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Abstract: Item response theory (IRT) models are frequently used to analyze multivariate categorical
data from questionnaires or cognitive test data. In order to reduce the model complexity in item
response models, regularized estimation is now widely applied, adding a nondifferentiable penalty
function like the LASSO or the SCAD penalty to the log-likelihood function in the optimization
function. In most applications, regularized estimation repeatedly estimates the IRT model on a grid
of regularization parameters λ. The final model is selected for the parameter that minimizes the
Akaike or Bayesian information criterion (AIC or BIC). In recent work, it has been proposed to directly
minimize a smooth approximation of the AIC or the BIC for regularized estimation. This approach cir-
cumvents the repeated estimation of the IRT model. To this end, the computation time is substantially
reduced. The adequacy of the new approach is demonstrated by three simulation studies focusing
on regularized estimation for IRT models with differential item functioning, multidimensional IRT
models with cross-loadings, and the mixed Rasch/two-parameter logistic IRT model. It was found
from the simulation studies that the computationally less demanding direct optimization based on
the smooth variants of AIC and BIC had comparable or improved performance compared to the
ordinarily employed repeated regularized estimation based on AIC or BIC.

Keywords: regularized estimation; item response models; smooth information criterion; differential
item functioning; multidimensional item response model; Rasch model; SCAD penalty

1. Introduction

Item response theory (IRT; [1–5]) modeling is a class of statistical models that ana-
lyze discrete multivariate data. In these models, a vector X = (X1, . . . , XI) of I discrete
variables Xi (i = 1, . . . , I; also referred to as items) is summarized by a unidimensional or
multidimensional factor variable θ. In this article, we confine ourselves to dichotomous
random variables Xi ∈ {0, 1}.

The multivariate distribution for the vector X ∈ {0, 1}I in the IRT model is defined as

P(X = x;γ) =
∫ I

∏
i=1

P(Xi = xi|θ;γi) f (θ;β)dθ , (1)

where γ = (γ1, . . . ,γI ,β) is the vector of model parameters. The vector γi contains item
parameters of item i, while β parametrizes the density f of the factor variable θ. Note
that (1) includes a local independence assumption. That is, the items Xi are conditionally
independent given the factor variable θ. The function θ 7→ P(Xi = xi|θ;γi) is also referred
to as the item response function (IRF; [6–8]). The two-parameter logistic (2PL) model [9]
uses the IRF θ 7→ Ψ(aiθ− bi), where Ψ denotes the logistic distribution function.
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Now, assume that N independent replications of X are available. The parameter
vector γ from these observations x1, . . . , xN can be estimated by minimizing the negative
log-likelihood function

l(γ) = −
N

∑
n=1

logP(X = xn;γ) , (2)

where the parameter vector γ = (γ1, . . . ,γH) contains H components that have to
be estimated.

In various applications, the IRT model (1) is not identified or includes too many
parameters, making the interpretation difficult. To this end, some sparsity structure [10] on
model parameters γ is imposed. Regularized estimation as a machine learning technique
is employed in IRT models to make estimation feasible [11–13]. More formally, sparsity
structure on γ is imposed by replacing the negative log-likelihood function with a negative
regularized log-likelihood function

lreg(γ; λ) = l(γ) + N
H

∑
h=1

ιhP(γh, λ) , (3)

where ιh is an indicator variable for the parameter γh that takes values 0 or 1. The indicator
ιh equals 1 if γh is regularized (i.e., the sparsity structure assumption applies to this
parameter), while it is 0 if γh should not be regularized. Let H1 = ∑H

h=1 ιh be the number
of regularized parameters and H0 = H − H1 is the number of nonregularized model
parameters. The regularized negative log-likelihood function lreg defined in (3) includes a
penalty function P that decodes the assumptions about sparsity. For a scalar parameter x,
the least absolute shrinkage and selection operator (LASSO; [14]) penalty is a popular
penalty function used in regularization, and it is defined as

PLASSO(x, λ) = λ|x| , (4)

where λ is a nonnegative regularization parameter that controls the extent of sparsity in the
obtained parameter estimate. It is well-known that the LASSO penalty introduces bias in
estimated parameters. To circumvent this issue, the smoothly clipped absolute deviation
(SCAD; [15]) penalty has been proposed.

PSCAD(x, λ) =


λ|x| if |x| < λ

−(x2 − 2aλ|x|2 + λ2)(2(a− 1))−1 if λ ≤ |x| ≤ aλ
(a + 1)λ2 if |x| > aλ

(5)

In many studies, the recommended value of a = 3.7 (see [15]) has been adopted
(e.g., [10,16]). Note that PSCAD has the property of the LASSO penalty around zero, but has
zero derivatives for x values that strongly differ from zero.

A parameter estimate γ̂ of the regularized IRT model is defined as an estimator defined
as the minimizer of lreg

γ̂(λ) = arg min
γ

lreg(γ; λ) . (6)

Note that the penalty function P involves a fixed tuning parameter λ. Hence, the parameter
estimate γ̂(λ) depends on λ. A crucial issue of the LASSO and the SCAD penalty functions
is that they are nondifferentiable functions because the function x 7→ |x| is nondifferentiable.
Hence, particular estimation techniques for nondifferentiable optimization problems must
be applied [14,17,18]. As an alternative, the nondifferentiable optimization function can
be replaced by a differentiable approximation [19–22]. For example, the absolute value
function x 7→ |x| in the SCAD penalty can be replaced with x 7→

√
x2 + ε for a sufficiently

small ε such as ε = 0.001. Using differentiable approximations has the advantage that
ordinary gradient-based optimizers can be utilized.
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In practice, the estimation of the regularized IRT model is carried out on a grid
of T values of λ in a grid Λ = {λ1, . . . , λT}. For each value of the tuning parameter λt,
a parameter estimate γ̂(λt) is obtained. A final parameter estimate γ̂ is obtained by
minimizing an information criterion

IC(γ̂(λ)) = 2l(γ̂(λ)) + KN

(
H0 +

H

∑
h=1

ιh1(γ̂h(λ) 6= 0)

)
, (7)

where the factor KN is chosen as KN = 2 for the Akaike information criterion (AIC; [23])
and KN = log N for the Bayesian information criterion (BIC; [24]) (see [25]).

