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Abstract: Forecasting the generation of solar power plants (SPPs) requires taking into account
meteorological parameters that influence the difference between the solar irradiance at the top of
the atmosphere calculated with high accuracy and the solar irradiance at the tilted plane of the solar
panel on the Earth’s surface. One of the key factors is cloudiness, which can be presented not only as
a percentage of the sky area covered by clouds but also many additional parameters, such as the type
of clouds, the distribution of clouds across atmospheric layers, and their height. The use of machine
learning algorithms to forecast the generation of solar power plants requires retrospective data over
a long period and formalising the features; however, retrospective data with detailed information
about cloudiness are normally recorded in the natural language format. This paper proposes an
algorithm for processing such records to convert them into a binary feature vector. Experiments
conducted on data from a real solar power plant showed that this algorithm increases the accuracy of
short-term solar irradiance forecasts by 5–15%, depending on the quality metric used. At the same
time, adding features makes the model less transparent to the user, which is a significant drawback
from the point of view of explainable artificial intelligence. Therefore, the paper uses an additive
explanation algorithm based on the Shapley vector to interpret the model’s output. It is shown that
this approach allows the machine learning model to explain why it generates a particular forecast,
which will provide a greater level of trust in intelligent information systems in the power industry.

Keywords: solar irradiance forecasting; photovoltaic power plant; distributed generation; machine
learning; account meteorological parameters; data pre-processing; explainable artificial intelligence

1. Introduction

The development of distributed generation (DG) is aimed at generating electrical
energy near the point of its consumption and introducing energy sources with relatively
low power and compact dimensions. Typically used are installations running on diesel or
gas and renewable energy sources (RES) such as photovoltaic/solar power plants (SPP),
wind power plants and mini-hydroelectric power plants.

DG is especially important for supplying energy to small settlements in geographically
remote areas (Arctic, mountainous, etc.) where, for technical and economic reasons, it
is impossible to connect users to the general energy system and guarantee the effective
centralised control of network modes [1,2].

However, when compiling power balances for energy districts with DGs based on
RES, the generation forecasting problem arises; this is especially aggravated in the absence
of redundancy, when the power station operates in an isolated mode from a large power
system [3,4]. Partially, the problem of discrepancies in power balances can be solved by
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means of energy storage systems based on batteries, but the capacity of such systems
is significantly lower than the possible deviations of actual generation from the forecast.
Capacity expansion is limited by economic feasibility due to the high cost of energy
storage systems.

There are several main groups of time series forecasting methods that are used for
renewable energy sources [5]:

(1) Numerical weather prediction (NWP);
(2) Statistical methods;
(3) Artificial intelligence methods.

The first group of models uses a lot of meteorological data and complex models of
atmospheric movement [6]. Studies like [7] offer methods for assessing the influence of clouds,
ambient temperature and other factors on the generation of photovoltaic power plants. This
approach places heavy demands on the volume and quality of meteorological data, thereby
often including the need to use satellite imagery or data from an extensive network of multiple
weather stations. In addition, it has very high computational complexity.

On the contrary, statistical methods are much simpler and, in general, can be applied in
the presence of retrospective data only on the predicted value, that is, the level of insolation
or SPP generation. The most frequently used autoregressive models are autoregressive
(AR), autoregressive integrated moving average (ARIMA), and their modifications [8,9].
However, the problem under consideration can only be solved with high accuracy by
taking into account many meteorological factors and complex dependencies that are non-
stationary within a day and over longer intervals. Static methods are not effective enough
in this case.

Due to the complexity and high cost of NWP and the lack of accuracy of statistical
models, machine learning models are widely used. These models can analyse multiple
input factors. In this case, models based on artificial neural networks [5,10] and ensemble
models [3,11,12] can be distinguished. Deep neural network models have been imple-
mented to model and forecast solar irradiance data with the use of meteorological and
geographic parameters [13–15].

Many studies have compared the accuracy obtained by different models. Below are
examples of such work.

In article [16], hourly solar irradiance was predicted for five weather stations using
four years of data, applying models based on support vector regression (SVR), decision
trees (DTs), and multi-layer perceptron (MLP). Also, for each of the models, a bagging
or gradient boosting algorithm was used. The authors demonstrated an improvement in
forecast accuracy when using ensemble methods: the quality of models relative to basic
predictors in the context of the root mean squared error increased on average from 5%
to 12%, and the fitting speed increased by 7–10%. The best performance was achieved
with MLP-boosting/MLP-bagging/DT-boosting (coefficient of determination R2 from 0.95
to 0.97).

