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Abstract: Semi-supervised learning has been proven to be effective in utilizing unlabeled samples
to mitigate the problem of limited labeled data. Traditional semi-supervised learning methods
generate pseudo-labels for unlabeled samples and train the classifier using both labeled and pseudo-
labeled samples. However, in data-scarce scenarios, reliance on labeled samples for initial classifier
generation can degrade performance. Methods based on consistency regularization have shown
promising results by encouraging consistent outputs for different semantic variations of the same
sample obtained through diverse augmentation techniques. However, existing methods typically
utilize only weak and strong augmentation variants, limiting information extraction. Therefore, a
multi-augmentation contrastive semi-supervised learning method (MAC-SSL) is proposed. MAC-SSL
introduces moderate augmentation, combining outputs from moderately and weakly augmented
unlabeled images to generate pseudo-labels. Cross-entropy loss ensures consistency between strongly
augmented image outputs and pseudo-labels. Furthermore, the MixUP is adopted to blend outputs
from labeled and unlabeled images, enhancing consistency between re-augmented outputs and new
pseudo-labels. The proposed method achieves a state-of-the-art performance (accuracy) through
extensive experiments conducted on multiple datasets with varying numbers of labeled samples.
Ablation studies further investigate each component’s significance.

Keywords: contrastive learning; multi-augmentation-based method; semi-supervised learning (SSL)

1. Introduction

In recent years, deep learning has rapidly advanced and achieved remarkable results
in various fields, such as image classification [1,2], object detection [3,4], clustering [5,6],
semantic segmentation [7,8], and more. However, the success of deep learning is heavily
reliant on large-scale, high-quality labeled datasets [9].

However, collecting labeled data can be expensive and time-consuming, especially
when expert annotation is required, which is unaffordable for the countless everyday
learning demands in modern society. Semi-supervised learning [10,11] addresses the
scarcity of labeled samples by leveraging a combination of a small labeled dataset and a
substantial amount of unlabeled data for model training, thus alleviating the dependency
on extensive labeled datasets. This has led to a plethora of SSL methods designed for
various fields [12–19]. Traditional semi-supervised learning methods involve training
models to predict artificial labels for unlabeled images, which are then incorporated as
supplementary inputs during training. However, these approaches, such as the pseudo-
labeling method [20,21] (also known as self-training [22–26]), face limitations due to their
reliance on initial training with labeled samples prior to generating pseudo-labels for
unlabeled samples, resulting in reduced effectiveness when labeled data are scarce.

Consistency regularization [27–30] -based semi-supervised learning methods (also
commonly referred to as contrastive learning [31–34]) tackle this challenge by treating both
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labeled and unlabeled input images, along with their augmented versions, as positive
pairs. These consistency regularization-based methods in deep learning operate under
the assumption that, even after applying data augmentation [35–37], the classifier should
maintain consistent class probabilities for unlabeled samples, implying that the semantic
content remains unchanged. The augmented versions of an input image should exhibit
greater similarity to the original image compared to other unrelated images. To adhere to
this assumption, researchers introduce perturbations to the input samples through data
augmentation, thereby generating augmented samples that are similar to the original data.

While the aforementioned algorithms have significantly contributed to improving
learning accuracy in situations where labeled data are limited, they exhibit a notable decline
in performance when confronted with a scarcity of labeled samples. This decline can be
primarily attributed to the inability to fully leverage the informative content present in the
unlabeled data, leading to an overreliance on the limited labeled samples.

Different from approaches that typically enforce consistency between the model outputs
of strongly augmented unlabeled images and weakly augmented unlabeled images (using
pseudo-labels or soft labels), MAC-SSL introduces a moderate augmentation step, where the
model outputs of moderately augmented unlabeled images collaborate with the model outputs
of weakly augmented images to derive pseudo-labels for the unlabeled images. Subsequently,
the consistency (contrastive loss) between the model outputs of strongly augmented images
and the pseudo-labels is enforced. Furthermore, inspired by MixMatch [33], the MixUP [38]
is adopted to combine the three different outputs of unlabeled images and the outputs of
labeled images to obtain further augmentation, which ensures consistency (unsupervised
loss) between the model outputs of the re-augmented images and the newly generated
pseudo-labels derived from the mixed labels or pseudo-labels.

The main contributions of this article are summarized as follows:

(1) A novel moderate augmentation technique is introduced, which is incorporated into
two distinctive losses.

(2) Numerous experiments demonstrate that MAC-SSL achieves state-of-the-art (SOTA)
results across all standard benchmark datasets (Section 3.3).

(3) The conducted ablation experiments illustrate the excellent performance of MAC-SSL
(Section 3.4).

2. Method

This section provides a detailed introduction to the proposed MAC-SSL algorithm.
For an L-class classification problem, we let X = ((xb, qb); b ∈ (1, . . . , B)) represent a
batch of B labeled examples with L classes where xb is the training sample and qb is the
corresponding one-hot encoded label, and we let U = (ub; b ∈ (1, . . . , µB)) represent a
batch of µB unlabeled examples, where µ is a hyperparameter that determines the relative
sizes of X and U .

