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Abstract: Due to increased complexity and interactions between various subsystems, higher-order
MIMO systems present difficulties in terms of stability and control performance. This study effort
provides a novel, all-encompassing method for creating a decentralized fractional-order control
technique for higher-order systems. Given the greater number of variables that needed to be opti-
mized for fractional order control in higher-order, multi-input, multi-output systems, the modified
flower pollination optimization algorithm (MFPOA) optimization technique was chosen due to its
rapid convergence speed and minimal computational effort. The goal of the design is to improve
control performance. Maximum overshoot (Mp), rising time (tr), and settling time (ts) are the per-
formance factors taken into consideration. The MFPOA approach is used to improve the settings of
the proposed decentralized fractional-order proportional-integral-derivative (FOPID) controller. By
exploring the parameter space and converging on the best controller settings, the MFPOA examines
the parameter space and satisfies the imposed constraints by maintaining system stability. To evaluate
the suggested approach, simulation studies on two systems are carried out. The results show that
by decreasing the loop interactions between subsystems with improved stability, the decentralized
control with the MFPOA-based FOPID controller provides better control performance.

Keywords: decentralized control; modified flower pollination optimization algorithm; fractional-
order proportional-integral-derivative controller; sensitivity function; parameter optimization

1. Introduction

The proportional-integral-derivative (PID) controller was initially conceived in the
1920s and has since gained widespread use. Although numerous other control strategies
have been put out over the past 100 years, PID remains the most widely used process
control technology in the industrial domain. This is due to the fact that an integer order is
used to model most systems. The PID controller offers reliable performance and an easy-
to-implement structure at the same time. Additionally, numerous potential methods for
adjusting the PID controller’s parameters have been documented in the literature. Nonethe-
less, in certain scenarios, the system can and ought to be represented as a non-integer-order
system; representing the system as an integer order is merely a rough approach [1]. A
system that is modeled as a fractional order will be a better approach. Fractional-order
control will undoubtedly work better for fractional-order systems.

A sophisticated control method that has gained substantial popularity recently is
the fractional-order proportional-integral-derivative (FOPID) controller [2,3]. The FOPID
controllers have a higher degree of freedom and greater flexibility due to their additional
parameters, which are fractional-order in the integral and derivative terms. The FOPID
controller has many benefits when compared with a PID controller. This includes enhanced
set-point tracking, strong disturbance rejection, and greater processing ability to withstand
model uncertainties [4]. The FOPID controller is appropriate for a variety of applications
because it can more precisely capture the dynamic behavior of complex systems when
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fractional order is used in integrals and derivatives [5]. The FOPID controller has benefits
like higher tracking performance, increased stability margins, and robustness to uncertainty.
The FOPID controller offers a promising foundation for improving the performance of
control systems and overcoming the difficulties posed by complex, nonlinear systems. The
foundations of the FOPID controller and its applications are examined in this paper. Along
with the most recent advancements and research trends in the area, several techniques for
adjusting the FOPID controller parameters are also explored.

Multi-input, multi-output (MIMO) systems are extensively used in the process control
sector. Designing an effective controller is challenging due to the interactions between
the loops. For the conventional single-input, single-output (SISO) proportional-integral-
derivative (PID) controller, a number of tuning techniques are offered [6]. The design
approaches that should be taken into account when designing fractional controllers are
also outlined.

To achieve the required performance and stability, FOPID controller parameters must
be properly selected, which is a significant cause for concern. Model-based and model-free
tuning techniques are the two categories into which FOPID controller tuning approaches
are categorized in the literature. Several research works have been conducted to provide
effective model-based tuning rules and techniques for FOPID controllers [7]. Trajectory
tracking of a rotating flexible-joint system was assessed using a state feedback-based
fractional integral control approach [8]. For a rotary inverted pendulum, a two-degree-
of-freedom FOPID controller was used [9]. In [10], the topic of tuning FO controllers
for industrial use was examined. However, for complicated nonlinear systems, these
approaches require a precise dynamic model, which is not accessible [11,12]. Conversely,
no model or process identification is present in model-free tuning techniques [11]. As a
result, ref. [13] looked into the model-free tuning technique for FOPID controlling. In [14],
when the characteristics of the system varied over time, a model-free adaptive FOPID
tuning technique was applied.

Machine learning techniques are one type of model-free tuning that may be used to
properly tune the parameters of the FOPID controller without requiring previous knowl-
edge of the dynamics of the system [15,16]. Neural networks (NNs) were designed to tune
the FOPID controller for numerous applications because of their capacity to tune more
useful controller settings without requiring a thorough understanding of the system [16].

