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Abstract: HER2 overexpression is a prognostic and predictive factor observed in about 15% to 20% of
breast cancer cases. The assessment of its expression directly affects the selection of treatment and
prognosis. The measurement of HER2 status is performed by an expert pathologist who assigns a
score of 0, 1, 2+, or 3+ based on the gene expression. There is a high probability of interobserver
variability in this evaluation, especially when it comes to class 2+. This is reasonable as the primary
cause of error in multiclass classification problems typically arises in the intermediate classes. This
work proposes a novel approach to expand the decision limit and divide it into two additional classes,
that is 1.5+ and 2.5+. This subdivision facilitates both feature learning and pathology assessment.
The method was evaluated using various neural networks models capable of performing patch-wise
grading of HER2 whole slide images (WSI). Then, the outcomes of the 7-class classification were
merged back into 5 classes in accordance with the pathologists’ criteria and to compare the results
with the initial 5-class model. Optimal outcomes were achieved by employing colour transfer for data
augmentation, and the ResNet-101 architecture with 7 classes. A sensitivity of 0.91 was achieved for
class 2+ and 0.97 for 3+. Furthermore, this model offers the highest level of confidence, ranging from
92% to 94% for 2+ and 96% to 97% for 3+. In contrast, a dataset containing only 5 classes demonstrates
a sensitivity performance that is 5% lower for the same network.

Keywords: HER2 grading; whole slide image; deep learning; subclass level; breast cancer

1. Introduction

The HER2 (Human Epidermal Growth Factor Receptor 2) is a gene that encodes a
tyrosine kinase which is associated with tumor progression and appears overexpressed
in some types of breast cancer. This expression is analyzed with Immunohistochemical
analysis (IHC), using a scoring system based on staining level, in which the cells are
coloured using HercepTest or similar chemical methods [1]. The prepared slide is treated for
histological evaluation, and then an expert pathologist assigns a score mark ranging from
0, 1, 2+ or 3+, in relationship with the gene expression, as shown in Figure 1. Depending
on the score, treatment with Herceptin is suggested. The score uses the 2018 American
Society of Clinical Oncology and the College of American Pathologists (ASCO/CAP)
guidelines, such that 0 and 1 slides are both considered HER2-negative and 3+ a positive
response [2]. A score of 2+ is an ambiguous response and further tests with techniques
such as Fluorescence in situ Hybridization (FISH) are required to decide the evaluation.
This technique is expensive and decides whether the case is 3+ (treatment is applied), or 1
(it is denied) [3,4].
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(a) (b) (c) (d) (e)

Figure 1. HER2 images samples and their classification: (a) class 0; (b) class 1; (c) class 2+; (d) class
3+; and (e) Background.

To grade the score in Whole Slide Images (WSI), pathologists follow a diagnosis rule
which depends on the total area stained by the biomarker. This is described in Table 1.

Table 1. HER2 diagnosis rule followed by pathologists.

Score Staining Patterns HER2 Assessment

0 <10% of cells with weak staining Negative

1 <10% of cells with moderate staining Negative
and more than 10% of cells with weak staining

2+ <10% of cells with strong staining Equivocal
and ≥10% of cells with moderate staining

3+ ≥10% of cells with strong staining Positive

Unfortunately, HER2 scoring is known for its significant inconsistency between dif-
ferent observers, which is caused by differences in staining techniques among various
institutions and the need to visually estimate the intensity of staining within specific per-
centages of tumour areas [5]. The inter and intra variability in human diagnosis, as well
as the heterogeneous colour intensities of the stain applied, makes this problem suitable
for an end-to-end deep learning methodology, which can learn features independent from
human perception [6,7]. Moreover, the increasing adoption of digital pathology and higher
availability of a large number of well-annotated WSIs allows taking advantage of deep
learning techniques to train more accurate and robust models [8]. This kind of methods has
been proved to increase the pathologists precision and speed in diagnosis, in comparison
with non-aided approaches [9,10]. This idea is further supported by studies showing that
glass slides and digital images are equally accurate for HER2 interpretation in pathology
prognosis [11,12].

HER2 scoring typically involves the classification of small patches extracted from the
WSI. These patches are then used to generate predictions at the patch level, which are then
aggregated to obtain a prediction for the entire slide. There are two approaches to patch
classification: fully supervised and weakly supervised. In fully supervised approaches,
the task involves classifying every patch within a segmented region. Weakly supervised
methods, based on pathologists’ slide evaluation practices, use models to learn patch
selection. According to some authors, the latest methods are limited by the need for patch-
level labelling, which is not typically used in clinical evaluation. Other studies find that
segmenting infiltrating cancer patches does not affect HER2 scoring, despite potential
improvements [5].

In the following we provide a comprehensive review of the research works published
from 2018 to 2023, focusing on various techniques used to assess the scoring of Her2. Saha
et al. [13] present a deep learning framework (HER2Net) for cell segmentation and patch
scoring in HER2-stained breast cancer images. HER2Net uses trapezoidal long short-term
memory, spatial pyramid pooling, and convolutional and deconvolutional layers. The
framework yields a general precision of 96.64%, an accuracy of 98.33% and an F-score
of 96.71% in classifying the cell membrane staining pattern as no staining, faint staining,
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moderate staining, and strong complete staining. Results were obtained from 752 patches
cropped from 79 WSIs. This method published in 2018 [13] achieves the highest accuracy
value reported thus far. However, it does not differentiate between the segmentation and
classification results. The results are presented by modifying the number of training and
test patch images, sometimes even using zero training images, which renders the results
unclear. Ultimately, a comprehensive score of the entire WSI is missing.

Cordeiro et al. [14] introduce an automated scoring HER-2 algorithm that relies on
colour hand-crafted features and traditional machine learning techniques. This is the initial
method for HER2 scoring that does not involve segmentation prior to the classification
process. As stated in the literature review, the majority of methods involve segmentation,
which is recognised for its tendency to introduce errors in subsequent stages. They claim
that their method achieved a 94.12% accuracy rate, without the need for explicit segmenta-
tion and extraction of structural properties such as cell nuclei and membrane. In addition,
it is completely automated and can effortlessly operate on basic desktop computers.

