lemurs is randomly placed within the variable bounds, as expressed by
Equation (1):

Lj
i = rand × (ubj − lbj) + lbj ∀i ∈ (1, 2, . . . , n), ∀j ∈ (1, 2, . . . , d) (1)

where rand is a random number within the range of 0 to 1, and ub and lb denote the upper
and lower bounds for the decision variable j in solution i.

Subsequently, the fitness of each lemur is assessed using an objective function, deter-
mining the current global best (gbest) and nearest neighbors best (nbest).

During the exploration phase, mirroring the leaping behavior, lemurs execute long
jumps according to Equation (2):

Lj
i+1 = Lj

i + abs(Lj
i − gbestj)× (rand − 0.5)× 2 if rand ≥ FRR (2)

In the exploitation phase, reminiscent of dance-hopping, lemurs engage with neigh-
boring lemurs as per Equation (3):

Lj
i+1 = Lj

i + abs(Lj
i − nbestj)× (rand − 0.5)× 2 if rand < FRR (3)
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The dynamic adjustment of the risk parameter FRR using Equation (4) ensures adapt-
ability throughout the optimization process:

FRR = HRR − Crnt_Iter ×
(
(HRR − LRR)

Max_Iter

)
(4)

where HRR and LRR represent constant predefined values. Crnt_Iter denotes the current
iteration; Max_Iter is the maximum iterations’ number. This adaptive mechanism equips
LO with the capability to navigate and optimize complex problem landscapes effectively.

4. Federated Lemurs Optimization Algorithm (FedLO)

Federated LO (FedLO) combines the principles of the LO with the FL paradigm to
address global optimization problems in a distributed manner. Inspired by the agile and
coordinated behaviors of lemurs, LO is adapted to operate in an FL setting where data
are distributed among multiple clients. Each client, analogous to a lemur in the natural
environment, contributes to the global optimization process.

The initialization of FedLO involves randomly placing a population of lemurs (repre-
senting potential solutions) within the variable bounds of the search space. In this context,
the evaluation process involves discerning the global best (gbest) and the best among
nearest neighbors (nbest). To facilitate this, lemurs engage in a strategic exploration phase,
employing inspired long jumps reminiscent of their natural leaping behavior.

Mathematically, the objective function is expressed as follows:

max
θ

N

∑
i=1

1
|Di| ∑

(x,y)∈Di

I( fθ(xi) = yi) (5)

where θ represents the parameters of the global model to be optimized, and N is the total
number of participating clients. Di denotes the local dataset of client i. (x, y) represents a
data point with input x and true label y. fθ(xi) is the prediction made by the global model
with parameters θ for input xi. I(·) is the indicator function, equal to 1 if the condition inside
is true, and 0 otherwise. In essence, the objective function aims to maximize the average
accuracy across all clients, considering the predictions made by the global model on their
respective local datasets. Optimization involves identifying the parameters θ that maximize
this accuracy measure. In doing so, we enhance the overall performance of the federated
model, ensuring a collective improvement in the accuracy and efficacy of the global model
as it collaboratively learns from diverse local datasets. This comprehensive approach
reflects the intricacies of the fitness evaluation system, contributing to the robustness and
adaptability of the federated model in a distributed learning environment.

In the exploitation phase, resembling dance-hopping, which involves collaboration
between lemurs. In FedLO, this corresponds to clients sharing their knowledge with the
central server, which updates the global best position for the next iteration.

Additionally, FedLO incorporates client collaboration and information exchange mech-
anisms during the optimization process. After each exploration and exploitation phase,
clients with improved lemurs, reflecting better potential solutions, share their findings with
the central server. This collaboration enables the server to aggregate and update the global
best position, promoting knowledge transfer across the federated network.

The collaboration step enhances FedLO’s ability to adapt to diverse local landscapes
encountered by individual clients. Lemurs exploring different regions of the search space
contribute their unique insights, creating a collective intelligence that guides the optimiza-
tion process. This decentralized collaboration aligns with the FL philosophy of leveraging
local knowledge for global model improvement.

Furthermore, FedLO introduces adaptive mechanisms for adjusting exploration and
exploitation parameters to accommodate the dynamic nature of federated environments.
The risk parameter FRR, responsible for controlling the balance between exploration and
exploitation, is continuously adapted based on the current iteration and the specified
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maximum iteration count. This adaptability ensures that FedLO can respond effectively to
changes in the optimization landscape throughout FL.