On the basis of solar irradiance and meteorological factors data for 2.5 years, study [17]
proposed to forecast hourly irradiance with MLP, having previously analysed the dataset
with k-means clustering. In comparison with linear regression (LR), DT and DT-boosting
neural network improved the coefficient of determination to 0.83.

The authors of [18] used the long short-term memory (LSTM) architecture for forecast-
ing solar panel generation. The achieved error of solar panel generation forecasting with a
15-min horizon was less than 5%.

In article [19], forecast models for SPPs based on hourly measurements of various com-
ponents of insolation, air temperature, wind speed and pressure were proposed for the day
ahead based on SVR, DTs, DT ensembles, and swarm intelligence (Grey wolf optimisation).

In study [20], for the hourly forecasting of solar irradiance for four years, models based
on the LSTM, SVR and MLP algorithms were proposed, though the required parameters
were first selected with the LASSO algorithm. The basic forecast models were additionally
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combined with the methods for quantile regression averaging and convex optimisation
(COpt); the best base model was MLP, and the best combining algorithm was COpt.

The authors of [21] proposed to forecast the generation of SPPs based on five years of
data by neural networks; the Flocking algorithm was used to optimise the parameters of
the resulting models, and the neural networks themselves were subsequently ensembled
by bagging. As a result, the root mean squared error of the ensemble neural network (ENN)
was 8% to 12% smaller relative to the basic models.

Article [22] proposed short-term generation forecasting models based on SVR and
extreme learning machine (ELM) algorithms: both models showed high accuracy (R2 above
0.95), and the forecast error was 5–7%.

Study [23] proposed to apply the k-means algorithm to cluster meteorological condi-
tions and train a separate model for each cluster using a dataset of 35 years. The best result
was obtained for MLP; the forecast error for an hour ahead was 8.6% with an R2 of 0.96.

A comprehensive review [10] of the use of machine learning methods for forecasting
solar irradiance in various parts of the world showed that ensemble models and neural
networks are the most popular tools used to solve this problem. For data pre-processing,
clustering and models based on a mixture of Gaussian distributions are used. The forecast
error for various planning horizons ranges from 3% to 20%.

An analysis of existing works shows that the accuracy of solar irradiance forecasting is
largely influenced by the composition and quality of meteorological data. Solar radiation on
clear days can be predicted with high accuracy, even in the midterm [2,23]. For cloudy days,
the accuracy is significantly lower, even for a short-term forecast. Cloudiness introduces a
significant difference between the solar irradiance at the top of the atmosphere calculated
with high accuracy and its value on the Earth’s surface. The cloud cover can be very
changeable; it complicates the task of solar irradiance forecasting.

An important feature of cloudiness, in contrast to air temperature, wind speed, pre-
cipitation intensity and most other meteorological factors, is a much less formalised form
of measurement. Clouds can have different densities and heights. The frequently used
measure total cloud amount does not take this into account and only shows the percentage
of the sky covered by any type of cloud. In most cases, at present and even more so
in the past, cloud data are the results of visual subjective observation from the Earth’s
surface [24,25]. This article proposes an algorithm for formalising cloud descriptions in
natural language, thereby allowing them to be converted into categorical features suitable
for the use of machine learning.

In addition, it should be noted that at present, research in the field of forecasting
SPP generation is still primarily aimed at increasing the accuracy of forecasts, while the
models remain black boxes for users. This makes it difficult to implement machine learning
predictive models in enterprises, since users want to understand why the model generates
a particular forecast. To solve this problem, research is being conducted in the field of
explainable artificial intelligence (XAI) [26,27]. For complex models that are not inter-
pretable, a posteriori explanation can be used, currently represented mainly by algorithms
such as local interpretable model-agnostic explanations (LIMEs) [28] and Shapley additive
explanations (SHAPs) [29]. The application of LIME and SHAP methods in the power
industry is still at an early stage. For example, in article [30], both methods were used to
forecast SPP generation. However, the authors only used one feature relating to cloudiness.
All resulting interpretations were dominated by two a priori obvious features: direct solar
radiation and the hour of the day. Thus, the explanation provides the user with little new
information to understand the model operation.

Our contributions to the state of the art are as follows:

• An algorithm of processing cloud observations in natural language for machine learn-
ing applications in forecasting SPP generation is proposed;

• It is experimentally substantiated that the use of different features describing the
cloudiness increases the accuracy of SPP generation forecasting;
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• A comparative analysis of various algorithms for constructing decision tree ensembles
in SPP generation forecasting with many categorical features is carried out;

• The possibility of increasing the interpretability of SPP generation forecasts with a
modified SHAP algorithm is investigated. The modification consists of combining a
number of features that have close meaning for a user during visual interpretation.

