
Citation: Cui, B.; Wang, L.; Li, G.;

Ren, X. Field Programmable Gate

Array-Based Acceleration Algorithm

Design for Dynamic Star Map Parallel

Computing. Algorithms 2024, 17, 117.

https://doi.org/10.3390/a17030117

Academic Editor: Charalampos

Konstantopoulos

Received: 29 December 2023

Revised: 2 March 2024

Accepted: 8 March 2024

Published: 12 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Field Programmable Gate Array-Based Acceleration Algorithm
Design for Dynamic Star Map Parallel Computing
Bo Cui, Lingyun Wang *, Guangxi Li and Xian Ren

School of Optoelectronic Engineering, Changchun University of Science and Technology,
Changchun 130022, China; boocuii@mails.cust.edu.cn (B.C.); liguangxi@mails.cust.edu.cn (G.L.);
fairyren0123@mails.cust.edu.cn (X.R.)
* Correspondence: wanglingyun_510@163.com

Abstract: The dynamic star simulator is a commonly used ground-test calibration device for star
sensors. For the problems of slow calculation speed, low integration, and high power consumption
in the traditional star chart simulation method, this paper designs a FPGA-based star chart display
algorithm for a dynamic star simulator. The design adopts the USB 2.0 protocol to obtain the attitude
data, uses the SDRAM to cache the attitude data and video stream, extracts the effective navigation
star points by searching the starry sky equidistant right ascension and declination partitions, and
realizes the pipelined displaying of the star map by using the parallel computing capability of
the FPGA. Test results show that under the conditions of chart field of view of Φ20◦ and simulated
magnitude of 2.0∼6.0 Mv, the longest time for calculating a chart is 72 µs under the clock of 148.5 MHz,
which effectively improves the chart display speed of the dynamic star simulator. The FPGA-
based star map display algorithm gets rid of the dependence of the existing algorithm on the
computer, reduces the volume and power consumption of the dynamic star simulator, and realizes
the miniaturization and portable demand of the dynamic star simulator.

Keywords: star simulator; FPGA; dynamic star map; star partitioning; parallel computing

1. Introduction

A star sensor is an instrument that determines the attitude of a vehicle in real time
by means of an optical system, star point extraction, and star map recognition. It is one of
the attitude sensors with the highest measurement accuracy [1]. Compared with solar and
earth sensors, star sensors have a wider range of applications in the fields of navigation,
aerospace, and aviation [2]. Therefore, star sensor technology has been at the forefront of
international attention [3].

With the development of the aerospace industry, the demand for high-precision and
real-time star sensors is increasing day by day [4]. As the dynamic star simulator is the
ground-test calibration equipment for star-sensitive instruments, the improvement of its
star map display speed can improve the efficiency of star map identification by star sensors.
In 2013, Wu, X.M. et al. [5] designed an electronic star simulator based on DSP (Digital
Signal Processing) and FPGA (Field Programmable Gate Array) by utilizing a two-stage
chain-list indexing approach to search for 9006 stars in the range of 0 Mv~6.5 Mv, and the
average speed of a star map display was about 56 ms. In 2022, Hao, G.N. et al. [6] searched
for 15,914 stars from −2.0 Mv to 7.0 Mv in a star map field of view of 20◦ × 20◦ using an
externally tangent circular partition search algorithm, and a single star map showed an
average velocity of about 9.43 ms. In 2021, Li, G.X. et al. [7] used the navigational star
leveling method to search for 5103 stars from 2.0 Mv to 6.0 Mv under a star chart field of
view of 10◦ × 10◦. A star chart showed an average velocity of about 7.98 ms.

Based on the current development of dynamic star simulators, it can be concluded that
most of the dynamic star simulators are computers that transmit data directly to the star
chart display module after performing three parts, namely, solving attitude data, searching

Algorithms 2024, 17, 117. https://doi.org/10.3390/a17030117 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17030117
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a17030117
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17030117?type=check_update&version=1

Algorithms 2024, 17, 117 2 of 22

for navigational stars, and coordinate transformation. On the one hand, the computer
is large in size and high in power consumption, which is not convenient to test the star
sensor at any time; on the other hand, if the computer adopts serial computing, then the
instructions of the processor can only be executed sequentially, and only one instruction
can be executed at most at a single moment. The DSP has the ability to perform high-
speed computing [8], but it is not suitable for complex logic operations [9], and the code
is cumbersome. The FPGA can be customized to meet the user’s needs with the required
modules [10] to reduce the cost and development difficulties [11].

In recent years, in the context of the continuous development of dynamic star simula-
tion technology, the refresh rate of the star chart has been a key indicator of the dynamic
characteristics of dynamic star simulators. The higher the refresh rate of a star map, the less
time it takes for the required star map to be calculated. As the ground calibration equipment
of the star sensitizer, in the practical application of the star simulator, some experiments
will need to be simulated outdoors. In outdoor environments, portability, miniaturization,
and low-power systems are also among the current research trends. Aiming at the above
problems of low real-time and slow calculation speed based on the serial structure of
the dynamic star simulator chart display algorithm, this paper designs a dynamic star
simulator star map display algorithm based on FPGA, which determines the position of the
optical axis in the whole sky area by calculation on the FPGA platform and then displays
the navigational stars within the field of view through coordinate transformation. The
design of this paper improves the speed of the dynamic star chart display. It is significant
for the development of miniaturization and the high real-time performance of dynamic
star simulators.

2. System Components

The overall block diagram of the FPGA-based dynamic star simulator star map display
algorithm is shown in Figure 1. It is mainly composed of the following four parts: optical
axis calculation, navigation star search, coordinate transformation, and star map display.
LCOS (Liquid Crystal on Silicon) in Figure 1 is a commonly used display device for dynamic
star simulators.

Algorithms 2024, 17, x FOR PEER REVIEW 2 of 22

Based on the current development of dynamic star simulators, it can be concluded

that most of the dynamic star simulators are computers that transmit data directly to the

star chart display module after performing three parts, namely, solving attitude data,

searching for navigational stars, and coordinate transformation. On the one hand, the

computer is large in size and high in power consumption, which is not convenient to test

the star sensor at any time; on the other hand, if the computer adopts serial computing,

then the instructions of the processor can only be executed sequentially, and only one

instruction can be executed at most at a single moment. The DSP has the ability to perform

high-speed computing [8], but it is not suitable for complex logic operations [9], and the

code is cumbersome. The FPGA can be customized to meet the user’s needs with the re-

quired modules [10] to reduce the cost and development difficulties [11].