Inspired by leaping behavior, the exploration phase allows lemurs to take agile, long
jumps towards potentially promising regions. This translates to clients exploring diverse
areas of their local search spaces in a federated context. The proposed FedLO framework,
illustrated in Figure 1, operates in a structured manner, commencing with initializing
both local optimization parameters and the global model. Clients, treated as individual
solutions, are strategically selected to participate in collaborative learning. The process
then evaluates predefined stopping criteria; if unmet, the global model is transmitted to
all chosen clients. Subsequently, each client undertakes local model training, employing
local optimization mechanisms to fine-tune the model according to its specific dataset
characteristics. Scores reflecting the performance of locally trained models are collected
from all clients, and the framework checks whether all models have updated their weights.
If not, the process continues by requesting and receiving the best-performing model among
participants, updating it based on the received information. The iterative cycle persists
until all models have completed their updates. Upon meeting the stopping criteria, the FL
process concludes. FedLO ensures collaborative model improvement while considering the
nuances of local data, fostering an effective and efficient FL environment. Notably, for each
client in this study, the nearest solution corresponds to the previously identified best model
in this paper.

Figure 1. FedLO framework.

The process of updating the weights in the FedLO algorithm is illustrated in Figure 1.
First, the server initializes the model and FedLO parameters before distributing the model
to clients. Each client trains the model using FedLO weights and computes a score based
on the lowest loss or highest accuracy achieved. The client with the highest score sends
this value to the server, which then updates the global model’s weighted collection with
the best client’s model. The pseudocode for the FedLO is detailed in Algorithm 1, outlines
a strategy for optimizing distributed client performance in FL environments.
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Algorithm 1 Federated Lemurs Optimization Algorithm (FedLO)

1: Initialize: Set algorithm parameters, client positions, and communication intervals.
2: Initialize global best position: gbest
3: Initialize lemurs’ positions on each client: Lj

i
4: for each iteration itr = 1, 2, 3, . . . , Maxitr do
5: for each client k do
6: Evaluate fitness of lemurs on client k
7: Update nbest using lemurs’ local best positions
8: end for
9: for each client k in parallel do

10: for each lemur i on client k do
11: Update lemurs’ positions based on exploration and exploitation phases
12: end for
13: end for
14: Communicate global best positions (gbest) among clients
15: for each client k do
16: Update global best position based on received information
17: end for
18: end for

5. Results and Discussion

This section meticulously examines the outcomes of the implemented methodology,
serving as a critical juncture in exploring the presented research. It also provides a detailed
account of the dataset utilized, offering insight into its composition and the methodology
employed for its collection. A comprehensive understanding of the dataset is considered
essential to contextualizing the subsequent analysis. Furthermore, a detailed overview of
the sample extracted from the dataset is presented, shedding light on the characteristics that
define the representative subset under scrutiny. This discussion sets the stage for a nuanced
evaluation of the behavior of the proposed algorithm, accompanied by a comparative
analysis against other existing algorithms. The performance of the proposed method is
scrutinized alongside alternative approaches, aiming to discern distinctive patterns and
efficiencies that contribute to a comprehensive understanding of the algorithmic landscape.
Quantitative metrics such as accuracy and loss are delved into to gauge the efficacy of
the proposed algorithm. These metrics serve as benchmarks, quantitatively measuring
the algorithm’s performance. Meticulous scrutiny of these values is undertaken, drawing
correlations between the algorithm’s predictive capabilities and its ability to minimize
errors and discrepancies. The ensuing discussion section unveils the empirical outcomes
and endeavors to interpret and contextualize these results within the broader scope of the
research objectives.

5.1. Dataset

• CIFAR-10 dataset [44]: This dataset from the Canadian Institute for Advanced Re-
search is a widely utilized dataset within computer vision (CV) and ML domains.
Specifically tailored for image classification tasks, CIFAR-10 serves as a benchmark in
the research and development of diverse image processing algorithms and models.
Comprising 60,000 color images, each measuring 32 × 32 pixels, the dataset is dis-
tributed across 10 distinct classes, with 6000 images allocated per class. These classes
encompass common objects such as airplanes, automobiles, birds, cats, deer, dogs,
frogs, horses, ships, and trucks.
Key characteristics include each image’s RGB (red, green, and blue) color channels.
The dataset is divided into a training set, consisting of 50,000 images, and a testing set,
containing 10,000 images. CIFAR-10’s primary purpose is to serve as a standardized
dataset for evaluating image classification algorithms, offering a realistic and challeng-
ing environment.
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Despite the relatively small size of the images, CIFAR-10 remains instrumental for
testing and comparing the efficacy of different models in addressing real-world image
recognition challenges. Researchers commonly employ this dataset to develop and as-
sess the performance of various ML models, especially convolutional neural networks
(CNNs). The diverse set of classes in CIFAR-10 necessitates models to generalize
effectively across different categories, contributing to its widespread use in the field.