In addition, the article describes real data pre-processing in detail, taking into account
such features as discrete time discrepancies, omissions, and various data storage formats.
A description of data pre-processing may be of interest to researchers faced with similar
problems when processing data obtained from real power industry enterprises with low
levels of digitalisation when collecting, processing and storing data.

The remainder of the paper is organized as follows. Section 2 presents descriptions
of the object under study as well as the proposed data pre-processing algorithm, machine
learning models and approach for results’ interpretation. Section 3 shows the results of
applying various machine learning models to a pre-processed dataset. In Section 4, the
paper is concluded with the scope of future work.

2. Materials and Methods
2.1. The SPP under Consideration

One of the SPPs located in the Altai, which has high solar energy potential [31], was
chosen as the object under consideration. Until the beginning of the 2010s, the Altai
Republic was a completely energy-deficient region, and generation was represented locally.
Electricity was only generated at ten small diesel and wind power plants, as well as
two mini-hydroelectric power plants with a total capacity of 1.3 MW, intended for the local
power supply of facilities in hard-to-reach and remote settlements in the mountainous
regions of the Republic, which were not connected to the general energy system. Then, the
high potential of solar energy led to the creation of SPPs for the promotion of the power
system with DG.

Due to data from meteorological stations, such as daily/monthly/annual sums of
total solar irradiance, direct (on horizontal plane) and diffuse irradiance, and the amount
of cloud cover and duration of sunshine, it was possible to obtain quantitative estimates of
the solar energy potential in this area as follows:

• Average annual value of total solar radiation of 1495 kWh/m2;
• Average annual value of total cloudiness of 5.9 points with a maximum of 10 points;
• Average annual cloudiness of the lower level of 2.6 points;
• Average number of hours of sunshine per year of 2823 h, though it has reached 3000 h

or more in some years;
• Solar resources for the total calendar year of 1482 kWh/m2.

The SPP under consideration operates in parallel with the power system and has two
parts with a nominal power of 5 MW each. Photovoltaic modules are oriented to the south,
mounted on inclined surfaces at an angle of 45◦ to the horizon.

2.2. Initial Dataset

At the stages of searching and accumulating data, we obtained primary data on the
generation of the SPP, solar irradiance at its location, and consumption by feeders at the
nearest substation, which consisted of several Microsoft Office Excel Spreadsheet (version
2021) files (XLSX) with a time series of various discreteness levels.

At the same time, data on weather and climatic factors were taken from the weather
archive of the open meteorological database RP5 and covered the period from 1 January
2019 to 23 February 2022 with a resolution of 180 min (three hours). Then, NASA open data
of solar irradiance at the top of the atmosphere on a plane normal to the incident radiation
were added to the dataset.

Table 1 provides a list of the main data in the original raw and unsorted files.
Table 2 presents the initial meteorological features (readings from weather station

No. 36259). The dimensions of the original array are 9206 rows and 29 columns (Table 2
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omits some of them, which are obviously not information-bearing for the problem be-
ing solved).

Table 1. List of basic data in the original uncleaned and unsorted files.

File Id Period, dd.mm.yyyy Time Resolution, min Data Type

1 28 October 2019–31 December 2020 60 Solar irradiance
2 01 January 2019–31 December 2020 60 SPP generation
3 28 October 2019–31 December 2020 30 Power consumption
4 06 May 2021–30 September 2021 30 Power consumption
5 01 January 2021–30 September 2021 60 SPP generation
6 01 October 2022–23 February 2022 30 Power consumption
7 01 October 2022–23 February 2022 60 SPP generation

Table 2. Meteorological factors.

Parameter Parameter Description Unit/Format

Time Local time dd.MM.yy hh:mm

T Air temperature at a height of 2 m above the Earth’s surface (in this table,
all heights are measured from the surface of the Earth)

◦C

Po Atmospheric pressure at station level mm Hg
P Atmospheric pressure normalised to mean sea level mm Hg
Pa Pressure trend: atmospheric pressure fluctuations over the last three hours mm Hg
U Relative humidity at a height of 2 m %

DD Wind direction at a height of 10–12 m text description (text)
Ff Wind speed at a height of 10–12 m m/s

ff10 Maximum wind gust at a height of 10–12 m m/s
ClCover Total cloudiness % + text

LowLevelCl Stratocumulus clouds, stratus clouds, cumulus clouds and cumulonimbus
clouds (lower clouds—up to 2 km in mid-latitudes) text