In recent years, in the context of the continuous development of dynamic star simu-

lation technology, the refresh rate of the star chart has been a key indicator of the dynamic

characteristics of dynamic star simulators. The higher the refresh rate of a star map, the

less time it takes for the required star map to be calculated. As the ground calibration

equipment of the star sensitizer, in the practical application of the star simulator, some

experiments will need to be simulated outdoors. In outdoor environments, portability,

miniaturization, and low-power systems are also among the current research trends. Aim-

ing at the above problems of low real-time and slow calculation speed based on the serial

structure of the dynamic star simulator chart display algorithm, this paper designs a dy-

namic star simulator star map display algorithm based on FPGA, which determines the

position of the optical axis in the whole sky area by calculation on the FPGA platform and

then displays the navigational stars within the field of view through coordinate transfor-

mation. The design of this paper improves the speed of the dynamic star chart display. It

is significant for the development of miniaturization and the high real-time performance

of dynamic star simulators.

2. System Components

The overall block diagram of the FPGA-based dynamic star simulator star map dis-

play algorithm is shown in Figure 1. It is mainly composed of the following four parts:

optical axis calculation, navigation star search, coordinate transformation, and star map

display. LCOS (Liquid Crystal on Silicon) in Figure 1 is a commonly used display device

for dynamic star simulators.

Figure 1. Overall block diagram of the system. Figure 1. Overall block diagram of the system.

Algorithms 2024, 17, 117 3 of 22

3. Digital Star Chart Generation
3.1. Starlist Pre-Processing

The star catalogues are the catalogues that record the parameters of celestial bodies
and contain the most basic data for generating star charts, including information about
the celestial bodies in the celestial coordinate system such as right ascension, declination,
and star. In order to reduce the number of subsequent calculations, the star catalogs are
preprocessed into two parts: grayscale transformation and star partitioning.

3.1.1. Grayscale Transformation

In this paper, the information about right ascension, declination, and magnitude are
adopted to draw the star map, and the simulated magnitude range is from 2.0 Mv to 6.0 Mv,
so the other information in the catalog and the star points outside the simulated magnitude
range are excluded. The British astronomer Pogson stipulated that the difference between
the magnitudes of neighboring stars is 2.512 times [12], assuming that there are two stars
with magnitudes m0 and mi and brightnesses E0 and Ei, and their correlation is as follows:

Ei

E0
= 2.512m0−mi (1)

The relative relationship between the brightness of the two stars is shown in
Equation (1), and the brightness of the star points is displayed by controlling the gray value
of the pixels of the LCOS [13]. The computer grayscale is represented by 8-bit data, with
each pixel point gray value being in the range of 0~255. It is specified that the 2 Mv star
point grayscale is 255, and the relationship between the grayscale gi of the rest of the stars
and other mi is shown in Equation (2) as follows:

gi =
255

2.512mi−2 (2)

3.1.2. Star Partitioning

Star partitioning is a method of further subdividing all the stars in the SAO (Smithso-
nian Astrophysical Observatory) catalogues into a smaller range of sky zones according to
the right ascension and declination, which reduces the search range of the star chart and
avoids searching for all the star point information in the chart in order to subsequently
speed up the search for navigational stars. In this paper, the dynamic star simulator star
map display algorithm is designed with a field of view angle of Φ20◦, which is divided
according to the partition interval B = 12◦, taking into account the effect of attitude offset
and the factor of reducing the number of target star subzones [14]. The right ascension
varies from 0◦ to 360◦ and is divided into 30 zones; the declination varies from −90◦ to
90◦ and is divided into 15 zones, totaling 450 target subzones. The 450 target subzones are
numbered according to the order of high to low declination and small to large declination,
and the star zoning map is shown in Figure 2.

Algorithms 2024, 17, 117 4 of 22
Algorithms 2024, 17, x FOR PEER REVIEW 4 of 22

Figure 2. Schematic diagram of the starry sky partition.

3.2. GNSS Search and Coordinate Transformation

The attitude of the vehicle can be represented by quaternions [15] and Euler angles.

Due to the high complexity of the FPGA’s computing trigonometric functions, this paper

uses quaternions to represent the attitude of the vehicle. The algebraic form of quaternion
q is shown in Equation (3) as follows:

0 1 2 3 4q q i q j q k q= + + + (3)

where 1q , 2q , and 3q are vector values of q , and 4q is a scalar value of q .

The canonical quaternion has a constraint relationship, as shown in the following

Equation (4):

2 2 2 2
1 2 3 4 1q q q q+ + + = (4)

The attitude transformation matrix C expressed in quaternions is shown in Equa-

tion (5) as follows:

() ()

() ()

() ()

2 2

2 3 1 2 3 4 1 3 2 4

2 2

1 2 3 4 1 3 2 3 1 4

2 2

1 3 2 4 2 3 1 4 1 2

1 2 2 2 2

2 1 2 2 2

2 2 1 2 2

q q q q q q q q q q

C q q q q q q q q q q

q q q q q q q q q q

 − − + −
 

= − − − + 
 + − − − 

 (5)

The z-axis pointing of the attitude transformation matrix is the direction of the optical

axis of the star sensor, so the direction vector of the optical axis pointing is obtained in the

matrix  0 0 0

T
x y z as shown in the following Equation (6):

  () () 2 2 2 2

0 0 0 1 3 2 4 2 3 1 4 1 2 3 42 2
TT

x y z q q q q q q q q q q q q = + − − − + +  (6)

The expression of the right ascension and declination vector in spatial Cartesian co-

ordinates in the celestial coordinate system is shown in the form of Equation (7) as follows:

Figure 2. Schematic diagram of the starry sky partition.

3.2. GNSS Search and Coordinate Transformation

The attitude of the vehicle can be represented by quaternions [15] and Euler angles.
Due to the high complexity of the FPGA’s computing trigonometric functions, this paper
uses quaternions to represent the attitude of the vehicle. The algebraic form of quaternion
q is shown in Equation (3) as follows:

q0 = q1
→
i + q2

→
j + q3

→
k + q4 (3)

where q1, q2, and q3 are vector values of q, and q4 is a scalar value of q.
The canonical quaternion has a constraint relationship, as shown in the following

Equation (4):
q1

2 + q2
2 + q3

2 + q4
2 = 1 (4)

The attitude transformation matrix C expressed in quaternions is shown in Equation (5)
as follows:

C =

1 − 2q2
2 − 2q3

2 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) 1 − 2q1

2 − 2q3
2 2(q2q3 + q1q4)

2(q1q3 + q2q4) 2(q2q3 − q1q4) 1 − 2q1
2 − 2q2

2

 (5)

The z-axis pointing of the attitude transformation matrix is the direction of the optical
axis of the star sensor, so the direction vector of the optical axis pointing is obtained in the
matrix

[
x0 y0 z0

]T as shown in the following Equation (6):[
x0 y0 z0

]T
=
[
2(q1q3 + q2q4) 2(q2q3 − q1q4) −q1

2 − q2
2 + q3

2 + q4
2]T (6)

