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Abstract: Breast cancer is the most common cancer affecting women globally. Despite the significant
impact of deep learning models on breast cancer diagnosis and treatment, achieving fairness or
equitable outcomes across diverse populations remains a challenge when some demographic groups
are underrepresented in the training data. We quantified the bias of models trained to predict breast
cancer stage from a dataset consisting of 1000 biopsies from 842 patients provided by AIM-Ahead
(Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher
Diversity). Notably, the majority of data (over 70%) were from White patients. We found that prior to
post-processing adjustments, all deep learning models we trained consistently performed better for
White patients than for non-White patients. After model calibration, we observed mixed results, with
only some models demonstrating improved performance. This work provides a case study of bias
in breast cancer medical imaging models and highlights the challenges in using post-processing to
attempt to achieve fairness.

Keywords: algorithmic fairness; post-processing method; equalized odds; equalized opportunity;
deep learning; breast cancer

1. Introduction

Cancer is the second leading cause of mortality worldwide. Breast cancer, lung cancer,
and colorectal cancer account for 51% of all new diagnoses among women. Breast cancer
has the highest death rate at 32%. However, this death rate is not consistent across different
demographic groups. For example, the death rate for Black women is 41% higher than for
White women [1].

Recent advancements in deep learning have led to the use of deep neural networks,
such as convolutional neural networks (CNNs), for breast cancer prediction. This field is
relatively vast, with several models developed to classify benign and malignant tumors as
well as to classify the stage of cancer [2,3].

Unfortunately, the use of artificial intelligence (AI) for cancer diagnostics may increase
these health disparities [4]. Because AI models are trained using differing amounts of
data for each demographic group, they have the potential to lead to unfair predictions for
underrepresented groups [5–11].

Three broad classes of algorithms have been investigated to mitigate bias in algorithmic
fairness: pre-processing, in-processing, and post-processing. Pre-processing involves
changing the data, such as by generative data augmentation, to create equal amounts of
data for each demographic group prior to training the model [12,13]. In-processing methods
change the learning algorithm’s optimization objective function to enforce a reduction in
bias during the training process. These two categories of techniques can function well if
modifications to the underlying data or training process are allowed [13,14].
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The final category of methods, post-processing, is applied after the model has been
trained, using a separate set of data that was not used during the training phase. Such
“black box” approaches are ideal when modifying the original AI model is impossible or
infeasible [13]. In this work, we explore the utility of applying post-processing fairness ad-
justments to breast cancer stage classification using medical imaging data, testing whether
standard post-processing methods adapted to the multi-class setting can mitigate bias in
these models.

We structure the remainder of the paper as follows: Section 2 provides a description of
the AIM-Ahead dataset we used, the fairness metrics we measured, and the deep learning
models we trained. Section 3 reports the results of our analyses, characterizing biases that
occur across demographic groups and describing the results of post-processing fairness
modifications. Section 4 discusses the high-level implications of this work.

2. Materials and Methods
2.1. Dataset

We used a dataset from AIM-Ahead containing whole slide images from 1000 breast
biopsies from 842 patients from 2014 to 2020 [15]. Each unique dataset element is related to
an individual biopsy.

These high-resolution images, with dimensions of 100,000 × 150,0000 pixels, are stored
as NDPI files, averaging about 2 GB each. We used 10,856 whole slide images generated
by 1000 biopsies, averaging 5 images per biopsy. Each slide is labeled by the cancer stage
associated with the biopsy. A total of 94% of these determinations were developed within
one month of the biopsy procedure [15].

We randomly divided patients into two groups, with 80% of the data used for training
and the remaining 20% reserved for evaluation. The dataset composition for binary classifi-
cation is depicted in Table 1. The sub-dataset that is used for training consists of 328 biopsies
collected from 234 patients, containing a total of 3273 slide images. The held-out dataset
includes 41 biopsies from 41 patients and 367 slide images. We assigned a label of 1 to
patients who have cancer stages 3 and 4 and a label of 0 to patients who do not show any
symptoms of cancer.