Khameneh et al. [15] propose a model that involves three main components:
(1) classification of the whole slide image (WSI) into stroma and epithelium areas us-
ing support vector machine (SVM) classifier; (2) training the model using patches from
the epithelial part for segmentation of cell membrane staining patterns; and (3) a scoring
mechanism that combines tile results, transferring staining intensities and completeness to
align with pathologists’ assessments. Experimental results on 127 slides show an average
accuracy of 95% for the segmentation but it shows lower performance on the classification
stage with an average accuracy of 87%. This study provides a review of 9 previous methods,
with accuracy ranging from 79% to 98%. The utmost accuracy is obtained with Saha et al.’s
work, as mentioned earlier [13]. There are only two works that use WSIs. One of them
has 86 WSIs [16], while the other one, which is their own work [15], has 127 WSIs. The re-
maining works uses patches derived from multiple WSIs. The number of patches extracted
varies, ranging from 77 patches obtained from 77 WSIs, to 752 patches obtained from 79
WSIs, 1265 patches obtained from 253 WSIs, and 2580 patches obtained from 86 WSIs.

In [17] Kabakçı et al. use colour deconvolution to separate channels, followed by seg-
mentation of cell nuclei and boundaries. Then, hand-crafted cell-based features, reflecting
membrane staining intensity and completeness, are extracted. Then, these features are fed
into a classical machine learning classifier to determine HER2 scores. The final HER2 tissue
score is derived by aggregating the individual cell scores, in accordance with ASCO/CAP
guidelines. They also present a review of the same methods as in the previous study [15],
but distinguishing between methods that rely on hand-crafted feature extraction and those
that use deep learning. They argue that deep learning methods suffer from overfitting to
the data, necessitating re-training or re-designing the model when new data is introduced.
They claim that the hand-crafted features and classical machine learning approach they
propose offer an explainable AI solution without requiring the model to be re-trained. Their
average accuracy is 91.43% and their F1-score is 91.81%.

In [18] Chem et al. propose a hierarchical Pathologist-Tree Network (PTree-Net)
with multi-instance learning (MIL) to use multi-scale features from the WSI pyramids.
The method starts by training the Focal-Aware Module with slide labels to accurately
detect and classify diagnostic regions. A Patch Relevance-enhanced Graph Convolutional
Network then thoroughly analyses the hierarchical arrangement of multi-scale patches
from attentive regions. Finally, tree-based self-supervision fine-tunes PTree-Net to improve
representation learning and reduce unimportant patches. This method achieves average
values of 89.70% for accuracy, 90.77% of F1-score and 83.34% for MCC with standard
deviation of around 1.4 based on 4-fold cross validation on a dataset of 105 WSIs. The
model leverages comprehensive information from the entire WSI without requiring hand-
crafted features or rules. They combine classes 0 and 1+, and the confusion matrix from
PTree-Net’s 4-fold cross-validation shows that it performs well identifying WSIs with a 3+
HER2 score, achieving a classification rate of 95.24%, but performs poorly with a 2+ score,



Algorithms 2024, 17, 97 4 of 21

achieving 89.16%. The distinction between 2+ and 0/1+ categories presents difficulties,
with 11.99% of 0/1+ samples misclassified as 2+ and 9.38% vice versa.

The approach presented by Pham et al. [5] combines both fully and weakly supervised
HER2 scoring paradigms, providing interpretability without the need for extensive expert
annotations. Training and evaluation only use patches that cover more than 10% of the
surface area affected by invasive carcinoma. This addresses 96% of invasive carcinoma’s
surface area in the user-specified ROI. The model attains an F1-score of 78% on the hold-out
test set, along with an average precision of 85.4% with very small standard deviation of
0.05. Additionally, the model achieves a Dice score of 0.91 for class 2+ and 3+ slides, while
exhibiting lower scores for classes 0 and 1+. They claim that the use of ASCO/CAP clinical
guidelines directly in training and testing contributes to the model’s interpretability and
alignment with clinical standards.

The work of Bórquez et al. [19] is the first to study the uncertainty in the classification
of Her2 histopathological images into the categories of 0, 1+, 2+, and 3+ at the patch
level. The process consists of four stages: WSI pre-processing for colour deconvolution,
generation of patch dataset, classification based on Bayesian deep learning, and prediction
with estimation of uncertainty. The proposed approach integrates deep learning and
Monte Carlo Dropout to quantify uncertainty, a factor frequently overlooked in healthcare
applications. This method achieves an average accuracy of 89%, precision of 81%, and
recall of 74% for tissue-level classification on the dataset of the Her2 challenge contest [16]
with 172 WSIs.

In [7] the authors present a novel study by integrating FISH images alongside IHC
images during the training phase. The study presents a machine learning model for HER2
classification, based on logistic regression. The model was trained using 393 IHC images to
distinguish between upregulated and normal HER2 expression. Pathologists’ diagnoses
(IHC only) and final diagnoses (IHC + FISH) were used for training. The IHC model
achieved an accuracy of 88%, precision of 89%, and recall of 43%. In comparison, the
IHC + FISH classifier achieved an accuracy of 93%, precision of 100%, and recall of 55%.
The model exhibited superior performance when trained using IHC + FISH diagnoses,
highlighting the significance of subcellular staining patterns in pathological diagnosis prior
to FISH consultation, as opposed to overall intensity.

Finally, the work of Che et al. [20] use deep learning to automatically assess breast
cancer Her2 WSI scores on 95 IHC section images with labelled tumour areas. The proposed
method has three steps. After extracting labelled masks from WSIs, tumour and normal
patches were randomly generated to create a probability map. Applying a threshold to
the probability map yielded the binary tumour prediction. Finally, a deep learning model
(ResNet34) was fed the patches to improve binary classification. WSI test classes were
0, 1+, 2+, and 3+. The results show 73.49% segmentation accuracy and 95.77% precision
at the patch level. On the test set, the F1 score is 83.09% and the accuracy is 97.9%.
The study acknowledges limitations. First, dye dosage during slicing can cause colour
depth inconsistencies. Colour standardisation in deep learning methods improves tumour
area identification but increases execution time without substantially affecting IHC score
accuracy. Second, the final stage requires domain knowledge for optimal colour threshold
selection. They claim that the influence of colour depth on classification results can be
mitigated by collecting HER2 slides from multiple centers.