Algorithms 2024, 17, 117 5 of 22

The expression of the right ascension and declination vector in spatial Cartesian coordi-
nates in the celestial coordinate system is shown in the form of Equation (7)
as follows: [

X Y Z
]T

=
[
cos δ cos α cos δ sin α sin δ

]T (7)

where α and δ are the values of the right ascension and declination of the star point.
Let

[
Xs Ys Zs

]T be the spatial Cartesian coordinate direction vector of the star
sensor, and the conversion relationship with the direction vector of the star point in the
celestial sphere coordinate system is shown in Equation (8) as follows:[

Xs Ys Zs
]
= C

[
X Y Z

]T (8)

Let the star sensor optical axis pointing be the right ascension and declination (α0, δ0),
and the expression can be obtained from Equation (9) as follows:

α0 =



arctan y0
x0

+ 2π, (x0 > 0, y0 < 0)
arctan y0

x0
, (x0 > 0, y0 ≥ 0)

π
2 , (x0 = 0, y0 > 0)
3π
2 , (x0 = 0, y0 < 0)

arctan y0
x0

+ π, (x0 < 0)
δ0 = arcsinz0

(9)

The star area zone filtering can improve the speed of the navigation star search
according to the optical axis of the star sensor to point to the target subzone range within
the search range, which is sufficient.

The left (Jl) and right (Jr) boundaries of the star area subarea numbers are calculated
as shown in the following Equation (10):

Jl = int
(

α−(R
2)/cosδ−180◦

B + M
2

)
Jr = int

(
α+(R

2)/cosδ−180◦

B + M
2

) (10)

If J is not in the interval 0 to 29, it is added or subtracted by continuously adding
or subtracting 30 until J falls within the interval 0 to 29. The upper (Du) and lower (Dd)
bounds of the star area sub-area numbering are calculated [16] as shown in the following
Equation (11): 

Du = int
(

δ+ R
2

B + N
2

)
Dd = int

(
δ− R

2
B + N

2

) (11)

If D < 0, then D is taken as 0; if D > 14, then D is taken as 14. M and N are the
maximum values of the numbering of the star zones according to the right ascension and
declination, respectively, and B is the interval of the star zones.

Let θ be the angle between the direction of the star point and the direction of the
optical axis, and FOV be the field-of-view angle of the star sensor, and the formula for its
angle is shown in the following Equation (12):

arccosθ =
x1x2 + y1y2 + z1z2√

x1
2 + y1

2 + z1
2 ·
√

x22 + y22 + z22
(12)

If θ ≤ FOV/2, the point is within the star sensor’s field of view and is a valid point. If
θ > FOV/2, the point is invalid. After screening the valid star points, the coordinates in
the celestial coordinate system need to be converted to the coordinates of the pixel points

Algorithms 2024, 17, 117 6 of 22

on the LCOS plane, which can be obtained according to the resolution of the LCOS and the
field of view of the star sensor as follows:{

x = f · X1
Y1

y = f · Z1
Y1

(13)

f =
n
2
· 1

tan
(

R
2

) (14)

In Equations (13) and (14), X1, Y1, and Z1 are the coordinates of the star point in the
star sensor coordinate system; f is the focal length; R is the field of view angle; and n is the
number of pixel points in the row or column of the LCOS.

3.3. Star-Point Diffuse Spot Generation

The star point in a star chart is not a uniformly distributed bright spot; it is a bright spot
that approximates a diffuse spot. The energy of the bright spot becomes a two-dimensional
Gaussian distribution, which is expressed as follows in Equation (15).

g(x, y) =
A

2πσ2 exp

(
− (x − X)2 + (y − Y)2

2σ2

)
(15)

where g(x, y) is the gray value of the pixel point at pixel coordinates (x, y);(X, Y) is the
coordinates of the center position of the star point; A is the total gray value of the star point;
and σ is the size of the diffuse spot radius of the image point, usually σ taken as 0.45 [5], in
which case about 90% of the energy can be distributed in the 3 × 3 pixel matrix.

4. FPGA-Based Hardware and Software Architecture Design

This paper is based on the Vivado 2018.3 development environment on the ACX720 de-
velopment board using Xilinx’s XC7a35tfgg484-2 as the FPGA master chip. The quaternion
attitude data are outputs from the star sensor, which is simulated to produce a dynamic
star map in the field of view of the star sensor after the attitude data are solved by the
dynamic star simulator.

The Dynamic Star Simulator chart display algorithm initializes each module, waits for
the attitude quaternion data to be sent by the star sensor, and calculates the spatial right-
angled coordinate direction vector of the optical axis pointing expressed as a quaternion
through the attitude transformation. The optical axis pointing is converted from a spatial
right-angle coordinate direction vector to a celestial sphere coordinate direction vector to
confirm the target subarea within the field of view.

After that, the FPGA reads the preprocessed star catalog data, converts the celestial
coordinates of the star point into spatial Cartesian coordinates, and calculates the coordinate
angle between the vector direction of the optical axis and the vector direction of the star
point. If this star point is judged to be a valid star point, then the star point’s star sensor
coordinates to the two-dimensional plane rectangular coordinates of the transformation;
otherwise, it is judged to be an invalid star point; continue to read the next star point; and
finally, all the valid star points together to form a star map. The flow chart of the dynamic
star chart display algorithm is shown in Figure 3.

The hardware architecture of the dynamic star simulator is mainly composed of a
communication module, a computation module, and a storage module [17]. The modular
design can process the computed star map in a flow, as shown in Figure 4, which shows
the FPGA data flow structure.

The schematic diagram of using the serial computation method on a conventional
computer platform is shown in Figure 5. It is necessary to carry out all the steps in the
calculation to complete it, and then rerun the next calculation. The advantage of the
serial calculation method is that the structure is relatively simple compared to the parallel

Algorithms 2024, 17, 117 7 of 22

calculation method, and it is the main calculation method used in the current star chart
display method.

Algorithms 2024, 17, x FOR PEER REVIEW 7 of 22

spatial right-angle coordinate direction vector to a celestial sphere coordinate direction

vector to confirm the target subarea within the field of view.

After that, the FPGA reads the preprocessed star catalog data, converts the celestial

coordinates of the star point into spatial Cartesian coordinates, and calculates the coordi-

nate angle between the vector direction of the optical axis and the vector direction of the

star point. If this star point is judged to be a valid star point, then the star point’s star

sensor coordinates to the two-dimensional plane rectangular coordinates of the transfor-

mation; otherwise, it is judged to be an invalid star point; continue to read the next star

point; and finally, all the valid star points together to form a star map. The flow chart of

the dynamic star chart display algorithm is shown in Figure 3.