Although there are many methods for figuring out the FOPID parameters, as described
in the aforementioned literature, robustness and stability must be taken into account. Also,
figuring out the best controller gains is crucial. Through a tuning approach, the best con-
troller gain values that meet these requirements can be found. Finding the ideal values,
however, is the main objective. Numerous studies have examined the tuning of FOPID
parameters using metaheuristic optimization methods [17–19]. These tuning techniques are
actually offline systems and do not rely on the precise mathematical model that represents
plants. In this sense, one of the following methods has been utilized to build the FOPID con-
troller: hybrid optimization [20], fuzzy logic [21], particle swarm optimization (PSO) [22],
or genetic algorithms [23]. Due to its quicker convergence, PSO-based design is one of the
most popular among them, yet it frequently displays a local solution. On the other hand,
the global solution achieved by genetic algorithms comes at a great computing expense.
Consequently, additional efforts have been undertaken to suggest a different algorithm
in order to attain both a global solution and speedier convergence. Different modified
flower pollination optimization algorithms (MFPOAs) have been applied recently to solve
many engineering optimization problems [24]. The classical flower pollination algorithm
(FPA), which was developed to address global optimization based on the imitation of
flower pollination, has proven effective in solving a number of optimization problems [25].
Sadly, however, due to its low convergence speed and inability to explore multiple regions
within the search space during the optimization process, the classical FPA’s performance
still significantly suffers from stagnation in local minima, requiring multiple iterations
to find better solutions within unpromising regions. In general, ten mathematical test
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functions were used to evaluate the classical FPA with a population size of 25, and the
maximum iteration reached 10,840. This is regarded as a considerable rate to be consumed
in order to get the required results. More details regarding the drawbacks associated with
the classical FPA are discussed in [26,27]. This paper adopted the MFPOA presented in [28].
The main benefit of the suggested MFPOA is that the algorithm converges more quickly
while maintaining the same properties of the traditional FPA. The MFPOA is one of many
nature-inspired algorithms that have been created recently for solving the optimization
problem.

This work makes use of the decentralized FOPID controller design for higher-order
systems that use the MFPOA. Because of its scalability, fault tolerance, modularity, design
simplicity, etc., decentralized control is recommended. To establish the best FOPID con-
troller gains, the MFPOA approach is used. For higher-order systems, the efficiency of
the controller can be confirmed by taking parameter fluctuations and disturbances into
account. The comparative results show that the suggested controller can meet design
requirements with little overshoot and settling time, hence assuring robust stability. The
main contributions of the present study are listed as follows:

1. Loop interactions and coupling effects are decreased by creating decouplers with a
simplified decoupling approach;

2. In order to obtain the best values of Ts, Tr, and Mp, a novel optimal FOPID controller
is designed using an MFPOA method that places constraints on ITSE. This strengthens
the system and improves the stability issues;

3. A quantitative comparison is made between the suggested method and the traditional
PID controller. The results show that the recommended controller performs better
than the previously discussed approaches.

The paper is structured as follows: Section 2 describes the background of decentral-
ized control. Section 3 describes the optimization methodology: classical FPA, MFPOA,
and implementation of the MFPOA for optimizing the FOPID controller and proposed
cost function. The robust stability analysis is discussed in Section 4. Section 5 presents
the simulations results and discussion. Finally, Section 6 presents our conclusions and
future work.

2. The Preliminary Background of the Proposed Control Method

This section provides a description of the work’s preliminary steps. The MIMO
system’s transfer function with n-input and n-output can be written as

M(s) =


m11(s)e−ϕ11(s) m12(s)e−ϕ12(s)

m21(s)e−ϕ21(s) m22(s)e−ϕ22(s)
. . . m1n(s)e−ϕ1n(s)

. . . m21(s)e−ϕ2n(s)

. . . . . .
mn1(s)e−ϕn1(s) mn2(s)e−ϕnn(s)

. . . . . .

. . . mnn(s)e−ϕnn(s)

 (1)

Equation (1) makes clear how the process variables interact with one another. The
loop interactions must be reduced in order to meet the design objectives. It has been stated
in [29], interactions can be reduced using either a centralized or decentralized controller.
However, given its advantages, the decentralized structure is favored. The independent
controller is

C(s) =


C11(s) 0 0 0

. C22(s) . .
. . . . . . . . . . . .
0 0 0 Cnn(s)

 (2)

Figure 1 shows the overall layout of the 3× 3 MIMO system with a decentralized con-
troller. First, second, and third loop effects are depicted in blue, green, and red, respectively.
It is clear from the figure that loop interactions are a frequent occurrence in MIMO systems.
The second and third loops’ effects on the first loop are viewed as a disturbance that needs



Algorithms 2024, 17, 94 4 of 22

to be lessened in order to meet the design criteria. The second and third loops operate
similarly. By creating decouplers, the loop interactions are reduced to a minimum. 
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Figure 1. 3 × 3 MIMO system with a decentralized controller. 

   

Figure 1. 3 × 3 MIMO system with a decentralized controller.

Figure 2 shows the MIMO system’s schematics with a decoupler and controller. The
decouplers basically reduce the interactions between the control loops.
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Figure 2. Decentralized control.