Table 1. Data distribution of training, validation, and test sets for the binary classification of no cancer
from advanced-stage cancer.

Train Validation Test

Biopsies 328 41 41
Images 3273 342 367
White 234 28 32
non-White 94 13 9
Biopsies with stage

0 41% 49% 61%
III, IV 59% 51% 39%

Table 2 provides a breakdown of the training and held-out test sets when splitting the
data according to a multi-stage classification formulation. In this case, we assigned a label
of 0 to patients with stage 0 cancer, a label of 1 to patients with stage 1 or 2 cancer, and a
label of 2 to patients with stage 3 or 4 cancer.
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Table 2. Data distribution of training, validation, and test sets for the multi-class classification
formulation.

Train Validation Test

Biopsies 800 100 100
Images 8847 967 1032
White 483 66 61
non-White 317 34 39

Biopsies with stage
0 18% 16% 18%
I, II 58% 60% 66%
III, IV 23% 24% 16%

2.2. Machine Learning Models

We evaluate a large number of important CNN architectures (Figure 1) for the clas-
sification of breast cancer stages from histopathological images. These architectures in-
clude VGG, EfficientNet, ConvNeXt, RegNet, and variations of ResNet models, including
ResNet18, ResNet50, Wide ResNet101, and ResNet152. VGG stands out for its depth and
use of numerous small-receptive-field filters that capture fine details. EfficientNet scales
CNNs using a compound coefficient for balanced efficiency. ConvNeXt adapts Transformer
principles for convolutional architectures, often enhancing performance. RegNet optimizes
network structures for favorable performance–complexity ratios.

Figure 1. We used CNN models for image feature extraction and classification. We then applied
post-processing strategies in an attempt to reduce bias. Finally, we evaluated the models using
traditional algorithmic fairness metrics.

While we explored the possibility of training more modern model architectures, partic-
ularly Vit and Swin-Vit, on this dataset, our early attempts did not yield satisfactory results.
This is likely due to the inadequacy of samples present in the dataset, which renders highly
parameterized models ineffective, as highlighted by Zhu et al. [16]. We therefore did not
pursue such architectures in our analysis.

Our Slide-Level Classifier, depicted in Figure 2, is tailored specifically to biomedical
image data. We used Clustering-constrained Attention Multiple Instance Learning (CLAM).
This weakly supervised method employs attention-based learning to automatically identify
sub-regions of high diagnostic value to classify the whole slide. CLAM uses instance-level
clustering over the representative regions identified to constrain and refine the feature
space [17]. After retrieving features, we added two fully connected layers, with the first
layer mapping the feature inputs to a 512-node hidden layer with ReLU activation. The
second layer transforms the representation to the number of target classes. The classifier is
further enhanced with feature pooling methods—average and max pooling—to synthesize
information from the tile-level data of the slide images into a cohesive feature vector, which
is then used for classification.
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Figure 2. The workflow and architecture of our Slide-Level Classifier: feature extraction, classification,
and fairness-centered post-processing.

We also construct an ensemble model, integrating averaging the predictions from all
other models to produce a final outcome.

2.3. Fairness Definitions

Fairness metrics are crucial tools for evaluating and ensuring unbiased mitigation
across all demographic groups, irrespective of race, gender, or other protected charac-
teristics. We describe two common fairness metrics that we used to evaluate the bias of
our models.

2.3.1. Equalized Odds

Equalized odds is a fairness measurement for predictive models, ensuring that a
predictor Ŷ is independent of any protected attribute A given the true outcome Y. The
measurement requires equal true positive and false positive rates across demographics in
binary and multiclass settings. The purpose of equalized odds is to ensure that no group is
unfairly advantaged or disadvantaged by the predictions.

