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Abstract: The detection of coronary artery stenosis is one of the most important indicators for the
diagnosis of coronary artery disease. However, stenosis in branch vessels is often difficult to detect
using computer-aided systems and even radiologists because of several factors, such as imaging
angle and contrast agent inhomogeneity. Traditional coronary artery stenosis localization algorithms
often only detect aortic stenosis and ignore branch vessels that may also cause major health threats.
Therefore, improving the localization of branch vessel stenosis in coronary angiographic images is a
potential development property. In this study, we propose a preprocessing approach that combines
vessel enhancement and image fusion as a prerequisite for deep learning. The sensitivity of the neural
network to stenosis features is improved by enhancing the blurry features in coronary angiographic
images. By validating five neural networks, such as YOLOv4 and R-FCN-Inceptionresnetv2, our
proposed method can improve the performance of deep learning network applications on the images
from six common imaging angles. The results showed that the proposed method is suitable as a
preprocessing method for coronary angiographic image processing based on deep learning and can
be used to amend the recognition ability of the deep model for fine vessel stenosis.

Keywords: coronary angiography; deep learning; image enhancement; image fusion

1. Introduction

Coronary heart disease, in which lifestyle and environmental factors are risk factors,
is one of the leading cardiovascular diseases affecting the global population [1]. Coronary
angiography has been used clinically for decades as the “gold standard” for the diagnosis
of coronary heart disease [2]. Invasive coronary angiography (ICA) is an important method
for arterial stenosis detection and is widely used in clinical treatment. Typically, in ICAs,
a radiopaque contrast agent is injected into the coronary arteries, and then the arteries
are viewed with the use of consecutive X-rays. In clinical practice, the diagnosis decision
usually considers the percent stenosis as one of the judgment factors of severity, which
is determined by a physician’s visual assessment. For example, 50% stenosis is generally
considered the minimum criterion for coronary revascularization, and 70% stenosis is
considered an indicator for identifying clinical lesions. However, this method has some
limitations, such as reliance on professionally trained radiologists and judgment errors due
to fatigue and other reasons. On the other hand, limitations in imaging modalities, such
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as very low contrast caused by a limited radiation dose or illumination and imaging blur
caused by a limited number of viewing angles and diluted contrast agents, also make the
accuracy of the manual determination of coronary stenosis challenging [3].

These unsolved problems have been developed with the outstanding contributions of
deep learning in the field of image processing. Recently, the deep learning methods repre-
sented by convolutional neural networks (CNNs) have made it possible to locate stenosis
and calculate the stenosis rate more accurately, stably, and reliably. Within the existing body
of literature, diligent scholars have undertaken extensive research endeavors encompassing
various facets of this complex domain. Some have delved into the intricacies of blood
vessel extraction [4], while others have harnessed the power of deep learning methods
to precisely locate stenotic lesions [5]. Concurrently, certain researchers have proposed
novel mathematical approaches to calculate stenosis rates [6]. Although these pioneering
studies have significantly contributed to the field, they often exhibit a predominant focus
on stenotic areas within the aorta, inadvertently overlooking the critical implications of
stenosis within branch vessels. This oversight can be attributed to challenges stemming
from overlapping vessels, inadequate contrast agent distribution, and suboptimal imag-
ing angles, which frequently hinder the comprehensive visualization of branch vessels.
Consequently, the detection of stenosis within complete coronary angiography presents
an intriguing and formidable research frontier, characterized by abundant opportunities
and intricate challenges that await exploration. Addressing this critical aspect holds the
potential to substantially augment our understanding and capabilities in diagnosing and
managing stenotic conditions within the intricate network of coronary arteries.

To address the formidable challenges posed by the intricate network of coronary arter-
ies, characterized by numerous branches and complex geometries, an efficient approach
involves leveraging Hessian matrix multiscale filtering for blood vessel enhancement [7].
This method capitalizes on the inherent correlations among the eigenvalues of the Hessian
matrix to identify and extract the tubular structural characteristics of blood vessels within
medical images. Notably, the Hessian-based Frangi vesselness (HFV) filter has gained
widespread prominence for vascular enhancement and quantification, as evidenced by its
utilization in various studies [8,9]. In addition to standalone approaches, hybrid enhance-
ment techniques have also emerged, such as the amalgamation of region growth with the
HFV filter [10], aimed at further refining image backgrounds and suppressing noise.