Figure 3. Dynamic star chart display algorithm flowchart.

The hardware architecture of the dynamic star simulator is mainly composed of a

communication module, a computation module, and a storage module [17]. The modular

design can process the computed star map in a flow, as shown in Figure 4, which shows

the FPGA data flow structure.

Figure 3. Dynamic star chart display algorithm flowchart.

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 22

Figure 4. FPGA data flow structure diagram.

The schematic diagram of using the serial computation method on a conventional

computer platform is shown in Figure 5. It is necessary to carry out all the steps in the

calculation to complete it, and then rerun the next calculation. The advantage of the serial

calculation method is that the structure is relatively simple compared to the parallel cal-

culation method, and it is the main calculation method used in the current star chart dis-

play method.

Figure 5. Serial computing schematic.

Figure 6 is a schematic diagram of FPGA parallel computation [18], where the steps

can be adder, subtractor, multiplier, and other steps. In the calculation process, as in the

relationship between step 4 and step 5 in Figure 5, if step 5 does not need the calculation

result of step 4, then steps 4 and 5 can be calculated in parallel.

Figure 4. FPGA data flow structure diagram.

Algorithms 2024, 17, 117 8 of 22

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 22

Figure 4. FPGA data flow structure diagram.

The schematic diagram of using the serial computation method on a conventional

computer platform is shown in Figure 5. It is necessary to carry out all the steps in the

calculation to complete it, and then rerun the next calculation. The advantage of the serial

calculation method is that the structure is relatively simple compared to the parallel cal-

culation method, and it is the main calculation method used in the current star chart dis-

play method.

Figure 5. Serial computing schematic.

Figure 6 is a schematic diagram of FPGA parallel computation [18], where the steps

can be adder, subtractor, multiplier, and other steps. In the calculation process, as in the

relationship between step 4 and step 5 in Figure 5, if step 5 does not need the calculation

result of step 4, then steps 4 and 5 can be calculated in parallel.

Figure 5. Serial computing schematic.

Figure 6 is a schematic diagram of FPGA parallel computation [18], where the steps
can be adder, subtractor, multiplier, and other steps. In the calculation process, as in the
relationship between step 4 and step 5 in Figure 5, if step 5 does not need the calculation
result of step 4, then steps 4 and 5 can be calculated in parallel.

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 22

Figure 4. FPGA data flow structure diagram.

The schematic diagram of using the serial computation method on a conventional

computer platform is shown in Figure 5. It is necessary to carry out all the steps in the

calculation to complete it, and then rerun the next calculation. The advantage of the serial

calculation method is that the structure is relatively simple compared to the parallel cal-

culation method, and it is the main calculation method used in the current star chart dis-

play method.

Figure 5. Serial computing schematic.

Figure 6 is a schematic diagram of FPGA parallel computation [18], where the steps

can be adder, subtractor, multiplier, and other steps. In the calculation process, as in the

relationship between step 4 and step 5 in Figure 5, if step 5 does not need the calculation

result of step 4, then steps 4 and 5 can be calculated in parallel.

Figure 6. Pipeline computing schematic.

In executing the computational star map algorithm, four computational modules are
available in parallel on the FPGA platform. The optimized results obtained are shown in
Table 1. No. 5.1 is a simulation of waveforms for optical axis pointing calculations. No. 5.3
is a simulation of waveforms for star field search range calculation. No. 5.5 is a simulation
of waveforms for star point coordinate transformation calculation. No. 5.6 simulation
waveform of star point coordinate transformation.

Table 1. Parallel analysis of computational modules.

Computational Module Parallel Part Time Saved in Parallel Part

5.1 Adder/Subtractor and Multiplier 290 ns
5.3 Adder/Subtractor 60 ns
5.5 Adder/Subtractor and Square Calculator 60 ns

5.6 Adder/Subtractor, Multiplier,
and Square Calculator 40 ns

4.1. Calculation Module

The input and output signals of the calculation module include the enable signal of
the video stream, the line synchronization signal, the field synchronization signal, and
the grayscale signal. The function of this module is to use the quaternion signal inputted
from the serial port to calculate and obtain the star catalog data within the target sub-area;
calculate the right ascension, declination, and star magnitude in the star catalog data to
obtain the x-direction coordinate, y-direction coordinate, and the grayscale value of the pixel
point; and finally, replace the pixel by pixel one by one according to the coordinates [19].

The main clock of the FPGA chip is 50 MHz, and the 148.5 MHz pixel clock is used
in the calculation module [20]. There is a process of transmitting data across the clock

Algorithms 2024, 17, 117 9 of 22

domain in the communication, and it is necessary to add two levels of triggers to synchro-
nize the signals for transmitting the data to prevent the phenomenon of race and hazard
from occurring.

The attitude data is calculated to determine the target subarea boundaries and the
attitude transformation matrix, with the target subarea numbering increased from 30Di + Jl
to 30Di + Jr where Di is increased from Du − 1 to Dd − 1. If the optical axis is pointing at
an angle of θ ≤ FOV/2 to the star point, the star point active enable signal oi_en is raised,
and the coordinates of the star point are read when the target subarea where the star point
data is located is within the boundary and the star point active enable signal is high and
reads the star point coordinates pix_x and pix_y.

In the effective star point judgment, the judgment condition is replaced by the equiva-
lent of the formula, which is more suitable for FPGA processing. From Equation (12), the
valid star point judgment condition can be obtained as follows from Equation (16):

arccosθ =
x0x1 + y0y1 + z0z1√

x02 + y02 + z02 ·
√

x1
2 + y1

2 + z1
2
≤ FOV

2
(16)

Since the approximate orientation of the star point has been determined in the pre-
vious steps by means of star partitioning, arccosθ should lie within 0◦∼ 90◦ , which falls
within the monotonically decreasing interval of the cos function, so it can be obtained by
Equation (17) as follows:[

cos
(

FOV
2

)]2
·
(

x0
2 + y0

2 + z0
2
)
·
(

x1
2 + y1

2 + z1
2
)
≤ (x0x1 + y0y1 + z0z1)

2 (17)

Calculations are performed using fixed-point decimal calculations, which saves the use
of IP cores and reduces computation time compared to floating-point decimal operations.
In conventional gesture data calculations, quaternion data in decimal generally retains
four significant digits, i.e., thirteen significant digits in binary. Quaternion data values,
right ascension and declination values, and trigonometric functions are calculated with
values less than 10, and fixed-point arithmetic with 1 integer and 13 decimal places is
used in the data calculation, where the bit width of the resultant data from the quadratic
operation needs to be twice the width of the previous base data. Thus, a 26-bit reg variable
is required in the quadratic operation. The divisor is implemented using IP cores, and the
bit-widths of the divisor and divisor need to be greater than or equal to the bit-width of
the result of the quadratic operation. The divisor is therefore implemented using IP cores,
with both the divisor and dividend set to 32 bits wide and the quotient set to 64 bits wide.
The trigonometric function calculation uses the LUT lookup table method to reduce the
complexity of the algorithm, where angle-related data use 2 bits wide and 12 bits wide.

