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Abstract: Analyzing point clouds with neural networks is a current research hotspot. In order
to analyze the 3D geometric features of point clouds, most neural networks improve the network
performance by adding local geometric operators and trainable parameters. However, deep learning
usually requires a large amount of computational resources for training and inference, which poses
challenges to hardware devices and energy consumption. Therefore, some researches have started
to try to use a nonparametric approach to extract features. Point-NN combines nonparametric
modules to build a nonparametric network for 3D point cloud analysis, and the nonparametric
components include operations such as trigonometric embedding, farthest point sampling (FPS), k-
nearest neighbor (k-NN), and pooling. However, Point-NN has some blindness in feature embedding
using the trigonometric function during feature extraction. To eliminate this blindness as much as
possible, we utilize a nonparametric energy function-based attention mechanism (ResSimAM). The
embedded features are enhanced by calculating the energy of the features by the energy function, and
then the ResSimAM is used to enhance the weights of the embedded features by the energy to enhance
the features without adding any parameters to the original network; Point-NN needs to compute
the similarity between each feature at the naive feature similarity matching stage; however, the
magnitude difference of the features in vector space during the feature extraction stage may affect the
final matching result. We use the Squash operation to squeeze the features. This nonlinear operation
can make the features squeeze to a certain range without changing the original direction in the vector
space, thus eliminating the effect of feature magnitude, and we can ultimately better complete the
naive feature matching in the vector space. We inserted these modules into the network and build a
nonparametric network, Point-Sim, which performs well in 3D classification tasks. Based on this,
we extend the lightweight neural network Point-SimP by adding some trainable parameters for the
point cloud classification task, which requires only 0.8 M parameters for high performance analysis.
Experimental results demonstrate the effectiveness of our proposed algorithm in the point cloud
shape classification task. The corresponding results on ModelNet40 and ScanObjectNN are 83.9%
and 66.3% for 0 M parameters—without any training—and 93.3% and 86.6% for 0.8 M parameters.
The Point-SimP reaches a test speed of 962 samples per second on the ModelNet40 dataset. The
experimental results show that our proposed method effectively improves the performance on point
cloud classification networks.

Keywords: deep learning; point cloud; attention mechanism; pattern recognition

1. Introduction

In recent years, significant advancements have been witnessed in the field of 3D
computer vision, which has become a subject of extensive research. Various formats,
including meshes, volumetric meshes, depth images, and point clouds, can be utilized
to represent 3D data [1]. Point clouds offer an unorganized sparse depiction of a 3D
point set while preserving the original geometric information of an object in 3D space.
Their representation is characterized by its simplicity, flexibility, and retention of most
information without the need for discretization. The rapid development of 3D sensor
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technology, including various 3D scanners and LiDARs, has facilitated the acquisition of
point cloud data [2]. Owing to its abundant geometric, shape, and scale information, 3D
point clouds are crucial for scene understanding and find application in diverse fields such
as autonomous driving, robotics, 3D reconstruction, and remote sensing, such as through
RN4 and RN5.

However, the disorder and irregularity inherent in 3D point cloud data present chal-
lenges for deep learning-based point cloud feature extraction methods, which play a
vital role in various point cloud processing tasks. Numerous approaches have been pro-
posed to transform point clouds into regular structures, such as projecting into multiview
images [3,4] and voxelization [5,6]. Although these methods have shown superior results
in point cloud classification and segmentation tasks compared to traditional manual fea-
ture extraction techniques, they compromise the intrinsic geometric relationships of 3D
data during processing. Moreover, the computational complexity of voxelization, being
proportional to the cube of the volume, limits its application in more complex scenes.

To address these challenges, researchers have started considering the direct processing
of raw point cloud data to reduce computational complexity and to fully leverage the
characteristics of 3D point cloud data. PointNet [7] directly processes raw data by extracting
point cloud features through MLP (MultiLayer Perceptron) and max pooling, thereby
ensuring permutation invariance of the point cloud. Although the processing method is
simple, it yields significant results and has become an important theoretical and ideological
foundation in 3D point cloud processing. PointNet++ [8] extends PointNet by considering
both global and local features. It obtains key point sets through farthest point sampling
(FPS) and constructs a local graph using k-nearest neighbors (k-NN). Subsequently, MLP
and max pooling are employed to aggregate the local features.

