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Abstract: In this article, we propose some extended oscillator models. Various experiments are
performed. The models are studied using the Melnikov approach. We show some integral units
for researching the behavior of these hypothetical oscillators. These will be implemented as add-on
sections of a thoughtful main web-based application for researching computations. One of the main
goals of the study is to share the difficulties that researchers (who are not necessarily professional
mathematicians) encounter in using contemporary computer algebraic systems (CASs) for scientific
research to examine in detail the dynamics of modifications of classical and newer models that are
emerging in the literature (for the large values of the parameters of the models). The present article
is a natural continuation of the research in the direction that has been indicated and discussed in
our previous investigations. One possible application that the Melnikov function may find in the
modeling of a radiating antenna diagram is also discussed. Some probability-based constructions are
also presented. We hope that some of these notes will be reflected in upcoming registered rectifications
of the CAS. The aim of studying the design realization (scheme, manufacture, output, etc.) of the
explored differential models can be viewed as not yet being met.

Keywords: hypothetical class of extended oscillators; escape oscillator; generating chaos via x|x|;
Melnikov’s approach; radiation antenna pattern; distribution-based oscillators

MSC: 34C37

1. Introduction

Multiple natural phenomena of the oscillatory kind that appear in a variety of dis-
ciplines, such as mechanics, quantum optics, acoustics, hydrodynamics, electronics, and
engineering, have the possibility of ensuring the freedom of a potential well, and are por-
trayed by a general escape nonlinear oscillator model. Sanjuan [1] considers the equation
of movement for the sinusoidal-driven escape oscillator, incorporating nonlinear damping
conditions as a power series on the speed reads:

ẍ +
n

∑
p=1

βẋ|ẋ|p−1 + x − x2 = F sin ωt, (1)

where β is the damping level, p is the damping exponent, and F and ω are the forcing
amplitude and the frequency of the outer disturbance, respectively. Specifically, the
following system is considered
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
dx
dt

= y
dy
dt

= −x + x2 − βy|y|p−1 + F sin ωt,
(2)

where—for simplification—at most a lone damping term in proportion to the pth power of
the speed is taken.

The critical forcing parameter Fcp, for which homoclinic entangles intersect, for a fixed
frequency ω, is a function of the damping exponent p and the damping factor β; this may
be expressed as [1]:

Fcp = β
sinh(πω)

3πω2

(
3
2

)p+1
B
(

p + 2
2

,
p + 1

2

)
where B(m, n) is the Euler Beta function.

The nonlinear vessel trundling reply and nonlinearly damped general escape oscillator
can be represented in the following way:

dx
dt

= y

dy
dt

= −
m

∑
j=1

ajxj +
n

∑
p=1

cpy|y|p−1 + F cos ωt.
(3)

In [2], the authors have researched the upshots of the damping level on the rational
answer of the steady-state decisions and on the basin bifurcation models of the escape
oscillator in substantial detail. The literature devoted to this issue is significant in volume
and diverse. We direct the reader to [2–12]; here, the reader can find additional related
studies. The paper by Tang, Man, Zhong, and Chen [13] studies the character of the
expression x|x| as a chaos creator in a non-self-governing differential model. More precisely,
the next model is considered

dx
dt

= y
dy
dt

= ax − bx|x| − ϵ(ξy − c sin(ωt)).
(4)

For other results, see [14–19]. In [20–22], the authors explore the dynamics of the
following hypothetical oscillators of the type

dx
dt

= y

dy
dt

= bx −
[ n

2 ]−1

∑
i=0

bixn−2i − ϵ

αy + (1 + cos(ωt))

ax +
[m

2 ]−1

∑
i=0

aixm−2i

,
(5)


dx
dt

= y

dy
dt

= bx −
[ n

2 ]−1

∑
i=0

bixn−2i − ϵ

αy +
N

∑
j=1

gj sin(jωt)

ax +
[m

2 ]−1

∑
i=0

aixm−2i

,
(6)


dx
dt

= y

dy
dt

= − sin x + ϵ

a1 +

n
2 −1

∑
i=0

an−2ixn−2i +

n
2 −2

∑
i=0

bn−2−2iyn−2−2i

y.
(7)

In this article, we consider extended oscillators, which are a mixed form of Models (3)–(6),
mentioned above. Some experiments were organized. The models were explored using the
Melnikov approach [23]. We propose several specific units for researching the behavior
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of these hypothetical oscillators. The obtained outcomes can be exploited as add-on units
of a much more extensive realization for reliable computations—for more information
see [20–25]. One of the main goals of the present study is to share the difficulties that
researchers (who are not necessarily professional mathematicians) encounter in using
CASs for scientific research; we aim to research the dynamics of modifications of classical
and newer models that are emerging in the literature. We hope that some of these notes
will be reflected in upcoming registered revisions of CASs. The design of the article is
as follows. We present new models in Section 2. The results of several experiments are
obtained in Section 2.1.1. One possible application that Melnikov function may find in
the modeling of radiating antenna diagram is discussed in Section 2.3. A “mixed” model,
generating chaos via x|x|, is considered in Section 3. Sundry experiments are presented
in Section 3.1. Investigations using Melnikov’s theory are considered in Section 3.1.1.
Several probability-based constructions are presented in Section 4. We end this study with
Section 5.