4.2. Storage Module

The memory module consists of three IP cores, wr_fifo, rd_fifo, and u_mig_7series_0,
and the FIFO-to-mig_axi module. The FIFO is in between the computation module and the
FIFO to mig_axi because the clock and transfer rate are different between the modules, so
the data is cached in the FIFO, and the data is read and written in the DDR through the
FIFO interface to the AXI interface. It can realize the function of reading and writing data
in DDR through the FIFO interface to the AXI interface.

The wr_fifo and rd_fifo write and read data are input video streams. wr_fifo uses the
development board operating clock of 50 MHz, with the write width set to 16 bits and the
write depth set to 512 bits. rd_fifo uses the ui_clk clock of 200 MHz output from the MIG IP,
with the read width set to 128 bits and the read depth set to 64 bits.

The memory controller is based on Xilinx’s MIG IP cores to meet the high-capacity,
high-speed DDR3 SDRAM memory, where the AXI bus under the Xilinx platform is suitable
for the development of various IP cores.

Algorithms 2024, 17, 117 10 of 22

The AXI interface bus has a total of five channels, namely, read address channel
(RD_ADDR), read data channel (RD_DATA), write address channel (WR_ADDR), write
data channel (WR_DATA), and write response channel (WR_RESP), and each AXI trans-
mission channel is a unidirectional channel.

AXI lite is more suitable for communication between the FPGA main chip and periph-
erals than AXI full. In this paper, the arbitration module of the FIFO interface to the AXI
interface is designed based on mig’s AXI interface. The initial state after power-on is IDLE,
and after waiting for init_calib_complete to go high after DDR initialization is completed,
it enters the read/write arbitration state ARB, after which the conversion between the
FIFO interface and the AXI interface is carried out in accordance with the operating state
transition diagram of the read/write transaction, as seen in Figure 7. The state transfer
conditions are shown in Table 2.

Algorithms 2024, 17, x FOR PEER REVIEW 10 of 22

Calculations are performed using fixed-point decimal calculations, which saves the

use of IP cores and reduces computation time compared to floating-point decimal opera-

tions. In conventional gesture data calculations, quaternion data in decimal generally re-

tains four significant digits, i.e., thirteen significant digits in binary. Quaternion data val-

ues, right ascension and declination values, and trigonometric functions are calculated

with values less than 10, and fixed-point arithmetic with 1 integer and 13 decimal places

is used in the data calculation, where the bit width of the resultant data from the quadratic

operation needs to be twice the width of the previous base data. Thus, a 26-bit reg variable

is required in the quadratic operation. The divisor is implemented using IP cores, and the

bit-widths of the divisor and divisor need to be greater than or equal to the bit-width of

the result of the quadratic operation. The divisor is therefore implemented using IP cores,

with both the divisor and dividend set to 32 bits wide and the quotient set to 64 bits wide.

The trigonometric function calculation uses the LUT lookup table method to reduce the

complexity of the algorithm, where angle-related data use 2 bits wide and 12 bits wide.

4.2. Storage Module

The memory module consists of three IP cores, wr_fifo, rd_fifo, and u_mig_7series_0,

and the FIFO-to-mig_axi module. The FIFO is in between the computation module and

the FIFO to mig_axi because the clock and transfer rate are different between the modules,

so the data is cached in the FIFO, and the data is read and written in the DDR through the

FIFO interface to the AXI interface. It can realize the function of reading and writing data

in DDR through the FIFO interface to the AXI interface.

The wr_fifo and rd_fifo write and read data are input video streams. wr_fifo uses the

development board operating clock of 50 MHz, with the write width set to 16 bits and the

write depth set to 512 bits. rd_fifo uses the ui_clk clock of 200 MHz output from the MIG

IP, with the read width set to 128 bits and the read depth set to 64 bits.

The memory controller is based on Xilinx’s MIG IP cores to meet the high-capacity,

high-speed DDR3 SDRAM memory, where the AXI bus under the Xilinx platform is suit-

able for the development of various IP cores.

The AXI interface bus has a total of five channels, namely, read address channel

(RD_ADDR), read data channel (RD_DATA), write address channel (WR_ADDR), write

data channel (WR_DATA), and write response channel (WR_RESP), and each AXI trans-

mission channel is a unidirectional channel.

AXI lite is more suitable for communication between the FPGA main chip and pe-

ripherals than AXI full. In this paper, the arbitration module of the FIFO interface to the

AXI interface is designed based on mig’s AXI interface. The initial state after power-on is

IDLE, and after waiting for init_calib_complete to go high after DDR initialization is com-

pleted, it enters the read/write arbitration state ARB, after which the conversion between

the FIFO interface and the AXI interface is carried out in accordance with the operating

state transition diagram of the read/write transaction, as seen in Figure 7. The state trans-

fer conditions are shown in Table 2.

Figure 7. Read/write transaction working state transition diagram.

Table 2. State transfer condition table.

State Transfer Number State Transition Condition

1 init_calib_complete = 1
2 rd_ddr3_req == 1’b1
3 m_axi_arready && m_axi_arvalid = 1

4 m_axi_rready && m_axi_rvalid && m_axi_rlast &&
(m_axi_rresp == 2′b00) && (m_axi_rid == AXI_ID)

5 wr_ddr3_req == 1’b1
6 m_axi_awready && m_axi_awvalid = 1
7 m_axi_wready && m_axi_wvalid && m_axi_wlast = 1

8 m_axi_rready && m_axi_rvalid && (m_axi_bresp == 2′b00)
&& (m_axi_bid == AXI_ID)

4.3. Pixel Point Display Module

The calculated star point coordinates pix_x, pix_y, and pix_gray are cached through
registers to obtain mem_x, mem_y, and mem_gray. The number of registers can be con-
figured according to the number of star points to be displayed in the predicted star map.
Eighty registers are used for caching in this project. In the display module, the pixels are
scanned one by one in a display plane with a resolution of 1920 × 1080 by control of line
synchronization signals and field synchronization signals. The disp_x and disp_y signals
are compared with mem_x and mem_y, respectively, and an enable signal is output when
the signal levels are the same. When the enable signal is valid, pre_red, pre_green, and
pre_blue are replaced with mem_gray, which in turn completes the replacement of the
gray value of the pixel point. A complete star map can be obtained through the above
process. During the display of the dynamic star map, the line synchronization signal and
field synchronization signal will continuously scan the pixel points one by one to achieve
the effect of the dynamic star map.