In this work, we aim to overcome the limitations and address the criticisms raised
in the aforementioned studies. The entire tissue was divided into patches to mimic the
pathologist diagnosis. Then, each patch was classified with a score and, according to
the rule described in Table 1, the slide is graded automatically. We introduce a novel
7-class approach. The reason is that the classification in some patches is difficult for class
2+. This is the main source of confusion even for pathologists. See Figure 2 for some
examples of 2+ patches and how they can be confused with 1 or 3+ samples. In practice, a
2+ grading prediction is usually equivocal and requires additional tests, such as FISH. The
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consequences of mixing up these cases, providing an inadequate approach, or failing to
address them when required, are significant.

(a1) (b1) (c1) (d1)
Class 1: (a1,b1) were accurately predicted; (c1,d1) were predicted as class 2+

(a2) (b2) (c2) (d2)
Class 2+: (a2,b2) were accurately predicted; (c2,d2) were predicted as class 1

(a3) (b3) (c3) (d3)
Class 2+: (a3) was accurately predicted; (b3–d3) were predicted as class 3+

(a4) (b4) (c4) (d4)
Class 3+: (a4,b4) were accurately predicted; (c4,d4) were predicted as class 2+

Figure 2. Scoring HER2 images. Prediction of class labels for various samples.

Once the corresponding datasets for this 7-class configuration are built, five prominent
deep neural network (NN) architectures have been considered: AlexNet, GoogLeNet, VGG-
16, ResNet-101, and DenseNet-201. To build the dataset for this 7-class configuration, the
classification process takes into account the mean confidence of the NN.

To successfully build an accurate deep learning model, a comprehensive and suitable
training set is required. Moreover, proper tuning of hyperparameters can enhance and
speed up the process. However, a selection of representative data for every class in the
problem, even augmenting the available samples with variations and synthetic data, is
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not always enough to get the expected results. For this reason, this work also performs
an ablation study to investigate the performance of the model by applying different data
augmentation techniques. Additionally, it is widely acknowledged that colour variation is
a pivotal factor in ensuring precise scoring. In order to investigate the generation of new
images, we use colour transfer techniques to simulate colour variations.

The proposed method outperforms other existing methods when evaluated using accu-
racy metrics, establishing its effectiveness in evaluating doubtful cases that lack agreement.
The method has been incorporated into a DICOM WSI viewer [21].

The rest of the document is organized as follows. Section 2 details the dataset and
how it has been processed. Section 3 describes the implementation details along with the
network architectures employed for experimentation. Section 4 provides a description of
the outcomes for every different combination of datasets, architectures, and parameters
used. Section 5 discusses the insights gained from the experimentation, and highlights its
contribution to enhancing the construction of improved models for histopathology scoring.
Finally, Section 6 provides a summary of the main findings of this study and outlines
potential areas for future research.

2. Materials
2.1. Whole Slide Images

The Whole Slide Images (WSIs) used in this study were generated in the AIDPATH
project (http://www.aidpath.eu, accessed on 20 February 2024 ). The dataset consists of 306
WSIs obtained from 153 breast cancer cases at three medical centres, namely Nottingham
University Hospital (NHS Trust), Servicio de Salud de Castilla-La Mancha (SESCAM), and
Servicio Andaluz de Salud (SAS), as follows:

• NHS: 86 cases of invasive breast carcinomas with 172 WSI.
• SESCAM: 52 cases of invasive ductal carcinomas with 104 WSI.
• SAS: 15 cases of invasive and in situ ductal carcinomas with 30 WSI.

All the slides have the clinical outcome: HER2 negative, positive and equivocal
together with the IHC score (0, 1, 2+ or 3+). Table 2 shows the allocation of the 306 WSIs
according to their respective score. The distribution of WSIs per class is proportional,
with an average of 76 WSIs per class. In order to guarantee the quality of the labels when
building the groundtruth in our dataset we carried out a consensus process involving
multiple pathologists to score the HER2 images. Pathologists provided the groundtruth
at NHS Trust, SESCAM and SAS during standard and quality-measured routine. Each
case was reviewed by at least two specialists. The most challenging cases, as well as those
lacking agreement, were reviewed by five specialists from the three institutions. If there
was a difference in the scoring, the mode was employed. The analysis revealed that there
was variability in the scores of the samples in 40% of the cases.

Table 2. Score-based distribution of the 306 WSIs.

Total 0 1 2+ 3+

306 78 74 76 78

The 86 cases from NHS were used in the HER2 challenge contest [16] as well as other
research works [5,13–15,17,19,22]. All the WSIs were acquired at 40× magnification. The
source of the digital scanning is a Hamamatsu NanoZoomer C9600 (TIF format) for NHS
Trust and a Leica DM-4000 (SVS format) for SESCAM and SAS. All the images have an
average resolution of 90,000 × 50,000 pixels and 1 GB file size in a proprietary format.

For the purposes of training and evaluating the classification models, 70% of the entire
set of WSIs were used for training, while 20% were selected for validation and 10% of the
WSIs were specifically chosen as a hold-out test set. The WSIs were partitioned into patches
to replicate the pathologist’s diagnosis, as previously stated. Therefore, all the datasets

http://www.aidpath.eu
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consist of patches of size 64 × 64 pixels that have been extracted from the original slides.
These patches are extracted from the left to the right and from the top to the bottom of the
image. A stride of 64 pixels is used in both the height and width directions, ensuring that
the patches do not overlap.

In the experiments conducted for training and validation, the existing data is aug-
mented and transformed to investigate its intriguing characteristics and obtain more
representative datasets. This process enhances the accuracy of the trained models.

2.2. Dataset Building

To maximize the range of input variations for the deep learning workflow, different
datasets are built with two different class arrangements as exposed below. Moreover, data
augmentation techniques are applied to explore whether the data is suitable enough to learn
accurate classification models and how to improve the performance. Two main transforms
have been applied for data augmentation:

• Spatial transformations: vertical and horizontal flips and rotations of 90º, 180º and 270º,
as shown in Figure 3. In this case the classifier learns invariant orientation features
which can help to classify a patch correctly independently of its position on the image.