Definition 1. For binary variables, equalized odds is defined as:

Pr(Ŷ = 1|A = 0, Y = y) = Pr(Ŷ = 1|A = 1, Y = y), y ∈ {0, 1} (1)

This metric aligns with the goal of training classifiers that perform equitably across all
demographics [18].

2.3.2. Equal Opportunity

In binary classification, Y = 1 often represents a positive outcome, like loan repayment,
college admission, or promotion. Equal opportunity is a criterion derived from equalized
odds, focusing only on the advantaged group. It requires non-discrimination within
this group, ensuring that those who achieve the positive outcome Y = 1 have an equal
probability of doing so, regardless of the protected attribute A. This is less stringent than
equalized odds and often leads to better utility.

Definition 2. Equal opportunity for a binary predictor Ŷ is defined as:

Pr(Ŷ = 1|A = 0, Y = 1) = Pr(Ŷ = 1|A = 1, Y = 1). (2)
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This condition mandates equal TPRs for different demographic groups without im-
posing requirements on the FPRs, thus allowing for the potentially more significant overall
utility of the predictor [18].

We define FPR and TPR as follows:

False Positive Rate (FPR) =
FP

FP + TN
(3)

True Positive Rate (TPR) =
TP

TP + FN
(4)

2.4. Formalizing Multi-Class Calibration

We build our calibration method upon previous post-processing algorithmic fairness
methods. Hardt et al. propose a method [18] that helps to adjust the model’s outputs to
ensure fairness when there are only two possible outcomes. Putzel et al. [19] suggest a way
to adapt this method for situations with more than two outcomes, such as the breast cancer
stage classification task that we study here. To mitigate the issue of sparse samples for
some groups, as is the case with our dataset, we introduce a minor adjustment, an epsilon
term, to the TPR and FPR calculations to avoid division errors. By analyzing predicted and
true labels alongside sensitive attributes such as race, we engineer ’adjusted’ predictions
that meet predefined fairness criteria. The resulting predictors aim to balance false positive
and true positive rates (for equalized odds) or synchronize true positive rates (for equal
opportunity) to ensure fairness across different demographics.

We leverage ROC curves to discern optimal fairness thresholds. Aligning ROC curves
across groups leads to predictors that fulfill equalized odds, whereas mismatches may
necessitate varying thresholds or probabilistic adjustments to achieve fair treatment. We
identify optimal predictors by analyzing the intersections of group-specific convex hulls
formed from these ROC curves. We manipulate conditional probabilities within the pro-
tected attribute conditional probability matrices through linear programming, optimizing
against a fairness-oriented loss function. This process also incorporates an element of
flexibility, allowing the loss function to penalize inaccuracies differently based on protected
group membership, hence tailoring the stringency of fairness across groups.

Our fair predictors ensure a balanced representation of demographic groups by equal-
izing various fairness metrics. We explore two different multiclass fairness criteria, although
the method could generalize to other fairness metrics as well. We formulate these conditions
into linear constraints within a linear program.

We aim to minimize the same expected loss function for multiple classification that
was used by Putzel et al. [19]:

E[l(ŷadj, y)] = ∑
α∈A

|C|

∑
i=1

∑
j ̸=i

Wα
ij Pr(A = α, Y = j)l(i, j, α) (5)

where Wα
ij = Pr(Yadj = i|Ŷ = j, A = α) are the protected attribute conditional confusion

matrices.
To preserve fairness at the individual prediction level, we adopt a stochastic approach.