Since PointNet++, the main trend in deep learning-based point cloud processing meth-
ods has been to add advanced local operators and extend the trainable parameters, and
while the performance gain rises by the amount of parameters added, so does the cost of
computing resources, and deep learning training is often time-consuming. Many previous
works have approached deep learning from a lightweight perspective in order to effi-
ciently address the training and inference time issues of deep learning. For example,
MobileNet [9] uses depthwise separable convolution to build a lightweight network,
which improves the overall network accuracy and speed; UL-DLA [10] proposes an ul-
tralightweight deep learning architecture. It forms a Hybrid Feature Space (HFS), which
is used for tumor detection using a Support Vector Machine (SVM), thereby culminating
in high prediction accuracy and optimum false negatives. Point-NN [11] proposes a new
approach to nonparametric point cloud analysis that employs simple trigonometric func-
tions to reveal local spatial patterns and a nonparametric encoder for networks to extract
the training set features, which are cached as a point feature repository. Finally, the point
cloud classification is accomplished using naive feature matching. However, its simple use
of trigonometric functions in the process of feature embedding is blind and may lead to
the neglect of key features. And because of its feature magnitude change in vector space
during feature extraction, this will affect the stability of the model and have an impact in
the final naive feature matching stage.

Inspired by the above work, we propose a nonparametric network model for point
cloud classification task, which is composed of nonparametric modules, and uses the
nonparametric attention block ResSimAM(Residual Simple Attention Module) to derive
the attention weights, as well as the features during the feature extraction process, in order
to enhance the weights of features with higher energy. In the feature extraction stage, a
nonlinear feature transformation is achieved by using the Squash operation to squeeze
the input features to a certain range without changing the direction in the vector space.
The Squash operation helps to preserve the directional information of the feature vectors
while eliminating the effect of magnitude, thereby allowing the network to better learn
the structure and patterns in the data and better preserving the relationships between the
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feature vectors, which helps reduce numerical instability due to vector length variations
for subsequent naive similarity matching.

The key contributions of our contributions can be summarized as follows:

1. Aiming at the problem that there is some blindness in Point-NN when using trigono-
metric functions to encode features for mapping features into high dimensional space,
we calculate the energy of each feature by utilizing an energy function and then add
weights for each feature according to its energy, which improves the model’s ability
to extract features without adding any trainable parameters to the original model.

2. In order to alleviate the influence of feature magnitude in the final naive feature
matching, we use the Squash operation in the stage of feature extraction so that the
features are squeezed to a certain range without changing the direction in the vector
space, thereby eliminating the instability brought by the feature magnitude. This
enables the network to better learn the structure and patterns in the data and improve
the model classification ability.

3. We extend a lightweight parametric model by adding a small number of MLP layers
to the nonparametric model feature extraction stage and applying the MLP to the
final global features to obtain the final classification results, and we validate the
performance of the model in the absence of other state-of-the-art operators.

The remainder of the paper is structured as follows. Section 2 gives related work.
Section 3 describes the nonparameter network Point-Sim and the lightweight network
Point-SimP methods in detail. We evaluate our methods in Section 4. Section 5 concludes
the paper.

2. Related Work

To effectively handle 3D data, scholars have conducted diverse and significant en-
deavors aimed at addressing the challenges posed by the inherent sparsity and irregularity
of point clouds. Such endeavors can be categorized into multiview-based, voxel-based,
and point-based methodologies. Initially, we review the learning methodologies grounded
in multiview representation and voxelization. Subsequently, we scrutinize point-based
learning methodologies, which encompass graph-based and attention-based strategies.

2.1. Multiview-Based Methods

The Multiview Convolutional Neural Network (MVCNN) [4] projects point clouds
or 3D shapes onto 2D images, thereby subsequently employing Convolutional Neural
Networks (CNNs) for processing the projected 2D images. This methodology integrates
feature information from multiple viewpoints into a compact 3D shape descriptor via
convolutional and pooling layers. These aggregated features are then fed into a fully con-
nected layer for classification. Zhou [12] proposed the Multiview PointNet (MVPointNet),
where the views are acquired through a Transformation Network (T-Net) [7] to generate
transformation matrices that determine multiple views captured at identical rotational
angles, thereby ensuring the network’s robustness against geometric transformations.