2.1. Data Augmentation

Data augmentation is performed on both labeled and unlabeled data. There are
three different levels of augmentation strategies used, and in increasing order of intensity,
they are weak augmentation, moderate augmentation, and strong augmentation. Weak
augmentation refers to a standard flip-and-shift augmentation strategy. Specifically, it
randomly flips an image horizontally with a 50% probability and randomly translates the
image by 12.5% in the horizontal or vertical direction. Moderate augmentation involves
applying Augmix [39] to weakly augmented samples, following the configuration specified
in Augmix [39] and Augmix’s pseudocode visible Algorithm 1. Strong augmentation
applies RandAugment [40] to weakly augmented samples, following the configuration
specified in RandAugment [40].

For the labeled data batch X , a “weak” augmentation strategy is employed. For the
unlabeled data batch U , a combination of “weak”, “moderate”, and “strong” augmentation
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techniques is employed. The weak augmentation strategy is identical to that employed
for X .

By employing the weak, moderate, and strong augmentation strategies, the following
augmented data batches are generated: the weakly augmented labeled data batch X ′, the
weakly augmented unlabeled data batch U ′

w, the moderately augmented unlabeled data
batch U ′

m, and the strongly augmented unlabeled data batch U ′
s .

The data augmentation process described above is illustrated in Figure 1.

Algorithm 1 AugMix

1: Input: Original image xorig, Operations O = rotate, . . . , posterize.
2: function AugmentAndMix (xorig, k = 3, α = 1)
3: Fill xaug with zeros of same shape as xorig
4: Sample mixing weights (w1, w2, . . . , wk) ∼Dirichlet (α, . . . , α) ▷ Dirichlet denotes
Dirichlet distribution
5: for i = 1 to k do
6: op1, op2, op3 ∼ O ▷ Sample augmentation
operation
7: Compose operations with varying depth op12 = op2 ◦ op1, op123 = op3 ◦ op12 ▷ ◦
denotes composition of operations
8: Sample uniformly from one of these operations chain ∼ {op1, op12, op123}
9: xaug+ = wi · chain(xorig) ▷ Addition is elementwise, · denotes that attach weights
to each augmentation operation.
10: end for ▷ Completion of the augmetation
process
11: Sample weight m ∼ Beta(α, α)
12: Interpolation with rule xaugmix = mxorig + (1 − m)xaug ▷ Completion of the mix
process
13: return xaugmix
14: end function
15: xam = AugmentAndMix (xorig, 3, 1) ▷ xam is stochastically generated by the
function AugmentAndMix (xorig, k = 3, α = 1).
16: return xam.
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2.2. Pseudo-Labels Generating

The process of generating pseudo-labels is depicted in Figure 2. MAC-SSL leverages
the model outputs pu′

wb = p(q
∣∣u′

wb) and pu′
mb = p(q

∣∣u′
mb) obtained from its weakly aug-

mented and moderately augmented versions u′
wb and u′

mb, respectively, to compute an
average prediction pu

b for each unlabeled sample ub in U . It is worth noting that p(q|u)
represents the model’s output for u. Subsequently, a “Sharpening” [33] operation is applied
to pu

b to generate the pseudo-label qu
b for ub. The corresponding computational steps are

described as follows:
pu

b =
1
2
(

pu′
wb + pu′

mb
)

and (1)

qu
b = Sharpen(pu

b , T), (2)

where the Sharpening operation is defined as follows:

Sharpen(p, T)i :=
p

1
T
i

L
∑

j=1
p

1
T
j

, (3)

where p represents an input categorical distribution (specifically in MAC-SSL, p is the
average class prediction generated from the model outputs pu′

wb and pu′
mb, denoted as pu

b )
and T is a hyperparameter that signifies the “temperature [41]” of the class distribution.
As T → 0 , the output of Sharpen(p, T) will approach a “one-hot” distribution. Since
qu

b = Sharpen(pu
b , T) will be used as a target for the model’s prediction for augmentations

of ub, lowering the temperature encourages the model to produce lower-entropy predictions.
T is set to a small value in this paper.
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2.3. MixUP

MixUP is employed for semi-supervised learning, distinguishing itself from prior
approaches that solely mix images. MAC-SSL involves mixing both labeled samples with
ground-true labels and unlabeled samples with pseudo-labels (generated as described
in Section 2.2). For a pair of samples with their respective label predictions (x1, q1) and
(x2, q2), when x1 is a labeled sample, q1 represents the true label. When x1 is an unlabeled
sample, q1 represents the generated pseudo-label. The same applies to x2 and q2. The
MixUP technique employed can be described as follows:

λ ∼ Beta(α, α), (4)

λ′ = max(λ, 1 − λ), (5)
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(x′1, q′1) = λ′(x1, q1) + (1 − λ′)(x2, q2), and (6)

(x′2, q′2) = λ′(x2, q2) + (1 − λ′)(x1, q1), (7)

where (x′1, q′1) represents the new sample generated by mixing with x1 as the base (λ′ is
a value close to 1), (x′2, q′2) represents the new sample generated by mixing with x2 as
the base, and α is a hyperparameter. The specific calculation steps for Equation (6) are
as follows:

x′1 = λ′x1 + (1 − λ′)x2 and (8)

q′1 = λ′q1 + (1 − λ′)q2, (9)

and the specific calculation steps for Equation (7) are as follows:

x′2 = λ′x2 + (1 − λ′)x1 and (10)

q′2 = λ′q2 + (1 − λ′)q1. (11)

The mixing process in the algorithm is presented in line 15 of Algorithm 2.