If the regularized likelihood function is evaluated with differentiable approximations,
there are no regularized parameters that exactly equal zero (in contrast to special-purpose
optimizers for regularized estimation; [17]). Hence, estimated parameters γh are counted
as zero if they do not exceed a fixed threshold τ (such as 0.001, 0.01, or 0.02) in its absolute
value. Hence, the approximated information criterion is computed as

IC(γ̂(λ)) = 2l(γ̂(λ)) + KN

(
H0 +

H

∑
h=1

ιh1(|γ̂h(λ)| > τ)

)
. (8)

The final estimator of γ is defined as

γ̂IC = γ̂(λ̂opt) with λ̂opt = arg min
λ∈Λ

IC(γ̂(λ)) . (9)

Depending on the chosen value of KN , the regularized parameter estimate can be based on
the AIC and BIC.

The ordinary estimation approach to regularized estimation described above has the
computational disadvantage that it requires a sequential fitting of models on the grid Λ
of the regularization parameter λ. This approach is referred to as an indirect optimization
approach because it first minimizes a criterion function (i.e., the regularized likelihood
function) with respect to γ for a fixed value of λ and optimizes a second criterion (i.e., the
AIC or BIC) in the second step. O’Neill and Burke [26] proposed an estimation approach to
regularized estimation that directly minimizes a smooth version of the BIC (i.e., smooth
Bayesian information criterion, SBIC) for regression models. This direct estimation ap-
proach has been successfully implemented for structural equation models [21,27]. For these
models, the optimization based on SBIC had similar, if not better, performance than the
ordinary estimation of regularized models based on the AIC and BIC. In this paper, we
explore whether the smooth information criteria SBIC and the smooth Akaike information
criterion (SAIC) also hold promise for various applications in IRT models. Using a compu-
tationally cheaper alternative for regularized estimation is probably even more important
for IRT models than for structural equation models because IRT models are more difficult
to estimate and more computationally demanding. To the best of our knowledge, this is
the first attempt at using smoothed information criteria in IRT models.

The rest of this paper is structured as follows. The optimization using smooth infor-
mation criteria is outlined in Section 2. Afterward, three applications of regularized IRT
models are investigated in three simulation studies. Section 3 presents Simulation Study 1,
which studies regularized estimation for differential item functioning. Section 4 presents
Simulation Study 2, which investigates the regularized estimation of multidimensional IRT
models. The last Simulation Study 3 in Section 5 is devoted to regularized estimation of the
mixed Rasch/2PL model. Finally, this study closes with a discussion in Section 6.
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2. Smooth Information Criterion

In theory, a parameter estimate γ̂ for γ of the IRT model may be obtained by directly
minimizing an information criterion

γ̂ = arg min
γ

{
2l(γ) + KN

(
H0 +

H

∑
h=1

ιh1(γh 6= 0)

)}
. (10)

The optimization function in (10) can be interpreted as a regularized log-likelihood function
with an L0 penalty [28,29]. Obviously, the indicator function 1 in (10) counts the number of
regularized parameters that differ from zero. Researchers O’Neill and Burke [26] proposed
substituting the indicator function with a suitable differentiable approximation Nε. To this
end, a smooth information criterion, such as the SAIC and the SBIC, is obtained. In more
detail, the differentiable approximation Nε for 1 is defined as

Nε(x) =
x2

x2 + ε
, (11)

where ε > 0 is a sufficiently small tuning parameter, such as ε = 0.001. The function Nε
takes values close to zero for x arguments close to 0 and approaches 1 if |x|moves away
from 0. A smoothed information criterion SIC(γ) (abbreviated as SIC) can be defined as

SIC(γ) = 2l(γ) + KN

(
H0 +

H

∑
h=1

ιhNε(γh)

)
. (12)

We obtain the SAIC for the choices of KN in (12) of KN = 2 and the SBIC for KN = log(N).
Hence, the minimization problem (10) can be replaced by

γ̂ = arg min
γ

SIC(γ) = arg min
γ

{
2l(γ) + KN

(
H0 +

H

∑
h=1

ιhNε(γh)

)}
. (13)

The optimization function in (13) directly minimizes a smoothed version of the information
criterion.

3. Simulation Study 1: Differential Item Functioning

In the first Simulation Study 1, the assessment of differential item functioning
(DIF; [30–32]) is considered as an example. DIF occurs in datasets with multiple groups if
item parameters are not invariant (i.e., they are not equal) across groups. In this study, the
case of two groups in the unidimensional 2PL model is treated. The IRF is given by

P(Xi = 1|G = g, θ) = Ψ(aiθ− bi − δi1(G = 2)) for g = 1, 2 , (14)

where δi indicates the DIF in item intercepts, which is also referred to as uniform DIF.
The item parameters of item Xi are given by γi = (ai, bi, δi). The mean and the standard
deviation of θ in the first group are fixed for identification reasons to 0 and 1, respectively.
Then, the mean µ2 and the standard deviation σ2 of θ in the second group can be estimated.

It has been pointed out that additional assumptions about DIF effects δi must be
imposed for model identification [33–35]. Assuming a sparsity structure on the DIF effects
may be one plausible option. To this end, DIF effects δi (i = 1, . . . , I) are regularized in the
optimization based on the regularized log-likelihood function (3) or the minimization of
the SIC (13). Regularized estimation of DIF in IRT models has been widely discussed in the
literature [36–42].