Despite the efficacy of projecting point clouds into multiple views for point cloud
segmentation and classification tasks compared to conventional manual feature extraction
methods, notable limitations persist. Firstly, predetermined viewpoints are required when
projecting 3D point clouds into multiple 2D views. View variations result in differential
contributions to the final shape descriptor; similar views yield akin contributions, whereas
significantly distinct views offer advantages for shape recognition. Secondly, 2D projections
are confined to modeling the surface attributes of objects, which are unable to capture the
3D internal structure adequately. This partial representation disrupts intrinsic geometric
relationships within 3D data, thus failing to exploit contextual information comprehensively
within 3D space and incurring information loss, which is particularly unsuitable for large-
scale scenes. Furthermore, feature extraction via multiview approaches often necessitates
pretraining and fine-tuning, thereby consequently escalating workload demands.
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2.2. Voxel-Based Methods

The VoxNet framework, as introduced by [5], initially employs an occupancy grid
algorithm to represent the original point cloud as multiple 3D grids. Each grid corresponds
to a voxel, and subsequent 3D convolutions are applied for feature extraction. Le proposed
a hybrid network named PointGrid in the work of [13], which integrates both point and
grid representations for efficient point cloud processing. This approach involves sampling
a constant number of points in each embedded volumetric grid cell, thus allowing the
network to utilize 3D convolutions to extract geometric details.

In contrast, voxel-based methods follow a two-step process. Firstly, the original
point cloud undergoes voxelization, thereby converting the unordered point cloud into
an ordered structure. Subsequently, 3D convolution is applied for further processing.
This approach is more direct and simpler, thus drawing inspiration directly from 2D
convolutional neural networks. However, it comes with a significant computational cost,
and due to the uniformity of each voxel postvoxelization, there is a loss of information
regarding fine structures.

2.3. Point-Based Methods
2.3.1. Graph-Based Methods

Point cloud data, which are characterized by an irregular and a disordered distribu-
tions of points, inherently lack explicit interconnections among individual points. Never-
theless, these non-Euclidean geometric relationships can be effectively modeled through
graph structures. PointNet [7] stands out as the pioneering network specifically designed
for the direct processing of point clouds. Despite the groundbreaking achievements of the
PointNet network in tasks such as point cloud classification or segmentation, it remains
afflicted by the limitation of its inadequate capture of local neighborhood information. To
address this limitation and extract more nuanced local features, Qi [8] extended PointNet
by introducing the PointNet++ network framework. The fundamental concept involves
the construction of a local hierarchical module within the network. Each layer within this
module comprises a sampling layer, a grouping layer, and a feature extraction layer. By
selecting the local neighborhood center of mass through the FPS layer—forming a local
neighborhood subset via the k-NN layer—and deriving local neighborhood feature vectors
through the PointNet layer, the framework adeptly captures local features across a multi-
level hierarchical structure. Nonetheless, PointNet++ faces challenges due to its isolation
of individual point sample features within the local neighborhood and the adoption of a
greedy max pooling strategy for feature aggregation, thereby risking information loss and
presenting certain constraints. In response to these issues, Wang [14] proposed Softpool-
net, which introduces the concept of soft pooling by substituting max pooling with a soft
pooling mode. Unlike the exclusive retention of maximal features in max operation, soft
pooling retains more features by preserving the first N maximal features during pooling.
Meanwhile, Zhao [15] introduced 3D point cloud capsule networks, and they created
an autoencoder tailored for processing sparse 3D point clouds while preserving spatial
alignment and consolidating the outcomes of multiple maximal pool feature mappings into
an informative latent representation through unsupervised dynamic routing.

Nevertheless, it fails to adequately handle neighborhood points information, thus
resulting in inadequate interactions between points. In order to enhance direct information
exchange and foster better communication, DGCNN [16] employs the k-NN algorithm to
construct local graphs, thus grouping points in semantic space and facilitating global feature
extraction through continuous feature updates of edges and points. Notably, this approach
enables the capture of geometric features of the local neighborhood while maintaining
permutation invariance. Furthermore, DeepGCN [17] leverages deep Convolutional Neural
Network (CNN) principles emphasizing deep residual connections, extended convolution,
and dense connections, thereby enabling reliable training in deep models. GACNet [18],
on the other hand, enhances segmentation results in edge areas by constructing a graph
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structure for each point based on its neighboring points and integrating an attention
mechanism to compute edge weights between the central point and its neighbors.