In the realm of convolutional neural network-based methods, significant strides have
been made in various aspects of stenosis localization and detection. For instance, a fun-
damental CNN architecture, with slight modifications within its layers, was employed
for the detection of stenotic lesions in angiographic images in 2018 [11]. Experimental
outcomes revealed that networks trained on artificial data and subsequently fine-tuned
with clinical datasets achieved a remarkable accuracy of approximately 90%, surpassing the
performance of traditional feedforward neural networks. Transfer learning has also been
explored, where pretrained CNNs are fine-tuned using artificial data. It was observed that
a pretrained CNN, with only the top three blocks serving as feature extractors, exhibited
promising performance in stenosis detection [12].

Within the domain of blood vessel segmentation, researchers have contributed a spec-
trum of model- and tracking-based approaches in recent years. These include techniques
like multiscale Gabor filtering [13], Hessian filtering with flux flow measurement [14], and
active contour-based segmentation methods [15]. Furthermore, deep learning-based ap-
proaches, such as the utilization of long short-term memory recurrent neural networks [16],
have yielded notable performance improvements, contributing significantly to the ad-
vancement of this field. These multifaceted methodologies collectively constitute a rich
tapestry of techniques aimed at enhancing our understanding and capabilities in the realm
of medical image analysis, particularly in the context of coronary artery stenosis detection
and blood vessel segmentation.

In this study, we propose a preprocessing method for coronary artery image enhance-
ment that combines Hessian matrix multiscale filtering and image feature fusion. In this
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method, we used the image fusion method to retain as many features as possible in the
image based on image enhancement. These features can help strengthen the algorithm’s
ability to learn and detect small or distal vessels. HFV filtering was used to enhance the
blood vessels in angiographic images, and an image fusion step was performed on the
enhanced images to accentuate the blood vessels. Then, we employed various deep learn-
ing networks for model training and compared their performances. In comparisons, we
not only evaluated the performance of different deep learning networks under identical
conditions but also compared the performance of images with and without preprocessing
across these networks. The experimental results showed that the proposed method can
obtain satisfactory object detection results.

2. Materials and Methods
2.1. Materials

This research employed a dataset comprising data extracted from a cohort of 20 patients
who had undergone coronary angiography procedures at Hokkaido University Hospital.
Notably, all the angiographic images and video streams derived from these patients under-
went meticulous and precise diagnosis by experienced radiologists, ensuring the accuracy
and reliability of the clinical data underpinning our study. To facilitate subsequent image
analysis, the continuous video streams of each patient were discretized into individual
images, with a consistent frame rate of 15 frames per second maintained throughout this
process. For the purpose of our experiment, a total of 250 contrast images were obtained
and classified manually by right coronary artery (RCA) and left coronary artery (LCA)
(each artery category encompassed three distinct imaging angles, namely the left anterior
oblique (LAO), right anterior oblique (RAO), and the ZERO angle).

2.2. HFV Filter

Enhancement filters are crucial for boosting vessel segmentation efficiency in medical
imaging. Commonly used techniques focus on differential information, such as the second
derivative or the Hessian matrix, to highlight vessel structures in images. These methods
utilize differential analysis to enhance the visibility of blood vessels, making them essential
for medical image segmentation and analysis.

This method is based on the eigenvalues analysis of the Hessian matrix (H(x, y)) to
determine the presence of vessel-like structures in the image. Denote the source image
as I(x, y), and then the Hessian matrix is made continuous by convolving it with a two-
dimensional (2D) Gaussian filter for images. Equation (1) presents the convolution of the
Gaussian filter with the Hessian of image I(x, y) using convolution.