3.1. Method

In this simulation study, we use a data-generating model (DGM) similar to the one
used in the simulation study in [38]. The factor variable θ was assumed to be univariate
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normally distributed. We fixed the mean µ1 and the standard deviation σ1 of the factor
variable θ in the first group to 0 and 1, respectively. The factor variable θ had a mean µ2
of 0.5 and a standard deviation σ2 of 0.8 in the second group. In total, I = 25 items were
used in this simulation study.

We now describe the item parameters used for the IRF defined in (14). The common
item discriminations ai of the 25 items were chosen as 1.3, 1.4, 1.5, 1.7, 1.6, 1.3, 1.4, 1.5, 1.7,
1.6, 1.3, 1.4, 1.5, 1.7, 1.6, 1.3, 1.4, 1.5, 1.7, 1.6, 1.3, 1.4, 1.5, 1.7, and 1.6. The item difficulties bi
were chosen as−0.8, 0.4, 1.2, 2.0, −2.0, −0.8, 0.4, 1.2, 2.0, −2.0, −0.8, 0.4, 1.2, 2.0, −2.0, −0.8,
0.4, 1.2, 2.0, −2.0, −0.8, 0.4, 1.2, 2.0, and −2.0. The DIF effects δi were zero for the first 15
items. Items 16 to 25 had non-zero DIF effects.

In the condition of small DIF effects (see [38]), we chose δi values of −0.60, 0.60, −0.65,
0.70, 0.65,−0.70, 0.60,−0.65, 0.70, and−0.65 for Items 16 to 25. In the condition of large DIF
effects, we multiplied these effects by 2. These two conditions are referred to as balanced
DIF conditions because the DIF effects δi average to zero. In line with other studies, we
also considered unbalanced DIF [43], in which we took absolute DIF effects in the small
DIF and large DIF conditions. In the unbalanced DIF conditions, all DIF effects δi were
assumed positive and did not average to zero. The item parameters can also be found at
https://osf.io/ykew6 (accessed on 2 April 2024).

Moreover, we varied the sample size N in this simulation study by 500, 1000, and 2000.
There were N/2 subjects in each of the two groups.

The regularized 2PL model with DIF was estimated with the regularized likelihood
function using the SCAD penalty on a nonequidistant grid of 37 λ values between 0.0001
and 1 (see the R simulation code at https://osf.io/ykew6; accessed on 2 April 2024). We
approximated the nondifferentiable SCAD penalty function by its differentiable approxi-
mating function using the tuning ε = 0.001. We saved parameter estimates that minimized
AIC and BIC. Item parameters that did not exceed the threshold τ = 0.02 in its absolute
value were regularized. In the direct minimization of SAIC and SBIC, we tried the values
0.01, 0.001, and 0.0001 of the tuning parameters ε. It was found that ε = 0.001 performed
best, which is the reason why we only reported this solution.

As the outcome of the simulation study, we studied (average) absolute bias and
(average) root mean square error (RMSE) of model parameter estimates as well as type-I
error rates and power rates. Absolute bias and RMSE were computed for estimates of
distribution parameters µ2 and σ2. Moreover, absolute bias and RMSE were computed
for all estimates of DIF effects δi. Formally, let γh be the hth parameter (h = 1, . . . , H) in
the model parameter vector γ. Let γ̂hr be the parameter estimate of γh in replication r
(r = 1, . . . , R). The absolute bias (abias) of the parameter estimate γ̂h was computed as

abias(γ̂h) =

∣∣∣∣∣ 1
R

R

∑
r=1
γ̂hr − γh

∣∣∣∣∣ . (15)

The RMSE was computed as

RMSE(γ̂h) =

√√√√ 1
R

R

∑
r=1

(γ̂hr − γh)2 . (16)

The average absolute bias and average RMSE were computed for DIF effects with true
values of 0 (i.e., DIF effects for Items 1 to 15; non-DIF items) and for DIF effects different
from 0 (i.e., DIF effects for Items 16 to 25; DIF items). The (average) type-I error rates
was assessed for non-DIF items as the proportion of events in which an estimated DIF
effect differed from zero (i.e., it exceeded the threshold τ = 0.02 in its absolute value). The
(average) power rates were determined for DIF items accordingly. More formally, the type-I
error rate or power rate (abbreviated as “rate” in (17)) was determined by

rate(γ̂h) = 100 · 1
R

R

∑
r=1

1(|γ̂hr| > τ) . (17)

https://osf.io/ykew6
https://osf.io/ykew6
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Absolute bias values smaller than 0.03 were classified as acceptable in this simulation
study. Moreover, type-I error rates smaller than 10.0 and power rates larger than 80.0 were
seen as satisfactory.

In total, R = 750 replications were conducted in each of the 2 (small vs. large DIF)
× 2 (balanced vs. unbalanced DIF) × 3 (sample size) = 12 cells of the simulation study.
The entire simulation study was conducted with the R [44] statistical software. The es-
timation of the regularized IRT model was carried out using the sirt::xxirt() function
in the R package sirt [45]. Replication material for the simulation study can be found
at https://osf.io/ykew6 (accessed on 2 April 2024).

3.2. Results

Table 1 displays the average absolute bias and the average RMSE of model parameters
as a function of the extent of DIF and sample size N for balanced and unbalanced DIF.
It turned out that the mean µ2 and the standard deviation σ2 of the second group were
unbiasedly estimated in the balanced DIF condition. Moreover, while DIF effects for
non-DIF items were unbiasedly estimated, DIF effects were biased for moderate sample
sizes (i.e., for N = 500 and 1000). In general, there was a similar behavior of regularized
estimation based on AIC and BIC compared to its smooth competitors SAIC and SBIC.
However, smooth information criteria had some advantages in smaller samples with respect
to the RMSE. Note that SAIC was the frontrunner in all balanced DIF conditions regarding
the RMSE of the estimate of µ2.