AmountLowLevCl Number of observed low-level clouds; the level of medium clouds in their
absence % + text

ClCeil Height of the base of the lowest clouds m + text

MidLevCl Altocumulus clouds, altostratus clouds, nimbostratus clouds (mid-level
clouds—from 2 km to 6 km in mid-latitudes) text

HighLevCl Cirrus clouds, cirrocumulus clouds and cirrostratus clouds (cloud
tops—from 6 km to 13 km in mid-latitudes) text

VV Horizontal visibility range km
Td Dew point temperature at a height of 2 m ◦C

RRR Amount of precipitation mm

tR Period of time during which the specified amount of precipitation was
accumulated h

E Condition of the soil surface without snow or measurable ice cover text
Tg Minimum soil surface temperature overnight ◦C
E’ Condition of the soil surface with snow or measurable ice cover text
sss Snow depth cm

When combining and subsequently cleaning the accumulated raw data in relation to
the object under consideration, problems specific to these data were identified:

• Data on generation, solar irradiance, consumption, and weather features have different
time ranges of coverage;

• Weather data have a lot of missing values;
• Some of the names of the attribute columns are absolutely non-informative in the

context of the real electrical circuit of the station (for example, feeders are represented
by telemetering points, not by the names or numbers of outgoing power lines);

• The time resolutions of the data obtained for generation, solar irradiance, consumption,
and weather data are different and range from thirty minutes to three hours;
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• The volume of data for various components represents time series with several thou-
sand, and sometimes tens of thousands, of values.

2.3. Data Aggregation and Filtering

After combining and cleaning the data, a dataset that contained 2533 records (rows)
about solar irradiance, temperature, cloudiness (with various factors), and SPP generation
in the period from 6 May 2020 to 23 February 2022 with a resolution of three hours
was obtained.

The calculation of the volume of lost data when creating the final dataset is given in
Table 3. Due to the reduction of data to the latest date (6 May 2020), in order to obtain
the intersection of all samples, it was already necessary at this stage to abandon 491 days
of generation and weather data records on climatic factors (without irradiance), as well
as from 191 days of insolation data records. Also, due to the need to bring the data to
a lower resolution (one hour), records of consumption on feeders at time stamps xx:30
(hours:minutes) had to be excluded from the final dataset. Then, we excluded records in
which the power generated by the SPP was 0 (since such records are not informative for
forecasting) and intersected the obtained data with the weather data, which were taken
from 07:00 with a resolution of three hours. Therefore, in the non-zero SPP generation
interval, hits from three to five weather description hours (07:00/10:00/13:00/16:00/19:00)
and the remaining six to eight hours (08:00/09:00/11:00/12:00/14:00/15:00/17:00/18:00)
were discarded.

Table 3. Amount of high-quality data lost when creating the dataset.

Dataset Initial Number of
Records

Due to Mismatched
time Ranges

(Records/% of Total)

Due to the
Reduction of Data to

One Hour
Discreteness

(Records/% of Total)

Due to the
Discarding of Hours

with Zero
Generation of SPP

(Records/% of Total)

Due to the Reduction of
Data to a Weather

Discreteness of Three Hours
(Records/% of Total)

Generation 27,600 11,784/42.7% – 9490/34.3% 3793/13.7%
Insolation 20,401 4584/22.5% – 9490/46.5% 3793/18.6%

Consumption 31,633 – 15,817/50% 9490/30.0% 3793/12.0%
Weather 9087 3928/43.2% – 2626/28.9% –

Features were classified according to Figure 1. A correlation analysis allowed us to
exclude some of the less informative meteorological features: Po, P, Pa, U, DD, Ff, ff10, VV,
Td, RRR, tR, E, Tg, E’, and sss.
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2.4. Feature Transformation

Two new variables were identified: “Day of Year” and “Hour of Year”. These are
responsible for the ordinal number of the day in the year and the ordinal number of the
hour of the day, respectively.

Many machine learning algorithms require class labels to be encoded as integer values.
There are many different ways to encode class labels. This work used the one-hot encoding
algorithm, the idea of which is to create a new pseudo-feature for each unique value in the
quality attribute column.

For the considered dataset, all unique values of cloud parameters (LowLevCl, Amount-
LowLevCl, MidLevCl and HighLevCl) given in Table 4 were presented with unitary coding.

Table 4. Types of cloud descriptions and their designations.