2. The Models
2.1. Model A: Mixed Form of Models (3) and (5)

Let us explore the next new class of extended oscillators:
dx
dt

= y

dy
dt

= bx −
[ n

2 ]−1

∑
i=0

bixn−2i − ϵ

A
k

∑
p=1

y|y|2p−1 + (1 + cos(ωt))

ax +
[m

2 ]−1

∑
i=0

aixm−2i

,
(8)

where 0 ≤ ϵ < 1, A is the damping level, and p ≥ 1 is the damping exponent. Particularly,
we examine the next differential system:

dx
dt

= y

dy
dt

= bx − b1x3 − b0x5 − ϵ

(
A

3

∑
p=1

y|y|2p−1 + (1 + cos(ωt))
(
ax + a1x3 + a0x5)),

(9)

We suppose that b < 0, b1 < 0, b0 > 0. For ϵ = 0, the obtaining Hamiltonian of
differential Model (9) is H(x, y) = 1

2 y2 − 1
2 bx2 + 1

4 b1x4 + 1
6 b0x6. Using the approach stated

in [17], we receive the Hamiltonian system for ϵ = 0 for new differential model by a couple
of heteroclinic orbits, circumscribed as

xhet = ±
√

2x1sinh
( γ

2 t
)√

−ξ + cosh(γt)

yhet = ±
√

2γx1(1 − ξ)cosh
( γ

2 t
)

2(−ξ + cosh(γt))
3
2

and a couple of symmetric homoclinic paths relate every unsteady point to itself,
as stated by

xhom = ±
√

2x1cosh
( γ

2 t
)√

ξ + cosh(γt)
;

yhom = ±
√

2γx1(ξ − 1)sinh
( γ

2 t
)

2(ξ + cosh(γt))
3
2

,

where

δ = b2
1 + 4bb0; ρ =

√
b1−

√
δ

b1+
√

δ
; ξ = 5−3ρ2

2ρ2−1

x1 =
√
− 1

2b0
(b1 +

√
δ); γ = x2

1

√
2b0(ρ2 − 1).
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These results are depicted in Figure 1. We refer to [17–19] (see also [21] for
more details).

Figure 1. The homo/heteroclinic orbits for b = −0.4, b1 = −0.7, b0 = 0.1 [21].

2.1.1. Some Simulations

Let us concentrate on several intriguing examples:

Example 1. For fixed b = 0.4; b1 = 0.7; b0 = −0.1; A = 0.1; ϵ = 0.1; ω = 1.01; a = a1 =
a0 = 1, the experiments on Model (9) for x0 = 0.6; y0 = 0.3 are visualized in Figure 2.

Example 2. For fixed b = 0.4; b1 = 0.7; b0 = −0.1; A = 0.1; ϵ = 0.1; ω = 1.01; a = 0.9;
a1 = 0.8; a0 = 0.7, the experiments on Model (9) for x0 = 0.6; y0 = 0.3 are visualized in Figure 3.

Example 3. For fixed b = 0.4; b1 = 0.7; b0 = −0.1; A = 0.01; ϵ = 0.1; ω = 1.01; a = −0.7;
a1 = −3.8; a0 = 5.3, the experiments on Model (9) for x0 = 0.6; y0 = 0.3 are visualized in
Figure 4.

Example 4. For fixed b = 0.1; b1 = 0.3; b0 = −0.1; A = 0.01; ϵ = 0.1; ω = 1.01; a = −1.7;
a1 = −2.8; a0 = 6.1, the experiments on Model (9) for x0 = 0.6; y0 = 0.2 are visualized in
Figure 5.
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Figure 2. (a) The solutions of the differential system; (b) y–time series; (c) phase space (Example 1).

Figure 3. (a) The solutions of the differential system; (b) y–time series; (c) phase space; (Example 2).
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Figure 4. (a) The solutions of the differential system; (b) x–time series; (c) y–time series; (d) phase
space; (Example 3).

Figure 5. (a) The solutions of the differential system; (b) x–time series; (c) y–time series; (d) phase
space; (Example 4).
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2.2. A Modified Model

Let us investigate the next differential system:
dx
dt

= y

dy
dt

= x − x3 − ϵ

(
Ay|y|p−1 −

N

∑
j=1

gj sin(jωt)

) (10)

For fixed ϵ = 0, the outcome Hamiltonian of the model (10) is

H(x, y) =
1
2

y2 − 1
2

x2 +
1
4

x4.

A saddle point exists at the origin, which is centered at (±1, 0), and a couple homoclinic
trajectories are set by (see Figure 6):

x0(t) = ±
√

2sech t

y0(t) = ∓
√

2sech t tanh t.
(11)

Figure 6. Double homoclinic orbit [20].

We refer to [8–11,20] for more details. The homoclinic integral of Melnikov is set by

M(t0) =
∫ ∞

−∞
y0(t)

(
Ay0(t)|y0(t)|p−1 −

N

∑
j=1

gi sin(jω(t + t0))

)
dt, (12)

where the expressions x0(t) and y0(t) are circumscribed by Equation (11). We will demon-
strate the next statement, where p = 2 and N = 1.