Table 1. Simulation Study 1: (Average) absolute bias and average root mean square error (RMSE) of
model parameters as a function of the extent of differential item functioning (DIF) and sample size N
for balanced and unbalanced DIF.

(Average) Absolute Bias (Average) RMSE

Par DIF N AIC SAIC BIC SBIC AIC SAIC BIC SBIC

Balanced DIF

µ2

500 0.001 0.004 0.000 0.003 0.104 0.090 0.113 0.104
small 1000 0.002 0.000 0.001 0.001 0.069 0.064 0.075 0.070

2000 0.001 0.001 0.000 0.000 0.048 0.046 0.046 0.047

500 0.005 0.000 0.007 0.004 0.101 0.093 0.096 0.098
large 1000 0.003 0.004 0.001 0.001 0.071 0.066 0.067 0.068

2000 0.002 0.001 0.002 0.002 0.050 0.049 0.049 0.049

σ2

500 0.002 0.002 0.007 0.001 0.071 0.070 0.070 0.070
small 1000 0.001 0.001 0.002 0.001 0.046 0.046 0.046 0.046

2000 0.001 0.001 0.001 0.002 0.032 0.032 0.032 0.032

500 0.003 0.001 0.000 0.002 0.068 0.067 0.067 0.067
large 1000 0.002 0.003 0.002 0.002 0.045 0.044 0.044 0.044

2000 0.001 0.001 0.001 0.001 0.035 0.035 0.035 0.035

δi
(no DIF)

500 0.006 0.006 0.003 0.004 0.216 0.187 0.108 0.148
small 1000 0.005 0.003 0.002 0.002 0.139 0.113 0.061 0.069

2000 0.002 0.002 0.001 0.001 0.098 0.073 0.032 0.028

500 0.003 0.005 0.003 0.002 0.201 0.188 0.082 0.142
large 1000 0.006 0.004 0.001 0.002 0.140 0.115 0.047 0.067

2000 0.006 0.002 0.001 0.001 0.098 0.073 0.031 0.030

δi
(DIF)

500 0.025 0.024 0.182 0.077 0.349 0.330 0.496 0.398
small 1000 0.006 0.008 0.062 0.041 0.211 0.213 0.315 0.276

2000 0.003 0.003 0.010 0.011 0.137 0.135 0.155 0.157

500 0.026 0.024 0.022 0.022 0.311 0.302 0.340 0.311
large 1000 0.017 0.017 0.015 0.015 0.212 0.207 0.210 0.208

2000 0.007 0.004 0.004 0.003 0.149 0.146 0.146 0.146

https://osf.io/ykew6
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Table 1. Cont.

(Average) Absolute Bias (Average) RMSE

Par DIF N AIC SAIC BIC SBIC AIC SAIC BIC SBIC

Unbalanced DIF

µ2

500 0.093 0.099 0.115 0.091 0.157 0.139 0.163 0.144
small 1000 0.050 0.047 0.049 0.033 0.111 0.087 0.110 0.085

2000 0.025 0.008 0.013 0.004 0.069 0.048 0.072 0.048

500 0.053 0.072 0.024 0.020 0.145 0.122 0.143 0.100
large 1000 0.024 0.030 0.003 0.002 0.084 0.076 0.077 0.068

2000 0.004 0.012 0.001 0.000 0.053 0.059 0.048 0.048

σ2

500 0.004 0.004 0.001 0.003 0.067 0.067 0.067 0.067
small 1000 0.000 0.000 0.001 0.000 0.048 0.048 0.048 0.048

2000 0.000 0.000 0.001 0.000 0.032 0.031 0.031 0.031

500 0.000 0.001 0.000 0.001 0.065 0.065 0.064 0.065
large 1000 0.000 0.001 0.001 0.000 0.046 0.046 0.045 0.045

2000 0.001 0.002 0.001 0.001 0.031 0.032 0.031 0.032

δi
(no DIF)

500 0.114 0.108 0.035 0.062 0.296 0.251 0.170 0.207
small 1000 0.072 0.055 0.028 0.016 0.207 0.150 0.143 0.095

2000 0.037 0.013 0.015 0.001 0.122 0.079 0.098 0.023

500 0.079 0.114 0.032 0.030 0.255 0.236 0.206 0.144
large 1000 0.038 0.051 0.005 0.003 0.133 0.145 0.072 0.065

2000 0.010 0.025 0.001 0.001 0.055 0.107 0.023 0.030

δi
(DIF)

500 0.185 0.221 0.399 0.262 0.405 0.409 0.553 0.462
small 1000 0.089 0.111 0.158 0.117 0.270 0.285 0.368 0.319

2000 0.036 0.010 0.020 0.010 0.167 0.135 0.179 0.151

500 0.075 0.112 0.037 0.029 0.339 0.312 0.354 0.303
large 1000 0.036 0.050 0.005 0.004 0.212 0.199 0.207 0.196

2000 0.011 0.020 0.004 0.004 0.138 0.144 0.137 0.138

Note. Par = parameter; µ2 = mean of θ in second group; σ2 = standard deviation of θ in second group; δi (no
DIF) = DIF parameters with zero population values; δi (DIF) = DIF parameters with non-zero population values;
Absolute bias values larger than 0.03 are printed in bold font.

In the unbalanced DIF condition, estimated group means and DIF effects were gener-
ally biased. However, the bias decreased with increased sample size and was smaller with
large instead of small DIF effects. SBIC was the frontrunner on five out of six conditions
for estimates of µ2 with respect to the RMSE. Only for N = 500 and small DIF, SAIC
outperformed the other estimators.