H(x, y) ≈ G ∗

 ∂2 I
∂x2

∂2 I
∂x∂y

∂2 I
∂y∂x

∂2 I
∂y2

 =

 ∂2G
∂x2

∂2G
∂x∂y

∂2G
∂y∂x

∂2G
∂y2

 ∗ I(x, y) (1)

The analysis of the sign and magnitude of the Hessian eigenvalues can be used to
improve the local image structure. Thus, the eigenvalues and eigenvectors of H(x, y)
are calculated to obtain information about the contrast and direction at each point of the
image. The eigen decomposition generates 2 eigenvalues, which are (λ1, λ2), and the
corresponding 2 eigenvectors (ū1, ū2). These parameters are analyzed to distinguish the
blob-like, tubular, or plate-like structure in the image. Because we are interested in the
blood vessel-like structures in the image, these structures are represented by the relation
of |λ1| ≈ 0, |λ1| ≪ |λ2|, and ū1 points toward the direction of the vessel. In addition,
λ2 is negative if the vessels appear as glowing tubular structures in dimly lit areas. This
signature information is used as a consistency check to exclude other structures existing in
the image. The Frangi vesselness function is defined as follows:
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F(v) =


0 if λ2 > 0,
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where

RB =
|λ1|
|λ2|

, S =
√

λ2
1 + λ2

2 (3)

The parameter RB is the measure of eccentricity of the object in a 2D image. S is
the measure of structureness and is used to obtain the background area. The contrast in
the background is lowest because of the absence of any structure. S is also low for the
background and high for the region with structures. β and c are thresholds to control the
sensitivity of the line filter with respect to the parameters RB and S. The value of β can be
set at 0.5, whereas the value of c depends on the gray level intensity of the vessels. This
filter is applied to the image to obtain the response value for each pixel. The response
values are higher for the pixels belonging to the vessels and vice versa.

2.3. Image Fusion

Medical image fusion represents a critical process involving the integration of multiple
images derived from either a single imaging modality or multiple distinct modalities within
the medical field. The overarching objective of medical image fusion is to enhance the over-
all image quality while retaining and accentuating specific features pertinent to the clinical
context. This enhancement serves to bolster the clinical applicability of these fused images
in the realm of medical diagnosis and evaluation. The domain of medical image fusion
spans across a diverse spectrum of scientific disciplines, encompassing image processing,
computer vision, pattern recognition, machine learning, and artificial intelligence. The
versatile applications of medical image fusion extend to various clinical scenarios, where it
equips physicians with the ability to gain a comprehensive understanding of pathological
lesions through the amalgamation of medical images obtained from disparate modalities.
This transformative approach empowers healthcare professionals with a richer and more in-
formative visualization of medical data, ultimately contributing to more accurate diagnoses
and informed treatment decisions.

In the context of medical image fusion methodologies based on the intensity-hue-
saturation (IHS) model, a fundamental transformation known as the IHS transform plays
a pivotal role in the process. Initially, the input medical image, typically represented in
the red-green-blue (RGB) color channels, undergoes a conversion known as the RGB-IHS
transform. This transformation translates the image into the IHS color space, comprising
intensity, hue, and saturation components, effectively creating a matrix representation of the
image in this alternative color space (IHS-RGB). Subsequently, the fused medical image is
reconstructed by employing the inverse IHS transform (IHS-RGB). In this fusion approach,
two medical images derived from different imaging modalities are initially converted into
the IHS color space through the RGB-IHS transformation. Following this, the final fused
image is synthesized by reversing this process using the IHS-RGB transformation:

I =
R + B + G

3
(4)


H = G−B

3I−3B , S = I−B
I if B < R, G,

H = B−R
3I−3R , S = I−R

I if R < B, G,
H = R−G

3I−3G , S = I−G
I if G < R, B

(5)
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R = I(1 + 2S − 3S × H),
G = I(1 − S + 3S × H),
B = I(1 − S) if B < R, G,
R = I(1 − S),
G = I(1 + 5S − 3S × H),
B = I(1 − 4S + 3S × H) if R < B, G,
R = I(1 − 7S + 3S × H),
G = I(1 − S),
B = I(1 + 8S − 3S × H) if G < R, B

(6)

This comprehensive technique harnesses the benefits of the IHS color space, enabling
the integration of distinct modalities into a singular representation that preserves essential
features for improved clinical interpretation and analysis.