Proposition 1. If p = 2 and N = 1, then the zeroes of the Melnikov function M(t0) are obtained
as roots of the following equation:

M(t0) = 16
15
√

2
A + 1

30
√

2
e−it0ω

(
15g1ωPolyGamma[0, 1

4 − iω
4 ]

+15e2it0ωg1ωPolyGamma[0, 1
4 − iω

4 ]− 15g1ωPolyGamma[0, 3
4 − iω

4 ]

−15e2it0ωg1ωPolyGamma[0, 3
4 − iω

4 ] + 15g1ωPolyGamma[0, 1
4 + iω

4 ]

+15e2it0ωg1ωPolyGamma[0, 1
4 + iω

4 ]− 15g1ωPolyGamma[0, 3
4 + iω

4 ]

−15e2it0ωg1ωPolyGamma[0, 3
4 + iω

4 ]
)
= 0.

(13)
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Here, PolyGamma[n, z] is the nth derivative of the digamma function ψ(n)(z), i.e.,

ψ(0)(z) = Γ
′
(z)

Γ(z) and Γ(z) =
∫ ∞

0
tz−1e−t dt [26].

As an illustration, the equality M(t0) = 0 (for p = 2; N = 1; A = 1.01; ω = 0.25;
g1 = 0.9) is depicted in Figure 7a. The roots in interval (0, 26) are as follows: 2.42651;
22.7062. For p = 2; N = 1; A = 1.05; ω = 0.1; g1 = 0.916, M(t0) has no roots (Figure 7b).
From Proposition 1 (see also Figure 7), the reader may formulate the Melnikov’s condition
for chaotic behavior of the dynamical model. Let us demonstrate the next statement, where
p = 2 and N = 2.

Figure 7. The equation M(t0) = 0 (Proposition 1): (a) p = 2; N = 1; A = 1.01; ω = 0.25; g1 = 0.9;
(b) p = 2; N = 1; A = 1.05; ω = 0.1; g1 = 0.916.

Proposition 2. If p = 2 and N = 2, then the zeros of the Melnikov function M(t0) are received as
roots of the equation

M(t0) = 1
30
√

2
e−2it0ω

(
32Ae2it0ω + 15eit0ωg1ωPolyGamma[0, 1

4 − iω
4 ]

+15e3it0ωg1ωPolyGamma[0, 1
4 − iω

4 ]− 15eit0ωg1ωPolyGamma[0, 3
4 − iω

4 ]

−15e3it0ωg1ωPolyGamma[0, 3
4 − iω

4 ] + 15eit0ωg1ωPolyGamma[0, 1
4 + iω

4 ]

+15e3it0ωg1ωPolyGamma[0, 1
4 + iω

4 ]− 15eit0ωg1ωPolyGamma[0, 3
4 + iω

4 ]

−15e3it0ωg1ωPolyGamma[0, 3
4 + iω

4 ] + 30g2ωPolyGamma[0, 1
4 − iω

2 ]

+30e4it0ωg2ωPolyGamma[0, 1
4 − iω

2 ]− 30g2ωPolyGamma[0, 3
4 − iω

2 ]

−30e4it0ωg2ωPolyGamma[0, 3
4 − iω

2 ] + 30g2ωPolyGamma[0, 3
4 + iω

2 ]

+30e4it0ωg2ωPolyGamma[0, 1
4 + iω

2 ]− 30g2ωPolyGamma[0, 3
4 + iω

2 ]

−30e4it0ωg2ωPolyGamma[0, 3
4 + iω

2 ]
)
= 0.

(14)

As an illustration, the equation M(t0) = 0 when (for (a)) p = 2; N = 2; A = 1.01;
ω = 0.4; g1 = 0.4; g2 = 0.95 is depicted in Figure 8a. The roots in interval (0, 12) are:
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1.74485; 6.92814; 8.798. For (b), p = 2; N = 2; A = 0.6; ω = 0.6; g1 = 0.09; g2 = 0.05,
M(t0) has no roots (see Figure 8b).

Figure 8. The equation M(t0) = 0 (Proposition 2): (a) p = 2; N = 2; A = 1.01; ω = 0.4; g1 = 0.4;
g2 = 0.95; (b) p = 2; N = 2; A = 0.6; ω = 0.6; g1 = 0.09; g2 = 0.05.

The next proposition is fulfilled for fixed p = 2 and N = 3. We will note that this
result was reported in [21] only as a particular example illustrating the obstacles that the
researcher faces in the usage of a particular CAS. Here, we place it in full.

Proposition 3. If p = 2 and N = 3, then the zeros of the Melnikov function M(t0) are obtained
as a roots of the following equation:

M(t0) = 1
60 e−3it0ω

(
32
√

2Ae3it0ω + 15
√

2e2it0ωg1ωPolyGamma[0, 1
4 − iω

4 ]

+15
√

2e4it0ωg1ωPolyGamma[0, 1
4 − iω

4 ]− 15
√

2e2it0ωg1ωPolyGamma[0, 3
4 − iω

4 ]

−15
√

2e4it0ωg1ωPolyGamma[0, 3
4 − iω

4 ] + 15
√

2e2it0ωg1ωPolyGamma[0, 1
4 + iω

4 ]

+15
√

2e4it0ωg1ωPolyGamma[0, 1
4 + iω

4 ]− 15
√

2e2it0ωg1ωPolyGamma[0, 3
4 + iω

4 ]

−15
√

2e4it0ωg1ωPolyGamma[0, 3
4 + iω

4 ] + 30
√

2eit0ωg2ωPolyGamma[0, 1
4 − iω

2 ]