Algorithm 2 MAC-SSL

1: Input: Batch of labeled examples X = ((xb, qb); b ∈ (1, . . . , B)), batch of unlabeled examples
U = (ub; b ∈ (1, . . . , µB)), ratio of sample size µ, sharpening temperature T, Beta distribution
parameter α for MixUp, unlabeled loss weight λu, contrastive loss weight λc.
2: for b = 1 to B
3: x′b = Weak-Augment (xb)
4: end for
5: for b = 1 to µB
6: u′

wb = Weak-Augment (ub), u′
mb = Moderate-Augment (ub), u′

sb = Strong-Augment (ub)
7: pu′

wb, pu′
mb, pu′

sb = p(q
∣∣u′

wb), p(q
∣∣u′

mb), p(q
∣∣u′

sb)

8: pu
b = 1

2 (pu′
wb + pu′

mb) ▷ Compute average predictions of u′
wb

and u′
mb

9: qu
b = Sharpen(pu

b , T) ▷ Apply temperature sharpening to the average prediction (see
Equation (3))
10: end for
11: X ′ = ((x′b, qb); b ∈ (1, . . . , B)),
12: U ′

w = (u′
wb; b ∈ (1, . . . , µB)), U ′

m = (u′
mb; b ∈ (1, . . . , µB)), U ′

s = (u′
sb; b ∈ (1, . . . , µB))

13: W = Shuffle(Concat(X ′,U ′
w,U ′

m,U ′
s)) ▷ Combine and shuffle labeled and

unlabeled data
14: X ′′ = (MixUp(X ′,Wi); i ∈ (1, . . . , B))
▷ see Section 2.3
15: U ′′

w = (MixUp(U ′
w,Wi+B); i ∈ (1, . . . , µB)), U ′′

m = (MixUp(U ′
m,Wi+B+µB); i ∈ (1, . . . , µB)),

U ′′
s = (MixUp(U ′

s ,Wi+B+2µB); i ∈ (1, . . . , µB))

16: Lx=
1
B

B
∑

b=1
H(qb, p(q|xb))

▷ Equation (12)

17: Lxm=
1
B

B
∑

b=1
H(q′b, p(q|x′′

b ))

▷ Equation (13)

18: Lu = 1
µB

µB
∑

b=1
(∥qu′

b − p(q | u′′
wb)∥

2
2 + ∥qu′

b − p(q | u′′
mb)∥

2
2 + ∥qu′

b − p(q | u′′
sb)∥

2
2)

▷ Equation (14)

19: Lc =
1

µB

µB
∑

b=1
f (max(pu

b ) ≥ τ)H
(

pu
b , p(q | u′

sb)
)

▷ Equation (15)
20: L = Lx + Lxm + λuLu + λcLc
▷ Equation (16)
21: return L
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2.4. The Proposed MAC-SSL

MAC-SSL generates one batch of augmented labeled data, denoted as X ′, and three batches
of augmented unlabeled data, where U ′

w, U ′
m, and U ′

s . X ′ represent the labeled data batch af-
ter weak augmentation and U ′

w, U ′
m, and U ′

s represent the unlabeled data batches after weak,
moderate, and strong augmentations, respectively. The average prediction distribution pu

b
is computed using the model outputs pu′

wb and pu′
mb from U ′

w and U ′
m, respectively (see Equa-

tion (1)), which are then used to generate the pseudo-labels qu′
b for the unlabeled data batch

(see Equation (2)). Subsequently, X ′ and U ′
w, U ′

m, and U ′
s are mixed to generate the mixed

weakly augmented labeled data batch X ′′ and the mixed weakly augmented unlabeled
data batches U ′′

w, the mixed moderately augmented unlabeled data batch U ′′
m, and the mixed

strongly augmented unlabeled data batch U ′′
s , respectively. Likewise, the ground-true label

qb and pseudo-label qu
b are also mixed to obtain the corresponding pseudo-labels q′b and

qu′
b for X ′′ and U ′′

w, U ′′
m, and U ′′

s , respectively (see Section 2.3). The complete MAC-SSL
framework is illustrated in Figure 3, and a flowchart of the MAC-SSL process is presented
in Figure 4.

The loss function of MAC-SSL consists of the following four components: supervised
classification loss Lx, mixed supervised classification loss Lxm, unsupervised classification
loss Lu, and contrastive loss Lc.

Lx is the supervised classification loss on X , which is defined as the cross-entropy
between the ground-true label and the model prediction, as follows:

Lx =
1
B

B

∑
b=1

H(qb, p(q|xb)), (12)

where p(q|xb) is the model’s prediction for xb ∈ X and H denotes the cross-entropy
between qb and p(q|xb) .