Wang [19] proposed a method for training deformed convolution kernels in local
feature extraction, wherein an anchor point is initially selected, followed by the selection
of neighboring points through k-NN. Subsequently, a set of displacement vectors is con-
structed to represent features in this region, thereby facilitating continuous updates of
these displacement vectors to extract local point cloud features. Finally, multiple sets of
learned displacement vectors are weighted and summed to construct the convolutional
kernel for feature extraction, which is then applied to perform feature extraction on the
image. Notably, Point-NN [11] introduced a nonparametric network for 3D point cloud
analysis comprising purely nonparametric components such as FPS, k-NN, trigonometric
functions, and pooling operations. Remarkably, it demonstrates exceptional performance
across various 3D tasks without any parameters or training, even outperforming existing
fully trained models.

2.3.2. Attention-Based Methods

SENet [20] introduces an efficient and lightweight gating mechanism that explicitly
constructs correlations between channels. This consideration stems from the acknowledg-
ment that pixels carry varying degrees of importance across different channels. These
importance weights are then leveraged to amplify useful features while suppressing less
relevant ones. CBAM [21] derives attention mappings separately along two dimensions,
channel and spatial, within the feature mapping. Subsequently, these attention mappings
are applied to the input for adaptive feature refinement of the feature map. With the
demonstrated success of self-attention and transformer mechanisms in natural language
understanding [22], there has been a proliferation of efforts in computer vision to substitute
convolutional layers with self-attention layers. However, despite its accomplishments,
self-attention incurs computational costs that scale quadratically with the size of the input
image. PAT [23] employs a self-attention-like mechanism to capture correlation information
between points and extract the most salient global features via Gumbel downsampling.
Transformer [24] devises a point transformer layer and builds a residual point transformer
block around it, thus enabling information exchange between local feature vectors and the
generation of new feature vectors for all points. PCT [25] encodes input coordinates into the
feature space to generate features and conducts feature learning through the offset attention
mechanism. PoinTr [26] processes the point cloud into a series of point proxies, which
represent features of local areas within the point cloud. These proxy points encapsulate
neighborhood information, which is then inputted into a transformer for further processing.
Subsequently, an encoder–decoder architecture is employed to accomplish the point cloud
completion task.

3. Methods

In this section, we will present the details of the nonparametric network Point-Sim
and the lightweight neural network Point-SimP. We will show the overall structure of the
proposed method, which consists of multiple reference-free components and incorporates
the operations of the nonparametric attention mechanism and the feature Squash in the
process of feature extraction.

3.1. Overall Structure

The nonparametric modeling of point cloud classification method known as Point-Sim
is shown in Figure 1. In the classification model, nonparametric feature embedding is first
performed using trigonometric functions(the Trigo block). Subsequently, in the hierarchical
feature extraction stage, the centroids are selected using FPS, and from these centroids, the
point clouds are grouped using k-NN. We apply trigonometric functions to map the local
geometric coordinate. In order to better match the feature naive similarity, the geometric
and local features are added and fed into the Squash block, the features are squeezed to
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make them smoother, and then the smoothed features are fed into the ResSimAM block so
that the model can pay better attention to the features with higher energy; this improves
the classification ability of the encoder, and then finally the global features are obtained by
using the pooling operation.

The nonparametric point cloud classification model has been extended by integrating
neural network layers at various stages within Point-Sim. The constructed Point-SimP
network, outlined in Figure 2, introduces a lightweight framework. To enhance the model,
the raw embedding layer within the nonparametric network was substituted with an MLP.
Furthermore, MLP layers were incorporated post the Feature Expansion and Geometry
Extraction phases during feature extraction and applied to the ultimate global feature to
obtain the classification outcomes.

Figure 1. Overall structure of Point-Sim. Different colors represent different module types in
the network.

Figure 2. Overall structure of Point-SimP. Different colors represent different module types in
the network.

3.2. Basic Components

Our approach begins from the local structure, thereby extracting features layer by
layer. We select a certain number of key points within the point clouds, utilizing k-NN to
select the nearest neighboring points to generate local regions, and update the features of
this local region. By repeating multiple stages, we gradually expand the sensory field and
obtain the global geometric information of the point clouds. In each stage, we represent
the input point clouds of the previous stage as {pi, fi}M

i=1, where pi ∈ R1×3 represents the
coordinates of point i, and fi ∈ R1×C represents the features of point i. To begin, the point
set is downsampled using FPS to choose a subset of points from the original set. In this
case, we select M

2 local centroids from the M points, where M is an even number.