+30
√

2e5it0ωg2ωPolyGamma[0, 1
4 − iω

2 ]− 30
√

2eit0ωg2ωPolyGamma[0, 3
4 − iω

2 ]

−30
√

2e5it0ωg2ωPolyGamma[0, 3
4 − iω

2 ] + 30
√

2eit0ωg2ωPolyGamma[0, 1
4 + iω

2 ]

+30
√

2e5it0ωg2ωPolyGamma[0, 1
4 + iω

2 ]− 30
√

2eit0ωg2ωPolyGamma[0, 3
4 + iω

2 ]

−30
√

2e5it0ωg2ωPolyGamma[0, 3
4 + iω

2 ] + 45
√

2g3ωPolyGamma[0, 1
4 − 3iω

4 ]

+45
√

2e6it0ωg3ωPolyGamma[0, 1
4 − 3iω

4 ]− 45
√

2g3ωPolyGamma[0, 3
4 − 3iω

4 ]

−45
√

2e6it0ωg3ωPolyGamma[0, 3
4 − 3iω

4 ] + 45
√

2g3ωPolyGamma[0, 1
4 + 3iω

4 ]

+45
√

2e6it0ωg3ωPolyGamma[0, 1
4 + 3iω

4 ]− 45
√

2g3ωPolyGamma[0, 3
4 + 3iω

4 ]

−45
√

2e6it0ωg3ωPolyGamma[0, 3
4 + 3iω

4 ]
)
= 0.

(15)
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As an illustration, the equation M(t0) = 0 when (a) p = 2; N = 3; A = 1.01;
ω = 0.34; g1 = 0.5; g2 = 0.95; g3 = 0.8 is visualized in Figure 9a. For (b), p = 2;
N = 3; A = 0.1; ω = 0.9; g1 = 0.01; g2 = 0.02; g3 = 0.015, M(t0) has no roots (see
Figure 9b).

Figure 9. The equation M(t0) = 0 (Proposition 3): (a) p = 2; N = 3; A = 1.01; ω = 0.34; g1 = 0.5;
g2 = 0.95; g3 = 0.8; (b) p = 2; N = 3; A = 0.1; ω = 0.9; g1 = 0.01; g2 = 0.02; g3 = 0.015.

From Propositions 2 and 3, the reader may formulate the Melnikov’s standard for the
emergence of crossing the perturbed and unperturbed separatrix. The reader can explore
the relevant approximation issue for arbitrarily selected p and N.

2.3. One Possible Application that Melnikov Functions May Find in the Modeling and Synthesis of
Radiating Antenna Patterns

Let us dwell on the functions M(t) generated by Propositions 2 and 3. Thus, for exam-
ple, typical diagrams are visualized in Figure 10 with the following selection of parameters:

I. p = 2; N = 2; A = 0.13; ω = 0.6; g1 = −0.09; g2 = −0.05 (from Proposition 2);
II. p = 2; N = 3; A = 0.011; ω = 0.9; g1 = −0.01; g2 = −0.02; g3 = −0.03 (from

Proposition 3).

Of course, the complex problem related to choosing an optimization approach to
minimize lateral radiation in the specified class of diagrams can be considered as open.

The reader can find additional information in [27].
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Figure 10. Melnikov functions M(t) as a typical diagrams (in confidential intervals): (a) case I;
(b) case II.

3. One More Note on the Subject: Generating Chaos via x|x|
In this section, we will explore the dynamics of the following ”mixed” model:

dx
dt

= y

dy
dt

= x − x|x| − ϵ

(
A

n

∑
p=1

y|y|p−1 −
N

∑
j=1

gj sin(jωt)

) (16)

where 0 ≤ ϵ < 1, A is the damping level, N is natural number, and p ≥ 1 is the damping
exponent. Particularly, we investigate the next differential system

dx
dt

= y

dy
dt

= x − x|x| − ϵ

(
Ay|y|p−1 −

N

∑
j=1

gj sin(jωt)

)
.

(17)

The total energy of this system (ϵ = 0) is H(x, y) = 1
2 y2 − 1

2 x2 + 1
3 x2|x|. Some details

can be found in [13]. The trajectory is obtained by (see Figure 11):

x0(t) = ± 3
1+coshṫ

y0(t) = ∓ 3sinh t
(1+coshṫ)2

(18)

Figure 11. The orbits (x0(t), y0(t)) (thick) and energy potential (red).
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3.1. Some Simulations

Let us consider several intriguing experiments:

Example 5. For fixed p = 2; N = 2; A = 0.015; ϵ = 0.1; ω = 0.6; g1 = 0.07; g2 = 0.3, the
experiments by Model (17) for x0 = 0.6; y0 = 0.2 are visualized in Figure 12.

Example 6. For fixed p = 6; N = 3; A = 0.1; ϵ = 0.1; ω = 0.32; g1 = 0.9; g2 = 0.8; g3 = 0.7,
the experiments by Model (17) for x0 = 0.8; y0 = 0.5 are visualized in Figure 13.

Example 7. For fixed p = 8; N = 5; A = 0.1; ϵ = 0.1; ω = 0.32; g1 = 0.9; g2 = 0.8;
g3 = 0.7; g4 = 0.6; g5 = 0.5, the experiments by Model (17) for x0 = 0.6; y0 = 0.3 are visualized
in Figure 14.