• Colour transfer: the aim is to artificially produce colour variation patches within the
range of colours observed in the different slides. By adapting the colour of one image
to another, patches with new colour appearance are generated, as shown in Figure 4.

Figure 3. Data augmentation using spatial transformations.

(a1) (b1) (c1) (d1)
(a1) Base image (b1–d1) Different reference images

(a2) (b2) (c2) (d2)
(a2–d2) Colour transfer variations of the base image using the reference images

Figure 4. Illustration of the colour transfer results using Macenko’s method.
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The use of different biomarkers in digital pathology images often leads to a signif-
icant amount of variation in staining. Even for distinct patches that employ the same
biomarker [23]. A frequently employed technique for generating additional data involves
the aforementioned process of colour transfer. There are different approaches to apply this
procedure [24–29]. A popular technique, employed in this work, is the one introduced
by Macenko in [26]. Our selection is based on the study performed in [30], where the
colour consistency and the effectiveness of the Macenko’s method (MM) are measured by
computing the colour distance with the NBS metric (National Bureau of Standards), and it
was the most suitable to keep a trade-off between these two variables.

The work of Fernández-Carrobles et al. [30] studies four different methods used for
colour transfer or colour standardization: histogram matching (HM) [27,28], MM [26],
Reinhard’s method (RM) [25] and non-linear spline mapping method (SM) [29]. Results
showed that the smallest colour distance is obtained with the SM method. Regarding MM
and HM, there is no significant difference as both obtain slightly different colours. The
RM method obtained a lower NBS colour distance, but it had a large variability. As for
the drawbacks of these methods, RM was affected by the hue and saturation of the source
images, while SM was affected by the low contrast of the source images. However, the
latter had a better colour consistency. The main drawback of the SM method is the huge
computational time required. For these reasons, MM is applied in our work.

MM is applied with 6 different reference colour intensity images to produce variations
to the rest of the images. Increasing the number of colour variations helps covering a
broader range of cases present in different stain and digitalization processes. Figure 4
shows an example of how this technique is applied in our dataset. There, the reference
images with varying intensities are displayed alongside their application to a single sample
or base image. The colour varies from darker, lighter to bluish or reddish colours.

The use of data augmentation enables to explore and extract conclusions regarding
performance in different training scenarios and the underlying behaviour, as elaborated
upon in the discussion Section.

In order to assess the impact of class balance on deep learning training [31], datasets
are built with both equal and imbalanced numbers of samples per class. Furthermore,
in order to assess the impact of colour variation alone, datasets with and without colour
transfer are also examined.

Therefore, we have generated three datasets consisting of five classes each, which we
have named DS0, DS1, and DS2. Furthermore, an additional dataset, referred to as DS3,
was created by extracting the difficult and challenging cases from the original DS2 dataset.
This resulted in a new dataset consisting of seven distinct classes.

A summary of the features of each dataset is shown in Table 3. The exact number of
samples for each dataset is shown in Table 4.

Five-class dataset

To obtain an accurate evaluation dataset, the initial approach under consideration
involves constructing a dataset that encompasses the same number of classes as those
considered by the pathologist during the diagnostic process. The groundtruth slides
undergo processing based on the patches policy (Table 1), resulting in the extraction of
samples. These samples are then categorised into 5 distinct groups based on their associated
scores. In this context, each class implies a specific meaning:

• Back. Represents the background, that is a patch with non-tissue regions.
• Class 0. Represents a patch associated to HER2 score 0.
• Class 1. Represents a patch associated to HER2 score 1.
• Class 2+. Represents a patch associated to HER2 score 2+.
• Class 3+. Represents a patch associated to HER2 score 3+.

The following data sets, each containing 5 classes, have been created to address the
mentioned issues:
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• DS0: is the initial 5-class dataset obtained with patch extraction from the original slides
and groundtruth. As the presence of positive grading samples (classes 2+ and 3+) is
less common than negative and background samples (classes 0, 1 and background),
this dataset is unbalanced and has fewer samples for these classes, as shown in Table 4.

• DS1: a 5-class dataset is built only with spatial transformations (rotations, flips) to
reach 50,000 samples per class. In this way, the influence of these techniques to produce
augmented data is tested.

• DS2: this dataset has the same number of samples per class as DS1, but they have
been chosen randomly from spatial transformations and colour transformations too.
Therefore, the patches included in this dataset do not only contain rotations and flips
but also colour variations of these. This way a wider range of stains is covered, and its
influence, with the same number of samples, can be observed.

Seven-class dataset

In a different configuration of the problem, we employ the novel subclass approach,
consisting of 7 classes. As mentioned in the introduction, 2+ is the most pertinent and
challenging class. Therefore, it was decided to split these samples into two intermediary
categories to reduce erroneous classifications. The result of the DS2 classification was used
in this process, by assessing both confidence and prediction, as elaborated in the next
sections. Furthermore, pathologists conducted additional validation of these results. The
ultimate classification of the complete WSI entails combining the group of patches rated 1.5
into the 2+ outcomes, and conversely, the patches rated 2.5+ are incorporated into the 3+
score. Thus, the outcome is generated in accordance with the protocol established by the
pathologist. As a result, the 7-class definition comprises two more classes in addition to the
aforementioned 5-class for 0, 1, 2+, and 3+, that is:

• Class 1.5. Represents patches whose diagnosis is not clearly 1 or 2+, so they are
highlighted to be categorized by the pathologist.

• Class 2.5+. Represents patches whose diagnosis is not clearly 2+ or 3+, so they are
highlighted to be categorized by the pathologist.

A dataset consisting of 7 classes has been built to encompass the described aspects:

• DS3: this dataset follows the same approach as DS2 but with the 7-class subdivision.
With this dataset we can assess whether the combination of the split classes along with
the spatial and colour transformations enhances the results.

The number of samples in each fold (training, test, and validation) and grading class
are shown in Table 4. For the DS0 dataset, 100 patches per class are reserved for testing
while the rest are used for training and validation (performed each epoch) in a 90–10%
proportion. For DS1, DS2 and DS3, as the number of samples is higher, 1000 samples per
class are employed for testing, while training-validation follows the same schedule. Data
augmentation was performed to the training and validation folds.

Table 3. Configuration settings for all datasets.