Regarding Lxm, it is the supervised classification loss on X ′′ . It is defined as the
cross-entropy between the pseudo-label and the model prediction, as follows:

Lxm =
1
B

B

∑
b=1

H(q′b, p(q|x′′
b )), (13)

where q′b is the pseudo-label, p(q
∣∣x′′

b ) is the model’s prediction for x′′
b ∈ X ′′ , and H denotes

the cross-entropy between q′b and p(q
∣∣x′′

b ) .
The unsupervised classification loss, Lu, is defined on U ′′

w, U ′′
m, and U ′′

s . It is computed
as the mean squared error between the pseudo-label qu′

b and the three model predictions
p(q

∣∣u′′
wb) , p(q

∣∣u′′
mb) , and p(q

∣∣u′′
sb) as follows:

Lu =
1

µB

µB

∑
b=1

(∥qu′
b − p(q | u′′

wb)∥
2
2 + ∥qu′

b − p(q | u′′
mb)∥

2
2 + ∥qu′

b − p(q | u′′
sb)∥

2
2), (14)

where u′′
wb, u′′

mb, u′′
sb ∈ U ′′

w, U ′′
m, and U ′′

s and p(q
∣∣u′′

wb) , p(q
∣∣u′′

mb) , and p(q
∣∣u′′

sb) are the
model’s predictions for u′′

wb, u′′
mb, and u′′

sb, respectively.
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The contrastive loss, Lc, is established between U ′
w, U ′

m, and U ′
s . The object in this case

is to maintain a certain level of strength in the optimization of the model on U ′
s . Therefore,

a threshold, τ, is employed to pu
b , and instead of converting pu

b into pseudo-labels, the
predicted distribution’s state is directly utilized to constrain the model’s output, p(q

∣∣u′
sb) ,

which is also a predicted distribution, on U ′
s using cross-entropy. Lc can be calculated

as follows:

Lc =
1

µB

µB

∑
b=1

f (max(pu
b ) ≥ τ)H(pu

b , p(q|usb′)), (15)

where u′
sb ∈ U ′

s and p(q
∣∣u′

sb) are the model’s predictions for u′
sb, H denotes the cross-

entropy between the distribution pu
b and p(q

∣∣u′
sb) , and f (•) represents 1 if the inequality

in the parentheses holds (and it is otherwise 0).
By combining the aforementioned loss functions, the loss function of MAC-SSL is

defined as follows:
L = Lx + Lxm + λuLu + λcLc, (16)

where λu and λc are trade-off hyper-parameters that control the weights of the unsuper-
vised loss Lu and the contrastive loss Lc, respectively.

This design takes into account the different characteristics of the data by comprehen-
sively utilizing different types of data and loss functions, enabling the model to learn the
features of the data more comprehensively and, thus, improve its performance. Specifically,
the benefits of such comprehensive utilization are reflected in the following aspects:

(1) Integration of information from different types of data: This model combines labeled
and unlabeled data, applying different types of loss functions to both. Lx and Lxm
utilize the true labels of labeled data, Lu utilizes pseudo-labels of unlabeled data, and
Lc performs contrastive learning on unlabeled data. By comprehensively utilizing
these different types of data and loss functions, the model can learn the features of the
data more comprehensively, thereby improving its performance.

(2) Enhancing the model’s generalization ability: Integrating different types of loss
functions can improve the model’s generalization ability. Lx and Lxm help the model
learn accurate classification decisions on labeled data, while Lu and Lc can help the
model utilize information from unlabeled data to enhance its generalization ability.

(3) Strengthening the model’s understanding of the data: Different types of loss functions
allow the model to understand the data from different perspectives. Lx and Lxm help
the model understand the true labels of the data, while Lu and Lc enable the model to
learn the distribution and features of the data from unlabeled data, thereby improving
the model’s robustness.

The full MAC-SSL algorithm is presented in Algorithm 2.

3. Results

MAC-SSL was evaluated on several benchmarks for SSL image classification (see
Section 3.2). Furthermore, ablation experiments were conducted on each of MAC-SSL’s
components to analyze their individual contributions (see Section 3.3).

3.1. Implementation Details

1. Datasets and metrics: MAC-SSL was experimentally validated on the CIFAR-10 [42],
CIFAR-100 [42], and SVHN [43] datasets, as shown in Figure 5.

• CIFAR-10: The CIFAR-10 dataset is a widely used benchmark in the field of
computer vision. It consists of 60,000 color images, each sized at 32 × 32 pixels,
belonging to 10 different classes. These classes include common objects such
as airplanes, automobiles, cats, birds, dogs, and more. The dataset is divided
into 50,000 training images and 10,000 test images, with an equal distribution of
images across the classes.
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• CIFAR-100: Similar to CIFAR-10, CIFAR-100 is another dataset used for image
classification tasks. It contains 60,000 images, each also sized at 32 × 32 pixels,
but it is divided into 100 fine-grained classes. Each class represents a specific
object or concept, such as insects, food containers, trees, fish, and so on. The
dataset is split into 50,000 training images and 10,000 test images, with a balanced
distribution of images across the classes. Classifying CIFAR-100 is more difficult
than CIFAR-10 due to its larger number of categories.

• SVHN (Street View House Numbers): The SVHN dataset is focused on digit
recognition tasks. It consists of real-world images taken from Google Street View
that contain house numbers. Each image in SVHN contains multiple digits (from
zero to nine). The images are of varying sizes but are predominantly sized at
32 × 32 pixels. SVHN is divided into a training set with 73,257 images and a test
set with 26,032 images.