Designation Category Description

NoCloud Low, Middle, High No clouds recorded
Sc Low Stratocumulus clouds
St Low Stratus clouds
Cb Low Cumulonimbus clouds

CuHum Low Cumulus flat clouds
CuFrac Low Cumulus fractus clouds
CiUnc High Cirrus claw clouds

CiSpissFromCb High Dense cirrus clouds emerging from cumulonimbus ones
CuMed Middle Cumulus mediocris
CuCong Low Cumulus congestus clouds

CbInc Low Cumulonimbus filament clouds (anvil cloud)
CbCalv Low Cumulonimbus calvus

Frnb High Fractonimbus clouds
StNeb Low Stratus nebulosus
StFra Low Layered fractus clouds

As Mid Alto-stratus clouds
ScNonCu Low Stratocumulus clouds that did not originate from cumulus clouds

Ci High Spindrift clouds
Cc High Cirrocumulus clouds
Cs High Cirrostratus clouds

AcFromCu/Cb Mid Altocumulus clouds originating from cumulus clouds (or cumulonimbus clouds)
ScFromCu Low Stratocumulus clouds originating from cumulus clouds
CiSpissInt High Cirrus dense curled clouds

CiCast High Spindrift castellanus clouds
CiFl High Cirrus floccus
Cu Low Cumulus clouds

CiFibr High Cirrus fibratus

Since the values about cloudiness in the original dataset are in the natural language
format, the pre-processing algorithm should be developed carefully. It can be presented
as follows:

(1) Convert all characters to lower case;
(2) Replace punctuation marks and the symbols ‘_’, ‘+’, and ‘-’ with spaces;
(3) Apply tokenisation;
(4) Apply stemming.

For stemming, we proposed to apply the Porter algorithm [32].
As a result, phrases such as “cumulus clouds”, “Cumulus cloud”, “cumul. cloud.”,

and “cumulus-clouds” turn into the identical “cumul cloud”. In addition, values with
negations were removed (“not observed. . .”, “absent. . .”, “no. . .”), since only features
characterising the presence of a particular type of cloud were used.

Preliminary experiments showed that using all cloud types (Table 4) separately did
not improve forecasting accuracy, so many types were combined:
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• LowCb: Cb, CbInc, and CbCalv;
• LowCu: Cu, CuHum, CuFrac, and CuCong;
• LowSt: St, Sc, StNed, StFrac, ScNonCu, and ScFromCu;
• Mid: CuMed, As, and AcFromCu/Cb;
• HiS: CiSpissFromCb, and CiSpissInt;
• HiFrnb: Frnb;
• HiCi: Ci, Cc, Cs, CiUnc, CiCast, CiFl, and CiFibr.

The algorithm for converting cloud records is given below (Algorithm 1). As an input,
it receives the text of record X; a dictionary M that, for result of stemming each type,
represented in Table 4, contains a category index from the list above (e.g., {‘Altostratus
cloud’: 4}); stem words carrying negation, B (“no”, “not”, “absent”); and the number of
categories from the list above n (equal to 7).

Algorithm 1. Pseudo Code for the Clouds description transform

Input: X, M, B, n

Output:Y

Initialisation:Yi = 0, i = 1, . . ., n; X’ = lower(X)

Begin

1 Xi = ‘_’ if Xi is not letter, i = 1, . . ., |X|

2 T = split(X, ‘_’)

3 Sj = stemming(Tj), j = 1, . . ., |T|

4 for each b in B

5 if b in S

6 return Y

7 end if

8 end for

9 Z = join(S, ‘_’)

10 for each m_key, m_value in M

11 if m_key in Z

12 Ym_value = 1

13 end if

14 end for

15 return Y

End

The serial number of the day in the year and the hour in the day (Day of Year and
Hour of Day), as well as the total cloud cover (ClCover), have already been represented
by numerical values reflecting the order of data for these parameters. In the case of the
height of the base of the lowest clouds (ClCeil), it was decided to get rid of the value of the
variable “NoCloud” (formally it can be equated to the height of the clouds tending to ∞)
by introducing a coding vocabulary according to the increase in cloud height presented in
Table 5.

The solar irradiance on the plane of solar panels measured at the SPP was taken as the
target variable, since its value can be used to calculate generation if the SPP parameters are
known [33].

The cleaned dataset is a 2533 × 15 matrix, as shown in Table 6.
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Table 5. Dictionary for encoding the height of the base of the lowest clouds.

Height Value from ClCeil Column Replacement in the Training Set

800 1
1250 2
2500 3

NoCloud 4

Table 6. Description of the final dataset.