Algorithms 2024, 17, 117 11 of 22

The grayscale distribution of the star-point diffuse spots conforms to a two-dimensional
Gaussian distribution. In a Gaussian distribution, about 90% of the energy is distributed
in the interval (µ − 2σ, µ + 2σ). At the same time, considering the way binary data is
processed, a 3 × 3 Gaussian filter template with weight assignment, as shown in Figure 8,
is used in the project.

Algorithms 2024, 17, x FOR PEER REVIEW 11 of 22

Figure 7. Read/write transaction working state transition diagram.

Table 2. State transfer condition table.

State Transfer Number State Transition Condition

1 init_calib_complete = 1

2 rd_ddr3_req == 1’b1

3 m_axi_arready && m_axi_arvalid = 1

4
m_axi_rready && m_axi_rvalid && m_axi_rlast &&

(m_axi_rresp == 2′b00) && (m_axi_rid == AXI_ID)

5 wr_ddr3_req == 1’b1

6 m_axi_awready && m_axi_awvalid = 1

7 m_axi_wready && m_axi_wvalid && m_axi_wlast = 1

8
m_axi_rready && m_axi_rvalid && (m_axi_bresp == 2′b00) &&

(m_axi_bid == AXI_ID)

4.3. Pixel Point Display Module

The calculated star point coordinates pix_x, pix_y, and pix_gray are cached through

registers to obtain mem_x, mem_y, and mem_gray. The number of registers can be con-

figured according to the number of star points to be displayed in the predicted star map.

Eighty registers are used for caching in this project. In the display module, the pixels are

scanned one by one in a display plane with a resolution of 1920 1080 by control of

line synchronization signals and field synchronization signals. The disp_x and disp_y sig-

nals are compared with mem_x and mem_y, respectively, and an enable signal is output

when the signal levels are the same. When the enable signal is valid, pre_red, pre_green,

and pre_blue are replaced with mem_gray, which in turn completes the replacement of

the gray value of the pixel point. A complete star map can be obtained through the above

process. During the display of the dynamic star map, the line synchronization signal and

field synchronization signal will continuously scan the pixel points one by one to achieve

the effect of the dynamic star map.

The grayscale distribution of the star-point diffuse spots conforms to a two-dimen-

sional Gaussian distribution. In a Gaussian distribution, about 90% of the energy is dis-

tributed in the interval ()2 , 2   − + . At the same time, considering the way binary

data is processed, a 3 3 Gaussian filter template with weight assignment, as shown in

Figure 8, is used in the project.

Figure 8. Gaussian template weight distribution.

The module caches 3 3 templates by calling two RAM-base Shift Registers to cache

pixel rows in series. The cached data is calculated by the Gaussian filtering formula, as

shown in Equation (18). The data flow diagram for Gaussian filtering is shown in Figure

9.

Figure 8. Gaussian template weight distribution.

The module caches 3 × 3 templates by calling two RAM-base Shift Registers to cache
pixel rows in series. The cached data is calculated by the Gaussian filtering formula, as
shown in Equation (18). The data flow diagram for Gaussian filtering is shown in Figure 9.

g(x0, y0) =
j=y0+1

∑
j=y0−1

i=x0+1

∑
i=x0−1

f
(
xi, yj

)
· aij

16
(18)

where g(x0, y0) is the gray value of the pixel point after filtering, and aij is the weight
assigned by the template.

Algorithms 2024, 17, x FOR PEER REVIEW 12 of 22

()
()0 0

0 0

1 1

0 0

1 1

,
,

16

j y i x
i j ij

j y i x

f x y a
g x y

= + = +

= − = −


=   (18)

where ()0 0,g x y is the gray value of the pixel point after filtering, and ija is the weight

assigned by the template.

Figure 9. Gaussian filtering data flow diagram.

5. Simulation Debugging

5.1. Algorithm Accuracy Analysis

In order to verify the effectiveness of the above algorithm, the algorithm is used to

simulate the dynamic star map under the MATLAB R2022a software environment, and

the simulation is carried out with resolutions of 1 0.109382,q = 2 0.234570,q =

3 0.875246,q = and 4 0.408218q = . The coordinates and grayscale of the pixels of the star

points in the star map are obtained. The star catalog global traversal algorithm and the

algorithm in the literature [16] are simulated in MATLAB, and the results of the compu-

tation of the pixel coordinates are retained to four digits after the decimal point. The cal-

culations show that all 45 star points are present, so there are no missing star points. Some

of the star points are calculated as shown in Table 3.

Table 3. Calculation of star points.

Star Point

Number

Algorithms of the

Article
Global Traversal Algorithm Algorithms in Literature [16]

1 (1344, 52) (1343.6290, 52.3454) (1343.1869, 52.4629)

2 (1061, 140) (1060.8745, 140.0319) (1060.5171, 140.6719)

3 (916, 118) (916.4424, 118.2077) (916.2079, 118.7047)

4 (856, 59) (856.3491, 58.9552) (856.1927, 59.4249)

5 (1831, 458) (1830.8544, 457.6822) (1830.6509, 457.8170)

6 (1788, 571) (1788.0021, 570.7881) (1787.8998, 571.2094)

7 (1760, 525) (1760.3848, 524.7738) (1760.0700, 524.7066)

8 (1620, 470) (1619.9463, 469.7154) (1619.8961, 470.1568)

9 (1507, 301) (1506.5255, 301.4758) (1506.4625, 301.9288)

10 (1441, 319) (1440.7954, 318.6252) (1440.2570, 319.1484)

11 (1426, 428) (1426.2083, 427.5948) (1426.0594, 428.0663)

12 (1372, 273) (1371.7320, 273.2372) (1371.4097, 273.7248)

13 (1335, 261) (1335.0012, 261.1535) (1334.6780, 261.6318)

14 (1341, 289) (1340.8006, 288.8830) (1340.2432, 289.0485)

15 (1738, 597) (1737.6861, 597.0918) (1737.6717, 597.5124)

16 (1613, 768) (1613.1615, 768.0119) (1613.1064, 767.9271)

The computational results of the algorithms in the article and the global traversal

algorithm are subtracted from the results of the algorithm in the literature [16] to obtain

the deviation values, respectively. Figure 10a,b represent the deviation of the

Figure 9. Gaussian filtering data flow diagram.

5. Simulation Debugging
5.1. Algorithm Accuracy Analysis

In order to verify the effectiveness of the above algorithm, the algorithm is used to
simulate the dynamic star map under the MATLAB R2022a software environment, and the
simulation is carried out with resolutions of q1 = 0.109382, q2 = 0.234570, q3 = 0.875246,
and q4 = 0.408218. The coordinates and grayscale of the pixels of the star points in the
star map are obtained. The star catalog global traversal algorithm and the algorithm in the
literature [16] are simulated in MATLAB, and the results of the computation of the pixel
coordinates are retained to four digits after the decimal point. The calculations show that
all 45 star points are present, so there are no missing star points. Some of the star points are
calculated as shown in Table 3.