2. Experiment setting: All experiments were implemented using PyTorch and conducted
on an Ubuntu system server with four NVIDIA 3090 GPUs and 128 GB of memory,
and they followed SSL evaluation methods. The experiments were conducted using
the “Wide ResNet-28” model from [44]. Training for the CIFAR-10 [42] and SVHN [43]
datasets continued for 300 epochs until convergence. A batch size of 64 was used with
the Wide ResNet-28-2 model, which has 1.47 M parameters. Due to computational
limitations, a batch size of up to 32 was used for the CIFAR-100 [42] dataset in MAC-
SSL, while for the other methods, the batch size remained at 64. The Wide ResNet-28-8
model with 23.46 M parameters was utilized for the CIFAR-100 training. For the
selection of hyperparameters, we employed a random search. The hyperparameter
µ, controlling the sample ratio, was set to 5. The weight hyperparameter λu was
set as currentepoch

totalepoch × 75, and λc was set to 1. The learning rate was set to 0.01 for
CIFAR-10, CIFAR-100, and SVHN. The threshold τ was set to 0.95. The training
employed the SGD optimizer with cosine weight decay. Exponential moving average
(EMA) with a decay rate of 0.999 was utilized for evaluating the models. Of note, for
SVHN, we applied strong augmentation using RandAugment [40] on top of moderate
augmentation, referred to as MAC-SSL-II. This differed from CIFAR-10/100. Each
epoch involved 1024 steps of training, and checkpoints were saved at each epoch. The
average accuracy of the last 20 checkpoints was recorded. This approach simplified
the analysis process.
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For the SOTA algorithms used in the comparative experiments, we reproduced results
by obtaining their source code and maintaining the original settings mentioned in the code.
For some datasets that were not included in their original code, we added them ourselves
and used the hyperparameters specified in the respective papers. The source code for the
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comparative algorithms can be downloaded from the authors’ or reproducers’ homepages,
except for Mean-Teacher [32] (reproduced by ourselves). The codes for CoMatch1 [34],
MixMatch2 [33], ICT3 [45], VAT3 [46], Temporal-ensembling3 [30], and Pimodel3 [30] are
available on their respective authors’ or reproducers’ homepages.

3.2. Comparison Algorithms

(1) To demonstrate the superiority of MAC-SSL, performance comparison experiments
were conducted with the following seven state-of-the-art semi-supervised algorithms:

(2) CoMatch [34] combines pseudo-based, contrast-loss-based, and graph-based models
to improve model performance with limited labeled data. It jointly learns class
probabilities and low-dimensional embeddings, enhancing the quality of pseudo-
labels by imposing a smoothness constraint on the class probabilities.

(3) MixMatch [33] optimizes both supervised and unsupervised losses. It utilizes cross-
entropy for supervised losses and mean square errors (MSEs) between predictions and
generated pseudo-labels for unsupervised losses. MixMatch constructs pseudo-labels
through data augmentation and improves their quality using the Sharpen function.
MixUP [38] interpolation is also employed to create virtual samples.

(4) Mean-Teacher [32] employs a student–teacher approach for SSL. The teacher model is
based on the average weights of a student model in each update step. Mean-Teacher
utilizes MSE loss as the consistency loss between two predictions and updates the
model using exponential moving average (EMA) to control the update speed.

(5) ICT [45] extends MixUP by interpolating unlabeled data, generating diverse mixed
samples. It enforces consistency across different interpolation ratios using regular-
ization. ICT trains a model by constraining predictions of mixed data to align with
mixed predictions of original data. It effectively utilizes unlabeled data, particularly in
scenarios with limited labeled data, resulting in improved generalization capabilities.

(6) VAT [46] replaces data augmentation with adversarial transformations. It perturbs
input data through adversarial transformations, leading to lower classification errors.

(7) Temporal-ensembling [30] is a method based on temporal ensembling that improves
model consistency and robustness by using an exponential moving average of his-
torical prediction results during training. It trains the model by minimizing the
consistency loss between the predictions of unlabeled data and the true labels of
labeled data.

(8) Pimodel [30] is a method based on data augmentation and consistency regularization.
It generates virtual samples using data augmentation and trains the model by applying
consistency constraints between labeled and unlabeled data.