Example 8. For fixed p = 10; N = 6; A = 0.1; ϵ = 0.1; ω = 0.32; g1 = 0.9; g2 = 0.1;
g3 = 0.8; g4 = 0.2; g5 = 0.7; g6 = 0, the experiments by Model (17) for x0 = 0.7; y0 = 0.5 are
visualized in Figure 15.

Figure 12. (a) The solutions of the system; (b) x–time series; (c) y–time series; (d) phase space
(Example 5).
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Figure 13. (a) The solutions of the system; (b) x–time series; (c) y–time series; (d) phase space
(Example 6).

Figure 14. (a) The solutions of the system; (b) x–time series; (c) y–time series; (d) phase space
(Example 7).
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Figure 15. (a) The solutions of the system; (b) x–time series; (c) y–time series; (d) phase space
(Example 8).

3.1.1. Melnikov’s Approach

By definition, the Melnikov integral is presented by

M(t0) =
∫ ∞

−∞
y0(t)

(
Ay0(t)|y0(t)|p−1 −

N

∑
j=1

gi sin(jω(t + t0))

)
dt, (19)

where the functions x0(t) and y0(t) are defined by Equation (18).
Let us indicate the next statement for fixed p = 2 and N = 1.

Proposition 4. If p = 2 and N = 1, then the zeroes of the Melnikov function M(t0) are received
as roots of the following equation:
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M(t0) =
1

75,600 e−it0ω
(
42, 525Aeit0ω − 226, 800g1ω − 226, 800e2it0ωg1ω + 188, 016g1ω3

+188, 016e2it0ωg1ω3 − 37, 328g1ω5 − 37, 328e2it0ωg1ω5 + 2144g1ω7 + 2144e2it0ωg1ω7

−32g1ω9 − 32e2it0ωg1ω9 + 62, 136ig1ω2P[0, 1
2 − iω

2 ] + 62, 136ie2it0ωg1ω2P[0, 1
2 − iω

2 ]

−45, 800ig1ω4P[0, 1
2 − iω

2 ]− 45, 800ie2it0ωg1ω4P[0, 1
2 − Iω

2 ] + 5313ig1ω6P[0, 1
2 − iω

2 ]

+5313ie2it0ωg1ω6P[0, 1
2 − iω

2 ]− 150ig1ω8P[0, 1
2 − Iω

2 ]− 150ie2it0ωg1ω8P[0, 1
2 − iω

2 ]

+ig1ω10P[0, 1
2 − iω

2 ] + ie2it0ωg1ω10P[0, 1
2 − iω

2 ]− 94, 392ig1ω2P[0, 1 − iω
2 ]

−94, 392ie2it0ωg1ω2P[0, 1 − iω
2 ] + 22, 620ig1ω4P[0, 1 − iω

2 ] + 22, 620ie2it0ωg1ω4P[0, 1 − iω
2 ]

+3339ig1ω6P[0, 1 − iω
2 ] + 3339ie2it0ωg1ω6P[0, 1 − iω

2 ]− 270ig1ω8P[0, 1 − iω
2 ]

−270ie2it0ωg1ω8P[0, 1 − iω
2 ] + 3ig1ω10P[0, 1 − iω

2 ] + 3ie2it0ωg1ω10P[0, 1 − iω
2 ]

+46, 512ig1ω2P[0, 3
2 − iω

2 ] + 46, 512ie2it0ωg1ω2P[0, 3
2 − iω

2 ] + 39, 440ig1ω4P[0, 3
2 − iω

2 ]

+39, 440ie2it0ωg1ω4P[0, 3
2 − iω

2 ]− 7014ig1ω6P[0, 3
2 − iω

2 ]− 7014ie2it0ωg1ω6P[0, 3
2 − iω

2 ]

+60ig1ω8P[0, 3
2 − iω

2 ] + 60ie2it0ωg1ω8P[0, 3
2 − iω

2 ] + 2ig1ω10P[0, 3
2 − iω

2 ]

+2ie2it0ωg1ω10P[0, 3
2 − iω

2 ]− 18, 432ig1ω2P[0, 2 − iω
2 ]− 18, 432ie2it0ωg1ω2P[0, 2 − iω

2 ]

−21, 800ig1ω4P[0, 2 − iω
2 ]− 21, 800ie2it0ωg1ω4P[0, 2 − iω

2 ]− 3066ig1ω6P[0, 2 − iω
2 ]

−3066ie2it0ωg1ω6P[0, 2 − iω
2 ] + 300ig1ω8P[0, 2 − iω

2 ] + 300ie2it0ωg1ω8P[0, 2 − iω
2 ]

−2ig1ω10P[0, 2 − iω
2 ]− 2ie2it0ωg1ω10P[0, 2 − iω

2 ] + 4752ig1ω2P[0, 5
2 − iω

2 ]

+4752ie2it0ωg1ω2P[0, 5
2 − iω

2 ] + 6360Ig1ω4P[0, 5
2 − iω

2 ] + 6360ie2it0ωg1ω4P[0, 5
2 − iω

2 ]

+1701ig1ω6P[0, 5
2 − iω

2 ] + 1701ie2it0ωg1ω6P[0, 5
2 − iω

2 ] + 90ig1ω8P[0, 5
2 − iω

2 ]