Algorithms 2024, 17, 117 12 of 22

Table 3. Calculation of star points.

Star Point Number Algorithms of the
Article

Global Traversal
Algorithm

Algorithms in
Literature [16]

1 (1344, 52) (1343.6290, 52.3454) (1343.1869, 52.4629)
2 (1061, 140) (1060.8745, 140.0319) (1060.5171, 140.6719)
3 (916, 118) (916.4424, 118.2077) (916.2079, 118.7047)
4 (856, 59) (856.3491, 58.9552) (856.1927, 59.4249)
5 (1831, 458) (1830.8544, 457.6822) (1830.6509, 457.8170)
6 (1788, 571) (1788.0021, 570.7881) (1787.8998, 571.2094)
7 (1760, 525) (1760.3848, 524.7738) (1760.0700, 524.7066)
8 (1620, 470) (1619.9463, 469.7154) (1619.8961, 470.1568)
9 (1507, 301) (1506.5255, 301.4758) (1506.4625, 301.9288)
10 (1441, 319) (1440.7954, 318.6252) (1440.2570, 319.1484)
11 (1426, 428) (1426.2083, 427.5948) (1426.0594, 428.0663)
12 (1372, 273) (1371.7320, 273.2372) (1371.4097, 273.7248)
13 (1335, 261) (1335.0012, 261.1535) (1334.6780, 261.6318)
14 (1341, 289) (1340.8006, 288.8830) (1340.2432, 289.0485)
15 (1738, 597) (1737.6861, 597.0918) (1737.6717, 597.5124)
16 (1613, 768) (1613.1615, 768.0119) (1613.1064, 767.9271)

The computational results of the algorithms in the article and the global traversal
algorithm are subtracted from the results of the algorithm in the literature [16] to obtain the
deviation values, respectively. Figure 10a,b represent the deviation of the computational
results of the algorithm in this article and the global traversal algorithm in the x-axis and
y-axis directions, respectively.

Algorithms 2024, 17, x FOR PEER REVIEW 13 of 22

computational results of the algorithm in this article and the global traversal algorithm in

the x-axis and y-axis directions, respectively.

(a) (b)

Figure 10. (a) Integrated deviation in the x-axis direction; (b) Integrated deviation in the y-axis

direction.

By analyzing the digital star map generation method, the positional deviation of the

star point pixels is generated by the following three main factors:

1. Deviations arising from insufficient precision of the right ascension and declination.

2. Deviations arising from insufficient precision of the quaternion.

3. Deviations during lookup tables and divider computation on FPGA-based platforms.

In MATLAB, Figure 11a,b are obtained by adding each of the three deviations sepa-

rately to the algorithm of the literature [16]. The precision of the right ascension and dec-

lination produces a high deviation between the different star points. The mean values of

deviation in the x-axis direction and the y-axis direction are 0.1874 and 0.1917, respec-

tively. The deviation of the quaternion causes a deviation in the calculation of the optical

axis pointing; therefore, its error produces a small overall shift in all the star points in the

chart. The precision of quaternions produces a higher average deviation. The mean values

of deviation in the x-axis direction and the y-axis direction are 0.3236 and 0.26, respec-

tively. The lookup tables and the dividers have little effect on the final result during the

calculation.

In summary, the algorithm in this paper deviates no more than one pixel point from

the computed results of other algorithms. The deviation mainly comes from the error gen-

erated by the precision of right ascension and declination and the precision of quaternion.

The deviation of the algorithm is less, which verifies the accuracy of the algorithm in this

paper.

Figure 10. (a) Integrated deviation in the x-axis direction; (b) Integrated deviation in the
y-axis direction.

By analyzing the digital star map generation method, the positional deviation of the
star point pixels is generated by the following three main factors:

1. Deviations arising from insufficient precision of the right ascension and declination.
2. Deviations arising from insufficient precision of the quaternion.
3. Deviations during lookup tables and divider computation on FPGA-based platforms.

In MATLAB, Figure 11a,b are obtained by adding each of the three deviations sep-
arately to the algorithm of the literature [16]. The precision of the right ascension and
declination produces a high deviation between the different star points. The mean values of
deviation in the x-axis direction and the y-axis direction are 0.1874 and 0.1917, respectively.
The deviation of the quaternion causes a deviation in the calculation of the optical axis

Algorithms 2024, 17, 117 13 of 22

pointing; therefore, its error produces a small overall shift in all the star points in the chart.
The precision of quaternions produces a higher average deviation. The mean values of de-
viation in the x-axis direction and the y-axis direction are 0.3236 and 0.26, respectively. The
lookup tables and the dividers have little effect on the final result during the calculation.

Algorithms 2024, 17, x FOR PEER REVIEW 14 of 22

(a) (b)

Figure 11. (a) Independent deviation in the x-axis direction; (b) Independent deviation in the y-

axis direction.

In MATLAB, the pixel matrix grayscale of the star map background is set to 0, and

then by replacing the grayscale values of the pixels corresponding to the coordinates of

the star points, a star map with a resolution of 1920 1080 is generated. The simulation

results are shown in Figure 12a,b, which highlights the star points in Figure 12a with

boxes.

(a)

Figure 11. (a) Independent deviation in the x-axis direction; (b) Independent deviation in the
y-axis direction.

In summary, the algorithm in this paper deviates no more than one pixel point from the
computed results of other algorithms. The deviation mainly comes from the error generated
by the precision of right ascension and declination and the precision of quaternion. The
deviation of the algorithm is less, which verifies the accuracy of the algorithm in this paper.

In MATLAB, the pixel matrix grayscale of the star map background is set to 0, and
then by replacing the grayscale values of the pixels corresponding to the coordinates of the
star points, a star map with a resolution of 1920 × 1080 is generated. The simulation results
are shown in Figure 12a,b, which highlights the star points in Figure 12a with boxes.

Algorithms 2024, 17, x FOR PEER REVIEW 14 of 22

(a) (b)

Figure 11. (a) Independent deviation in the x-axis direction; (b) Independent deviation in the y-

axis direction.

In MATLAB, the pixel matrix grayscale of the star map background is set to 0, and

then by replacing the grayscale values of the pixels corresponding to the coordinates of

the star points, a star map with a resolution of 1920 1080 is generated. The simulation

results are shown in Figure 12a,b, which highlights the star points in Figure 12a with

boxes.

(a)

Figure 12. Cont.