Dataset Classes Balanced Samples Colour Transfer Spatial Transforms

DS0 5

DS1 5 Yes Yes

DS2 5 Yes Yes Yes

DS3 7 Yes Yes Yes

The datasets will be used to train various network architectures with optimised
parameters in order to maximise performance. This will allow us to evaluate how certain
techniques or structures contribute to improved accuracy in patch classification, ultimately
leading to improved HER2 grading and diagnosis.
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Table 4. Partitioning of all datasets.

Dataset Fold 0 1 1.5 2+ 2.5+ 3+ Background

DS0

Train 19,524 8942 4369 2921 7612
Val 2169 993 458 325 846
Test 100 100 100 100 100

Total 21,793 10,035 4954 3346 8558

DS1 and DS2

Train 45,000 45,000 45,000 45,000 45,000
Val 5000 5000 5000 5000 5000
Test 1000 1000 1000 1000 1000

Total 51,000 51,000 51,000 51,000 51,000

DS3

Train 45,000 45,000 45,000 45,000 45,000 45,000 45,000
Val 5000 5000 5000 5000 5000 5000 5000
Test 1000 1000 1000 1000 1000 1000 1000

Total 51,000 51,000 51,000 51,000 51,000 51,000 51,000

3. Methods

To develop an efficient computer vision workflow based on deep learning methodos,
a comprehensive study and experimentation of different neural network architectures
and settings is needed. Thus, five different CNNs(Convolutional Neural Networks) and
parameter settings have been tested. These architectures, as well as the implementation
details, are explained in the following subsections and summarized in Table 5.

These architectures were chosen to compare the proposed methodology to existing
methods for HER2 scoring. The AlexNet, GoogleNet and VGG networks were selected
due to their simplicity and prior use in the HER2 challenge [16]. The remaining networks,
ResNet and DenseNet were selected based on their ability to offer new attributes, achieving
good results while maintaining a trade-off between computational time and workload. In
addition, ResNet has been frequently used for HER2 scoring in breast cancer [18,20,22]
and more recently for predicting the HER2 status in oesophageal cancer [32]. Moreover,
DenseNet has also been employed recently for HER2 scoring in breast cancer [5].

Table 5. Summary of the NN architectures used and implementation details.

Network Release Parameters Main Feature

AlexNet [33] ILSVRC 2012 60 Ad-hoc architecture

GoogleNet [34] ILSVRC 2014 7 Millions Inception module

VGG-16 [35] ILSVRC 2014 138 5 Millions Conv-3 × 3 blocks

ResNet-101 [36] ILSVRC 2015 45 Millions Residual maps

DenseNet-201 [37] ILSVRC 2016 20 Millions Dense blocks

3.1. AlexNet

This network architecture was one of the first developed for deep learning. It was
the winner of the ILSVRC in 2012, which is one of the most challenging computer vision
competitions. There, the algorithms and models try to distinguish among 1000 different
classes of familiar objects, like several kinds of dogs, cats, trees and more common entities.

The main novelty introduced by AlexNet was the use of convolution layers, which are
designed to modify the dimensionality of the input. As stated in [33] it contains 60 million
parameters (connections and weights among neurons) to be learned during training.

The AlexNet architecture includes five convolutional layers each followed by pooling
and, finally, two fully convolutional layers. There is no basic building block (a building
block here means, the smallest unit which is repeated throughout the network) since this
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network was one of the very first concepts of deep learning applied to images. As a result,
there was yet no standard about filter sizes (size of convolution step) to be used or how
many convolutions, and everything was figured out by experimentation.

The AlexNet network is meant to provide an entry point in experimentation. More
advanced networks such as GoogleNet, VGG-16, ResNet-101 and DenseNet-201 will as-
sumably improve the performance regardless of applying data augmentation techniques.
This is because their deeper layers and structures are able to learn more advanced and
complex features in comparison [38].

3.2. GoogLeNet

Proposed in [34], it was the winner of ILSVRC 2014. An inception module is the basic
building block of the network. In short, the inception module does multiple convolutions,
with different filter sizes, as well as pooling in one layer. As a result, instead of having
us decide when to use which type of layer for the best result, the network automatically
figures this out after training (avoiding experimental ad-hoc architecture exploration as in
the AlexNet network).

It uses combinations of inception modules, each including some pooling, convolutions
at different scales and deep concatenation. It also uses 1 × 1 feature convolutions that work
like feature selectors. In comparison with AlexNet, the number of parameters is reduced to
7 million. It performs 8520 million floating point operations per forwarding pass.

3.3. VGG-16

This network was developed for ILSVRC 2014 too, proposed in [35]. Their concept
brought some standards: it was suggested that all filters should have a size of 3 × 3,
poolings should be placed after every 2 convolutions, and the number of filters should be
doubled after each pooling. As a result, its building block consists of two convolutional
layers followed by a pooling layer. This block is repeated 5 times consecutively. The rest of
the network performs two fully connected layers with a 50% dropout each and, finally, a
classification layer with the output classes probability.

In this case, the objective was to get the best feature extractor possible, although a
deeper network means a slower one. It contains 138 million parameters to be learned, which
is twice the amount used in AlexNet and near 20 times in comparison with GoogleNet,
performing 30,690 million floating point operations in a single inference.

3.4. ResNet-101

This architecture was presented in the ILSVRC competition in 2015 and described
in [36]. It introduced what is known as residual maps, in which information from the
previous layer is added in later ones. Thus, it is possible to acquire correlated features
through element-wise addition while bypassing the layers in the path via “shortcut” con-
nections. The idea is motivated by the degradation problem (training error increases as
depth increases). If further layers can be constructed using identity mappings from the
previous layers, a deeper model should have training error no higher than its shallower
counterpart, but with the accuracy gains from increased depth. This network contains
45 millions of parameters.

3.5. DenseNet-201

Presented in the ILSVRC competition in 2016, the DenseNet architecture was devel-
oped in [37]. Increasing the depth of the convolutional neural network caused a problem of
vanishing information about the input or gradient when passing through many layers. To
solve this, the authors introduced an architecture with simple connectivity pattern to ensure
the maximum flow of information between layers both in forward computation as well as in
backward gradients computation. This network connects all layers in such a way each layer
obtains additional inputs from all other layers and passes its feature-maps to all subsequent
layers, that is it obtains diversified features with the channel-wise concatenation.
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In the network, each layer implements a non-linear transformation, which can be a
composite function of operations such as Batch Normalization (BN), Rectified Linear Unit
(ReLU), pooling or convolution. These multiple densely connected blocks are the basic
building blocks of this network. Finally, they are connected with transition layers which
perform convolution and pooling. Although it has more connections than others, its design
makes it optimum in the number of parameters, with “only” 20 million.