+90ie2it0ωg1ω8P[0, 5
2 − iω

2 ]− 3ig1ω10P[0, 5
2 − iω

2 ]− 3ie2it0ωg1ω10P[0, 5
2 − Iω

2 ]

−576ig1ω2P[0, 3 − Iω
2 ]− 576ie2it0ωg1ω2P[0, 3 − iω

2 ]− 820ig1ω4P[0, 3 − iω
2 ]

−820ie2it0ωg1ω4P[0, 3 − iω
2 ]− 273ig1ω6P[0, 3 − iω

2 ]− 273ie2it0ωg1ω6P[0, 3 − iω
2 ]

−30ig1ω8P[0, 3 − iω
2 ]− 30ie2it0ωg1ω8P[0, 3 − iω

2 ]− ig1ω10P[0, 3 − iω
2 ]

−ie2it0ωg1ω10P[0, 3 − iω
2 ]− 62, 136ig1ω2P[0, 1

2 + iω
2 ]− 62, 136ie2it0ωg1ω2P[0, 1

2 + iω
2 ]

+45, 800ig1ω4P[0, 1
2 + iω

2 ] + 45, 800ie2it0ωg1ω4P[0, 1
2 + iω

2 ]− 5313ig1ω6P[0, 1
2 + iω

2 ]

−5313ie2it0ωg1ω6P[0, 1
2 + iω

2 ] + 150ig1ω8P[0, 1
2 + iω

2 ] + 150ie2it0ωg1ω8P[0, 1
2 + iω

2 ]

−ig1ω10P[0, 1
2 + iω

2 ]− ie2it0ωg1ω10P[0, 1
2 + iω

2 ] + 94, 392ig1ω2P[0, 1 + iω
2 ]

+94, 392ie2it0ωg1ω2P[0, 1 + iω
2 ]− 22, 620ig1ω4P[0, 1 + iω

2 ]− 22, 620ie2it0ωg1ω4P[0, 1 + iω
2 ]

−3339ig1ω6P[0, 1 + iω
2 ]− 3339ie2it0ωg1ω6P[0, 1 + iω

2 ] + 270ig1ω8P[0, 1 + iω
2 ]

+270ie2it0ωg1ω8P[0, 1 + iω
2 ]− 3ig1ω10P[0, 1 + iω

2 ]− 3ie2it0ωg1ω10P[0, 1 + iω
2 ]

−46, 512ig1ω2P[0, 3
2 + iω

2 ]− 46, 512ie2it0ωg1ω2P[0, 3
2 + iω

2 ]− 39, 440ig1ω4P[0, 3
2 + iω

2 ]

(20)
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−39, 440ie2it0ωg1ω4P[0, 3
2 + iω

2 ] + 7014ig1ω6P[0, 3
2 + iω

2 ] + 7014ie2it0ωg1ω6P[0, 3
2 + iω

2 ]

−60ig1ω8P[0, 3
2 + iω

2 ]− 60ie2it0ωg1ω8P[0, 3
2 + iω

2 ]− 2ig1ω10P[0, 3
2 + iω

2 ]

−2ie2it0ωg1ω10P[0, 3
2 + iω

2 ] + 18, 432ig1ω2P[0, 2 + iω
2 ] + 18, 432ie2it0ωg1ω2P[0, 2 + iω

2 ]

+21, 800ig1ω4P[0, 2 + iω
2 + 21, 800ie2it0ωg1ω4P[0, 2 + iω

2 ] + 3066ig1ω6P[0, 2 + iω
2 ]

+3066ie2it0ωg1ω6P[0, 2 + iω
2 ]− 300iIg1ω8P[0, 2 + iω

2 ]− 300ie2it0ωg1ω8P[0, 2 + iω
2 ]

+2ig1ω10P[0, 2 + iω
2 ] + 2ie2it0ωg1ω10P[0, 2 + iω

2 ]− 4752ig1ω2P[0, 5
2 + iω

2 ]

−4752ie2it0ωg1ω2P[0, 5
2 + iω

2 ]− 6360ig1ω4P[0, 5
2 + iω

2 ]− 6360ie2it0ωg1ω4P[0, 5
2 + iω

2 ]

−1701ig1ω6P[0, 5
2 + iω

2 ]− 1701ie2it0ωg1ω6P[0, 5
2 + iω

2 ]− 90ig1ω8P[0, 5
2 + iω

2 ]

−90ie2it0ωg1ω8P[0, 5
2 + iω

2 ] + 3ig1ω10P[0, 5
2 + iω

2 ] + 3ie2it0ωg1ω10P[0, 5
2 + iω

2 ]

+576ig1ω2P[0, 3 + iω
2 ] + 576ie2it0ωg1ω2P[0, 3 + iω

2 ] + 820iIg1ω4P[0, 3 + iω
2 ]

+820ie2it0ωg1ω4P[0, 3 + iω
2 ] + 273ig1ω6P[0, 3 + iω

2 ] + 273ie2it0ωg1ω6P[0, 3 + iω
2 ]

+30ig1ω8P[0, 3 + iω
2 ] + 30ie2it0ωg1ω8P[0, 3 + iω

2 ] + ig1ω10P[0, 3 + iω
2 ]

+ie2it0ωg1ω10P[0, 3 + iω
2 ])
)
= 0.

Here, we have used the abbreviation P[., .] instead of PolyGamma[., .].