Table 2 presents average type-I error and power rates for DIF effects of non-DIF and
DIF items. It is evident that AIC and SAIC had inflated type-I error rates. Moreover, BIC
and SBIC had acceptable type-I error rates. However, SBIC had an inflated type-I error rate
for N = 500 in the unbalanced DIF condition with a small DIF. Overall, the power rates of
regularized estimators AIC and BIC performed similarly to their smooth alternatives SAIC
and SBIC. However, SBIC slightly outperformed BIC in terms of power rates.
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Table 2. Simulation Study 1: Type-I error rate and power rate for DIF effects δi as a function of the
extent of differential item functioning (DIF) and sample size N for balanced and unbalanced DIF.

Type-I Error Rate Power Rate

DIF N AIC SAIC BIC SBIC AIC SAIC BIC SBIC

Balanced DIF
500 17.0 13.7 2.1 6.2 83.6 85.8 52.7 73.3

small 1000 14.4 8.2 1.4 2.1 97.0 96.1 81.5 87.3
2000 14.4 6.2 0.7 0.5 99.9 99.8 97.6 97.5

500 15.3 14.2 1.2 5.8 99.7 99.8 97.5 99.4
large 1000 15.0 9.0 0.8 2.0 100 100 99.9 100

2000 14.5 6.2 0.6 0.6 100 100 100 100

Unbalanced DIF
500 25.8 23.8 4.8 11.3 68.9 65.6 30.6 54.0

small 1000 21.0 15.8 5.1 3.7 89.4 85.4 71.3 79.9
2000 13.6 9.1 2.7 0.4 97.7 99.6 95.9 98.1

500 14.5 28.9 3.4 6.3 98.0 99.0 96.7 98.9
large 1000 9.6 22.4 0.6 2.0 99.8 100 99.7 100

2000 3.4 21.5 0.3 0.6 100 100 100 100

Note. Type-I error rates larger than 10.0 and power rates smaller than 80.0 are printed in bold font.

4. Simulation Study 2: Multidimensional Logistic Item Response Model

In this Simulation Study 2, the multidimensional logistic IRT model [46] with cross-
loadings is studied. That is, each item Xi is allocated to a primary dimension θd. However,
it could be that this item also loads on other dimensions than the primary dimension
(i.e., the target factor variable). Formally, the IRF of the multidimensional logistic IRT
model is given by

P(Xi = 1|θ) = Ψ

(
D

∑
d=1

aidθd − bi

)
, (18)

where θ = (θ1, . . . , θD). All item discriminations aid are regularized in the estimation,
except those that load on the primary dimension. The means and standard deviations
of factor variables θd are fixed at 0 and 1 for identification reasons, respectively. The
correlations between the dimensions can be estimated.

The regularized estimation of this model has been discussed in Refs. [47–49]. To
ensure the identifiability of the model parameter, a sparse loading structure for item
discriminations aid is imposed. That is, most item discriminations are (approximately)
zero in the DGM. Only a few loadings are allowed to differ from 0. Notably, regularized
estimation of factor models can be regarded as an alternative to rotation methods in
exploratory factor analysis [50,51].

4.1. Method

In this simulation study, we used a DGM with I = 20 items and D = 2 factor
variables θ1 and θ2. The first 10 items loaded on the first dimension, while Items 11
to 20 loaded on the second dimension. The factor variable (θ1, θ2) was bivariate normally
distributed with standardized normally distributed components and a fixed correlation ρ
of 0.5.

Moreover, we specified five cross-loadings. Items 2 and 6 had a cross-loading of size δ
on the second dimension, while Items 13, 16, and 19 had a cross-loading of size δ on the
first dimension. The DGM is visualized in Figure 1. In more detail, the loading matrix A
that contains the item discriminations aid (see (18)) is given by
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X6 X7 X8 X9 X10X5X4X3X2X1

θ1

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

θ2

Figure 1. Simulation Study 2: Data-generating model with I = 20 items Xi (i = 1, . . . , 20) and two
factor variables θ1 and θ2. Cross-loadings are depicted by red dashed lines.

A =



0.6 0
0.8 δ

1.0 0
1.4 0
1.2 0
0.6 δ

0.8 0
1.0 0
1.4 0
1.2 0
0 0.6
0 0.8
δ 1.0
0 1.4
0 1.2
δ 0.6
0 0.8
0 1.0
δ 1.4
0 1.2



. (19)

The size of the cross-loading δ was chosen as 0.3, indicating a small cross-loading), or 0.5,
indicating a large cross-loading. The item difficulties bi (see (18)) of the 20 items were −0.8,
0.4, 1.2, 2.0, −2.0, −0.8, 0.4, 1.2, 2.0, −2.0, −0.8, 0.4, 1.2, 2.0, −2.0, −0.8, 0.4, 1.2, 2.0, and
−2.0. The item parameters can also be found at https://osf.io/ykew6 (accessed on 2 April
2024).

We varied the sample size N as 500, 1000, and 2000, which may be interpreted as a
small, moderate, and large sample size.

Like in Simulation Study 1, we compared the performance of regularized estima-
tion based on AIC and BIC with the smooth alternatives SAIC and SBIC. A nonequidis-
tant grid of 37 λ values between 0.0001 and 1 was chosen (see the R simulation code
at https://osf.io/ykew6; accessed on 2 April 2024). The optimization functions were speci-
fied with the same tuning parameters for differentiable approximations as in Simulation
Study 1 (see Section 3.1). (Average) absolute bias and (average) RMSE of model parameters,
as well as type-I error rates and power rates for cross-loadings, were assessed for the four
estimation methods.

In total, R = 750 replications were conducted in each of the 2 (small vs. large cross-
loadings) × 3 (sample size) = 6 cells of the simulation study. The whole simulation study
was conducted using the statistical software R [44]. The estimation of the regularized
multidimensional logistic IRT model was carried out using the sirt::xxirt() function in

https://osf.io/ykew6
https://osf.io/ykew6
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the R package sirt [45]. Replication material for this simulation study can also be found
at https://osf.io/ykew6 (accessed on 2 April 2024).