4. Results

Once the 5-class datasets are built, each architecture network is trained and validated.
Tables 6 and 7 show a summary of the results for all the methods and datasets.

Table 6. Results of sensitivity (Sens), specificity (Spec) and accuracy (Acc) for the five-class datasets.
Each column depicts an architecture: AlexNet (AN), GoogleNet (GN) and VGG-16 (VGG).

Dataset Class AN GN VGG

Sens Spec Acc Sens Spec Acc Sens Spec Acc

DS0

0 0.94 0.96 0.96 0.95 0.95 0.95 0.93 0.96 0.96
1 0.80 0.95 0.92 0.78 0.94 0.91 0.84 0.92 0.90
2+ 0.76 0.95 0.91 0.73 0.95 0.90 0.71 0.92 0.88
3+ 0.85 0.98 0.95 0.82 0.98 0.95 0.73 0.99 0.94

DS1

0 0.84 0.94 0.92 0.78 0.94 0.91 0.82 0.98 0.95
1 0.68 0.93 0.88 0.65 0.92 0.86 0.82 0.95 0.93
2+ 0.70 0.94 0.89 0.70 0.92 0.88 0.82 0.94 0.93
3+ 0.85 0.97 0.94 0.84 0.97 0.94 0.88 0.99 0.97

DS2

0 0.80 0.95 0.92 0.80 0.95 0.92 0.82 0.96 0.94
1 0.73 0.95 0.90 0.75 0.95 0.91 0.81 0.96 0.93
2+ 0.84 0.95 0.93 0.83 0.95 0.92 0.88 0.97 0.95
3+ 0.89 0.98 0.96 0.88 0.98 0.96 0.94 0.98 0.97

Table 7. Results of sensitivity (Sens), specificity (Spec) and accuracy (Acc) for DS2. Each column
depicts an architecture: ResNet-101 (RN) and DenseNet-201 (DN). The best results are highlighted
in bold.

Dataset Class RN DN

Sens Spec Acc Sens Spec Acc

DS0

0 0.95 0.96 0.96 0.95 0.94 0.94
1 0.83 0.95 0.92 0.77 0.96 0.92
2+ 0.75 0.97 0.92 0.82 0.95 0.92
3+ 0.89 0.98 0.96 0.80 0.99 0.95

DS1

0 0.88 0.94 0.93 0.89 0.97 0.96
1 0.65 0.96 0.89 0.84 0.96 0.94
2+ 0.74 0.95 0.91 0.85 0.97 0.94
3+ 0.90 0.97 0.96 0.88 0.99 0.98

DS2

0 0.83 0.95 0.92 0.85 0.97 0.95
1 0.74 0.97 0.92 0.84 0.97 0.94
2+ 0.88 0.96 0.95 0.91 0.97 0.96
3+ 0.97 0.98 0.97 0.90 0.99 0.98

In all the experiments, the same set of hyperparameters was used so that performance
can be compared in the same conditions. These parameters for training have been chosen
considering two principles in mind. First, this is a finetuning over previously ImageNet
trained models. Second, that reproducibility over different networks is desirable. Because



Algorithms 2024, 17, 97 13 of 21

of that, L2 regularization and gradient clipping are defined. The specific values have been
chosen from the common range that they take from the state of the art so that they can
work in a large range of models with no issue. These references provide more details about
how they are defined and how they should be used [39–41]. Nevertheless, no noticeable
differences should be observed given that the parameters are set within the proper range.

Regarding the amount of data of these datasets, 3 epochs are enough to adapt the
network to the problem. This is observed in the training plots of the loss function, since
after the third epoch the network training was stable and no improvement was observed.
To further prevent overfitting and to refine the model weights during these epochs, a
learning rate decay is also applied, which is common in the state of the art to reduce the
magnitude of weight changes throughout the learning process.

As a result, these are the specific parameters: training was carried out during 3 epochs,
using ImageNet initialization weights, with 0.01 as the initial learning rate and a decay of
0.1 at each epoch for training stabilization. Gradient clipping (L2 normalization method)
with a 0.05 threshold was used to prevent gradient exploding. Momentum at 0.9 and L2
regularization at 0.004 are also applied to avoid overfitting.

The most optimal performance is observed with the ResNet and DenseNet models,
and with the DS2 dataset where data augmentation and balanced classes are implemented.
Detailed remarks regarding the experiments conducted on each dataset are as follows:

• DS0: The experiments for this dataset gave low sensitivity results for 1 and 2+ classes
(the best are 0.84 for VGG in 1, and 0.82 for DenseNet in 2+). However, the negative
class (0) is well classified by all methods (sensitivity ranges from 0.93 to 0.95). For
class 3+, ResNet is able to get promising results (0.89 sensitivity) even though it is the
class with fewer samples available.

• DS1: With this augmented dataset, the performance is in general increased for the
key classes in diagnosis (2+ and 3+). For 2+, the best results are shown by VGG (0.88
sensitivity) and DenseNet (0.85). However, the less complex models, such as Alexnet
and GoogleNet, slightly degrade their performance.

• DS2: This dataset, apart from spatial augmentation, also introduces colour variations
with the Macenko method. The ResNet model increases its performance, but DenseNet
consolidates as the best model for the 5-classes datasets, with an average sensitivity of
0.88 for these classes. Additionally, Table 8 shows the mean confidence values for the
test set of the DS2 dataset using ResNet and DenseNet models. It shows that DenseNet
classifies with a greater level of confidence. The confusion matrix for the experiment
with this model is shown in Table 9, illustrating the performance of each class. The
classification model’s metrics, including sensitivity, specificity, precision, accuracy,
F1-score, and Matthews Correlation Coefficient (MCC), are shown in Table 10.

Table 8. Mean confidence values for the test set of DS2 using ResNet-101 and DenseNet-201 models.
The best results are highlighted in bold.