Instead of simply selecting the most probable class, we construct predictions by sampling
from the adjusted probabilities. Due to insufficient sample sizes within each demographic
group, we encountered instances of zero values for false positives (FPs), true positives
(TPs), false negatives (FNs), and true negatives (TNs). To implement our method, we used
existing software for calculating fairness metrics [20], which was originally developed
based on binary classification [13]. While the software packages were developed to mitigate
bias in tabular datasets, we add an epsilon term (0.001) to the denominator of each of the
four measurements (FPs, TPs, FNs, and TNs) to prevent division errors when calculating
the confusion matrix and the fairness metrics (equalized odds and equal opportunity).
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2.5. Evaluation Procedure

To ensure statistical robustness, we employ 50 iterations of a bootstrapping approach.
During each iteration, we randomly select a subset comprising half of the test samples.
This subset is used to compute the FPR and TPR for White and non-White patient groups
across all models.

We determine the mean, standard deviation, and confidence intervals of these metrics,
allowing for a comparative analysis between the White and non-White cohorts. We apply
the t-test to measure the statistical significance of the observed differences across groups.

3. Results

Table 3 presents a comparative analysis, prior to fairness adjustments, of several
binary classification deep learning models based on their performance metrics across two
demographic stratifications of the dataset: White and non-White groups. We observe
a consistent trend of higher binary accuracy, precision, and recall for the White group
across all models. The Ensemble model achieves relatively high precision and recall for
the White group but exhibits a significant drop in performance for the non-White group,
especially in terms of accuracy and F1-score. These findings highlight the disparities in
model performance for underrepresented demographic groups and emphasize the need for
more balanced and fair machine learning algorithms. Figure 3 illustrates this performance
disparity in FPR and TPR among the various CNN models between groups.

Table 3. Comparison of performance metrics across models for White and non-White groups prior to
fairness adjustments.

Models Groups Accuracy Precision Recall F1-Score

ResNet18 White 70.62 ± 2.83 0.76 ± 0.03 0.71 ± 0.03 0.73 ± 0.03
non-White 55.27 ± 6.33 0.66 ± 0.10 0.55 ± 0.06 0.46 ± 0.08

ResNet50 White 67.37 ± 1.75 0.77 ± 0.02 0.67 ± 0.02 0.71 ± 0.02
non-White 61.95 ± 4.31 0.74 ± 0.04 0.62 ± 0.04 0.57 ± 0.05

Wide ResNet101 White 58.31 ± 1.66 0.76 ± 0.02 0.58 ± 0.02 0.64 ± 0.02
non-White 56.72 ± 4.24 0.57 ± 0.04 0.57 ± 0.04 0.57 ± 0.04

ResNet152 White 62.21 ± 1.46 0.75 ± 0.01 0.62 ± 0.01 0.67 ± 0.01
non-White 55.96 ± 3.59 0.57 ± 0.04 0.56 ± 0.04 0.55 ± 0.04

VGG White 65.84 ± 1.34 0.76 ± 0.01 0.66 ± 0.01 0.70 ± 0.01
non-White 57.16 ± 2.55 0.59 ± 0.03 0.57 ± 0.03 0.56 ± 0.03

EfficientNet White 67.34 ± 1.13 0.76 ± 0.01 0.67 ± 0.01 0.71 ± 0.01
non-White 56.38 ± 3.23 0.58 ± 0.03 0.56 ± 0.03 0.55 ± 0.03

ConvNeXt White 66.91 ± 0.84 0.77 ± 0.01 0.67 ± 0.01 0.71 ± 0.01
non-White 57.29 ± 1.94 0.60 ± 0.02 0.57 ± 0.02 0.55 ± 0.02

RegNet White 67.58 ± 0.97 0.76 ± 0.01 0.68 ± 0.01 0.71 ± 0.01
non-White 56.09 ± 1.96 0.59 ± 0.02 0.56 ± 0.02 0.53 ± 0.02

Ensemble White 62.88 ± 8.76 0.67 ± 0.09 0.63 ± 0.09 0.62 ± 0.09
non-White 29.56 ± 13.26 0.79 ± 0.34 0.30 ± 0.13 0.34 ± 0.18

slide-Level White 65.44 ± 8.18 0.68 ± 0.08 0.65 ± 0.08 0.65 ± 0.08
non-White 55.11 ± 16.47 0.77 ± 0.24 0.55 ± 0.16 0.63 ± 0.17