4.2. Results

Table 3 reports the (average) absolute bias and (average) RMSE of estimated model
parameters. It turned out that the factor correlation ρwas biased for small and moderate
sample sizes of N = 500 and N = 1000. The bias was reduced with larger cross-loadings
in large sample sizes. However, a notable bias was even present for a large sample size
N = 2000 if the BIC or SBIC was used. However, AIC and SAIC outperformed the other
criteria for estimates of ρwith respect to bias and RMSE. Interestingly, the RMSE of SAIC
was substantially smaller compared to AIC for the factor correlation ρ, as well as for true
zero cross-loadings (i.e., rows “CL = 0” in Table 3) and non-zero cross-loadings (i.e., rows
“CL 6= 0” in Table 3).

Table 3. Simulation Study 2: (Average) absolute bias and average root mean square error (RMSE) of
model parameters as a function of the size of cross-loadings and sample size N.

Absolute Bias RMSE

Par CL N AIC SAIC BIC SBIC AIC SAIC BIC SBIC

ρ

500 0.064 0.054 0.104 0.070 0.151 0.102 0.134 0.110
small 1000 0.040 0.070 0.088 0.085 0.157 0.096 0.124 0.104

2000 0.015 0.018 0.059 0.065 0.077 0.052 0.082 0.081

500 0.055 0.062 0.136 0.073 0.167 0.109 0.179 0.117
large 1000 0.029 0.054 0.074 0.057 0.144 0.100 0.124 0.099

2000 0.010 0.014 0.016 0.014 0.062 0.047 0.058 0.051

CL = 0

500 0.041 0.016 0.015 0.008 0.243 0.113 0.130 0.095
small 1000 0.025 0.028 0.008 0.014 0.188 0.119 0.092 0.088

2000 0.011 0.006 0.006 0.003 0.102 0.062 0.049 0.034

500 0.044 0.016 0.024 0.011 0.282 0.119 0.181 0.109
large 1000 0.027 0.028 0.013 0.015 0.183 0.127 0.096 0.095

2000 0.009 0.009 0.005 0.002 0.094 0.067 0.049 0.030

CL 6= 0

500 0.102 0.141 0.238 0.177 0.287 0.287 0.306 0.296
small 1000 0.075 0.118 0.211 0.192 0.237 0.235 0.288 0.273

2000 0.021 0.033 0.132 0.154 0.140 0.146 0.231 0.243

500 0.078 0.130 0.295 0.166 0.341 0.353 0.452 0.379
large 1000 0.036 0.066 0.151 0.107 0.228 0.245 0.336 0.291

2000 0.011 0.009 0.025 0.028 0.123 0.116 0.161 0.161

Note. Par = parameter; ρ = correlation between factors θ1 and θ2; CL = 0 = cross-loading with zero population
value; CL 6= 0 = cross-loading with non-zero population value;; Absolute bias values larger than 0.03 are printed
in bold font.

Table 4 shows type-I error rates and power rates of estimated cross-loadings. It is
evident that AIC had inflated type-I error rates, while type-I error rates of SAIC, BIC,
and SBIC were acceptable. Importantly, there were low power rates for BIC and SBIC, in
particular for small cross-loadings. The SAIC estimation method may be preferred if the
goal is detecting non-zero cross-loadings.

https://osf.io/ykew6
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Table 4. Simulation Study 2: Type-I error rate and power rate for cross-loadings as a function of the
size of cross-loadings and sample size N.

Type-I Error Rate Power Rate

CL N AIC SAIC BIC SBIC AIC SAIC BIC SBIC

500 16.7 5.1 2.1 2.5 41.2 30.6 9.4 22.4
small 1000 18.7 8.8 2.0 3.2 58.0 46.5 17.9 24.3

2000 15.1 6.2 1.7 0.7 86.5 82.4 44.0 38.3

500 18.5 4.8 3.1 2.8 68.5 59.5 27.3 52.0
large 1000 17.0 10.0 2.5 3.2 87.4 81.0 59.2 70.6

2000 13.3 7.8 1.3 0.7 98.6 98.7 92.3 92.6

Note. CL = size of cross-loadings; Type-I error rates larger than 10.0 and power rates smaller than 80.0 are printed
in bold font.

5. Simulation Study 3: Mixed Rasch/2PL Model

Recently, a mixed Rasch/2PL model [52] (see also [53]) received some attention. The
idea of this unidimensional IRT model is to find items that conform to the Rasch model [54],
while there can be a subset of items that follow the more complex 2PL model [9]. The IRF of
this model is given by

P(Xi = 1|θ) = Ψ(exp(αi)θ− bi) . (20)

Note that the IRF in (20) is just a reparametrized 2PL model with item discriminations
ai = exp(αi). Hence, αi = log(ai) are the logarithms of item discriminations ai. The case
αi = 0 corresponds to the Rasch model because ai = exp(αi) = 1, while αi 6= 0 results
in item discriminations ai different from 1. The mean of the factor variable θ is fixed to 0,
while the standard deviation σ should be estimated.

In order to achieve identifiability of the model parameters, a sparsity structure of the
logarithms of item discriminations αi is imposed. Hence, the majority of items is assumed
to follow the Rasch model. Again, the sparsity structure is directly implemented in a
regularized estimation of the mixed Rasch/2PL model.