In addition, the control law is implemented to meet the appropriate operational
standards. Rajapandiyan and Chidambaram [30] state that the decoupling matrix is

D(s) =


1 −m12(s)

m11(s)
e(−ϕ12−ϕ11)s . . . −m1m(s)

m11(s)
e(−ϕ1m−ϕ11)s

−m21(s)
m22(s)

e(−ϕ21−ϕ22)s 1 . . . −m2m(s)
m22(s)

e(−ϕ2m−ϕ22)s

. . . . . . . . . . . .
− mm1(s)

mmm(s) e(−ϕm1−ϕmm)s − mm2(s)
mmm(s) e(−ϕm2−ϕmm)s . . . 1

 (3)

Consequently, the diagonal matrix J(s) can be calculated as

J(s) = M(s) ∗ C(s) = diag{j11(s), j22(s), . . . , jmm(s)} (4)

For 1 = 1, 2, the decoupled elements jii need to be controlled.
The higher-order system’s complexity is shown in Equation (1). Additionally, the

analysis gets more difficult as the system’s rank rises. As a result, model reduction is
preferred because controller design is challenging. The FOPDT model can be used to
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approximate the process dynamics though. As a result, the structure of the FOPDT model
is determined using the proper model-reduction procedures. This model makes it simple
to determine the gain, dead time, and time constant [31]. The scaled-down model is

Mii(s) =
Wiie−∅ii(s)

τiis + 1
, j = 1, 2 (5)

The unknowns are identified using frequency-response fitting at two positions, (0, αcii)
(0, cii), where αcii is the phase-crossover frequency.

Mii(0) = jii(0) (6)

|Mii(jαcii)| = |jii(jαcii)| (7)

∠{Mii(jαcii)} = ∠{jii(jαcii)} (8)

The FOPDT specifications are provided by

Wii = sjii(0) (9)

τii =

√√√√W2
ii − |jii(jαcii)|2

|jii(jαcii)|2α2
cii

(10)

∅ii =
π + tan−(−αciiτii)

αciiτii
(11)

2.1. Fractional Calculus Definitions

Fractional derivatives include the Caputo and Riemann–Liouville (RL) types. All
of them are extensions of the standard differential and integral operators. Nonetheless,
the features of the fractional derivatives are less than those of the comparable classical
ones. Because of this, these derivatives are highly helpful in explaining the abnormal
happenings [32,33]. This study makes use of the RL derivative, one of the most often
utilized fractional derivatives. The RL derivative outperforms Caputo in that it permits the
function in question to have discontinuity at the origin. However, it prohibits the use of
conventional initial conditions; instead, the initial conditions in the RL case must either be
weighted initial conditions or in the integral form. More numerical aspect/advantages can
be found in [34–36].

The FO controllers are described by differential equations with fractional-order inte-
grals and derivatives. An FO operator vBx

t is denoted by the following:

Bx
t =


dx
dt , R(x) > 0

1, R(x) = 0∫ t
b (dλ)−x, R(x) < 0

(12)

with x ∈ R. According to Garrappa et al. [31], the three definitions for fractional derivatives
that are most frequently employed are the Caputo definition, the Riemann–Liouville defini-
tion, and the Grunwald–Letnikov definition. However, the Riemann–Liouville definition is
more common and is given by

vBx
t f (x) =

1
γ(m− x)

da

dta

∫ u

l

f (x)

(t− τ)x−a+1 dx, a− 1 < x < a (13)

where γ(.) stands for the Euler gamma function, and l and u, respectively, are the lower and
upper bounds. The order of the integral or derivative is x, which could be a complex number
or a non-integer, and vBx

t is the fractional differentiation or integration. To determine the
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transfer-function of integer-order systems, the Laplace transform is used. The signal’s ath

order derivative’s Laplace transformation is x(t).

LBax(t) =
∫ ∞

0
e−st .

0Ba
t x(t)dt = SaX(s)−∑−1

k=0 sk .
0Bn−k−1

t x(t)|t=0 (14)

with (m− 1) < a < m and m ∈ Z as explained in [37]. One method to be applied in
simulations, models, or controllers is to approximate fractional orders with integer-order
transfer functions. To replicate a fractional transfer function accurately, an integer-order
transfer function must have an unlimited number of poles and zeros. However, a finite
number (N) of zeros and poles allows for reliable estimation. The Oustaloup strategy,
which takes advantage of the recursive distribution of zeros and poles, is one of the
many well-known approximation techniques. The deeper analysis and optimal continuous
approximation Oustaloup method can be found in [38–40]. The transfer function in the
Oustaloup method is written as

sv ≈ k∏N
n=1

1 + (s/vz,a)

1 +
(
s/vp,a

) (15)

In [ω1, ωh], the approximation is defined. To guarantee that Equation (15) will have a
unity gain at 1 rad/s, gain k is modified. The order of approximation affects the chosen
value of N. Gain and phase ripples are the results of low-order approximations. With
a higher order of N, ripples can be eliminated; however, the computing process is very
challenging. Equation (15) describes the frequencies of zeros and poles, which are given by

ωz,l = ωl
√

β (16)

ωp,a = ωz,ζ, a = 1, . . . , A (17)

ωz,a+1 = ωp,a, a = 1, . . . , A− 1 (18)

ζ = (ωh/ωl)
v/A (19)

β = (ωh/ωl)
(1−v)/A (20)

To take into account the condition v < 0, Equation (15) might be reversed. If |v| > 1,
which typically leads to distinct fractional orders as seen below, the approximation becomes
unacceptable.

sv = sasδ, aζZ, δζ[0, 1] (21)

2.2. Stability of the Fractional-Order System

Stability assurance is a fundamental and crucial criterion for constructing a control sys-
tem. The linear-time-invariant (LTI) system is stable because the roots of the characteristic
equation are on the left side of the S plane.