Attribute Description Source Format

Day Day number of the year Pre-processed SPP data Integer
Hour Hour number in a day Pre-processed SPP data Integer

T Air temperature, ◦C RP5 open database Real

ClearSI Estimated solar irradiance at the
atmospheric boundary, W/m2 NASA open database Real

ClCover Total cloudiness, % RP5 open database Integer
ClCeil Cloud height Pre-processed RP5 open database Category: 1, 2, 3, 4

ALow Amount of observed low-level clouds,
in their absence—mid-level, % Pre-processed RP5 open database Integer

LowCb

Availability of clouds of this category Boolean

LowCu
LowSc

Mid Pre-processed RP5 open database
HiCl

HiFibr
HiCi

I Measured solar irradiance, W/m2 SPP data Real

Since the forecast problem was being considered and the time step in the dataset was
3 h, the values of meteorological factors were used 3 h before the forecast hour (all features
except calculated Day, Hour, and ClearSI).

2.5. Machine Learning Models

Since most of the features are categorical, models based on ensembles of decision trees
were used:

• Adaptive boosting (AB);
• Random forest (RF);
• Extreme gradient boosting (XGB);
• Light gradient boosting (LGBM)
• Categorial boosting (CB).

In addition, for comparison, models of a fundamentally different nature were used:
linear regression with a regularisation (Ridge) and k-nearest neighbours (kNN). Implemen-
tations of XGB, LGBM and CB were taken from the repositories: URL: https://github.com
/dmlc/xgboost/ (accessed on 10 February 2024), URL: https://github.com/catboost/catb
oost/ (accessed on 27 January 2024), and URL: https://github.com/microsoft/LightGBM
(accessed on 27 January 2024), respectively, and the rest were taken from the Scikit-Learn
libraries, URL: https://scikit-learn.org/stable/supervised_learning.html#supervised-le
arning (accessed on 18 January 2024).

The dataset was divided into training and testing parts at a ratio of 80%:20%. For
the training part, cross-validation was used, dividing it into 5 random training–validation
subsets.

The tuning of model hyperparameters was performed with Grid Search.
The model training results are presented in Section 3.

2.6. Interpretation of Model Output

It is possible to increase the confidence of the user of an intelligent decision support
system by displaying the features that influence the decision making with an indication

https://github.com/dmlc/xgboost/
https://github.com/dmlc/xgboost/
https://github.com/catboost/catboost/
https://github.com/catboost/catboost/
https://github.com/microsoft/LightGBM
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
https://scikit-learn.org/stable/supervised_learning.html#supervised-learning
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of the importance (weights) on them. In the power industry, forecast decision support
systems are used by an expert (a power system operating mode planning specialist), so the
usage of the SHAP algorithm is relevant. Initially, the Shapley value is a solution concept in
cooperative game theory: this algorithm determines the contribution of each player to the
final winnings. If we replace the term “player” with “features” and the term “winnings”
with ”machine learning model output”, we will get an algorithm for determining the
influence of each feature on the model’s output.

When using the SHAP algorithm, the significance of the j-th feature for model f when
analysing an input instance (a certain sample) is calculated using Equation (1) [30]:

φj = ∑
S⊆Z{j}

|S|!(m − |S| − 1)!
m!

[ fx(S ∪ {j})− fx(S)], (1)

where S is a subset of features, m is the total number of features, and Z is the set of all
possible features. As a result, the importance of the j-th feature is assessed by analysing its
influence on the output of the model with and without it for various sets of other features.

Moreover, if there are many features used, then it will be difficult for users to perceive
their importance. Therefore, we propose a modification of the SHAP algorithm that consists
of combining a number of features that have a similar semantic meaning for users, as shown
in Section 3.

The general operation pipeline of the intelligent insolation forecasting subsystem is
shown in Figure 2.
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3. Results and Discussion
3.1. Model Training Results

The following generally accepted quality indicators were used in the work (in
Equations (2)–(5), I—true value; I′—predicted value; and n—number of samples in the
test dataset):

MAE =
1
n

n

∑
h=1

∣∣Ih − I′h
∣∣, (2)
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nMAE =
1

nI

n

∑
h=1

∣∣Ih − I′h
∣∣× 100%, I =

n

∑
h=1

∣∣Ih − I′h
∣∣, (3)

RMSE =

√
1
n

n

∑
h=1

(Ih − I′h)
2, (4)

R2 = 1 −
∑n

h=1

(
Ih − I

′
h

)2

∑n
h=1

(
Ih − I

)2 . (5)

The testing results are shown in Table 7. For the kNN algorithm, the standard-scale
normalisation of numerical features was applied (Equation (6)):

z =
x − mean

std
, (6)

where z is a normalized value, x is an initial value of a one sample from a feature (before
normalization), mean is a mean value of the feature, and std is a standard deviation of
the feature.