• MNIST dataset [45]: This dataset is widely acknowledged and frequently employed
within the fields of ML and CV. MNIST, an acronym for Modified National Institute of
Standards and Technology, is a curated collection of handwritten digits used exten-
sively for training and assessing image processing algorithms and models.
Essential characteristics of the MNIST dataset include 70,000 grayscale images fea-
turing handwritten digits ranging from 0 to 9. Each image measures 28 × 28 pixels.
The dataset is divided into a training set comprising 60,000 images and a testing set
containing 10,000 images.
MNIST serves as a benchmark for evaluating ML models’ performance, particularly
in recognizing handwritten digits. It is widely adopted as a standard dataset for
developing and assessing image classification algorithms.
Challenges inherent in the MNIST dataset arise from the variability in writing styles,
diverse penmanship, and potential noise in the images. Unlike datasets that include
color images, MNIST images are grayscale, simplifying the input for models.
MNIST is notable for its historical significance. It represents one of the pioneering
datasets used for testing and benchmarking ML algorithms, especially in the context
of deep learning and neural networks.
Researchers commonly use MNIST as a foundational resource for experimenting with
and validating image classification models. Despite its relative simplicity compared to
more complex datasets, MNIST remains an essential tool for educational purposes,
enabling practitioners to grasp and implement fundamental concepts in ML and
computer vision.

• Rice leaf disease dataset [2]: This dataset is a comprehensive compilation of images rep-
resenting various rice leaf diseases. This dataset is meticulously curated to train and
evaluate models in the context of rice leaf disease recognition. A preprocessing stage
was applied to each image to ensure consistency in dimensions and data quality. Dur-
ing this process, all images were resized to a uniform dimension of 224 × 224 pixels,
involving the standardization of dimensions without preserving the original aspect
ratio. Additionally, normalization was performed to bring pixel values within the
standardized range of [0, 1].
The dataset is strategically divided into training, validation, and test sets, maintaining
an 80%/10%/10% ratio, respectively. This division facilitates effective training and
evaluation of ML models on distinct subsets of the data.
The dataset comprises images from five distinct classes, each corresponding to a
specific rice leaf disease. These classes are blast, blight, brown spot, leaf smut, and
tungro. Each class is represented by a varying number of images, contributing to the
diversity and richness of the dataset. The distribution of images among classes is
as follows: blast (80 images), blight (80 images), brown spot (40 images), leaf smut
(40 images), and tungro (80 images). The dataset encompasses 320 images, providing
a comprehensive and well-balanced representation of rice leaf diseases for effective
model training and evaluation. As shown in Figure 2, samples of the rice leaf disease
dataset highlight the visual representation of the different classes.

• WaRP dataset [46]: This dataset is designed to address the need for an extensive
collection of images for training and testing the capabilities of waste recycling plants
in automatically sorting recyclable items on conveyor belts. The dataset is specifically
tailored to recognize and classify various waste categories found in recycling plants,
including plastic and glass bottles, cardboard, detergents, canisters, and cans.
The dataset, WaRP (waste recycling plant), consists of manually labeled images taken
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from an industrial conveyor. It encompasses 28 recyclable waste categories, with ob-
jects classified into groups such as plastic bottles, glass bottles, cardboard, detergents,
canisters, and cans. Differentiation among categories is essential, considering the
specific recycling technologies associated with each.
Unique features of the WaRP dataset include indicating whether a plastic bottle is
filled with air (“full” postfix), which is crucial for correctly operating the conveyor’s
manipulator. Unlike other datasets, the WaRP dataset allows for object overlap, heavy
deformation, and variations in lighting conditions, simulating real-world scenarios
encountered in recycling plants.
It is worth noting that the dataset is intentionally unbalanced, mirroring the natu-
rally uneven distribution of household waste on a conveyor belt due to the varying
frequency of use of different objects. For instance, there are more bottle images than
canisters in the dataset.
The WaRP dataset is divided into three parts: WaRP-D for training and quality assess-
ment of detection, WaRP-C for training and objective quality assessment of classifi-
cation, and WaRP-S for validating weakly supervised segmentation methods. Each
part serves a specific purpose, contributing to the overall effectiveness of the dataset
in training and evaluating waste recognition models.
The dataset statistics reveal the distribution of images across different categories,
providing insights into the number of training and testing samples for each waste
category in the WaRP-D and WaRP-C parts. This comprehensive dataset aims to
facilitate developing and testing methods for detecting, classifying, and segmenting
waste in recycling plants, addressing the specific challenges encountered in real-world
scenarios. As illustrated in Figure 3, dataset samples visually depict the variety of
waste categories in the WaRP-C part.