3.3. Performance Comparison

1. CIFAR-10: For CIFAR-10, performance comparison experiments were conducted
with six baselines, including MixMatch [33], Mean-Teacher [32], ICT [45], VAT [46],
Temporal-ensembling [30], and Pimodel [30]. The accuracy of these methods was
evaluated with a varying number of labeled samples from 250 to 4000 (as is standard
practice). The result can be seen in Figure 6. It can be observed that MAC-SSL was
significantly superior to all other methods, especially when labeled samples were
scarce, such as with 250 labels and 500 labels. MAC-SSL outperformed the second-best
method, MixMatch, by 6.82% and 7.02%, respectively. These results highlight MAC-
SSL’s ability to effectively utilize information from unlabeled data, thereby delivering
a strong performance even in a scenario with limited labeled samples.
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2. CIFAR-100: To further demonstrate the effectiveness of MAC-SSL, we conducted
comparative experiments on CIFAR-100. The baselines for comparison were the same
as those used for CIFAR-10. The CIFAR-100 evaluation involved a varying number
of labeled samples ranging from 400 to 2500. The results are presented in Figure 7.
Upon observation, it can be seen that MAC-SSL achieved the best performance. When
the number of labeled samples was 400, which means only 4 labeled samples per
class, MAC-SSL outperformed the second-best method, MixMatch, by 16.58%. It is
also noteworthy that as the number of labeled samples decreased, MAC-SSL brought
even greater improvements, further validating the ability of the proposed method to
effectively utilize information from unlabeled samples.
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3. SVHN: We conducted comparative experiments on the SVHN dataset and, in addition
to CIFAR-10 and CIFAR-100, included CoMatch as one of the baselines. The accuracy
of these methods was evaluated with varying numbers of labeled samples ranging
from 250 to 4000. The experimental results are presented in Figure 8. As observed
earlier, MAC-SSL achieved the best results and demonstrated greater improvements
when the number of labeled samples was reduced. This once again confirmed the
effectiveness of MAC-SSL and its ability to fully utilize unlabeled samples.
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Through the conducted experiments, the proposed method demonstrated superior
performance compared to all other existing methods, particularly in scenarios with limited
availability of labeled samples. The key advantage of our approach was its ability to
effectively leverage the valuable information contained within unlabeled samples, which is
often overlooked by other methods’ data augmentation techniques. MAC-SSL stood out by
generating reliable positive sample pairs through three distinct augmentation techniques,
thereby enhancing the regularization benefits. Furthermore, by incorporating MixUP with
augmented images and their corresponding labels or pseudo-labels, our model exhibited
enhanced generalization capabilities and achieved efficient convergence.

Notably, MAC-SSL exhibited exceptional classification performances across multiple
benchmark datasets, including CIFAR-10, CIFAR-100, and SVHN. These results highlight
the versatility and robustness of our approach, especially in scenarios where labeled
samples are scarce. The promising outcomes achieved by MAC-SSL validate its potential
as a valuable contribution to the field, addressing the challenges associated with limited
labeled data and demonstrating its efficacy in improving classification performance.
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We also present in Figure 9 the test accuracy and test loss during the training process
on the CIFAR-10 dataset with 1000 labeled samples using the different methods. It can be
observed that MAC-SSL achieved rapid convergence, attaining the highest accuracy and
nearly the lowest loss (with only a slight increase in loss towards the end). This further
demonstrated the effectiveness and stability of MAC-SSL.
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3.4. Ablation Experiment

Additional ablation experiments were conducted to examine the roles of the different
components in MAC-SSL and evaluate the impacts of certain parameters. Specifically, we
measured the effects of the following:

(1) Investigating the effects of different strong augmentation strategies: directly using
RandAugment (MAC-SSL) and using RandAugment after applying moderate aug-
mentation (MAC-SSL-II)

(2) Using different sample ratio hyperparameter µ values ranging from 1 to 9
(3) Removing temperature sharpening (i.e., setting T = 1)
(4) Performing MixUP between labeled examples only, unlabeled examples only, and

without mixing across labeled and unlabeled examples
(5) Using the mean class distribution over two augmentations (i.e., weak and moderate

augmentations) or using the class distribution for a single augmentation (i.e., only
weak augmentation)

(6) Employing weak augmentation, moderate augmentation, and strong augmentation,
as well as the scenario where only weak augmentation and strong augmentation were
utilized (with the class distribution being used only for weak augmentation)

The ablation experiments were conducted on the CIFAR-10 and SVHN datasets, and
the results are shown in Tables 1–3. It was observed that each component contributed to
the performance of MAC-SSL, and incorporating MixUP solely on labeled samples resulted
in the largest performance loss, even surpassing the impact caused by not using MixUP at
all. This indicated that unlabeled samples contributed significantly to the training process,
as the information contained within a large volume of unlabeled samples exceeded that
of a small number of labeled samples. MAC-SSL was able to fully utilize the information
embedded within the unlabeled samples, resulting in remarkable performance.
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Table 1. Ablation study results (a). All values indicate accuracy (%).

Method
CIFAR-10 (µ = 5)

40 Labels 500 Labels 1000 Labels 4000 Labels

MAC-SSL (base for CIFAR10) 87.36 ± 0.09 93.93 ± 0.1 94.32 ± 0.18 94.96 ± 0.09
MAC-SSL-II (base for SVHN) 90.22 ± 0.14 93.29 ± 0.07 93.97 ± 0.08 94.91 ± 0.07
MAC-SSL/MAC-SSL-II without temperature sharpening (T = 1) – – 93.31 ± 0.08 –
MAC-SSL/MAC-SSL-II without MixUP – – 91.88 ± 0.11 –
MAC-SSL/MAC-SSL-II with MixUP on labeled only – – 90.07 ± 0.14 –
MAC-SSL/MAC-SSL-II with MixUP on unlabeled only – – 93.97 ± 0.35 –
MAC-SSL/MAC-SSL-II with MixUP on separate labeled
and unlabeled – – 92.36 ± 0.42 –

MAC-SSL/MAC-SSL-II without distribution averaging – – 91.6 ± 0.18 –
MAC-SSL/MAC-SSL-II without moderate augmentation – – 94.18 ± 0.24 –

Table 2. Ablation study results (b). All values indicate accuracy (%). For SVHN, MAC-SSL-II was
the base.