2.4. You Only Look Once v4

YOLOv4 [17] represents the fourth iteration in the You Only Look Once series, em-
phasizing real-time object detection and enabling training on a single GPU. Its backbone,
often pre-trained on the ImageNet dataset for classification, is crucial for feature identifica-
tion, which gets refined for detecting objects. The model uses CSPDarknet53, inspired by
DenseNet, which aims to mitigate issues like vanishing gradients, enhance feature propa-
gation, foster feature reuse, and minimize parameters. For feature integration, YOLOv4
adopts PANet, although the choice is not extensively justified, indicating potential areas
for further investigation given the simultaneous development of NAS-FPN and BiFPN.
A Spatial Pyramid Pooling (SPP) block is incorporated post-CSPDarknet53 to expand the
receptive field and isolate key features. YOLOv4 maintains the YOLOv3 detection mecha-
nism, utilizing anchor-based steps and multi-scale detection, enabling rapid and accurate
object identification, well-suited for real-time scenarios, and setting high benchmarks in
accuracy within object detection performance metrics.Currently, the YOLO series of detec-
tors has evolved to YOLOv8. However, due to factors such as the stability of YOLOv4, it
is still widely used in object detection tasks in medical image processing [18,19]. In our
experiment, the YOLOv4 backbone utilizes CSPDarknet53, which is based on DenseNet,
with PANet serving as the neck and YOLOv3 employed as the detection head.

2.5. Faster Region-Convolutional Neural Network

Faster R-CNN [20], standing for “Faster Region-Convolutional Neural Network”, is a
cutting-edge object detection framework within the R-CNN family. This network aims to
create a comprehensive architecture that not only identifies objects in an image but also
pinpoints their exact locations. It integrates the strengths of deep learning, convolutional
neural networks (CNNs), and region proposal networks (RPNs), enhancing both the speed
and accuracy of the detection process.

RPN is a crucial part of the Faster R-CNN, tasked with identifying potential object
regions in images. It leverages predefined anchor boxes of varying sizes and aspect ratios
distributed across the image feature maps to pinpoint where objects might be. Each anchor
box is assessed for its “objectness” score, indicating the likelihood of containing an object
versus background, and adjusted for better alignment with potential objects. The RPN uses
a sliding window method with a small convolutional network to evaluate these anchors,
producing scores and adjustment values. Through Non-Maximum Suppression (NMS),
the RPN filters out overlapping boxes, retaining only the most probable ones as region
proposals, ready for further analysis by the Fast R-CNN detector.

The Fast R-CNN detector within the Faster R-CNN architecture plays a pivotal role
in detecting objects based on region proposals from the RPN. It first applies RoI pooling
to standardize the size of these proposals, then extracts features using the CNN back-
bone. Subsequently, fully connected layers classify the objects and adjust bounding box
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coordinates. The detector employs a multi-task loss function to optimize classification
and bounding box regression, enhancing the precision of object detection. Finally, post-
processing with non-maximum suppression refines the detection outcomes, eliminating
redundant detections and preserving the most accurate ones.

2.6. Region-Based Fully Convolutional Networks

The architecture of region-based fully convolutional networks (R-FCN), as detailed
in [21], comprises four key components, each playing a crucial role in the network’s func-
tionality. These components are the RPN, the residual network (ResNet), the classification
module, and the regression module.

The primary responsibility of the RPN is to extract region proposals, which are candi-
date regions of interest (RoIs) identified within the input image. These proposals enable
subsequent convolutional operations to be performed across the entire image, facilitating
the computation of weight layers.

Within the R-FCN structure, the process initiates with input images resized to have
a consistent short-side dimension. These images are then subjected to feature extraction
through ResNet-101, which consists of five convolutional network blocks. Importantly,
the output of the fourth convolutional layer of ResNet-101 is employed as the input for
the RPN.

However, due to the high dimensionality inherent in the output of the fifth convo-
lutional layer of ResNet-101, it becomes necessary to downscale the number of channels
through the incorporation of additional convolutional layers. This step results in the
generation of a 1024-dimensional feature map.

Following this feature extraction phase, two parallel convolutional layers are intro-
duced. These layers are designed for classification and regression tasks, respectively.
The generation of position-sensitive score maps with dimensions of k2(C + 1) and 4k2

takes place in preparation for these two parallel tasks. These maps provide the necessary
positional information for subsequent operations.