Figure 2. Samples of rice leaf disease dataset.

It is important to note that the data partitioning strategy used in the proposed FedLO
framework is crucial to the training process. Essentially, the training data are divided into
subsets at random, ensuring that each client receives a diverse portion of the dataset for
training. This method fosters collaborative learning while still maintaining data privacy.

An FL strategy is employed to handle heterogeneity in data distribution among
clients. Each client trains their model independently using their local data subset. This
decentralized approach enables clients to use their local data while also contributing to
enhancing the global model. Additionally, model aggregation at the server allows for
collaborative learning, which helps the model benefit from the collective knowledge of
all clients.
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Figure 3. Samples of WaRP dataset.

5.2. Comprehensive Model Architecture and Constant Configuration

This section presents a detailed analysis of the proposed model for dataset classifica-
tion, illustrated in Figure 4. This architecture comprises a total of fourteen layers, including
four convolutional layers (conv2d, conv2d_1, conv2d_2, conv2d_3) responsible for extracting
hierarchical features. Additionally, four max pooling layers (max_pooling2d, max_pooling2d_1,
max_pooling2d_2, max_pooling2d_3) contribute to spatial dimension reduction.

Figure 4. Detailed summary of the model architecture for dataset classification.

Furthermore, two flatten layers (flatten, dropout) transform the output into a one-
dimensional vector, while two dense layers (dense, dropout_1) perform the final classifi-
cation based on the learned features. The convolutional layers exhibit a progressive filter
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increase, enabling the model to capture increasingly complex patterns. Output shapes,
such as (None, 222, 222, 16) for the initial convolutional layer, represent the size of the
data after each layer.

The model demonstrates a moderate number of parameters, indicating a balanced level
of complexity. The abundance of trainable parameters enhances the model’s adaptability
during training. The proposed CNN model is tailored to effectively learn intricate features
from images, balancing complexity and efficiency during training. Including dropout
layers contributes to regularization, mitigating the risk of overfitting. A thorough model
summary, encompassing activation functions and evaluation metrics, would be imperative
to assess its performance comprehensively.

In this paper, a set of constants has been meticulously defined to shape the behavior
and performance of the proposed framework. These constants encapsulate pivotal aspects
such as batch processing, training epochs, and unique considerations for the FedAvg
and the optimization algorithms. Notably, the batch size, client–epoch parameter, total
number of epochs, “C” parameter (specifically for FedAvg), and the number of clients
collectively represent the foundational building blocks of the model’s configuration. The
batch size, a critical determinant of the number of training instances processed in each
iteration, is consistently set at 10 for both the optimization algorithms and the FedAvg
approach. This choice reflects a strategic balance between computational efficiency and
model performance. The client–epoch parameter, governing the number of training epochs
completed by each client in the FL setup, is maintained at 5 for both optimization methods.
This standardization ensures a uniform learning experience across clients, contributing to
the overall stability of the training process. The total number of epochs, a fundamental
factor influencing the duration and depth of the model training, is universally established
at 30 for both the optimization algorithms and the FedAvg approach. This parameter
plays a crucial role in determining the overall convergence and performance of the model.
The “C” parameter, a specific consideration for the FedAvg, assumes values of 0.1, 0.2, 0.5,
and 1.0. This parameter controls the number of clients during the aggregation process in
FL. Furthermore, the number of clients participating in the FL process is constant at 10.
This stability ensures consistent collaboration and diversity in training, contributing to the
model’s robustness and generalization capability.

Using Keras, the model architecture is visually represented in Figure 5. This diagram
provides an intuitive overview of the connections and flow within the neural network,
emphasizing layers’ arrangement and respective operations.

Figure 5. Visual representation of the proposed CNN model architecture using Keras.
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The FedLO framework utilizes fixed values for the HRR and LRR parameters, as
specified in the original LO algorithm. Specifically, the HRR parameter is set to 0.5, and
the LRR parameter is set to 0.1. These parameters dictate the risk-taking behavior of the
optimization process during training.

5.3. Performance Analysis of FedLO

This subsection examines the performance of the LO algorithm in the FL scenario.
The focus is on comparing LO’s behavior with other optimization algorithms across
various datasets.