{pc, fc}
M
2

c=1 = FPS({pi, fi}M
i=1) (1)

Afterward, by employing the k-NN algorithm, groups of localized 3D regions are
established by selecting the k-nearest neighbors from the original M points for each centroid
c (Figure 3).

Nc = k − NN(pc, {pi}M
i=1) (2)

where Nc ∈ Rk×1 represents the k-nearest neighbors.



Algorithms 2024, 17, 158 7 of 16

Figure 3. K-nearest neighbors of point Xi. Where Xi represents the center point of the local region,
Xi1, Xi2, ..., Xi5 represent the nearest neighbors of Xi, and the rest of the points are not included in
the local region.

After obtaining the local information, we perform feature expansion (Figure 4) to
obtain the features fl ∈ RC×K of the local points. These are obtained by repeating the
centroid point k times and concatenating it with the local features.

fl = Concat
(

Repeat( fc), { fn}k
n=1

)
(3)

where fc ∈ RC×1 represents the features of the center point, fn ∈ RC×1 denotes the features
of the remaining local points, and C = 2 × D.

Figure 4. Feature expansion for a local group.

Furthermore, the operator Φ(·) is utilized to extract the geometry features NC of each
local neighborhood, which comprises trigonometric functions, Squash, and ResSimAM.

Φ(·) = ResSimam(Sqush(Trigonometric(·) + fl)) (4)

Local features fl are processed using Φ(·), thus resulting in the enhanced local features
f j ∈ RC×K.

f j = Φ( fl) (5)

MaxPooling and MeanPooling are performed to aggregate the data, thus producing
fg ∈ RC×1, which signifies the global features of the chosen key points.

fg = MaxP
({

f j
}

j∈Nc

)
+ MeanP

({
f j
}

j∈Nc

)
(6)
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Following this, after the above feature extraction stage, max pool aggregation is used
to obtain the final high-dimensional global feature fout ∈ R1×CG :

fout = MaxP( fg) (7)

Finally, the resulting feature fout is cached in the memory bank Fmem, and we construct
a corresponding label memory bank Tmem as follows:

Fmem = Concat({ fout}N
n=1) (8)

Tmem = Concat({tablei}N
n=1) (9)

where tablei is the ground truth as one-hot encoding, and n represents the serial number of
each point cloud object in training set n from 1 to N.

3.3. Trigonometric Functions Embedding

Referring to positional encoding in the transformer [22], for a point in the input point
cloud, we use trigonometric functions to embed it into a C-dimensional vector:

Trigonometric(pi) = Concat( f x
i , f y

i , f z
i ) ∈ R1×Ci (10)

where f x
i , f y

i , f z
i ∈ R1× Ci

3 denote the embeddings of three axes, and Ci represents the
initialized feature dimension. Taking f x

i as an example, for channel index m ∈ [0, Ci
6 ], we

have the following:

f x
i [2m] = sin

(
αxi/β

6m
Ci

)
,

f x
i [2m + 1] = cos

(
αxi/β

6m
Ci

) (11)

where α and β respectively control the magnitude and wavelength. Due to the inherent
properties of trigonometric functions, the transformed vectors can effectively encode the
relative positional information between different points and capture fine-grained structural
changes in the three-dimensional shape.

3.4. Nonparametric Attention Module (Squash and ResSimAM)

SimAM [27] devises an energy function to discern the importance of neurons based
on neuroscience principles, with most operations selected according to this energy function
to avoid excessive structural adjustments. SimAM has been verified to have good perfor-
mance in 2D parametric models. Due to its nonparametric character, we are considering
incorporating this attention mechanism into our 3D point cloud network.