5.1. Method

In this simulation study, we used I = 20 items for the DGM of the mixed Rasch/2PL
model. The factor variable θwas assumed to be normally distributed with a zero mean and
a standard deviation σ = 1.2. The item difficulties bi (see the IRF in (20)) of the 20 items
were chosen as −0.8, 0.4, 1.2, 2.0, −2.0, −0.8, 0.4, 1.2, 2.0, −2.0, −0.8, 0.4, 1.2, 2.0, −2.0,
−0.8, 0.4, 1.2, 2.0, and −2.0. The first 14 items followed the Rasch model (i.e., αi = 0
for i = 1, . . . , 15). Items 15 to 20 followed the 2PL model and had αi values that equaled
−δ, δ, −δ, δ, δ, and −δ. The size of δ controlled the deviation from the Rasch model. We
either chose δ as log(1.4) = 0.336 and log(2) = 0.693, indicating small and large deviations
from the Rasch model. Moreover, we manipulated the direction of the deviation from
the Rasch model. While the previously described conditions had αi that canceled out on
average and resulted in a balanced deviation from the Rasch model (i.e., there was an
equal number of items that are smaller and larger than 1, respectively), we also specified an
unbalanced deviation from the Rasch model in which Items 15 to 20 all had the value δ. In
this condition, we also studied small (i.e., δ = 0.336) and large (i.e., δ = 0.693) deviations
from the Rasch model. Hence, in the case of unbalanced deviations from the Rasch model,
items had either discriminations of 1 or larger than 1. The item parameters can also be
found at https://osf.io/ykew6 (accessed on 2 April 2024).

Like in the other two simulation studies, we varied the sample size N as 500, 1000,
and 2000.

Again, like in Simulation Study 1 and Simulation Study 2, we compared the per-
formance of regularized estimation based on AIC and BIC with the smooth alternatives
SAIC and SBIC. A nonequidistant grid of 33 λ values between 0.001 and 1 was chosen (see
the R simulation code at https://osf.io/ykew6; accessed on 2 April 2024). The optimization

https://osf.io/ykew6
https://osf.io/ykew6
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functions were specified with the same tuning parameters for differentiable approximations
as in Simulation Study 1 (see Section 3.1). (Average) absolute bias and (average) RMSE of
model parameters σ and αi (i = 1, . . . , I), as well as type-I error rates and power rates for
logarithms of item discriminations, were assessed.

Overall, R = 750 replications were conducted in each of the 2 (small vs. large de-
viations) × 2 (balanced vs. unbalanced deviations) × 3 (sample size) = 12 cells of the
simulation study. This simulation study was also executed using the statistical software
R [44]. Like in the other two simulation studies, the regularized multidimensional logistic
IRT model was estimated using the sirt::xxirt() function in the R package sirt [45]. Repli-
cation material for this simulation study can also be found at https://osf.io/ykew6 (accessed
on 2 April 2024).

5.2. Results

Table 5 contains the (average) absolute bias and (average) RMSE for the estimated
model parameters. Notably, there was a different pattern of findings in the conditions of
balanced and unbalanced deviations from the Rasch model. In general, SAIC performed
well for the estimation of σ, except for small balanced deviations from the Rasch model with
a sample size of N = 500. In most of the conditions, estimation based on SBIC performed
similarly, if not better, than BIC for the estimation of σ in terms of RMSE.

Table 5. Simulation Study 3: (Average) absolute bias and average root mean square error (RMSE)
of model parameters as a function of the sample size N and the size and the extent and direction of
deviations from the Rasch model

(Average) Absolute Bias (Average) RMSE

Par Dev N AIC SAIC BIC SBIC AIC SAIC BIC SBIC

Balanced deviations from the Rasch model

σ

500 0.053 0.038 0.004 0.010 0.099 0.082 0.070 0.072
small 1000 0.062 0.005 0.012 0.004 0.107 0.054 0.051 0.056

2000 0.109 0.001 0.025 0.009 0.167 0.032 0.044 0.037

500 0.018 0.014 0.004 0.006 0.069 0.065 0.064 0.064
large 1000 0.016 0.002 0.002 0.002 0.050 0.044 0.041 0.041

2000 0.007 0.000 0.000 0.000 0.035 0.033 0.030 0.030

αi = 0

500 0.035 0.017 0.001 0.002 0.124 0.091 0.048 0.047
small 1000 0.048 0.003 0.002 0.001 0.119 0.060 0.027 0.020

2000 0.096 0.001 0.003 0.000 0.166 0.042 0.023 0.003

500 0.018 0.012 0.002 0.002 0.101 0.082 0.046 0.044
large 1000 0.017 0.003 0.001 0.000 0.066 0.058 0.023 0.014

2000 0.007 0.001 0.000 0.000 0.033 0.040 0.010 0.003

αi 6= 0

500 0.071 0.070 0.127 0.137 0.224 0.239 0.283 0.289
small 1000 0.081 0.024 0.075 0.101 0.184 0.154 0.212 0.237

2000 0.120 0.003 0.072 0.045 0.199 0.085 0.159 0.156

500 0.014 0.017 0.015 0.018 0.207 0.215 0.230 0.231
large 1000 0.019 0.006 0.006 0.008 0.139 0.136 0.138 0.143

2000 0.004 0.004 0.003 0.004 0.095 0.095 0.093 0.094

Unbalanced deviations from the Rasch model

σ

500 0.008 0.032 0.084 0.083 0.076 0.081 0.110 0.109
small 1000 0.015 0.008 0.028 0.055 0.051 0.050 0.061 0.078

2000 0.011 0.003 0.002 0.015 0.036 0.032 0.031 0.040

500 0.001 0.001 0.001 0.001 0.069 0.062 0.061 0.060
large 1000 0.005 0.001 0.000 0.001 0.046 0.043 0.040 0.040

2000 0.002 0.003 0.002 0.002 0.034 0.032 0.030 0.029

https://osf.io/ykew6
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Table 5. Cont.