Figure 6a presents the accuracy results of the proposed algorithm and other algorithms
in the context of FL, specifically across 30 rounds, using the CIFAR-10 dataset, examining
the accuracy trends across various regularization parameter values (C) in the context of
FedAVG (Fed Aggregating) [47], where C represents the proportion of clients participating
in the FedAVG process. A value of C = 1 indicates the involvement of all clients, C = 0.10
implies 10% participation, C = 0.20 implies 20% participation, and C = 0.50 implies 50%
participation. This analysis shows that the LO algorithm consistently exhibits competitive
or superior accuracy compared to other optimization algorithms under different C values
in the FedAVG framework.
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(a) Model accuracy over 100 epochs for CIFAR-10 dataset.
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Figure 6. Model accuracy over 100 epochs for different datasets.

For FedAVG, increasing C from C = 0.10 to C = 1.0 results in a steady improvement in
accuracy. Specifically, at C = 1.0, FedAVG exhibits a notable increase in accuracy, reaching
0.602195028, making it a robust contender in the FL context. Similarly, at C = 0.20, FedAVG
maintains a competitive edge, achieving an accuracy of 0.59187885 over the 30 rounds. Al-
though FedAVG’s accuracy improves with higher C values, the focus remains on evaluating
LO’s performance. Compared to optimization algorithms like PSO, SCA, and GWO, LO is
consistently accurate or superior in all 30 rounds; while PSO displays gradual improvement
and SCA maintains consistent accuracy, LO delivers impressive results, making it an ideal
choice for FL tasks.

In Figure 6b, the performances of various algorithms in FL using the MNIST dataset
over 30 rounds are compared. The proposed FedLO algorithm and other algorithms like
PSO, SCA, and GWO are evaluated.

The presented results highlight the superior performance of the proposed LO algo-
rithm, FedLO, compared to other algorithms, particularly regarding accuracy. For instance,
at C = 0.5, FedAVG achieves an accuracy of 96.2%, surpassing the accuracies achieved at
C = 0.2 and C = 0.1. Similarly, at C = 1.0, FedAVG attains an accuracy of 98.1%, outper-
forming the accuracy obtained at C = 0.5. Notably, the PSO method consistently enhances
its accuracy, peaking at 0.9757, indicating its adaptability and effectiveness in optimizing
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model parameters within the FL framework. The SCA method exhibits a steady accuracy
increase, reaching a maximum of 0.9778. This consistent improvement throughout rounds
underscores SCA’s reliability and adaptability in FL scenarios. The GWO method demon-
strates a noteworthy accuracy of 0.9863, showcasing its effectiveness in optimizing model
parameters. The competitive performance of GWO suggests its suitability for FL tasks. The
key strength of the LO algorithm lies in its ability to exploit local areas within the search
space. This strategic approach leverages the inherent capability of the algorithm as a meta-
heuristic, allowing it to navigate and exploit the search space efficiently. This proficiency in
exploring the solution space at a more localized level enhances its adaptability, enabling
the algorithm to optimize model parameters based on the nuanced characteristics of each
client’s data. In contrast, global algorithms like PSO and SCA may struggle to capture and
exploit these localized features, contributing to the observed superior performance of the
LO algorithm in the context of metaheuristic optimization.

Figure 7a shows the performance of various algorithms in FL using the rice leaf disease
dataset over 30 rounds. C = 0.1 exhibits consistent improvement, reaching a peak accuracy
of 0.8043. Similarly, C = 0.2 demonstrates a positive trend, achieving a maximum accuracy
of 0.8112. C = 0.5 showcases substantial improvement, reaching an accuracy of 0.8377, while
C = 1.0 achieves a remarkable 0.8597 accuracy. PSO displays steady improvement, reaching
an accuracy of 0.8746, demonstrating compelling exploration and exploitation. SCA exhibits
a consistent positive trend, achieving an accuracy of 0.8867, indicating its adaptability to the
federated data from the rice leaf disease dataset. GWO demonstrates gradual improvement,
reaching an accuracy of 0.8908, showcasing a compelling exploration of the federated data
space. The proposed LO method shows competitive performance, achieving an accuracy of
0.9027 and outperforming some established algorithms in convergence and accuracy.
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Figure 7. Model accuracy over 100 epochs for different datasets.

Figure 7b shows the performance of various algorithms in FL using the WaRP dataset
over 30 rounds. C = 0.1 exhibits consistent improvement, reaching a peak accuracy of
0.7829. Similarly, C = 0.2 demonstrates positive trends, achieving a maximum accuracy
of 0.7948. C = 0.5 showcases substantial improvement, reaching an accuracy of 0.8139,
while C = 1.0 achieves notable performance with a maximum accuracy of 0.8229. PSO
demonstrates steady improvement, reaching an accuracy of 0.8308, effectively exploring
and exploiting the WaRP dataset. SCA exhibits consistent positive trends, achieving an
accuracy of 0.8354, showcasing its adaptability and convergence. GWO demonstrates
gradual improvement, reaching an accuracy of 0.8402, effectively exploring the WaRP
dataset. The proposed LO method shows competitive performance, achieving an accuracy
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of 0.8709, surpassing some established optimization algorithms in terms of convergence
and accuracy with the WaRP dataset.