In the final stages of the network, the two distinct dimensional position-sensitive
score maps are pooled with the RoIs, which have been extracted earlier by the RPN. This
pooling process ultimately yields the classification and regression results, encapsulating
the network’s ability to identify and localize objects of interest within the input image data.

2.7. Mean Average Precision

Mean average precision (mAP) is a crucial metric for evaluating the effectiveness of
machine learning models, especially in object detection. It integrates several sub-metrics to
offer a thorough assessment:

• Confusion Matrix: A tool that breaks down the model’s predictions into true positives,
true negatives, false positives, and false negatives, helping in the computation of other
key metrics like precision and recall.

• Intersection over Union (IoU): This metric quantifies the overlap between the predicted
and actual bounding boxes, providing insight into the model’s localization accuracy.

• Precision: Represents the accuracy of the model’s positive predictions, calculated as
the ratio of true positives to the total of true positives and false positives.

• Recall: Measures the model’s ability to identify all relevant cases, computed as the
ratio of true positives to the total of true positives and false negatives.

mAP averages the precision values across different classes and/or IoU thresholds,
offering a single metric that reflects the model’s precision and recall performance across its
various categories:

mAP =
1
n

k=1

∑
k=n

APk (7)

where n represents the number of classes and APk represents the average precision of
class k.
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3. Experiments and Results
3.1. Experiments
3.1.1. Image Selection and Annotation

Given the variability in contrast agent distribution during the initial and final phases
of angiography, which impacts vascular visualization, we meticulously selected 250 repre-
sentative images from the dataset for model development. Experienced radiologists from
Hokkaido University Hospital provided diagnoses for these patients, facilitating precise
image annotations, particularly focusing on areas with over 50% stenosis due to their higher
risk and clearer visibility.

3.1.2. Data Preparation

The selected images were randomly assigned to training (80%) and validation (20%)
sets. To mitigate the limited data volume and enhance model robustness, we applied
preprocessing and augmentation techniques, notably rotating the images between −45°
and 45° at 5° intervals. This process expanded our dataset to 3800 images, enhancing the
diversity and generalizability of our training set.

3.1.3. Model Training and Evaluation

We employed various deep learning architectures to train models on this augmented
dataset, assessing their performance in detecting and segmenting vascular structures.
Notably, all models evaluated in this study were trained from scratch, without the use of pre-
trained weights, to ensure the models’ adaptability and performance were solely attributed
to the training on our specific dataset. Each model was evaluated under uniform conditions
to ensure a fair comparison, focusing on their effectiveness with both preprocessed and
original images. The models’ performances were quantitatively assessed, considering
their ability to accurately identify and delineate areas of stenosis, thereby aiding in the
comprehensive analysis of coronary angiography images.

3.2. Results

We separately evaluated and compared the effects of preprocessing with an HFV filter
and image fusion with the original image on the performance of the deep learning network
for stenosis detection.

Following the completion of image preprocessing, we embarked on the crucial task
of annotating the positions of stenosis within the main and branch vessels, specifically
targeting stenosis rates exceeding 50%, in accordance with the diagnostic findings provided
by medical professionals. For visual clarity and reference, we present Figure 1(a1–a3) within
our manuscript, each illustrating a distinct aspect of our analysis. Figure 1(a1) showcases
the original, unprocessed image, providing a baseline for our observations. In contrast,
Figure 1(a2) displays the image subjected to preprocessing using the HFV filter, revealing
the enhancements achieved through this technique. Lastly, Figure 1(a3) presents the image
after undergoing image fusion, illustrating the outcome of integrating the preprocessed
image with its original counterpart. These visual representations serve as valuable aids in
elucidating the effects of our image processing methods and the localization of stenosis
positions within the vascular structures under examination.

To establish a reference benchmark for subsequent experiments, we initiated our in-
vestigation by evaluating the performance of the original images across various neural
network architectures. This comprehensive assessment encompassed a range of state-of-the-
art models, including YOLOv4, FasterRCNN-ResNet 101, FasterRCNN-Inseptionresnetv2,
R-FCN-ResNet 101, and R-FCN-Inseptionresnetv2. Our objective was to quantify the effi-
cacy of each model by calculating the mAP at varying IoU thresholds within the spectrum
of 0.1 to 0.6. Figure 2 serves as a graphical representation of the performance of these
diverse neural networks when applied to our dataset, thus providing a visual elucidation
of their comparative strengths and weaknesses in the context of stenosis detection.
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Figure 1. Images of left coronary artery (LCA) and right coronary artery (RCA) at zero imaging angle:
(a1,b1) are the original images of LCA and RCA, respectively; (a2,b2) are the images enhanced using
Hessian-based Frangi vesselness filter; and (a3,b3) are the images after image fusion.