Lemma 1 [41,42]. Let us consider the following autonomous system:

dαx
dtα

= Ax, x(0) = x0 (22)

where 0 < α < 1, A ∈ Rn×n and x ∈ Rn, it is asymptotically stable if and only if |arg(λ)| > απ
2

is fulfilled for each of the matrix A’s eigenvalues (λ). Also, this system is stable if and only if
|arg(λ)| ≥ απ

2 is fulfilled for each of the matrix A’s eigenvalues (λ) with those critical eigenvalues
satisfying |arg(λ)| = απ

2 possessing a geometric multiplicity of one. A matrix A’s geometric
multiplicity of an eigenvalue λ is its dimension within the subspace of vectors v that satisfy

Av = λv. (23)



Algorithms 2024, 17, 94 7 of 22

Figure 3 depicts the stable and unstable regions for 0 < α < 1.
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2.3. Fractional-Order PID (FOPID)

The fractional-order PID (FOPID) controller is an improved version of the PID con-
troller that integrates fractional-order calculus. The FOPID controller employs fractional
orders instead of integer values for the derivative and integral terms to improve perfor-
mance and flexibility in controlling complicated systems. The three major components
of the PID controller are the proportional (KP), integral (KI), and derivative (KD) terms.
The fractional orders of the integral (λ) and derivative (µ), in addition to the gains for
the integral and derivative terms, are two additional parameters in the FOPID controller.
The FOPID controller’s architecture is shown in Figure 4. The fractional order (λ and µ),
which allows non-integer values between 0 and 1, provides more control flexibility. These
fractional orders control the amount that the integral and derivative terms weigh and
contribute, allowing the system response to be improved with greater specificity.
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Figure 4. The illustrations of the FOPID Controller.

The standard FOPID controller is called PIλDµ, where λ and µ can be any real number
and stand for integrator and differentiator orders, respectively. The FOPID controller’s
transfer function is defined as

C(s) = KP + KI
1

Sλ
+ KDSµ (24)

The goal is to derive the optimal values of KP, KI , and KD.

2.4. FOPID Tuning

Despite their advantages, FOPID controllers’ tuning is not straightforward. As such,
numerous studies have focused on determining an appropriate tuning technique for
FOPID controllers. The existing tuning methods for FOPID controllers are divided into
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three categories: auto-tuning, robust tuning, and optimal tuning methods [40]. Although
these auto-tuning technologies are extremely beneficial in practical applications, they are
rarely employed in motion control applications, which require high bandwidths (crossover
frequency) [43]. But, for process control (first-order plus delay plants), they are highly
useful instruments. Some studies have led to the development of tuning techniques based
on H∞ constraints, whereby mathematical techniques like the graphical approach, the
Newton–Raphson numerical iterative algorithm, and others are used to meet performance
constraints including stability, bandwidth, resilience, and precision [44]. These techniques
meet all of the designer’s requirements; however, solving these nonlinear equations is
extremely challenging and sometimes impossible. Furthermore, a number of issues arise
since several of these methods need the determination of the plant’s dynamic properties.
Based on this, it can be stated that the majority of the tuning techniques currently in use
are complicated, and each one is limited to a certain class of systems. However, some
studies were conducted in an effort to develop a novel tuning technique using optimization
techniques such as genetic algorithms and particle swarm optimization [45]. In this method,
multiple objective functions and restrictions are addressed when tuning FOPID controllers.
These strategies enable controllers to function at their best. This motivates the use of the
MFPOA in turning the FOPID controller.

3. Optimization Methodology
3.1. Flower Pollination Algorithm (FPA)

The river pollination method of flowering plants served as the basis for the creation of
the FPA (Yang et al. 2012 [46,47]). Through the process of pollination, flowers of a plant
are crucial to reproduction. Pollinators including insects, birds, and other animals assist
the spread of pollen during pollination. Self-pollination or cross-pollination are terms
used to describe pollination. Cross-pollination is the term used to describe the pollination
process that occurs when pollen from a plant’s flower is used. Self-pollination, on the
other hand, is the act of fertilizing a flower of a plant with pollen from the same flower
or from many flowers of the same plant. In the absence of a dependable pollinator, self-
pollination frequently takes place. Cross-pollination typically occurs over great distances,
and pollinators like bees, bats, birds, and flies are able to travel great distances. Cross-
pollination is hence comparable to global pollination. Additionally, a Levy distribution
governs how bees and birds fly. Further, the consistency of two blooms can be used as
an increment step by comparing or contrasting them. The traditional FPA mostly relies
on flower constancy behavior, which is explained in the following manner. Elite flower
species can be visited by pollinators, while other flower species can be avoided. Because it
facilitates the transmission of pollen to the same plants’ flowers, such flower constancy has
the benefit of promoting the reproduction of the same flower species. The following is a list
of the FPA’s primary guidelines.