To successfully implement attention, we need to estimate the importance of individual
features. In visual neuroscience, neurons that exhibit unique firing patterns from surround-
ing neurons are often considered to have the highest information content. Additionally, an
active neuron may also inhibit the activity of surrounding neurons, which is a phenomenon
known as spatial suppression [28]. In other words, neurons that exhibit significant spatial
suppression effects during visual processing should be assigned higher priority. As with
SimAM, we use the following equation to obtain the minimum energy for each position:

e∗t =
4(σ̂2 + λ)

(t − µ̂)2 + 2σ̂2 + 2λ
(12)

where µ̂ = 1
M ∑M

i=1 xi, σ̂2 = 1
M ∑M

i=1(xi − µ̂)2, and M denote the feature dimensions.
The above equation indicates that the lower the energy e∗t , the greater the difference

between the neuron and its surrounding neurons, which is also more important in visual
processing. The importance of neurons is represented by 1/e∗t . To enhance the features, we
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construct a residual network. Firstly, we apply the Squash operation to smooth the features,
and then we add the ResSimAM attention operation to the squashed features:

X = Squash( fi + fc)

X̃ = sigmoid
(

1
E

)
⊙ X + X

(13)

where E groups all e∗t across all dimensions, and a sigmoid is added to restrict too large values
in E.

Algorithm 1 denotes the pseudocode for the implementation of ResSimAM using

PyTorch, where X = Squash( f ) as X = ∥ f ∥2

1+∥ f ∥2
f

∥ f ∥ , and ∥ f ∥ denotes the module of f .

Algorithm 1: A PyTorch-like implementation of our ResSimAM
Input: fi, fc, λ
Output: X

1 def forward ( fi, fc, λ):
2 X = Squash(fi + fc);
3 n = X.shape[2]− 1;
4 d = (X − X.mean(dim = [2])).pow(2);
5 v = d.sum(dim = [2])/n;
6 E_inv = d /(4 ∗ (v + lambda)) + 0.5;
7 return X* sigmoid(E_inv) + X;

The Squash operation enables a nonlinear feature transformation by squeezing the
input features to a certain range without changing the direction in the vector space. This
squeezing helps to preserve the directional information of the feature vectors while elimi-
nating the effect of magnitude, thereby allowing the network to better learn the structure
and patterns in the data and be able to better preserve the relationships between the feature
vectors. The feature squeezing operation makes each feature vector have a unit length,
which helps with better similarity computation between the vectors, and by normalizing
the vectors to a unit length, the magnitude difference between the vectors can be reduced,
which helps in reducing the numerical instability due to the change in the length of the vec-
tors for the subsequent similarity matching of the features and improves the generalization
ability of the network.

It is worth mentioning that Algorithm 1 does not introduce any additional parameter
and can therefore work well in a nonparametric network. The energy function involved
in the algorithm only requires computing the mean and variance of features, which are
then brought into the energy function for calculation. This allows for the computation of
weights to be completed in linear time.

3.5. Naive Feature Similarity Matching

In the naive feature similarity matching stage (Figure 5), for a test point cloud, we
similarly utilize a nonparametric encoder to extract its global feature f t

out ∈ R1×CG .
Firstly, we calculate the cosine similarity between the test feature f t

out and Fmem:

Scos =
f t
outFmem

∥ f t
out∥∥Fmem∥

∈ R1×N (14)

The above equation represents the semantic relevance between the test point cloud
and N training samples. By weighting with Scos, we integrate the one-hot labels from the
label memory Tmem as:

logits = φ(ScosTmem) ∈ R1×K (15)

where φ(x) = exp(−γ(1 − x)) serves as an activation function from Tip-adapter [29].



Algorithms 2024, 17, 158 10 of 16

In Scos, the higher the score of a similar feature memory pair, the greater its con-
tribution to the final classification logits and vice versa. Through this similarity-based
label integration, the point memory bank can adaptively differentiate different point cloud
instances without any training.

Figure 5. Naive feature similarity matching.

4. Experiments

To validate the effectiveness, we evaluated the efficacy and versatility of the pro-
posed methods for the shape classification task on the ModelNet40 dataset and ScanOb-
jectNN dataset.

4.1. Shape Classification Task on ModelNet40 Dataset

Dataset: We evaluated our method on the ModelNet40 dataset for the classification
task. This dataset comprises a total of 12,311 CAD mesh models, with 9843 models assigned
for training and 2468 models for testing. The dataset covers 40 different classes.

In order to optimize memory usage and improve computational speed, we followed
the experimental configuration of PointNet [7]. We uniformly selected 1024 points from the
mesh surface using only the 3D coordinates as input data. We used the overall accuracy
(OA) and the number of parameters for evaluation.