Figure 2. Network performance on the dataset without HFV filtering.

Among these neural network models, YOLOv4 exhibited mAP values of 0.2788 and
0.2125 at IoU thresholds of 0.1 and 0.6, respectively. In contrast, R-FCN-Inseptionresnetv2
demonstrated a more competitive performance, displaying mAP values of 0.5615 and 0.4456
at the corresponding IoU thresholds of 0.1 and 0.6. Notably, it is apparent from Figure 3
that both of these models exhibit limitations in effectively identifying stenotic lesions
present within branch vessels, pointing towards a specific challenge in their performance
in this context.
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Figure 3. Example of stenosis detection by applying YOLOv4 on the dataset without HFV filter: the
yellow bounding boxes respect the stenosis location detected by the trained detector and the red
bounding boxes illustrate the annotation.

We compared the preprocessed images with the original images at the next six imaging
angles. These images clearly showed that the vascular features in the images, especially
the main vessels, were enhanced by applying the HFV filter. At the same time, the noise
that appeared in the background was partially eliminated. For example, Figure 1(a2)
shows the improved appearance of the tubular structures. Nevertheless, we also observed
some pseudo-vessels that resembled the shape of the branch vessels throughout the image.
Although these structures appeared realistic, they were present in areas where there were
no vessels or where the vessels were blurred in the original image. A similar effect is shown
in Figure 1(b2), where the HFV filter enhances the features while weakening the fine vessels
in the background that are blurred due to the low amount of contrast.

In our quest to optimize the enhancement of all vascular features within the images
while preserving fine vascular details to the greatest extent possible, we contemplated the
utilization of image fusion as a potential solution. Figure 4(b1) through Figure 4(b6) vividly
illustrates the outcomes of this image fusion technique applied to the processed images
across the six imaging angles. Through image fusion, we effectively retained the salient
features present in the original images, thereby ensuring their preservation. Concurrently,
the noise and random morphological features inherent in the original images, which had
the potential to transform into vascular-like structures due to the HFV filter application,
were substantially mitigated.

After determining that the vascular structures in the image were enhanced, we again
introduced the neural network applied to the original image and examined its performance
for detection under the same conditions. Figure 5 shows the performance of these neural
networks on preprocessed images.
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Figure 4. Stenosis detection cases of the model from six camera angles. Among them, (a1–a6) represent
the detection results using the R-FCN-Inseptionresnetv2 network under the conditions of left coronary
artery (LCA) zero, LCA left anterior oblique (LAO), LCA right anterior oblique (RAO), right coronary
artery (RCA) zero, RCA LAO, and RCA RAO, respectively. (b1–b6) corresponds to the stenosis
detection situation of (a1–a6) in the case of preprocessing by HFV filter and image fusion.

Figure 5. Network performance on original dataset and dataset preprocessed by HFV filter and
image fusion.

Similar to the previous results, YOLOv4 still had the lowest accuracy among the five
networks, although the accuracy had improved. The mAP values were 0.3785 and 0.2524 at
IoU values of 0.1 and 0.6, respectively. The R-FCN-Inseptionresnetv2 network remained
the optimal model with mAP values of 0.6341 and 0.5055 at IoU values of 0.1 and 0.6,
respectively. By observing the last row of the table, it can be noticed that the preprocessing
method has improved the accuracy of the model. For YOLOv4, the detection accuracy was
improved by 118–135%. Meanwhile, for R-FCN-Inseptionresnetv2, which was the best
network, the detection accuracy was improved by 112–116%.

Nevertheless, it is crucial to address certain challenges posed by specific imaging
angles, as exemplified in Figure 1(b2), which pertains to the left anterior oblique (LAO),
right anterior oblique (RAO), and ZERO angles within the right coronary artery (RCA).
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In these cases, complexities such as vessel overlap arising from the camera angle can
significantly impede the model’s ability to accurately detect the precise location of stenosis.