Figure 8 shows the communication cost of different algorithmic approaches to FL
on distributed datasets. It plots the communication cost for different values of C and
several federated learning algorithms: FedPSO, FedSCA, FedGWO, and FedLO. According
to the figure, the proposed algorithm has the lowest communication cost of 0.50 across
all values of C. This result suggests that the proposed algorithm draws inspiration from
cooperative foraging behavior in lemurs and is more efficient in communication than other
algorithms based on different metaheuristic techniques. In particular, the FedLO algorithm
can lower the communication overhead by up to 15% compared to standard federated
learning approaches.

Figure 8. Comparing communication costs of different algorithms.

5.4. Model Training Dynamics and Efficacy: A Deep Dive into Rice Leaf Disease and WaRP
Datasets with FedLO Methodology

In the context of the rice leaf disease dataset, the presented results underscore the
effectiveness of the FedLO method in enhancing model performance (see Figures 9 and 10).
Across 30 training epochs, training and validation accuracy exhibited noticeable improve-
ment. The training accuracy initiated at 21.48% in the first epoch and demonstrated a
consistent upward trend, culminating at 87.50% in Epoch 30. Concurrently, the validation
accuracy progressed from 28.12% to 82.81% over the same period. Complementing the
accuracy metrics, the loss function, a crucial indicator of model efficacy, consistently de-
creased during training. The training loss started at 1.54 and steadily diminished to 0.29 by
Epoch = 30. Similarly, the validation loss showed a reduction from 1.37 to 0.46. Occasional
marginal increments in validation loss, notably in Epoch 2 and Epoch 8, suggested poten-
tial episodes of overfitting (see Figure 10). The general observations highlighted initial
challenges in achieving satisfactory accuracy, which were gradually overcome as the model
adapted and refined its predictions. The model attained a peak training accuracy of 87.50%
and a validation accuracy of approximately 82.81% by Epoch 30. The diminishing loss
function underscored the model’s ability to extract meaningful insights from this dataset,
enhancing its predictive capabilities. In conclusion, these results, obtained through the
application of FedLO in this dataset, affirm the methodology’s efficacy in progressively
refining model performance over multiple training epochs. Further insights could be
gained by delving into additional details on this dataset’s characteristics, the employed
model architecture, and specific nuances in implementing FedLO.

In the investigation of the WaRP dataset, the FedLO was applied to assess and enhance
model performance (see Figures 11 and 12). The training spanned 30 epochs, and both
training and validation accuracies and the loss metrics were tracked.
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Figure 9. Training and validation accuracy—rice leaf disease dataset.
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Figure 10. Training and validation loss—rice leaf disease dataset.
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Figure 12. Training and validation loss—WaRP dataset.

The training accuracy commenced at 24.54% in the first epoch and steadily increased
to 64.49% by Epoch 30. Simultaneously, the validation accuracy started at 31.56%, showing
variability throughout training and reaching 53.28% by the conclusion of Epoch 30.

The loss function consistently reduced during training, with the training loss starting
at 2.0912 and diminishing to 0.9842 by Epoch 30. Similarly, the validation loss decreased
from 1.8839 to 1.2788, signifying effective learning and adaptation of the model to the
DS4 dataset.

Observations indicate successes and challenges, with occasional fluctuations in accu-
racy and instances of potential overfitting, as suggested by the validation loss increments
in certain epochs. However, the overall trajectory indicates a positive model learning and
generalization trend.

The experimental findings presented in Table 1 shed light on the comparative perfor-
mance of various FL algorithms across four datasets. Notably, the results highlight FedLO’s
superior test accuracy compared to other algorithms, with the peak accuracy values pre-
sented in the table. At 30 epochs, FedLO consistently outperformed FedAvg across all
datasets, showcasing its efficacy in achieving higher accuracy. This is a crucial observation,
indicating that FedLO may offer a more robust and accurate solution in FL scenarios. In
the context of FedAvg, the impact of the C on test accuracy is particularly noteworthy.
The results in this table reveal that increasing the C leads to higher accuracy for FedAvg,
reaching its peak at C = 1.0. However, this improvement comes at the cost of increased
data transmission between the server and clients. The trade-off between accuracy and data
transfer is evident, emphasizing the need for a balanced approach in FL settings. Looking
at the individual datasets, FedLO consistently outperforms other algorithms, achieving the
highest accuracy across CIFAR-10, MNIST, rice leaf disease, and WaRP datasets. Particu-
larly in MNIST and WaRP datasets, FedLO demonstrates exceptional accuracy, reaching
99.14% and 87.10%, respectively.