Rule 1: Cross-pollination is a form of global pollination, and pollinators follow the
Levy distribution when they fly.

Rule 2: The process of self-pollination is regarded as local pollination.
Rule 3: The likelihood of reproduction is obtained by pollinators like insects and

is equivalent to flowering persistence. Based on how similar the two flowers are, this
probability is determined.

Rule 4: A switching probability p equal to either 0 or 1 that is slightly skewed in favor
of local pollination can be used to control the transition between local and global pollination.
The update equations for the FPA are derived by incorporating the aforementioned rules.
Mathematically, the first and third principles can be written as Equation (25).

ui+1
n = ui

n + δL(x)
(

ubest − ui
n

)
(25)

where L(x) is the Levy-based step size showing the amount of pollination, δ is a scaling
factor to control the step size, and ui

n represents the n-th pollen or solution un at iteration
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i. ubest is the best solution among all the solutions thus far. As a result, L(x) is as in
Equation (26).

L ≈
x (γ)sin

(
πx
2
)

π

1
s1 + x

, s >> s0 > 0 (26)

where the standard gamma function is represented by (γ), and this distribution is ac-
ceptable for big steps s > 0. Despite s � 0 being necessary, s0 can actually be as low as
0.1. It is challenging to produce pseudorandom step sizes that accurately match the Levy
distribution though [48]. As a result, the Mantegna method [49], a useful algorithm that
has been documented in the literature, is utilized in the FPA to generate these random
values. Two Gaussian distributions, Gu and Gv, can be used to derive the step size s in
Equation (27).

s
Gu

|Gv|
1
x

, Gu ∼ N
(

0, var2
)

, Gv ∼ N(0, 1) (27)

The expression Gu ∼ N
(
0, var2) denotes that the samples were taken from a Gaussian

distribution with a mean and variance of 0 and var2, respectively. Equation (28) is used to
obtain the variance, or var2.

var2 =

[
(1 + x)

x ((1 + x)/2)
.
sin πx/2
2(x−1)/2

]
(28)

The gamma functions (1 + λ) = 1, ((1 + λ)/2) = 1 and var2 become equal to 1
when the value of x is equal to 1. The update equation for local pollination can be written
as Equation (29) based on Rules 2 and 3.

ui+1
n = ui

n+ ∈
(

ui
a − ui

b

)
(29)

The pollen from two separate blooms on the same plant is represented by the letters
ui

a and ui
b. When ∈ is selected from a uniform distribution in [0, 1], this distribution turns

into a local random walk if ui
a and ui

b are mathematically taken from the same plant species.
Of course, both locally and worldwide influences are involved in the flower pollination
process. However, in reality, nearby flowers are more likely to be pollinated by nearby
flower pollen than they are by pollen from a great distance away. By allocating a switching
probability or proximity probability p as specified in Rule 4, the program can imitate this
attribute. It is meritorious to exploit this likelihood to shift from strict local pollination to
shared global pollination. It can be started initially by setting the initial value to ρ = 0.5.

3.2. MFPOA

Adaptive orientation Gaussian (AOG) mutation is employed in the suggested MFPOA
approach to optimize the controller settings. The pollen’s characteristics are altered during
the pollination process by using the mutation-based flower pollination method. The
mutation procedure in the optimization technique often speeds up the solution by changing
some of the particle properties. The AOG mutation technique is used in the FPA to
accomplish this. The key benefit of the proposed MFPOA is the algorithm’s quicker
convergence while maintaining the features of the conventional FPA. The AOG mutation is
added to the pollen produced by global pollination in the traditional FPA method following
global pollination. As a result, after applying the mutation process [50], Equation (25) is
changed into Equation (30):

ui+1
n mut = ui

n + δL(x)
(

ubest − ui
n

)
+ ϕ{AOG} (30)

where ϕ is the probability factor present. Equation (31), which describes the AOG mutation
function, is as follows:

AOG(x) = (Gσ(xsin θ)− Gσ(xcos θ)) (31)
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Gσ =
1

σ
√

2π
e
−1
2 ( x−m

σ )
2

(32)

where m, σ, Gσ(x), and θ denote the mean, variance, Gaussian function of the variable x,
and the rotation that must be applied to the function. The mutation is also applied to p.
The one from Equation (29) is altered by the mutation process to become Equation (33).

ui+1
n mut = ui

n+ ∈
(

ui
a − ui

b

)
+ ϕ{AOG} (33)

As follows is the probability factor. If the pollen characteristics obtained in the most
recent iteration (i + 1) using global or local pollination match those obtained in the most
recent iteration (i) using global or local pollination, the probability factor is 1; otherwise, it
is zero, and the solution remains the same.