Table 7. Description of the final dataset.

Model Using Cloud
Descriptions

MAE,
W/m2

nMAE,
%

RMSE,
W/m2 R2

Ridge no 154.1 32.8 190.2 0.49
Ridge yes 151.6 32.3 187.8 0.5
kNN no 84.0 17.9 116.5 0.81
kNN yes 95.9 20.4 134.0 0.75
AB no 85.3 18.2 108.5 0.83
AB yes 80.0 17.0 100.6 0.86
RF no 70.7 15.1 97.6 0.87
RF yes 58.6 12.5 83.1 0.91

XGB no 77.8 16.6 105.4 0.84
XGB yes 63.7 13.6 91.4 0.88
CB no 75.9 16.2 103.8 0.85
CB yes 63.1 13.4 90.1 0.89

LGBM no 76.7 16.3 104.4 0.85
LGBM yes 62.6 13.3 88.9 0.89

Figures 3–6 show the visualization of the ensemble models’ accuracy using MAE;
Figure 4 presents a comparison of the models’ nMAEs; Figure 5 shows the same using R2.
The experiments allow us to draw the following conclusions:

• The desired dependencies between the solar irradiance and other features were not
even approximately linear, since the Ridge linear regression model showed an accuracy
much lower than other models and R2 was only 0.5.

• The use of detailed cloud descriptions performed by the proposed algorithm sig-
nificantly increased the accuracy of all ensemble models; the achieved averaged
improvements were:

• MAE by 15%;
• nMAE by 15%;
• RMSE by 12.7%;
• R2 by 5%.

• It should be noted that the overall cloud level as a percentage of the sky covered
by clouds was used in all experiments. Thus, the difference in accuracy was en-
sured by the proposed algorithm for processing text descriptions of cloudiness in
natural language.
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• The decrease in accuracy for the kNN when using cloud descriptions may have been
due to the fact that the kNN is less suitable for working with binary features.

• The best accuracy was obtained with the random forest algorithm; the CatBoost and
LightGBM algorithms gave accuracies close to it.

• The resulting accuracy of random forest—R2 = 0.91, nMAE = 12.5%—for the 3-h-ahead
forecast of solar irradiance at tilted plane at the Earth’s surface corresponds to the state-
of-the-art accuracy when taking into account differences in meteorological conditions
between different territories.

Figures 7 and 8 show two days from the testing dataset with a comparison of actual
values and predicted values. A description of cloudiness, compared with using only the
percentage of the sky covered by clouds, allows for error correction in both directions. With
a high percentage of the sky covered, the clouds may not be dense and/or high, and vice
versa, as with a low level of cloud cover, they may be dense and low.
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Figure 8. An example of a day from a testing dataset. At 13:00 without using the cloud description,
the forecast is underestimated (Predicted Cloud Cover line).

3.2. The Interpretation Examples

For the RF (the model gave the smallest forecast error), the SHAP algorithm described
above was applied, and visual interpretations of the forecasts were constructed. The first
eight most important features are shown during visualisation. One interpretation explains
the results of one model run to produce one forecast value of solar irradiance 3 h ahead.

In this case, the features associated with the position of the Sun and the intensity of
solar irradiance at the top of the atmosphere (day, hour and irradiance at the atmosphere
boundary) were combined during interpretation, since they are determined by date and
time and have a general meaning for a user.

Figures 9–14 present the SHAP visualisation of the model forecasts for different days.
Each horizontal bar shows the significance of a correspondence feature. A positive value
indicates that the feature leads to an increase in the forecast relative to the average target
value; a negative value indicates the opposite. The larger the absolute value of the feature’s
bar, the stronger the feature’s significance on the result (forecast).
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Examples of forecasts interpretation using the SHAP visualisation approach:

• Figure 9 shows that the model took into account the average percentage of low-level
clouds (ALow = 60%) to reduce the forecast value, which is logical, since low-level
clouds have a greater impact on the scattering of solar radiation. Also, the model took
into account the absence of high cirrus clouds (HiCi = False) to improve the forecast,
which is also logical.

• For the following day and the same hour of the day, the forecast was slightly lower;
from Figure 10, it is immediately clear that the reason was the presence of high cirrus
clouds (HiCi = True).

• Figure 11 shows an example of another close day and the same hour of day, and the
model forecast was significantly higher than for the example in Figures 9 and 10. The
model result is explained by the absence of low and medium clouds (ALow = 0%).