Remark 1. Proposition 4 is generated using direct reference to the specialized module provided
in CAS Mathematica; we place it in this form. For the equation M(t0) = 0 (for fixed A = 0.15;
ω = 0.1; g1 = 0.091), see Figure 16.

Figure 16. (a) The equation M(t0) = 0; (b) the root t0 = 14.1305 in interval (0, 20) (Proposition 4).

4. Some Probability-Based Constructions

Many works devoted to the oscillators with stochastic elements (Gaussian colored
noise, Ornstein–Uhlenbeck process, Poisson distribution, different non-Gaussian terms,
maximum entropy principle, etc.) are available in the scientific literature—we refer
to [28–32]. Despite their different essences, these elements modify the oscillator behavior.
We suggest an alternative approach in this research. We assume that the parameters ai and
bi, that control the oscillator dynamics, are generated by some distribution. This way, the
intrinsic properties of the used stochastic component can be incorporated into the behavior
of the related oscillator; in this way, they improve its fine structure.

Suppose now that the coefficients aiand bi from Equation (8) are the probabilities of
some finite-space discrete distributions. Let us denote by ψa(·) and ψb(·) their moment-
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generating functions. Let ξa and ξb be some random variables exhibiting the corresponding
laws. We shall use the symbol E for the related expectations. We can rewrite the second
part of system (8) as

dy
dt

= bx −
[ n

2 ]−1

∑
i=0

bixn−2i − ϵ

A
k

∑
p=1

y|y|2p−1 + (1 + cos(ωt))

ax +
[m

2 ]−1

∑
i=0

aixm−2i


= bx − xn

[ n
2 ]−1

∑
i=0

bie−2i ln |x| − ϵ

A
k

∑
p=1

y|y|2p−1 + (1 + cos(ωt))

ax + xm
[m

2 ]−1

∑
i=0

aie−2i ln |x|


= bx − xnE

[
e−2ξb ln |x|

]
− ϵ

(
A

k

∑
p=1

y|y|2p−1 + (1 + cos(ωt))
(

ax +E
[
e−2ξa ln |x|

]))

= bx − xnψb(−2 ln |x|)− ϵ

(
A

k

∑
p=1

y|y|2p−1 + (1 + cos(ωt))(ax + ψa(−2 ln |x|))
)

.

(21)

Let us discuss some examples—discrete uniform, binomial, β-binomial, and hypergeo-
metric distributions. We state the domain at the set {0, 1, 2, . . . , K}. We have K =

[m
2
]

for
ξa and K =

[ n
2
]

for ξb, respectively, for ai and bi. The coefficients ai and bi are defined as
the probabilities:

puniform
i =

1
K

pbinomial
i =

(
k
i

)
pi(1 − p)K−i

pβ−binomial
i =

(
K
i

)
B(i + α, k − i + β)

B(α, β)

phypergeometric
i =

(K
i )(

N−K
M−i )

(N
M)

.

(22)

The necessary conditions are 0 < p < 1 , α > 0, β > 0, K ≤ M ≤
[

N
2

]
, and M and N

are integers. The β-function B(·, ·) is defined through the gamma function as

B(x, y) =
Γ(x)Γ(y)
Γ(x + y)

. (23)

Having in mind that the moment-generating functions of these distributions are

ψuniform(x) =
1 − e(K+1)x

K(1 − ex)

ψbinomial(x) = (1 − p + pex)K

ψβ−binomial(x) = 2F1(−K, α, α + β, 1 − ex)

ψhypergeometric(x) =
(N−K

M )2F1(−M,−K, N − M − K + 1, ex)

(N
M)

,

(24)

we express the terms ψ(−2 ln |x|) from Equation (21) as
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ψuniform(−2 ln |x|) = x2(k+1) − 1
Kx2k(x2 − 1)

ψbinomial(−2 ln |x|) =
(

1 − p +
p
x2

)K

ψβ−binomial(−2 ln |x|) = 2F1

(
−K, α, α + β, 1 − 1

x2

)

ψhypergeometric(−2 ln |x|) =
(N−k

M )2F1

(
−M,−K, N − M − k + 1, 1

x2

)
(N

M)
.

(25)

Let us remind the reader that the symbol 2F1 stands for the Gaussian hypergeometric
function. We can now construct varieties of distribution-based oscillators combining
terms (25) and estimating them in (21).