ϕ =

{
1 i f

(
ui+1

n − ui
n = 0

)
0 else

(34)

The AOG-based MFPOA algorithm is provided below in Algorithm 1:

Algorithm 1: AOG-Based MFPOA Algorithm

1. Determine the pollen count using random solutions
2. Determine the ideal response from the starting population
3. Establish a switch probability of p
4. While (i < max. No. o f generation )
5. For n = 1 : N
6. If rand < p
7. Create a step vector in d dimensions that follows the Levy distribution
8. Apply Equation (25) to global pollination
9. Use Equation (34) to calculate the mutation probability factor
10. If ϕ = 1
11. Apply Equation (29) to determine fresh pollen in global pollination
12. Else
13. Equation (34) is used to calculate new pollen
14. Choose from a uniform distribution in the range [0, 1]
15. Use Equation (33) to carry out local pollination
16. Use Equation (34) to calculate the mutation probability factor
17. If ϕ = 1
18. Apply Equation (33) to local pollination to determine fresh pollen
19. Else
20. Equation (29) is used to calculate new pollen
21. End
22. Create fresh approaches
23. If improved solutions emerge, inform the populace of them
24. End
25. Discover the current top option
26. End
27. The fitness solution is the best option

3.3. Implementation of the MFPOA for Optimizing the FOPID Controller

First, a pollen matrix of dimension 3× n is taken into account, with the pollen taken
into account as the controller parameters. N is the quantity of plants. In Equation (35), the
matrix layout is described:

un =

 KP1 Kp2 Kp3 . . . Kpn
λ1Ki1
µ1Kd1

λ2Ki2
µ2Kd2

λ3Ki3 . . .
µ3Kd3 . . .

λnKin
µnKdn

 (35)
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The best plant with the best fitness function will then be identified utilizing the
elements present in each row to calculate the fitness function. The performance criterion
shown in Equation (13) will be applied to the controller. Then, update pollen utilizing global
pollination or local pollination based on switch probability for the subsequent iteration.
The phrase un is rendered as unm representing the pollen of the plant whose n-th position
is at the m-th place. For the proposed application, m for each controller is equal to 4. In
local pollination, only the pollen of the same row is taken into account because the pollen
of a row comes from the same plant flower. In global pollination, the pollen present in all
rows is taken into consideration for pollination. Thus, when the convergence requirement
is satisfied, this algorithm yields the best solution set. The Schematics of the MFPOA-based
FOPID control is shown in Figure 5.
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3.4. Proposed Cost Function

The fitness function adopted from [51] is as follows:

MinJ(KP, KI , KD, λ,µ) =
(

Min
KP, KI , KD, λ,µ

)(
e−β(Ts + Tr) +

(
1− e−β

)
(ITSE + MP)

)
(36)

where β is the weighting factor, MP donates overshoot, Tr donates rise time, Ts donates settling
time, Min is the minimum of the cost function J = e−β(Ts + Tr) +

(
1− e−β

)
(ITSE + MP),

and ITSE is the integral of the time multiplied square error criterion given by

ITSE =
∫ tsim

0
te2(t)dt, (37)

where e(t) is the tracking error, and tsim is the overall simulation time.
ITSE is the most crucial variable in this fitness function. Ts, Tr, and MP parameters

must all be minimized in order for them to be at their best. In other words, the Ts, Tr,
and MP parameters are directly and indirectly optimized using this fitness function. The
multiple-application Simpson’s 1/3 rule is used to generate the ITSE performance index [52].
Our objective is to use the MFPOA method to determine the best settings for the PIλDµ

controller.

4. Robust Stability Analysis

The SISO system’s gain is independent of the size of its input. The MIMO system,
however, offers more degrees of freedom. Because of this, the gain is influenced by the
direction of the disturbance d, as detailed in [52]. It is crucial to perform a robust stability
study of MIMO systems due to model uncertainty and other parameter changes. The
stability analysis is assessed using the singular-value uncertainty model. The schematic
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of the input uncertainty taken into consideration throughout the analysis is shown in
Figure 6a. The following conditions must be met for the closed-loop system to be stable.

‖∆I(jω)‖ < 1
ϑ1

(38)

where M(s)[1 + ∆I(s)] is the input uncertainty, and ϑ1 is the maximum singular value
(MSV) of the closed-loop system C(s)M(s)/(1 + C(s)M(s)). The MSV of N can be calcu-
lated using the maximum gain. Moreover, the matrix can be reduced to its single value as

M =v $ l ∗ (39)

where $ is a matrix of the order x × y, and l and v are unitary matrices of the order
y × y and x × x, respectively. Similar to the discussion in [53], the closed-loop system
for the multiplicative output uncertainty M(s)[1 + ∆o(s)] will be stable if the following
requirements are met:

‖∆o(jω)‖ < 1
ϑ2

(40)

where ϑ2 is the MSV of the closed-loop system C(s)M(s)/(1 + C(s)M(s)).
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Examining the frequency graphs of Equations (38) and (40) will reveal the stability
bounds of the closed-loop system. The stability of the system can be determined by looking
at the area under the curve. As a result, it is simple to examine the controllers’ stability. The
controller that covers the biggest area beneath the curve will be the most stable one.