Table 4 presents the results of independent t-tests conducted to compare the FPR and
TPR between groups across various models before applying post-processing adjustment.
The majority of the models show a statistically significant difference in FPR, highlighting
concerns regarding biases in model performances across demographic groups. Although
we did not consistently observe statistical significance at the 0.05 p-value cutoff for TPR,
we note that the trend was always towards better performance for White groups, and
some models still showed statistically significant differences in TPR. There were no models
where the trend was reversed: that is, no models where the performance was better for the
non-White groups.
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Figure 3. FPR and TPR for several binary deep learning models, distinguishing between White and
non-White group performance.

Table 4. Results of independent t-tests comparing FPR and TPR between White (n = 32 in the test set)
and non-White (n = 9 in the test set) groups across different models before applying post-processing
adjustment.

Model FPR TPR

t-statistic p-value t-statistic p-value

ResNet152 1.93 0.0606 1.93 0.0607

Wide ResNet101 0.06 0.9507 0.32 0.7474

VGG 1.87 0.0693 3.04 0.0043

ResNet50 3.93 0.0003 1.46 0.1514

ResNet18 3.24 0.0024 1.33 0.1923

EfficientNet −0.35 0.7272 0.84 0.4034

RegNet 1.83 0.0746 1.87 0.0696

ConvNeXt 1.76 0.0860 0.47 0.6399

Table 5 and Figure 4 offer a comprehensive view of model performance before and
after fairness adjustments in the binary classification setting. Notably, we do not observe
consistent improvements in either FPR or TPR post-adjustment.

Table 5. Model performance before and after fairness adjustments in the binary classification setting.
We compare the FPR, TPR, and loss values before adjustment and after applying two post-processing
algorithms: equalized odds and equalized opportunity.

Model Group FPR TPR Loss

Pre-Adjust Post-Adjust Post-Adjust Pre-Adjust Post-Adjust Post-Adjust Pre-Adjust Post-Adjust Post-Adjust
Odd Opportunity Odd Opportunity Odd Opportunity

ResNet152 White 0.8889 0.8889 0.8652 0.8667 0.8165 0.8652 0.2732 0.3161 0.2752
non-White 0.6786 0.7500 0.7778 0.8214 0.8148 0.8889 0.2732 0.3161 0.2752

Wide_ResNet101 White 0.4444 0.5556 0.3745 0.5556 0.6367 0.6255 0.5683 0.4033 0.4142
non-White 0.1071 0.5714 0.0000 0.5714 0.6296 0.5926 0.5683 0.4033 0.4142

VGG White 0.8000 0.8000 0.8989 0.8000 0.8989 0.8989 0.2077 0.2371 0.2289
non-White 0.8214 0.6786 1.0000 0.7500 0.8889 0.9259 0.2077 0.2371 0.2289

ResNet50 White 0.5333 0.5333 0.6742 0.5333 0.6742 0.6742 0.2842 0.3706 0.3651
non-White 0.5357 0.4286 0.9630 0.5357 0.6296 0.5926 0.2842 0.3706 0.3651

ResNet18 White 0.7556 0.7556 0.7790 0.7556 0.7790 0.7790 0.2896 0.3188 0.3324
non-White 0.8571 0.7500 0.9630 0.6786 0.8148 0.7037 0.2896 0.3188 0.3324

EfficientNet White 0.7556 0.7556 0.8165 0.7556 0.7865 0.8165 0.2896 0.3188 0.2970
non-White 0.7143 0.7500 0.7778 0.7143 0.7778 0.8148 0.2896 0.3188 0.2970

RegNet White 0.8667 0.8667 0.824 0.9778 1.0000 0.8240 0.3333 0.3661 0.3106
non-White 1.0000 0.8214 1.000 1.0000 0.9630 0.8148 0.3333 0.3661 0.3106