Table 1. Test accuracy.

Dataset
Algorithm

FedAvg, C = 0.1 C = 0.2 C = 0.5 C = 1.0 FedPSO FedSCA FedGWO FedLO

CIFAR-10 0.5740 0.5919 0.6001 0.6022 0.6936 0.7141 0.7207 0.7403
MNIST 0.9598 0.9648 0.9709 0.9729 0.9757 0.9778 0.9863 0.9914

Rice leaf disease 0.8043 0.8112 0.8377 0.8597 0.8746 0.8867 0.8908 0.9027
WaRP 0.7829 0.7948 0.8139 0.8229 0.8308 0.8354 0.8402 0.8710
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5.5. Unstable Network Experimental Result

Random data drops were introduced during communication rounds between the client
and server to simulate an unstable network environment. The evaluation involved varying
degrees of data drop (0%, 10%, 20%, and 50%) across different datasets (CIFAR-10, MNIST,
rice leaf disease, and WaRP). To ensure the validity of the results, the outcomes were
averaged over ten experiments. Table 2 displays the accuracy of FedAvg and alternative
algorithms at different failure rates. FedAvg consistently declined accuracy as the failure
rate increased across all datasets. For example, in CIFAR-10, accuracy ranged from 60.22%
(0% failure) to 54.62% (50% failure). Similarly, in MNIST, accuracy varied from 97.29%
(0% failure) to 92.31% (50% failure), indicating a significant impact of communication
failures on model performance. In the rice leaf disease dataset, FedAvg showed accuracy
ranging from 85.97% (0% failure) to 81.57% (50% failure), highlighting the algorithm’s
vulnerability to increased failure rates across diverse datasets. Additionally, in the WaRP
dataset, the accuracy of FedAvg ranged from 82.29% (0% failure) to 77.48% (50% failure),
further underscoring the consistent trend of declining accuracy under adverse network
conditions. FedPSO consistently outperforms FedAvg across datasets and failure rates,
indicating its potential for maintaining accuracy in the face of communication failures.
For instance, in CIFAR-10, FedLO achieved an accuracy range of 69.36% (0% failure) to
64.11% (50% failure). Similarly, in MNIST, FedLO outperformed FedAvg with an accuracy
range of 97.57% (0% failure) to 91.54% (50% failure), showcasing its resilience in unstable
network environments. Furthermore, FedSCA and FedGWO also demonstrate competitive
performance. In the WaRP dataset, FedGWO achieves an accuracy range of 84.02% (0%
failure) to 79.00% (50% failure), showcasing its ability to cope with communication chal-
lenges. However, it is notable that FedLO consistently outperforms the other algorithms,
emphasizing its superiority in maintaining accuracy under varying failure rates. In the
WaRP dataset, FedLO achieves an accuracy range of 87.10% (0% failure) to 82.33% (50%
failure), consistently surpassing FedAvg, FedPSO, FedSCA, and FedGWO. This highlights
FedLO as a promising alternative for robust FL in unstable network conditions. These
instances emphasize the importance of considering alternative FL algorithms, particularly
FedLO, to mitigate the impact of communication failures.

Table 2. Accuracy against communication failure probability.

Dataset Algorithm Failure Rate
50% 20% 10% 0%

CIFAR-10 FedAvg, C = 1.0 0.5462 0.5731 0.5911 0.6022
FedPSO 0.6411 0.6674 0.6812 0.6936
FedSCA 0.6637 0.6923 0.7052 0.7141

FedGWO 0.6676 0.6907 0.7092 0.7207
FedLO 0.6879 0.7150 0.7320 0.7403

MNIST FedAvg, C = 1.0 0.9231 0.9517 0.9619 0.9729
FedPSO 0.9154 0.9448 0.9629 0.9757
FedSCA 0.9354 0.9564 0.9680 0.9778

FedGWO 0.9378 0.9602 0.9715 0.9863
FedLO 0.9422 0.9665 0.9814 0.9914

Rice leaf disease FedAvg, C = 1.0 0.8157 0.8411 0.8521 0.8597
FedPSO 0.8184 0.8416 0.8612 0.8746
FedSCA 0.8454 0.8695 0.8796 0.8867

FedGWO 0.8435 0.8729 0.8857 0.8908
FedLO 0.8617 0.8825 0.8932 0.9027

WaRP FedAvg, C = 1.0 0.7748 0.8025 0.8151 0.8229
FedPSO 0.7851 0.8071 0.8207 0.8308
FedSCA 0.7805 0.8060 0.8227 0.8354

FedGWO 0.7900 0.8144 0.8320 0.8402
FedLO 0.8233 0.8530 0.8655 0.8710
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While the proposed FedLO framework shows promising results, it is essential to
acknowledge certain limitations that should be addressed in future research:

• Scalability Challenges: The scalability of FedLO may face challenges in extremely-
large-scale federated environments. Exploring strategies to optimize the algorithm’s
performance as the number of edge devices increases is crucial for broader applicability.