5. Simulation Results and Discussion

Simulated analysis of the proposed control scheme was carried out in the Mat-
lab/Simulink environment. Three separate case studies were taken into account to demon-
strate the effectiveness of the control method. Comparing the performance and robustness
to the techniques outlined in the aforementioned literature allowed for evaluation.

5.1. Case 1 (2 × 2) VL Column System

The benchmark VL column example provided by Luyben (1986) is a TITO process
with greater input and output interaction [54]. The VL column transfer function structure
is provided below.

M(s) =

[
−2.2e−s

7s+1
1.3e−0.3s

7s+1
2.8e−1.8s

9.5s+1
4.3e−0.35s

9.2s+1

]
(41)
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The ultimate control assumption, which forms the basis of the EOTF/ETF models,
can only be verified by including a decoupler in the open-loop model. Decouplers can be
created using Equation (3) as

D(s) =

[
1 0.5909

(5.9907s+0.6512)e−1.45s

9.5s+1 e−0.7s

]
(42)

The decoupler D(s) includes an additional time delay,

G(s)D(s) =
[

g11(s) g12(s)
g21(s) g22(s)

][
1 d12(s)e0.7s

d21(s) e−0.7s

]
=

[
g∗11(s) 0

0 g∗22(s)

]
(43)

The decoupled processes are

g∗11(s) =
−1.3535e−0.9559s

6.691s + 1
(44)

g∗22(s) =
2.6455e−1.034s

8.794s + 1
(45)

Additionally, the described optimization issue in Equation (36) is where the decentral-
ized FOPI controller is derived.

C(s) =
[
−2.5858− 0.3865

s 0
0 1.6066 + 0.1941

s

]
(46)

The MFPOA method was implemented in MATLAB. The parameters utilized in this
paper’s MFPOA-based simulations are shown in Table 1.

Table 1. Parameter settings for the simulation.

Parameter Value

Population size (n) 50
Probability of switching (p) 0.8

Number of iterations 100
Number of variables 5

Maximum limits [KP, KI , KD, λ, µ ] 40, 20, 20, 1, 1
Minimum limits [KP, KI , KD, λ, µ] 0, 0, 0, 0, 0

β 2.5

Figure 7 displays the closed-loop response for the VL column. Both references apply
the unit step changes. The setpoint of loop 2 is altered from 0.2 to 1 at t = 100, as shown in
Figure 8. A traditional PID controller and a proposed controller are contrasted. It is evident
from the figure that the proposed FOPID controller outperforms the PID controller in terms
of performance. The proposed FOPID controller’s quicker regulatory reaction significantly
minimized the interaction effect.

The setting of the optimized PID and FOPID are found through minimization of the
cost function for the ETF model (g∗11(s), g∗22(s)) using the MFPOA. The optimal controller
variables are presented in Table 2. The comparisons of the performance indexes are also
presented in the same table. The minimum values of MP, Tr, and Ts are recorded by the
proposed FOPID controller based on the MFPOA. Thus, it can be observed that the proposed
FOPID controller based on the MFPOA may reduce error and achieve the design objectives.
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Table 2. Optimal values and performance indexes of the MFPOA-based controller and MFPOA-based
PID controller for the ETF model (g∗11(s), g∗22(s)).

Loop Controller KP KI KD λ µ MP Tr Ts

g∗11(s)
MFPOA-based FOPID 36.81 5.69 16.62 1 0.0281 0 0.0399 0.0756

MFPOA-based PID 38.67 3.48 10.12 - - 0 0.087 0.25

g∗22(s)
MFPOA-based FOPID 37.92 17.60 19.51 0.212 0.167 0 0.0020 0.0068

MFPOA-based PID 36.34 37.31 0.62 - - 1.1632 0.0053 0.0081

Stability Analysis

Figures 9 and 10 present the controller stability analysis. The sensitivity function’s
singular values are used to validate the analysis. Figures 9 and 10 show the closed-loop
system’s stability regions as given by Equations (39) and (40). The stable region is the area
that the curve encloses. The figures indicate that the suggested MFPOA-based FOPID
controller has more stable zones. Additionally, the peak value is below 1.5, meaning it
is desirable.
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5.2. Case 2 (3 × 3) Shell Heavy Oil Fractionator

According to Prett et al. [54] and Lawal and Zhang [55], the Shell heavy oil fractionator
(SHOF) is a multivariable process involving loop interactions and temporal delays. This
kind of distillation column separates the crude oil from the mixture by making use of the
variations in boiling points. The MIMO transfer function of the process is