In pursuit of a more intuitive assessment of the potential enhancement conferred by
the preprocessing approach and the model’s performance on our dataset, we adopted an
image cropping strategy. This strategy involved the extraction of the central portion of the
original image, characterized by a concentrated distribution of blood vessels, to form a
refined dataset for network training. The primary objective of this approach was twofold:
firstly, to mitigate the influence of noise within the dataset and, secondly, to minimize the
impact of misclassifications resulting from the uneven distribution of the contrast agent.
The outcomes of these experiments are depicted in Figure 6.

Figure 6. Network performance on cropped original dataset and dataset modified by cropping, HFV
filter and image fusion.

In Figure 6, the performance of both YOLOv4 and R-FCN-Inseptionresnetv2, with
different IoU values, had obviously improved. R-FCN-Inseptionresnetv2 obtained the
mAP value of 0.7551 in the preprocessed dataset with an IoU value of 0.5. Regarding the
magnitude of the improvement, for the cropped images, the preprocessed images showed
a 102–111% improvement in the mAP values compared with the original images.

Furthermore, to comprehensively evaluate the performance of our approach from
multiple imaging perspectives, we conducted a meticulous analysis for each imaging angle
within our test dataset. This rigorous examination involved classifying the test dataset and
subsequently assessing the mean average precision (mAP) achieved by the top-performing
R-FCN Inceptionresnetv2 model, with a stringent IoU (intersection over union) threshold
set at 0.5. The tabulated outcomes of these evaluations can be found in Table 1 provides a
detailed and insightful view of the model’s performance across a range of imaging angles.

Table 1. Mean average precision of six imaging angles achieved by the top-performing R-FCN
Inceptionresnetv2 model.

Angles LCA ZERO LCA LAO LCA RAO RCA ZERO RCA LAO RCA RAO

mAP 0.7818 0.7462 0.7698 0.6908 0.6522 0.6474
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4. Discussion

In this study, we experimented and examined whether the application of a general
HFV filter for vascular contrast enhancement and image fusion would improve the accuracy
of deep learning-based stenosis detection in coronary angiographic images. This study
included the training and analysis of preprocessed and postprocessed images using five
deep learning networks. We demonstrated that image preprocessing based on HFV filters
and image fusion can improve the processing efficiency of deep learning networks in
complex coronary angiographic images and that this approach does not add much training
complexity. It is worth noting that the images obtained by the HFV filter may appear to
create false vascular-like structures or fail to enhance the real vessels. This could potentially
lead to misclassification of the model during training and detection, resulting in a low
mAP index. These findings raise the question of under what conditions the HFV filter
can be accurately applied in preprocessing. Therefore, a rigorous evaluation of whether
improvements in the visual appearance of images are made at the expense of image
accuracy is needed. This is used as a starting point for further processing of the images.

The number of features of interest in an image affects the performance of the trained
model. To enable the model to better learn the stenosis features in coronary angiographic
images, we introduced image fusion based on the use of HFV filters to enhance the vas-
cular features in the images, especially the stenosis features with respect to fine vessels.
Specifically, the image fusion technique complements the problem of feature loss after
vessel enhancement and, to some extent, mitigates the problem of edge enhancement of
small-sized features caused by the filter. The experimental results also demonstrate that the
efficiency of stenosis detection for branching vessels can be enhanced to some extent using
our proposed method.

In our research, we sought to investigate the potential impact of the proposed method-
ology on feature learning. We took care to rigorously assess the degree of improvement in
mean average precision (mAP) achieved through our approach, while also considering the
possibility of dataset-related issues affecting our conclusions. To address this, we employed
a “chopping image” technique to systematically evaluate the dataset’s reliability. Our
findings revealed an improvement in the performance of our neural network when applied
to preprocessed images compared to their unprocessed counterparts.