(Average) Absolute Bias (Average) RMSE

Par Dev N AIC SAIC BIC SBIC AIC SAIC BIC SBIC

αi = 0

500 0.009 0.005 0.008 0.004 0.099 0.078 0.057 0.047
small 1000 0.014 0.003 0.002 0.001 0.068 0.056 0.027 0.019

2000 0.010 0.002 0.001 0.000 0.044 0.042 0.015 0.005

500 0.003 0.003 0.001 0.001 0.105 0.079 0.046 0.041
large 1000 0.004 0.001 0.001 0.000 0.069 0.053 0.025 0.013

2000 0.003 0.001 0.001 0.000 0.047 0.039 0.014 0.002

αi 6= 0

500 0.029 0.069 0.194 0.205 0.180 0.207 0.281 0.289
small 1000 0.012 0.014 0.069 0.145 0.103 0.116 0.182 0.240

2000 0.012 0.001 0.002 0.037 0.068 0.067 0.075 0.129

500 0.008 0.006 0.007 0.005 0.129 0.126 0.127 0.127
large 1000 0.011 0.007 0.006 0.006 0.091 0.089 0.089 0.089

2000 0.003 0.003 0.003 0.003 0.062 0.061 0.061 0.061

Note. Par = parameter; Dev = size of deviation from the Rasch model; σ = standard deviation of factor variable θ;
αi = 0 = logarithm of item discriminations with zero population value; αi 6= 0 = logarithm of item discriminations
with non-zero population value;; Absolute bias values larger than 0.03 are printed in bold font.

Table 6 displays type-I error rates and power rates for estimated logarithms of item
discriminations. In contrast to the estimation based on the AIC, SAIC had acceptable type-I
error rates. Moreover, power rates for detecting deviations from the Rasch model were
much higher for SAIC then BIC or SBIC.

Table 6. Simulation Study 3: Type-I error rate and power rate for logarithm of item discriminations
as a function of the sample size N and the size and the extent and direction of deviations from the
Rasch model.

Type-I Error Rate Power Rate

Dev N AIC SAIC BIC SBIC AIC SAIC BIC SBIC

Balanced deviations from the Rasch model
500 14.6 7.7 1.3 1.2 68.8 61.6 40.6 39.6

small 1000 18.5 6.5 0.7 0.3 77.6 85.5 63.6 55.9
2000 36.4 7.7 0.6 0.0 78.8 98.7 75.5 79.8

500 11.4 6.6 1.3 1.2 97.9 95.8 93.8 93.6
large 1000 9.3 6.6 0.6 0.2 99.7 99.8 99.4 98.9

2000 4.4 7.4 0.1 0.0 100 100 100 100

Unbalanced deviations from the Rasch model
500 11.4 5.7 1.8 1.1 80.4 69.5 30.9 29.9

small 1000 10.8 5.9 0.8 0.3 97.9 94.0 72.5 50.9
2000 8.3 7.7 0.4 0.1 99.9 99.9 98.2 87.3

500 13.7 5.9 1.2 1.0 100 100 99.9 99.9
large 1000 12.1 5.8 0.7 0.2 100 100 100 100

2000 10.9 7.3 0.4 0.0 100 100 100 100

Note. Dev = size of deviation from the Rasch model; Type-I error rates larger than 10.0 and power rates smaller
than 80.0 are printed in bold font.

6. Discussion

In this article, we compared the ordinarily employed indirect regularized estimation
based on a grid of regularization parameters λ with a subsequent discrete minimization
of AIC and BIC with a direct minimization of smooth information criteria SAIC and
SBIC [26] for the estimation of regularized item response models. It turned out that the
direct SIC-based estimation methods resulted in comparable, in many cases, or better
performance than the indirect regularization estimation methods based on AIC and BIC.
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This is remarkable because SIC-based minimization is computationally much simpler, and
ordinary gradient-based optimization routines can be utilized.

We studied the performance of SAIC and SBIC in three simulation studies that focus
on differential item functioning, (semi-)exploratory multidimensional IRT models, and
model choice between the Rasch model and the 2PL model. These three cases frequently
appear in applications of regularized IRT models, which is why we chose these settings for
our work.

In this article, we confined ourselves to analyzing dichotomous item responses and
continuous factor variables. Future research could investigate the application of these
techniques to polytomous item response, count item response data [55], or cognitive
diagnostic models that involve multivariate binary factor variables [56]. More generally,
smooth information criteria can be used in all modeling approaches that involve regularized
estimation. In the field of econometrics or social science, possible applications could be
(generalized) linear regression models [57], regularized panel models [58], or regularized
estimation for analyzing heterogeneous treatment effects [59].

Notably, we did not investigate the estimation of standard errors in this article. Future
research may investigate this with an application of the Huber–White variance estimation
formula [60,61] applied to the subset of parameters that resulted in non-zero values [62].

Finally, two different targets in the analysis of item response models should be dis-
tinguished in regularized estimation. First, the selection or detection of non-zero effects
like cross-loadings or DIF effects may be the focus. For this goal, model selection based on
information criteria can prove helpful in order to control type-I error rates. Second, if the
focus lies on structural parameters (such as group means or factor correlations), choosing
a parsimonious model that tries to penalize the number of estimated parameters, like in
information criteria, may not be beneficial in terms of bias and variability of structural
parameters [21]. It can be advantageous to use a sufficiently small regularization parameter
λ to ensure the empirical identifiability of the model but not to focus on effect selection if
structural parameters are of interest [63]. In this sense, sparsity in effects is imposed in a
defensive way.
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The following abbreviations are used in this manuscript:

2PL two-parameter logistic
AIC Akaike information criterion
BIC Bayesian information criterion
DGM data-generating model
DIF differential item functioning
IRF item response function
IRT item response theory
LASSO least absolute shrinkage and selection operator
ML maximum likelihood
RMSE root mean square error
SAIC smooth Akaike information criterion
SBIC smooth Bayesian information criterion
SCAD smoothly clipped absolute deviation
SIC smooth information criterion
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