M(s) =


4.05e−27s

50s+1
1.775e−28s

60s+1
5.88e−27s

50s+1
5.39e−18s

50s+1
5.72e−14s

60s+1
6.90e−15s

40s+1
4.38e−20s

33s+1
4.42e−22s

44s+1
7.20

19s+1

 (47)

Decouplers can be created using Equation (3) as

D(s) =


1 (−88.5s+1.77)e−s

243s+4.05 −1.45
(−323.4s+5.39)e−4s

286s+5.72 1 (−345s+6.90)e−s

215.6s+5.39
(−83.2s+4.38)e−20s

237.6s+7.2
(−83.98s+4.42)e−22s

316.8s+7.2 1

 (48)
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The FOPDT models are generated from Equations (9) through (11) and are presented
as such in [29].

g∗11(s) =
−1.19e−16.75s

1.95s + 1
(49)

g∗22(s) =
−0.875e−11.57s

1.86s + 1
(50)

g∗33(s) =
−4.8e−0.007s

25.26s + 1
(51)

Moreover, Equation (36) defines the optimization problem from which the decentral-
ized FOPI controller is derived.

C(s) =

10.5 + 1.8
s 0 0

0 13.8 + 3.9
s 0

0 0 9.1 + 4.2
s

 (52)

As seen from Figures 11–13, the primary goal is to control the flow rate on top-
draw, side-draw, and bottom reflux duty, respectively, in order to keep the top-end-point
composition (y1), side-end-point composition (y2), and bottom reflux temperature (y3) at
acceptable values. The proposed controller is compared with a conventional PID controller.
According to the proposed coast function, less overshoot, rise time, and settling time are
required to meet the design criteria. In addition, input and output disturbances are used
to validate the disturbance rejection. A step signal in the form of a disturbance is injected
into the process input (at 100 s) and output (at 140 s). Figures 11–13 show the reference
tracking and their corresponding controller outputs. The design specifications are met.
The optimal controller variables are presented in Table 3. Additionally, the comparisons
of the performance indexes are presented in the same table. The proposed MFPOA-based
FOPID controller records the minimum values of MP, Tr, and Ts. Therefore, it can be
concluded that the proposed MFPOA-based FOPID controller can decrease error and meet
the design goals.
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Table 3. Optimal values and performance indexes of the MFPOA-based controller and MFPOA-based
PID controller for the Shell heavy oil fractionator model (g∗11(s), g∗22(s), g∗33(s)).

Loop Controller KP KI KD λ µ MP Tr Ts

g∗11
MFPOA-based FOPID 32.76 5.06 15.96 1 0.032 0 0.0048 0.0839

MFPOA-based PID 34.42 3.10 9.72 - - 0 0.0104 0.2775

g∗22(s)
MFPOA-based FOPID 34.90 11.08 16.81 0.89 0.113 0 0.0025 0.0457

MFPOA-based PID 31.03 18.97 5.16 - - 0.9604 0.0055 0.1433

g∗33(s)
MFPOA-based FOPID 33.75 15.66 18.73 0.25 0.192 0 0.0002 0.0075

MFPOA-based PID 32.34 33.21 0.60 - - 1.1399 0.0006 0.0090

Stability Analysis

Figures 14–16 present the controller stability analysis. The sensitivity function’s
singular values are used to validate the analysis. Figures 14–16 depict the closed-loop
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system’s stability regions as given by Equations (39) and (40). The stable region is the
area that the curve encloses. The figures suggest that the suggested MFPOA-based FOPID
controller has more stable zones. Additionally, the peak value is below 1.5, meaning it
is desirable.
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6. Conclusions

This study provides a decentralized control strategy for higher-order systems based on
the MFPOA. The objective is to optimize the control performance, stability, and robustness
in complex and interconnected systems by putting constraints on the maximum overshoot
(Mp), rising time (Tr), and settling time (Ts). Effective parameter optimization is made
possible by the MFPOA integration, which satisfies the requirements set forth for each
subsystem in the decentralized control architecture. Compared to the traditional PID control
method, the decentralized control strategy using the MFPOA-based FOPID controller
achieves greater control performance, fewer interactions across subsystems, and enhanced
stability margins.

The results demonstrate how successful the suggested control strategy is. The sug-
gested approach offers a dependable and effective way to create high-performance and
durable FOPID controllers that meet the unique needs of intricately linked systems. Exten-
sive simulation research on two distinct systems confirmed the efficacy of the suggested
methodology. While the robustness was confirmed using noise signals and parameter
changes, the disturbance rejection was examined with input and output disturbances.

The comparisons of the MFPOA and classical FPA as well as other commonly used
algorithms, such as GA, PSO should be considered in future research. In addition, the
application of the proposed controller on higher-order systems (like 4 × 4, 5 × 5, etc.)
should be considered.

Funding: The authors extend their appreciation to Prince Sattam bin Abdulaziz University for
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