ConvNeXt White 0.5111 0.5111 0.6704 0.5111 0.6704 0.6704 0.3497 0.3678 0.3488
non-White 0.6786 0.3571 1.0000 0.5000 0.6296 0.7407 0.3497 0.3678 0.3488



Algorithms 2024, 17, 141 8 of 12

(a)

(b)

(c)
Figure 4. Comparative analysis across eight machine learning models, demonstrating the impact of
fairness adjustments on the FPR, TPR, and loss. (a) FPR comparisons, (b) TPR comparisons, (c) loss
comparisons. We do not observe consistent trends.

Table 6 provides an updated comparison of performance metrics for several models
for the multi-class setting. The analysis was conducted across White and non-White groups
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for three different labels. Interestingly, we did not observe consistent discrepancies in
performance between the White and non-White groups in the multi-class formulation.

Table 6. Comparison of performance metrics before post-processing adjustment for multiple class
formulation, stratified by race.

Models Groups Accuracy Precision Recall F1-Score

ResNet18 White 37.50 ± 2.24 0.36 ± 0.03 0.38 ± 0.02 0.34 ± 0.03
non-White 21.90 ± 1.78 0.73 ± 0.03 0.22 ± 0.02 0.24 ± 0.02

ResNet50 White 34.35 ± 1.83 0.40 ± 0.02 0.34 ± 0.02 0.36 ± 0.02
non-White 36.64 ± 1.14 0.71 ± 0.02 0.37 ± 0.01 0.45 ± 0.01

Wide ResNet101 White 32.87 ± 1.26 0.39 ± 0.01 0.33 ± 0.01 0.35 ± 0.01
non-White 42.13 ± 1.28 0.71 ± 0.01 0.42 ± 0.01 0.51 ± 0.01

ResNet152 White 37.70 ± 1.09 0.43 ± 0.01 0.38 ± 0.01 0.40 ± 0.01
non-White 43.52 ± 0.94 0.71 ± 0.01 0.44 ± 0.01 0.52 ± 0.01

VGG White 39.95 ± 0.89 0.43 ± 0.01 0.40 ± 0.01 0.41 ± 0.01
non-White 37.51 ± 0.80 0.71 ± 0.01 0.38 ± 0.01 0.45 ± 0.01

EfficientNet White 39.09 ± 1.13 0.42 ± 0.01 0.39 ± 0.01 0.40 ± 0.01
non-White 38.04 ± 0.74 0.70 ± 0.01 0.38 ± 0.01 0.46 ± 0.01

ConvNeXt White 39.08 ± 0.85 0.43 ± 0.01 0.39 ± 0.01 0.41 ± 0.01
non-White 38.73 ± 0.70 0.70 ± 0.01 0.39 ± 0.01 0.47 ± 0.01

RegNet White 38.66 ± 0.71 0.43 ± 0.01 0.39 ± 0.01 0.40 ± 0.01
non-White 35.72 ± 0.65 0.70 ± 0.01 0.36 ± 0.01 0.43 ± 0.01

Ensemble White 56.72 ± 6.26 0.44 ± 0.08 0.57 ± 0.06 0.49 ± 0.07
non-White 69.23 ± 6.41 0.53 ± 0.08 0.69 ± 0.06 0.60 ± 0.08

Figure 5 and Table 7 present a comparative analysis of the performance metrics for the
deep learning models before and after fairness adjustments in the multi-class setting. While
some models exhibit a decline in TPR, indicating a potential trade-off between fairness and
sensitivity, others maintain or even improve their TPR. These discrepancies underscore the
complexity of applying fairness adjustments.

Figure 5. Comparative analysis of multi-class model performance across several architectures.
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Table 7. Model performance before and after fairness adjustments in the multi-class classification
setting.