Method
SVHN (µ = 5)

250 Labels 1000 Labels

MAC-SSL (base for CIFAR10) 95.35 ± 0.1 95.65 ± 0.08
MAC-SSL-II (base for SVHN) 95.87 ± 0.06 96.46 ± 0.04
MAC-SSL/MAC-SSL-II without temperature sharpening (T = 1) – 95.95 ± 0.05
MAC-SSL/MAC-SSL-II without MixUP – 94.83 ± 0.12
MAC-SSL/MAC-SSL-II with MixUP on labeled only – 94.02 ± 0.13
MAC-SSL/MAC-SSL-II with MixUP on unlabeled only – 96.17 ± 0.06
MAC-SSL/MAC-SSL-II with MixUP on separate labeled and unlabeled – 96.06 ± 0.04
MAC-SSL/MAC-SSL-II without distribution averaging – 96.44 ± 0.04
MAC-SSL/MAC-SSL-II without moderate augmentation – 95.50 ± 0.06

Table 3. Ablation study results (c). All values indicate accuracy (%).

Method
CIFAR-10 (1000 Labels)

µ = 1 µ = 3 µ = 5 µ = 7 µ = 9

MAC-SSL 89.47 ± 0.14 93.18 ± 0.08 94.32 ± 0.18 94.55 ± 0.08 96.46 ± 0.04

MAC-SSL-II 88.49 ± 0.18 92.96 ± 0.17 93.96 ± 0.08 94.5 ± 0.09 94.85 ± 0.11

Applying RandAugment in addition to moderate augmentation as the strong aug-
mentation strategy proved to be more effective on the SVHN dataset. MAC-SSL also
yielded superior results with a small number of labeled samples and an increased number
of unlabeled samples (an increased µ). Notably, it outperformed the conventional strong
augmentation strategy on the CIFAR-10 dataset with 40 labeled samples, as well as on the
CIFAR-10 dataset with 1000 labeled samples when µ = 9.

4. Discussion

The paper introduces MAC-SSL, which proposes a novel approach to leverage the
valuable information within unlabeled samples in semi-supervised learning tasks. Unlike
traditional methods that rely on pseudo-labels or soft labels to enforce consistency between
strongly and weakly augmented unlabeled images, MAC-SSL incorporates a moderate
augmentation step. This step combines the model outputs of moderately augmented
unlabeled images with those of weakly augmented unlabeled images to generate pseudo-
labels. Subsequently, the model outputs of strongly augmented images are enforced to be
consistent with the pseudo-labels. Additionally, inspired by MixMatch, MixUP is adopted
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to combine the outputs of unlabeled images with those of labeled images, augmenting the
data and ensuring consistency between the model outputs of the re-augmented images and
the newly generated pseudo-labels derived from mixed labels or pseudo-labels.

The experimental results demonstrate the superior performance of MAC-SSL com-
pared to existing methods, particularly in scenarios with limited labeled samples. MAC-SSL
effectively leverages the valuable information within unlabeled samples, which other meth-
ods often overlook in their data augmentation techniques. MAC-SSL generates reliable
positive sample pairs through three distinct augmentation techniques, enhancing the regu-
larization benefits. Moreover, the integration of MixUP with augmented images and their
corresponding labels or pseudo-labels improves the generalization capabilities of the model
and facilitates efficient convergence.

Evaluation on the CIFAR-10, CIFAR-100, and SVHN benchmark datasets consistently
showed that MAC-SSL outperformed the other methods, especially with limited labeled
samples. For CIFAR-10, MAC-SSL achieved significant accuracy improvements over the
second-best method, MixMatch, with increases of 6.82% and 7.02% when only 250 and
500 labeled samples were available, respectively. Similarly, MAC-SSL surpassed MixMatch
by 16.58% on CIFAR-100 even with as few as 400 labeled samples. The experiments on the
SVHN dataset further validated the effectiveness of MAC-SSL in fully leveraging unlabeled
samples for a superior performance.

The ablation studies provided insights into the roles of different components in MAC-
SSL and the impacts of various parameters. Utilizing unlabeled samples through MixUP
was found to be crucial, as removing MixUP solely on unlabeled samples resulted in an
even greater performance loss compared to not using MixUP. Furthermore, MAC-SSL
demonstrated superior results with a small number of labeled samples and an increased
number of unlabeled samples, highlighting the importance of leveraging a large volume
of unlabeled samples. The choice of a strong augmentation strategy, the sample ratio
hyperparameter, the temperature sharpening, and the combination of weak, moderate,
and strong augmentations also impacted the performance of MAC-SSL, showcasing the
effectiveness of these design choices.

While the increased augmentation consumes more computational resources, the per-
formance improvements achieved by MAC-SSL justify the additional cost. Future research
can explore strategies to optimize the computational efficiency of MAC-SSL without com-
promising its effectiveness, such as excluding backpropagation on weakly augmented
unlabeled samples. Additionally, the current trend of using large-scale models suggests
that employing pre-trained models will lead to further breakthroughs in the future. Finally,
larger and more complex datasets such as ImageNet [47], as well as specialized and widely
used datasets for semi-supervised learning such as medical image datasets, are also within
our scope of consideration. In the future, we plan to conduct more extensive experiments
on these datasets.