From a comparison of Figures 9–11, we can conclude that the interpretation algorithm
makes it possible for user to quickly understand why forecasts are so different for coinciding
hours and close days of the year. Without interpretation of the results, the user would not
be able to evaluate the logic of the model.

Our analysis of the interpretations obtained allows us to note that the feature often
used in other studies to take into account cloudiness—the percentage of cloud coverage
of the sky (Cov)—did not have much influence in the presence of features that describe
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cloudiness in more detail. For example, as seen in Figure 12, at 100% sky cover, the absence
of low clouds and high cirrus made it possible for the model to improve the forecast despite
cloudy weather.

Although experiments have shown that of all the binary features that describe cloud
types, the presence of high cirrus clouds (HiCi) has a significant influence, other fea-
tures also contribute and reduce the average forecast error. Examples are shown in
Figures 13 and 14, which demonstrate that the presence of Fractonimbus clouds (HiFbrn)
had noticeable effects on the forecast.

Interpretations of forecasts allow one to not only explain an individual forecast during
operation but also check the logic of the model at the stages of its validation and testing.
The first use case is for the user, and the second one is for the developer.

In addition, the visualisation method used makes it possible to identify errors in the
source data during operation of the intelligent information system. If data from the weather
provider are lost, the user will see incorrect values in the visualisation dashboard. For
example, the user may notice that the weather is cloudy in reality but the system generates
a forecast in which all features of cloudiness have the values of 0 and False.

Table 8 presents a comparison of the main contributions of the paper versus those
already reported. The comparison includes only studies with machine learning methods.

Table 8. The paper contributions versus others.

Paper The Best Models Cloud Data Usage Forecast Explanation

[5,16,20] MLP No No
[8] LSTM Clear sky index No

[11,16,19,34,35] DT ensemble No No
[12,33] DT ensemble Total cloud cover No

[13,18,36–38] LSTM No No

[15] LSTM
Cloud type (as a single
feature)
and total cloud cover

No

[17,23] MLP Total cloud cover No
[21] ENN No No
[22] SVR, ELM No No
[30] LSTM Total cloud cover SHAP algorithm

[39] MLP No
Direct explainable neural network provides
general dependencies, but not explanation

for each individual forecast

This research DT ensembles
The new algorithm to process
cloud observations in natural
language is proposed

The new modified SHAP algorithm was
proposed for explanation of SPP generation

forecasts

4. Conclusions

The study proves that the accuracy of short-term solar irradiance forecasting and,
therefore, that SPP generation can be improved by using detailed cloud description. To
create a machine learning model, it is necessary to use meteorological retrospective data
in which cloud descriptions are often given in a format close to natural language. There-
fore, this paper proposed an algorithm for processing such data based on stemming and
converting them into categorical and binary features.

Experiments were carried out on meteorological data and measurements of solar
irradiance taken from a real solar power plant. It was determined that the proposed
algorithm improved forecasting accuracy by 5–15%, depending on the quality metric used
and the machine learning model. In particular, for the random forest, which showed the
best results, the MAE decreased from 71 to 59 W/m2 and R2 increased from 0.87 to 0.91. The
overall cloud level, as a percentage of the sky covered by clouds, was found to contribute
less to the resulting forecasts than a set of features that describe cloudiness in detail. Taking
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into account differences in meteorological conditions between different territories, the
resulting accuracy for the 3-h-ahead forecast corresponds to the state-of-the-art level.

The disadvantage of increasing the number of features is that the model becomes less
transparent for users and developers. To overcome this shortcoming, the modified Shapley
additive explanations method was proposed and applied. With this modification, features
that have a meaning close to the user are aggregated and their weights are summed up.
Examples were given to show how the visualisation of this method allows us to understand
what a particular model forecast is based on. Such interpretive tools can increase specialists’
confidence in the intelligent information systems in the power industry.

The main contributions of the work comparing with already reported are the follows:

• Previous studies devoted to solar irradiation or SPP generation forecasting have
used only total cloud cover or cloud data extracted from satellite images. This paper
proposes to use types of clouds and other features that can be identified from cloud
observations in natural language. It was experimentally proven that the use of various
features describing cloudiness increases SPP generation forecasting.

• A new modification of the SHAP interpretation algorithm was proposed. For the first
time, it was shown in detail how the SHAP algorithm can be used to explain obtained
SPP generation forecasts.

In the course of further research, it is planned to conduct experiments on other objects,
as well as develop a generative language model that, based on the results of the SHAP
algorithm, will write a textual explanation of the models’ output.
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