Model Race Class FPR Pre-Adjust FPR
Post-Adjust

TPR
Pre-Adjust

TPR
Post-Adjust

RegNet non-White 0 0.3577 0.0759 0.9375 0.1989
1 0.1034 0.6321 0.0459 0.7160
2 0.5598 0.2060 0.5000 0.2891

White 0 0.4375 0.0759 0.5000 0.1989
1 0.0738 0.6321 0.0549 0.7160
2 0.4019 0.2060 0.5639 0.2981

ResNet50 non-White 0 0.3462 0.3304 0.5625 0.4375
1 0.5172 0.5402 0.5872 0.5489
2 0.0769 0.1154 0.0238 0.1219

White 0 0.3304 0.3304 0.4375 0.4375
1 0.5772 0.5402 0.5824 0.5489
2 0.0748 0.1154 0.0902 0.1219

ConvNeXt non-White 0 0.2692 0.5265 0.8125 0.8034
1 0.3966 0.4441 0.3899 0.4262
2 0.2735 0.0312 0.5000 0.0068

White 0 0.2098 0.5265 0.5625 0.8034
1 0.4228 0.4441 0.4066 0.4262
2 0.2243 0.0312 0.4511 0.0068

ResNet152 non-White 0 0.0500 0.4895 0.0000 0.7500
1 0.5000 0.4986 0.5046 0.4946
2 0.4402 0.0000 0.5000 0.0000

White 0 0.0357 0.4895 0.0000 0.7500
1 0.5101 0.4986 0.5275 0.4946
2 0.3832 0.0000 0.5038 0.0000

ResNet101 non-White 0 0.2231 0.4420 0.1250 0.5005
1 0.6552 0.2012 0.5596 0.2422
2 0.2137 0.3196 0.1429 0.3292

White 0 0.2545 0.4420 0.1250 0.5005
1 0.4832 0.2012 0.4176 0.2422
2 0.2897 0.3196 0.3008 0.3292

EfficientNet non-White 0 0.2462 0.3849 0.6875 0.6581
1 0.5172 0.2245 0.4404 0.3421
2 0.2821 0.2646 0.2143 0.3787

White 0 0.2009 0.3849 0.5000 0.6581
1 0.5705 0.2245 0.3956 0.3421
2 0.3084 0.2646 0.2481 0.3787

ResNet18 non-White 0 0.0885 0.3341 0.0000 0.4074
1 0.1034 0.5663 0.1835 0.5816
2 0.7436 0.0812 0.7857 0.0952

White 0 0.0670 0.3341 0.1250 0.4074
1 0.1812 0.5663 0.1429 0.5816
2 0.8131 0.0812 0.7218 0.0952

4. Discussion

We observe biases in the performance of the binary classification model, which consis-
tently performs better on test data corresponding to White individuals. Our work adds
further evidence to a wide body of prior work [21–23] demonstrating that without care, the
integration of AI into diagnostics may amplify existing healthcare disparities.

The lack of consistent disparity reductions after fairness adjustments highlights the
challenges in applying post-processing techniques to reduce bias in medical imaging data.
By calibrating the models, we had hoped to improve the equity of AI-enabled diagnostics
across different racial groups. However, these methods do not appear to work for deep
learning models applied to medical imaging.
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The primary limitation of this study is the possible lack of generalizability of our find-
ings due to the use of only one dataset for evaluation. Future research on post-processing
fairness in medical imaging would benefit from the use of multi-site datasets that cover a
broader range of demographic attributes. Another major limitation is that we grouped all
non-White patients into a single category for fairness analyses due to the lack of sufficient
representation of any race other than White. A more robust analysis would have included
performance metrics for each individual race. However, such as analysis requires more
samples for the underrepresented groups, posing a ‘chicken-and-egg problem’.

Another interesting area of future work would be studying the explainability of the
models in conjunction with fairness. Such a study could aid in the understanding of
how different models arrive at their predictions and whether the reasons for arriving at a
particular prediction are different across groups.
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