Concurrently, our research undertook a meticulous examination of the ramifications of
different imaging angles on the precision of stenosis detection within coronary arteries. The
empirical findings derived from our experiments unveiled a noteworthy revelation: the
accuracy of stenosis detection exhibited conspicuous variations contingent upon the specific
imaging angles scrutinized. Specifically, our investigations elucidated that the detection
outcomes pertaining to the three angles corresponding to the left coronary artery (LCA)
exhibited superior accuracy in comparison to those observed in the context of the right
coronary artery (RCA). This intriguing and differentiating pattern in detection accuracy
between these two arterial segments delineates a compelling avenue for further scholarly
inquiry and investigation. It points to a potentially fertile area for future research endeavors
aimed at optimizing the efficiency of coronary artery stenosis detection, offering invaluable
options for the advancement of medical diagnostics and treatment strategies within this
pivotal domain of healthcare.

Our study is subject to several limitations that warrant discussion. These limitations
encompass various facets of our research methodology and dataset, each contributing
to a nuanced understanding of the constraints inherent in our investigation. Firstly, the
composition of our dataset encompassed common angles of coronary angiography. While
this choice was made to reflect clinical practice, it inherently introduced certain challenges.
Specifically, some angiographic images, characterized by their complexity or intrinsic diffi-
culty in identifying stenosis, were included. Consequently, our model’s ability to achieve
very high mean average precision (mAP) values was constrained in such instances. The
presence of these challenging images underscores the practical and clinical variability en-
countered in real-world scenarios, necessitating further investigation into model robustness
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under such conditions. Secondly, the extraction of key frames from coronary angiography
video streams, while a necessary step in our approach, came with inherent limitations.
These limitations became particularly evident when dealing with branch vessels. Due to
the complexities associated with the dynamic nature of coronary blood flow, obtaining
a comprehensive set of key frames with branch vessels fully intact proved to be a chal-
lenging endeavor. Thirdly, although we conscientiously considered stenosis in branch
vessels, many of these cases remained inadequately observed and labeled. This limitation
subsequently impacted the model’s capacity to effectively recognize and incorporate these
branch vessel stenoses into its results. This highlights an area where future research efforts
may be directed, with a focus on enhancing the model’s ability to accurately detect stenosis
in branch vessels within the context of coronary angiography. Fourthly, we employed
an older version from the YOLO series, YOLOv4, instead of the latest version, YOLOv8.
Our rationale for choosing YOLOv4 was its significant improvements over prior versions
and its demonstrated stability and maturity in diverse environments. Although newer
versions like YOLOv8 might offer enhanced features, they could be in experimental phases
or lack thorough validation. We selected YOLOv4 for its proven reliability, considering
it a cautious decision to enhance our study’s dependability. The fifth point is that this
study does not delve deeply into the optimization of learning parameters in the model
training process, which is one of its limitations. The image training in this study is based on
existing research and adopts a general approach to similar challenges. The training process,
including measures to avoid overtraining, could have enhanced the model’s accuracy and
generalizability through appropriate parameter optimization. Future research is expected
to conduct a more detailed analysis of these aspects, contributing to the improvement
of model performance. These limitations underscore the necessity for ongoing research
endeavors aimed at addressing these constraints and further refining our methodology. By
acknowledging and actively addressing these limitations, we can progress towards a more
robust and clinically applicable framework for coronary artery stenosis detection.

5. Conclusions

Overall, the application of the HFV filter significantly improves the visual appearance
of the image, fills the image space with blood vessels, and reduces noise. The image fusion
approach complements some of the features lost in the vascular feature enhancement stage.
The models obtained by deep learning using the fused images outperformed the original
images. We believe that future efforts should focus on increasing the diversity of data and
maximizing the discrimination of complex coronary angiographic images, for example, by
changing the signal processing methods for vessel enhancement and image fusion.
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Abbreviations
The following abbreviations are used in this manuscript:

ICA Invasive coronary angiography
CNNs Convolutional neural networks
HFV Hessian-based frangi vesselness
RCA Right coronary artery
LCA Left coronary artery
LAO Left anterior oblique
RAO Right coronary artery
IHS Intensity-hue-saturation
RGB Red–green–blue
R-FCN Region-based fully convolutional networks
RPN Region proposal network
ResNet Residual network
RoIs Regions of interest
mAP Mean average precision
NMS Non-maximum suppression
SPP Spatial pyramid pooling
IoU Intersection over union
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