For the parametric network, we applied data augmentation; the data were augmented
by adding jitter, point random dropout, and random scale scaling to each coordinate point
of the object, where the mean value of jitter is 0, and its standard deviation is 0.1. The
random scale scaling was between 0.66 and 1.5, and the probability of each point dropping
out ranged from 0 to 0.875. The data were augmented with a weight decay of 0.0001 using
an initial learning rate of 0.003 for the Adam optimizer with an initial learning rate of
0.001, and a weight decay of 0.0001 was used. In addition, training was performed using
crossentropy loss. The batch size set for training was 32, and the maximum epoch was set
to 300.

Experimental Results: The classification results on ModelNet40 are shown in Table 1.
We compared our results with some recent methods on a RTX 3090 GPU. This comparison
signifies that our proposed model generally outperformed several other models. We
compared our results with respect to overall accuracy (OA), the number of parameters
(Params), training time, and test speed (samples/second) with some recent methods. The
proposed nonparametric method achieved an OA of 83.9% with 0 M parameters and
without any training time, and the proposed parametric method achieved an OA of 93.3%
with 0.8 M parameters, while our light parametric model test speed reached 926 samples
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per second. And because of the Squash module, our model was able to converge in a
relatively short time of 3.1 h. Based on these comparisons with our method and related
works, we have reached the conclusion that the network has advantages in terms of training
speed and accuracy, as well as device requirements.

Table 1. Classification results on ModelNet40.

Method Overall Accuracy (%) Parameters Train Time Test Speed

PointNet 89.2 3.5 M - -
PointNet++ 90.7 1.7 M 3.4 h 521

GBNet 93.8 8.4 M - 189
DGCNN 92.9 1.8 M 2.4 h 617

PointMLP 94.1 12.6 M 14.4 h 189
Point-NN 81.80 0 M 0 275

Point-Sim 83.9 0 M 0 231
Point-SimP 93.3 0.8 M 3.1 h 962

Our results are visualized on the ModelNet40 dataset, and the results are shown
in Figure 6. For the nonparameterized model Point-Sim, the model OA was improved
compared to Point-NN with similar inference speed. For the parameterized model Point-
SimP, it was able to greatly improve the inference speed while maintaining the accuracy
and had an advantage in the network training time.

Figure 6. Visualization results on the Modenet40 dataset.

We generated a 40 × 40 confusion matrix for our classification results, and the results
are shown in Figure 7, in which there are 40 categories, with the horizontal axis representing
the predicted labels and the vertical axis representing the ground truth labels (including
airplane, bathtub, bed, bench, etc.). By visualizing the confusion matrix, we can see that
most of the categories were classified well; for example, all the classifications on label 1
(airplane) and label 19 (keyboard) are correct, but the accuracies on label 16 (flower pot)
and label 32 (stairs) still need to be improved. Figure 8 shows some representative results
on ModelNet40.
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Figure 7. Confusion matrix on Point-Sim result. The class containing the most test objects in the test
dataset has 100 objects.

Figure 8. Some representative classification results. P represents predicted label, and T represents the
ground truth.

4.2. Shape Classification Task on ScanObjectNN Dataset

Dataset: Although ModelNet40 is a widely adopted benchmark for point cloud analy-
sis, its synthetic nature and the fast-paced advancements in this field may not fully address
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the requirements of current research. Thus, we have also undertaken experiments utilizing
the ScanObjectNN [30] benchmark.

The ScanObjectNN dataset consists of 15,000 objects, with 2902 unique instances found
in the real world. These objects belong to 15 different classes. However, analyzing this
dataset using point cloud analysis methods can be challenging due to factors such as
background interference, noise, and occlusion. Our loss function, optimizer, learning rate
evolution scheduler, and data augmentation scheme maintained the same settings as the
ModelNet40 classification task. We used the overall accuracy (OA) and the number of
parameters for evaluation.

Experimental Results: The classification results obtained from ScanObjectNN are
shown in Table 2. We assessed the accuracy of all methods by reporting the performance on
the official split of PB-T50-RS. The model achieved an OA of 66.3% with 0 M parameters and
86.6% with 0.8 M parameters, thereby demonstrating the versatility of our proposed method
and the robustness of our model under background interference, noise, and occlusion.

Table 2. Classification results on ModelNet40.