Dataset Class RN DN

DS2

0 0.74 0.85
1 0.68 0.84
2+ 0.73 0.87
3+ 0.85 0.92

Table 9. Confusion matrix for DenseNet-201 applied to DS2 dataset with 5 classes.

GT\Pred 0 1 2+ 3+ Back

0 853 90 3 1 53
1 97 844 51 0 8
2+ 2 33 913 51 1
3+ 0 0 65 933 2
Back. 26 3 0 0 971
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Table 10. Metric values per class for DenseNet-201 applied to DS2 dataset with 5 classes.

Class Sensitivity Specificity Precision Accuracy F1-Score MCC

0 0.853 0.969 0.872 0.946 0.862 0.829
1 0.844 0.969 0.870 0.944 0.857 0.822
2+ 0.913 0.970 0.885 0.959 0.899 0.873
3+ 0.933 0.987 0.947 0.976 0.940 0.925
Back. 0.971 0.984 0.938 0.981 0.954 0.943

The DS3 dataset, consisting of 7 classes, has been generated using the prediction
and confidence values obtained from the DenseNet-101 model applied to the DS2 dataset.
Figure 5 illustrates the process.

Figure 5. Generation of DS3 dataset with 7-classes using DenseNet-101 applied to DS2.

Once the DS3 dataset is generated, the experimentation process done is similar to
the previous one. The idea behind this subdivision is to improve the performance for the
most critical classes (2+ and 3+) since they are determinant for the diagnosis and treatment.
The experiments demonstrated that ResNet and DenseNet remained the most effective
networks. Specifically, when applied to this dataset, the performance of these two deep
models exhibited significant improvement, their interpretation is provided below:

• DS3: with this dataset, the novel 7-class approach is tested together with all the data
augmentation proposed, that is spatial augmentation (rotations and flips) and colour
variations. The ResNet model achieves the overall highest mean sensitivity for the
experimentation with the highest confidence values (see Table 11). The confusion
matrix for the experiment with the ResNet-101 model is shown in Table 12. This
table shows the results for the proposed classes that have been trained to enhanced
scoring for difficult patches (1.5 and 2.5+). The classification model’s metrics, including
sensitivity, specificity, precision, accuracy, F1-score, and MCC, are shown in Table 13.

Table 11. Mean confidence values for the test set of DS3 using ResNet-101 and DenseNet-201 models.
The best results are highlighted in bold.

Dataset Class RN DN

DS3

0 0.93 0.91
1 0.87 0.81
1.5 0.94 0.92
2+ 0.92 0.88
2.5+ 0.96 0.88
3+ 0.97 0.90
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Table 12. Confusion matrix for ResNet-101 applied to DS3 dataset with 7 classes.

GT\Pred 0 1 1.5 2 2.5 3 Back

0 901 65 0 0 0 0 34
1 86 855 28 23 0 0 8
1.5 0 74 889 16 21 0 0
2+ 0 34 20 896 19 31 0
2.5+ 0 0 18 13 952 17 0
3+ 0 0 0 29 10 961 0
Back. 39 2 0 0 0 0 959

Table 13. Metric values per class for ResNet-101 applied to DS3 dataset with 7 classes.

Class Sensitivity Specificity Precision Accuracy F1-Score MCC

0 0.901 0.979 0.878 0.968 0.889 0.871
1 0.855 0.971 0.830 0.954 0.842 0.816
1.5 0.889 0.989 0.931 0.975 0.909 0.895
2+ 0.896 0.986 0.917 0.974 0.906 0.891
2.5+ 0.952 0.992 0.950 0.986 0.951 0.943
3+ 0.961 0.992 0.952 0.988 0.957 0.949
Back. 0.959 0.993 0.958 0.988 0.959 0.952

Afterwards, the aggregation process is performed so that each cell in the confusion
matrix is added to the corresponding class it is associated to (2+ for 1.5 and 3+ for 2.5+).
This aggregation allows for the restoration of the scoring scheme for pathology diagnosis,
which is based on 5 classes, and enables the evaluation of its effective performance. Table 14
shows the confusion matrix of the classification when combining the intermediate classes
(1.5 and 2.5+) with their respective true classes (2+ and 3+). The classification model’s
metrics, including sensitivity, specificity, precision, accuracy, F1-score, and MCC, are shown
in Table 15. By employing this methodology, the accuracy of the 2+ class is enhanced to
96%, while the 3+ class achieves a remarkable 98% accuracy.

Table 14. Confusion matrix for ResNet-101 in DS4 aggregating to 5 classes.

GT\Pred 0 1 2 3 Back

0 901 65 0 0 34
1 86 855 51 0 8
2+ 0 54 911 35 0
3+ 0 0 30 970 0
Back. 39 2 0 0 959

Table 15. Metrics Values per Class for ResNet in DS3 aggregating to 5 classes.

Class Sensitivity Specificity Precision Accuracy F1-Score MCC

0 0.901 0.969 0.878 0.955 0.889 0.861
1 0.855 0.970 0.876 0.947 0.865 0.832
2+ 0.911 0.980 0.918 0.966 0.915 0.893
3+ 0.970 0.991 0.965 0.987 0.968 0.959
Back 0.959 0.989 0.958 0.983 0.959 0.948

Figure 6 shows the bar charts to compare all the metrics for the two classification
models, that is, directly classifying in 5 classes, and classifying in 7 classes and then
aggregating the results into 5 classes. The comparison is displayed for each individual class.
To illustrate the distinctions, the abscissa axis of the bar charts is set at 0.80.
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Figure 6. Comparison of models. Blue bars show the results when classifying directly into 5 classes
and red bars show the results when classifying into 7 classes and aggregating to 5 classes.

Figure 7 illustrates the entire process and it shows an example of a slide patch classified
using a model trained with the methods stated in this work. There, the relevant tissue
regions are highlighted in different colours depending on their score and influence in the
grading decision. In this specific case, a 9.76% of the tissue is reported as 3+, so the system
evaluates the slide as a 3+ positive, providing a warning to check for equivocal tissue
regions for further analysis by the pathologist.

Figure 7. HER2 scoring procedure. The workflow involves a 7-class classification and a 5-class
aggregation process.