• Sensitivity to Hyperparameters: The performance of FedLO may be sensitive to the
choice of hyperparameters.

• Dependency on Network Conditions: FedLO’s performance relies on stable commu-
nication networks between the central server and edge devices. Adverse network
conditions or high latency may impact the algorithm’s effectiveness. Investigating
techniques to mitigate the impact of unreliable networks is essential.

• Model Heterogeneity: The current version of FedLO assumes homogeneity among
edge devices, considering them equal participants. Addressing the challenges posed
by heterogeneous models on edge devices, such as varying architectures or capabilities,
is an important avenue for future research.

• Security Concerns: FL, in general, raises security and privacy concerns, and FedLO
is not exempt. Future work should include robust security mechanisms to safeguard
sensitive data during the FL process.

• Real-World Implementation Challenges: The deployment of FL frameworks, including
FedLO, in real-world scenarios may encounter practical challenges such as device
dropout, varying data distributions, or diverse data types. Addressing these chal-
lenges is crucial for successfully adopting FL in practical applications.

In addition to the mentioned restrictions, it is crucial to consider the extent of the
FedLO framework in contrast to conventional methods. Traditional approaches frequently
depend on centralized data processing, which may only sometimes be practical or desirable
in certain circumstances due to concerns regarding privacy, data locality, or regulatory re-
strictions. FedLO, which utilizes FL, presents a decentralized approach that permits model
training to occur locally on edge devices, thereby mitigating privacy risks linked to central-
izing data. Additionally, FedLO facilitates collaborative model training across distributed
edge devices while safeguarding data privacy, making it well-suited for applications where
data cannot be conveniently centralized.

6. Conclusions

This paper addressed the critical challenges associated with ML for sustainable devel-
opment and introduced a novel communication-efficient FL framework, FedLO, designed to
enhance scalability and sustainability in resource-constrained environments. The pressing
need for sustainable solutions necessitated innovative data-driven tools, and FL emerged
as a transformative paradigm by decentralizing ML training to edge devices. However,
communication bottlenecks hindered its scalability. The proposed FedLO framework lever-
ages the power of the LO, a nature-inspired metaheuristic algorithm, to strategically select
relevant model updates, significantly reducing communication overhead. The key contri-
butions of this work include the introduction of the FedLO framework, which achieved a
significant communication cost reduction compared to existing methods while maintain-
ing high model accuracy. Through rigorous evaluation of diverse datasets representing
various areas of sustainable development, FedLO demonstrated its superiority over other
FL approaches. The experiments showcased FedLO’s exceptional accuracy, scalability,
and sustainability performance, making it a promising solution for real-world sustainable
development initiatives. The study delved into the dynamics of model training using
FedLO on the rice leaf disease and waste recycling plant datasets, providing insights into
the algorithm’s effectiveness in progressively refining model performance over multiple
training epochs.

Moreover, the robustness of FedLO was demonstrated in an unstable network envi-
ronment, where random data drops were introduced. FedLO consistently outperformed
other FL algorithms, maintaining higher accuracy under varying failure rates. However,
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FedLO has limitations and areas where its performance can be enhanced. These include its
adaptability to different FL scenarios, optimization efficiency, and robustness in unstable
network environments.

To address these limitations and enhance FedLO’s performance, several avenues for
future research are proposed:

• Algorithmic Modifications for LO: Investigating and implementing modifications
to the LO algorithm could be explored to improve its efficiency and adaptability to
various FL scenarios. Fine-tuning the parameters or introducing novel strategies may
lead to further performance gains.

• Hybridization with Other Optimization Algorithms: Exploring hybrid approaches
by combining LO with other optimization algorithms could offer a synergistic effect,
leveraging the strengths of different algorithms. Hybridizing LO with popular opti-
mization techniques might enhance the overall performance and robustness of the
FedLO framework.

• Dynamic Adaptation of Communication Strategies: Developing dynamic communica-
tion strategies within FedLO that adapt to the changing network conditions could be
crucial. Investigating methods to dynamically adjust the communication frequency or
prioritize specific updates based on network stability can improve the framework’s
resilience in fluctuating environments.
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