Method Overall Accuracy (%) Parameters

PointNet 68.2 3.5 M
PointNet++ 77.9 1.7 M

GBNet 80.5 8.4 M
DGCNN 78.1 1.8 M

PointMLP 85.2 12.6 M
Point-NN 64.9 0 M

Point-Sim 66.3 0 M
Point-SimP 86.6 0.8 M

4.3. Ablation Study

To showcase the efficacy of our approach, we conducted an ablation study on the clas-
sification task in ModelNet40. Furthermore, we performed separate ablation experiments
on the ResSimAM and the Squash to assess the impact of removing each component.

In our settings (Table 3), W/O R means no ResSimAM interaction, and W/O S means
no Squash. The corresponding results are shown in Table 4.

Table 3. Settings of ResSimAM and Squash. where ✓means that the module is included, and - means
that the module is not included.

Method Res-SimAM Squash

W/O R&S - -
W/O S ✓ -
W/O R - ✓

Point-Sim ✓ ✓

Table 4. ResSimAM and Squash ablation results.

Method Overall Accuracy (%)

W/O R&S 81.8
W/O S 82.4
W/O R 83.2

Point-Sim 83.9

We utilized ResSimAM, which resulted in an improvement of the overall accuracy by
0.6%. We employed Squash to squeeze the features, thus leading to a 1.4% improvement in
the overall accuracy. And we employed both operations—leading to a 2.1% improvement—
and obtained a state-of-the-art result of 83.9% in no-parametric point cloud classification. It
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has been proven that using ResSimAM can better focus on higher energy features during
the feature extraction stage, which can enhance features useful for subsequent processing,
while the Squash module enables the input features to be squeezed to a certain range
without changing the direction in the vector space, which realizes a nonlinear feature
transformation and reduces the numerical instability due to the change of vector length.
With ResSimAM, we can indeed better capture features with higher energy for feature
enhancement, but it is possible that features with higher energy are not the most appropriate
choice in the subsequent processing, so this approach brings some enhancement to the
model’s classification ability but with some limitations. For the Squash operation, although
squeezing the features facilitates the network to capture the relationship between the
features and better perform the naive similarity matching, squeezing the features also
brings some loss of feature information. These aspects still need to be improved.

5. Conclusions

This study introduces an innovative approach aimed at improving the efficiency of
existing point cloud classification methods. The methods for deep learning-based point
cloud processing have become increasingly intricate and often requiring long training
times and high costs. We propose a new network model: a nonparametic point cloud
classification network. We utilized trigonometric functions for embedding and apply
Squash to smooth the features for subsequent processing. Then, we enhanced the features
using the nonparametic attention mechanism ResSimAM, thereby leading to significant
improvements in the purely nonparametric network for 3D point cloud analysis. Based
on this, we also extended a lightweight parametric network, which allows for efficient
inference with a small number of parameters. For the nonparametric model, our model
achieved 83.9% accuracy on the ModelNet40 dataset without any training, which greatly
saves time in training the model for the point cloud classification task. For the lightweight
parametric model, we achieved 93.3% accuracy using only 0.8 M parameters, the training
time was only 3.1 h, and the inference speed reached 962 samples per second, which will
greatly reduce the pressure on hardware devices and keep the inference speed relatively
high. Various tasks like autonomous vehicles, virtual reality, and aerospace fields demand
real-time data handling, and our lightweight models could work efficiently in these tasks.

Although our method has achieved promising results, there is still room for improve-
ment. For nonparametric network models, the feature extraction ability of our network
on diverse datasets still needs to be tested and improved. For the lightweight paramet-
ric model, although the Squash operation was used to accelerate the convergence of the
network, it brings some impact on the feature extraction ability of the network. In future
research, we will focus on enhancing the generality and robustness of the proposed net-
work. Future work needs to consider the computational efficiency of the network and the
feature extraction capability of the model, as well as propose more effective and concise
lightweight methods. This can be achieved by designing new nonparametric modules
and combining them with a small number of neural networks, as well as adopting more
efficient computational methods. In future work, we will explore nonparametric models
with a wider range of application scenarios.
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Symbol
The list of abbreviations and symbols is shown below.

Symbols Definition
FPS() farthest point sampling
k − NN() k-nearest neighbor
Concat() concatnate the feature
MaxP() max pooling
MeanP() mean pooling
sigmoid() sigmoid activation
Fmem feature memory
Tmem label memory
Acronyms Full Form
FPS farthest point sampling
k-NN k-nearest neighbor
MLP multilayer perceptron
CNN convolutional neural networks
OA overall accuracy
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