Comparing the outcomes achieved using the proposed method to those cited in the
current literature [13–20], a comparison can be drawn with the outcomes of five of the
mentioned methods, all of which used the AIDPATH database [14–17,19]. Among these,
Cordeiro et al. [14] reported the highest accuracy rate of 94%. When comparing with the
approach proposed by Chem et al. [18], which utilises MIL at the pyramidal level, the
obtained results are consistent with the previously reported findings, achieving an accuracy
of approximately 91%. These results may be attributed to the network’s lack of access to
supplementary texture or tumour microenvironment data, instead relying on the same
information presented at a varying scale. Finally, when we apply the ResNet34 network
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used in Che et al. [20] to our dataset, the results are comparable to those previously reported,
with an average accuracy of 94%. Thus, the proposed method outperforms other existing
methods, as proven by the obtained results with an average accuracy of 97%.

5. Discussion

This section presents a discussion of our findings, with a particular focus on analyzing
the influence that different architectures and augmentation techniques have on performance.
In addition to this, it provides an analysis of the strategy of dividing the classes that are the
most uncertain in order to establish a distinct decision boundary.

The preliminary tests conducted with DS0 have produced encouraging results and
laid the groundwork for further comparisons with various configurations in the future.
First, the process of augmentation begins with spatial transformations, which are then
followed by the application of color transfer in order to improve the results. Through the
utilization of this dual approach, the dataset is subjected to a greater degree of staining
variation, which ultimately leads to an improvement in performance across all models
operating within the 5-class classification. The ResNet and DenseNet models, which are the
most complex, also demonstrate improved performance in the 7-class classification. This is
a significant finding.

The results of our experiments demonstrate that augmentation and balancing tech-
niques are essential for achieving stable and consistent results across all models. This
highlights the significance of balancing as an essential component for efficient learning. A
reduction in the risks of overfitting is achieved through the utilization of these methodolo-
gies, which ultimately results in improved outcomes for classes that are underrepresented.
It is important to highlight the robust and dependable nature of these techniques by men-
tioning the performance improvement that was observed simultaneously across all classes
and models.

Upon comparing confusion matrices with the traditional 5-class approach, it becomes
clear that the innovative 7-class approach has a number of advantages that are readily
apparent. The ambiguous grading decisions and treatment prognosis are significantly
impacted as a result of this. According to the ResNet model that makes use of DS3 and the
7-class approach, the sensitivity for classes 2.5+ and 3+ is 95.2% and 96.1%, respectively.
When these sensitivities are combined in the aggregated 3+ class, the overall sensitivity
reaches 97%. DenseNet demonstrates a sensitivity of 93% for class 3+ when it is applied to
DS2. Comparing the 7-classes approach aggregated to the 5-classes for class 2+, it reveals
that the former exhibits a 3% greater sensitivity than the latter, using the same model.
The ResNet model demonstrated a sensitivity of 88% when evaluated on a dataset with
5 classes. However, when the model was tested on a dataset with 7 classes and the results
were aggregated to 5 classes, the sensitivity improved to 91%. The level of variation in
class 1 is significantly higher, increasing by 11.5%. Thus, the sensitivity of class 1 when
applied to the 5-classes DS2 dataset is 74%. However, the proposed approach using ResNet
achieves a sensitivity of 85.5%.

The level of confidence that is associated with the classifications that are made by
the model is another important factor that should be taken into consideration. In general,
models that are more accurate tend to demonstrate a higher level of confidence. To be
more specific, the data presented in Tables 8 and 11 indicates that DS3 generates a higher
level of confidence in comparison to DS2, particularly for our most advanced models.
Because of this, the 7-class method provides advantages not only in terms of sensitivity
but also in terms of the levels of confidence it provides. According to the results of our
experiments, the ResNet model in DS3 is the one that performs the best when it comes
to HER2 prediction. In general, it demonstrates a high level of sensitivity (91%), and it
also demonstrates higher levels of confidence, ranging from 87% to 97%. In contrast, the
DenseNet model is a little bit behind the curve, with confidence levels ranging from 84%
to 92%.
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A crucial factor to take into account in the proposed approach is the need to conduct
tests in the context of clinical practice, utilising a larger dataset and within a constrained
timeframe. Considering the computational time is crucial, as the networks that yield the
best results are the ones that require more computational time. It is advisable to opt for
models that are both lightweight and have a higher speed. Alternatively, in order to enhance
the outcomes, it is also possible to analyse and evaluate the tumour microenvironment by
considering data from various regions of the WSI, rather than solely focusing on the specific
patch that needs to be classified. Therefore, it is worth considering architectures that are
built upon transformers. In addition, future research may also consider to develop models
that demonstrate greater accuracy in predicting confidence levels for specific categories.
The application of an ensemble of networks to enhance the overall performance and, as a
result, reduce the reliance on a single model is one method that can be used to accomplish
this goal.

6. Conclusions

The main insights that can be extracted from our work, as discussed above, point out
that balancing the number of samples per class is key to obtain stable results. Furthermore,
the incorporation of colour variations enhances performance, particularly in the deeper
networks, which can leverage this newfound knowledge to a greater extent.

Moreover, the novel 7-class approach is considered an improvement over the results,
as it enables the identification and isolation of equivocal and challenging patches for
subsequent revision, while simultaneously improving the precision of automated grading.

The proposed method eliminates the need for a segmentation stage and surpasses the
performance of other existing methods. The final results of the aggregation process show
an average accuracy of 97%, an F1-score of 92%, a Matthews correlation coefficient of 90%,
and an average precision of 92%.

Regarding future work, the implementation of an application relying on these experi-
ments should consider other aspects of the models apart from performance. For example,
in a grading application that performs the scoring within a scanner using a general pur-
pose computer, the Googlenet or ResNet models are more suitable for deployment and
represent the best trade-off network. This is because they are lighter and faster than
VGG-16 or DenseNet-201, for example, which are the most computationally expensive.
Moreover, the 7-class approach allows the model to deal with doubtful patches, which
are isolated in specific classes that are designed to warn the pathologists to take them in
special consideration.

Taking into account the confidence in prediction, further work may consider models
that are more reliable to specific classes, so that ensemble trees of networks could be
developed to enhance the performance rather than relying on a single model.
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