5. Concluding Remarks

In present article, we have explored some extended hypothetical oscillator models.
We present several specific units for researching the dynamics of the explored oscillators.
A cloud realization that requires only an internet browser and connection is provided
for several of them. This will be included as an add-on unit of an improved web-based
platform that has been designed for reliable computations. In light of the numerical anal-
ysis, the problem of researching the zeroes of M(t0) = 0 is very intriguing because the
variables arising in the offered differential system are subject to many limitations of a
physical and practical essence. The method of residues has been used when computing
the Melnikov integrals. For sufficiently big numbers of the variables of the models, some
obstacles (of a consumer essence) arise when computing the Melnikov integrals through
famous and widely used CASs. We recall some of them (for more detail, see [21]): “We
have to indicate that the computation of homoclinic and heteroclinic Melnikov integrals as
well as the relevant standard for the chaos arising in the dynamical model are problematic
tasks of users (who are not necessarily professional mathematicians) of CAS for reliable
computations. For example, computation of the above integrals (for big values of the vari-
ables of the models) with the modules provided for the purpose in the relevant program
environment, a computer environment dialog arises (behind a large time interval) of the
kind: “No enough memory available”, or “SystemException[MemoryAllocationFailure,
. . . ]” which is embarrassed as situation for the unfamiliar with these arising problems
consumer.” We point out that the user can undertake an effortful search for an alternative
to select for the obligatory domain in the present detached unit (as an example in CAS
Mathematica) for computing the already-quoted Melnikov’s integrals. Ordinarily, this
demand is connected to the enforced restriction (for the class of dynamical systems) of
the |Im(ω)| ≤ Const kind. The improving of the web-based application, planned by
us, envisages the usage of computational procedures (which are hidden to the consumer)
to circumscribe the boundaries of the constraint cited above. We show one illustration
connected to exploring the dynamics of the offered differential systems. Clearly, the con-
sumer can make several simplifications in Equation (20), or (15). Admittedly, the problem
becomes the following: why was the existent HarmonicNumber[n] function (in the specific
computational framework) not utilized (by the environment without user participation)
to receive a concise result. The illustrations we can give are various and numerous. This
requires improvements in the vocational training of the actual professional units.

Other algorithms (hidden to the user) used in this article are as follows: (i) the ar-
bitrary values of the parameters of the model given by the costumer—the producing of
the expanded oscillator; (ii) specific computational procedures for comprehensive Hamil-
tonian research of differential systems and picturing the “level curves” (supposing the
realization of software facilities in a user-chosen CAS for reliable computations); (iii) an
algorithm for picking out the starting approximations when searching for a solution to the
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differential systems, which states its intriguing peculiarity and demeanor of the solution
in confidential time intervals; (iv) numerical algorithms for solving the nonlinear equa-
tion, M(t0) = 0 [33–35]—in several cases (when chaos is produced in dynamical models),
M(t) is a polynomial and this necessitates the use of specialized algorithms to simulta-
neously find of all zeros [36–41]; (v) algorithms for generating the Melnikov functions
of a higher type for analyzing the homo/heteroclinic bifurcation in mechanical systems;
(vi) algorithms for generating bifurcation diagrams; (vii) algorithms for generating chaos in
non-self-governmental model. Several of these computational procedures have been build
on the basis of famous traditional and newer investigations [42–50]. These units are en-
hancing the analogous ones that are implemented in CASs that are scheduled for scientific
computations. The presented units are a part of the wider plan for researching nonlinear
differential systems. We are deploying scalable cloud software tools through server-free
architectures [51]. Server-free architectures enable the auto-scaling of the software system
when the load is higher. Furthermore, these can be used for the simultaneous performance
of proper computational processes in pursuit of the best performance. Where this can be im-
plemented, we engage many optimizing tools for high-precision computations, involving
multi-processor and multi-threading computations; moreover, hardware-specific software
improvements can be made [52–54]. The software framework is presented alongside the
realized computational procedures through regular APIs with REST and HTTP, with data
serialization using XML and JSON formats. The API can be utilized by reporting and
analytic software systems such as Excel and PowerBI to study the outcomes further [55].
For more details, see [24].

The research can pursue the following avenues for test theory and e-learning: de-
velopmental evolution to e-learning from CBT [56], studying ambiance [57], DeLC study
e-portal [58], Virtual Educational Space [59], and production of exam issues [60].

We define the hypothetical normalized antenna factor, as follows:

M∗(θ) =
1
D
|M(K cos θ + k1)|

where

- θ is the azimuth angle;
- K = kd; k = 2π

λ ; λ is the wave length; d is the distance between emitters;
- k1 is the phase difference.

A typical antenna factor for (1) is A = 0.13; ω = 0.6; g1 = −0.09; g2 = −0.05;
K = 5; k1 = 3.1 and for (2) it is A = 0.129; ω = 0.6; g1 = −0.06; g2 = −0.054; K = 4.65;
k1 = −1.882 (from Proposition 2). These are depicted in Figure 17.

Let us now focus on M(t) from Proposition 4. Following the classical Dolph–Chebyshev,
Gegenbauer, and Soltis antenna arrays, we will call M(θ) the Melnikov antenna array. For
fixed A = 0.0001; ω = 0.2; g1 = 0.005; K = 9; k1 = 0.01, see Figure 18.

Of course, after serious consideration from specialists working in this scientific field,
the hypothetical Melnikov array proposed by us can be seen as a supplementation to the
array antenna theory.

In our application, we also use a computational procedure for the oversight and
depiction of the antenna factor (with an appropriate user-chosen magnitude for sideways
radiation). This is based on the research presented in [27,61].

Based on the theoretical results presented in Section 4, we envisage an inclusion of
this in our web-based application of specialized algorithms for controlling the oscillations
caused by the new probability-based constructions. Regarding other options for control,
see [21].

At this stage, the web-based application is the intellectual property of the authors.
Early next year, the multilayered architecture will be published with all its connections,
attributes, and functionalities—calculation timing, graphics refinement, built-in computing
mechanisms, and more.
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We are on schedule in our process, such that the design of similar large-scale web-
based applications for research computations can be implemented thanks to the substantial
efforts of professionals in many research fields.

Figure 17. A typical antenna factor: (a) case (1); (b) case (2).

Figure 18. A typical Melnikov antenna array.
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