In conclusion, the experiments and ablation studies demonstrated the superiority of
MAC-SSL in semi-supervised learning scenarios, particularly with limited labeled sam-
ples. MAC-SSL effectively leverages the valuable information within unlabeled samples,
resulting in improved classification performances across multiple benchmark datasets.
The integration of moderate augmentation, collaboration between weak and moderate
augmented unlabeled samples, and the use of MixUP enhance the regularization benefits
and generalization capabilities of MAC-SSL. MAC-SSL makes a valuable contribution to the
field by addressing the challenges associated with limited labeled data, demonstrating its ef-
ficacy in improving classification performance. Future research can explore extensions and
modifications to further enhance MAC-SSL’s performance or investigate its applicability in
other domains and datasets.
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5. Conclusions

Herein, we proposed MAC-SSL, a semi-supervised learning method that leverages
contrastive learning with multiple augmentation strategies. Through extensive comparative
experiments in the field of semi-supervised learning, MAC-SSL demonstrated remarkable
performance improvements compared to other methods, showcasing its effectiveness and
generality. Ablation experiments further emphasized the significance of each component
in MAC-SSL and uncovered its potential for further enhancements, such as achieving
a better performance with a larger µ. Moving forward, we are interested in exploring
the effectiveness of MAC-SSL in different domains. Additionally, we aim to streamline
the algorithm while maintaining its performance and investigate methods to ensure its
effectiveness in scenarios with fewer labeled samples.

In future work, the application of MAC-SSL to different domains and its effectiveness
in those domains will be explored. Additionally, efforts will be made to simplify the
algorithm while maintaining its performance to improve usability. Furthermore, research
will be conducted to ensure the effectiveness of the method in scenarios with even fewer
labeled samples. Lastly, in an era of large models, the utilization of pre-training models
will also be further explored.
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Appendix A

Table A1. Accuracy (%) of CIFAR-10. The bold values indicate the best and the runner-up results.

Method
CIFAR-10

250 Labels 500 Labels 1000 Labels 4000 Labels

Temporal-ensembling [30] 19.86 ± 1.9 29.48 ± 11.44 49.16 ± 5.34 61.97 ± 4.61
Vat [46] 34.22 ± 2.46 51.3 ± 2.11 61.56 ± 0.61 79.08 ± 0.62

Pimodel [30] 46.9 ± 2.15 53.93 ± 0.16 68.01 ± 0.08 85.92 ± 0.17
Mean-Teacher [32] 45.3 ± 0.1 54.98 ± 0.12 73.14 ± 0.11 84.34 ± 0.08

ICT [45] 59.38 ± 2.78 69.07 ± 2.15 83.43 ± 0.4 92.2 ± 0.3
MixMatch [33] 86.88 ± 0.34 86.91 ± 0.17 90.03 ± 0.16 93.08 ± 0.08

MAC-SSL (ours) 93.7 ± 0.1 93.93 ± 0.1 94.32 ± 0.18 94.96 ± 0.09
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Table A2. Accuracy (%) of CIFAR-100. The bold values indicate the best and the runner-up results.

Method
CIFAR-100

400 Labels 800 Labels 1000 Labels 2500 Labels

Temporal-ensembling [30] 8.42 ± 0.14 11.85 ± 0.14 13.33 ± 0.14 24.15 ± 0.14
Vat [46] 10.23 ± 0.13 14.67 ± 0.14 15.27 ± 0.15 34.46 ± 0.19

Pimodel [30] 11.35 ± 0.04 19.59 ± 0.15 21.66 ± 0.07 34.19 ± 0.05
Mean-Teacher [32] 8.93 ± 0.09 15.38 ± 0.08 17.31 ± 0.13 37.9 ± 0.18

ICT [45] 18.81 ± 0.22 26.57 ± 0.16 30.79 ± 0.73 56.53 ± 0.42
MixMatch [33] 21.57 ± 0.2 39.42 ± 0.18 44.74 ± 0.14 58.21 ± 0.19

MAC-SSL (ours) 38.15 ± 0.22 51.32 ± 0.25 52.20 ± 0.13 61.64 ± 0.16

Table A3. Accuracy (%) of SVHN. The bold values indicate the best and the runner-up results.

Method
SVHN

250 Labels 500 Labels 1000 Labels 4000 Labels

Temporal-ensembling [30] 31.54 ± 15.92 48.14 ± 19.06 67.86 ± 6.01 81.16 ± 4.89
Vat [46] 55.66 ± 11.11 72.9 ± 3.92 80.74 ± 2.17 92.07 ± 0.25

Pimodel [30] 86.62 ± 0.31 90.29 ± 0.05 91.9 ± 0.08 94.34 ± 0.11
ICT [45] 83.17 ± 1.27 87.75 ± 0.75 92.03 ± 0.22 95.66 ± 0.16

Mean-Teacher [32] 84.64 ± 0.08 90.48 ± 0.07 91.47 ± 0.05 94.36 ± 0.04
MixMatch [33] 89.39 ± 0.34 88.94 ± 0.3 88.73 ± 0.38 92.51 ± 0.08
CoMatch [34] 92.35 ± 0.24 95.06 ± 0.66 95.6 ± 0.54 95.96 ± 0.42

MAC-SSL (ours) 95.87 ± 0.06 96.08 ± 0.07 96.46 ± 0.04 96.85 ± 0.04
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