Algorithms 2024, 17, 117 14 of 22
Algorithms 2024, 17, x FOR PEER REVIEW 15 of 22

(b)

Figure 12. (a) MATLAB-simulated star map; (b) star point markings on the star map.

5.2. Simulated Waveforms for Optical Axis Pointing Calculation

The algorithm is used for waveform simulation on the FPGA platform. According to

the VESA standard, the pixel clock of 1920 1080@60Hz is 148.5 MHz. Testbench uses a 100

MHz simulation clock in the waveform simulation in order to facilitate the simulation

calculations.

The simulation of the optical axis pointing calculation waveform is shown in Figure

13. Pos_qin_en is the enable signal for the input quaternions 1q , 2q , 3q , and 4q from

the upper computer. The signals named in the figure beginning with mult are multiplica-

tion operations of quaternions; the signals named beginning with sub and sum are addi-

tion and subtraction operations; and register x0, register y0, and register z0 are the three

elements of the optical axis pointing to the space vector. Waveform simulation results

show that 10 multipliers complete the computation at 605 ns, 10 adders or subtractors

complete the operation at 615 ns, and three elements of the optical axis pointing to the

space vector are obtained at 625 ns, which is in accordance with the computation of Equa-

tion (6). The parallel computation of the FPGA here consumes 40 ns, which would con-

sume 330 ns if a fully serial computation method were used.

Figure 13. Simulation of the optical axis pointing calculation waveform.

Figure 12. (a) MATLAB-simulated star map; (b) star point markings on the star map.

5.2. Simulated Waveforms for Optical Axis Pointing Calculation

The algorithm is used for waveform simulation on the FPGA platform. According
to the VESA standard, the pixel clock of 1920 × 1080@60Hz is 148.5 MHz. Testbench
uses a 100 MHz simulation clock in the waveform simulation in order to facilitate the
simulation calculations.

The simulation of the optical axis pointing calculation waveform is shown in Figure 13.
Pos_qin_en is the enable signal for the input quaternions q1, q2, q3, and q4 from the upper
computer. The signals named in the figure beginning with mult are multiplication oper-
ations of quaternions; the signals named beginning with sub and sum are addition and
subtraction operations; and register x0, register y0, and register z0 are the three elements
of the optical axis pointing to the space vector. Waveform simulation results show that
10 multipliers complete the computation at 605 ns, 10 adders or subtractors complete the
operation at 615 ns, and three elements of the optical axis pointing to the space vector
are obtained at 625 ns, which is in accordance with the computation of Equation (6). The
parallel computation of the FPGA here consumes 40 ns, which would consume 330 ns if a
fully serial computation method were used.

Algorithms 2024, 17, x FOR PEER REVIEW 15 of 22

(b)

Figure 12. (a) MATLAB-simulated star map; (b) star point markings on the star map.

5.2. Simulated Waveforms for Optical Axis Pointing Calculation

The algorithm is used for waveform simulation on the FPGA platform. According to

the VESA standard, the pixel clock of 1920 1080@60Hz is 148.5 MHz. Testbench uses a 100

MHz simulation clock in the waveform simulation in order to facilitate the simulation

calculations.

The simulation of the optical axis pointing calculation waveform is shown in Figure

13. Pos_qin_en is the enable signal for the input quaternions 1q , 2q , 3q , and 4q from

the upper computer. The signals named in the figure beginning with mult are multiplica-

tion operations of quaternions; the signals named beginning with sub and sum are addi-

tion and subtraction operations; and register x0, register y0, and register z0 are the three

elements of the optical axis pointing to the space vector. Waveform simulation results

show that 10 multipliers complete the computation at 605 ns, 10 adders or subtractors

complete the operation at 615 ns, and three elements of the optical axis pointing to the

space vector are obtained at 625 ns, which is in accordance with the computation of Equa-

tion (6). The parallel computation of the FPGA here consumes 40 ns, which would con-

sume 330 ns if a fully serial computation method were used.

Figure 13. Simulation of the optical axis pointing calculation waveform. Figure 13. Simulation of the optical axis pointing calculation waveform.

Algorithms 2024, 17, 117 15 of 22

5.3. Simulated Waveforms for Optical Axis Pointing Coordinate Transformation Calculation

The simulation of the optical axis pointing coordinate transformation waveform is
shown in Figure 14. The optical axis pointing

[
x0 y0 z0

]T completes the calculation
process at 625 ns. The divider IP core uses about 500 ns, and then the table lookup method is
used to calculate the value of atan to obtain the values of α0 and δ0 at 1205 ns in accordance
with the calculation of Equation (9). The FPGA consumes 580 ns for the calculation here.

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 22

5.3. Simulated Waveforms for Optical Axis Pointing Coordinate Transformation Calculation

The simulation of the optical axis pointing coordinate transformation waveform is

shown in Figure 14. The optical axis pointing  0 0 0

T
x y z completes the calculation

process at 625 ns. The divider IP core uses about 500 ns, and then the table lookup method

is used to calculate the value of atan to obtain the values of 0 and 0 at 1205 ns in

accordance with the calculation of Equation (9). The FPGA consumes 580 ns for the calcu-

lation here.

Figure 14. Simulation of the optical axis pointing coordinate transformation waveforms.

5.4. Simulated Waveforms for Star Field Search Range Calculation

The simulation of the star-area search range calculation waveform is shown in Figure

15. The 0 and 0 trigonometric values are obtained by the look-up table method. At

1785 ns and 1795 ns, four adders or subtracters complete the calculation, which is in ac-

cordance with the calculation of Equations (10) and (11). In the simulation waveforms, the

values of the four registers Jl, Jr, Du, and Dd are shown in decimals for ease of under-

standing. The parallel computation by the FPGA here consumes 590 ns, compared to 650

ns if the full serial computation method is used.

Figure 15. Waveform simulation for star field search range calculation.

5.5. Simulated Waveforms for Star Point Coordinate Transformation Calculation

The simulation of the star point coordinate transformation calculation waveform is

shown in Figure 16. The calculation is completed at 2395 ns by converting the star point

coordinates represented by 1 and 1 in the sub-area range to  1 1 1

T
x y z by means

of a look-up table, indicating that the calculation conforms to Equation (7). Moreover, 600

ns are consumed by the FPGA for the calculation.

Figure 14. Simulation of the optical axis pointing coordinate transformation waveforms.

5.4. Simulated Waveforms for Star Field Search Range Calculation

The simulation of the star-area search range calculation waveform is shown in
Figure 15. The α0 and δ0 trigonometric values are obtained by the look-up table method.
At 1785 ns and 1795 ns, four adders or subtracters complete the calculation, which is in
accordance with the calculation of Equations (10) and (11). In the simulation waveforms,
the values of the four registers Jl, Jr, Du, and Dd are shown in decimals for ease of un-
derstanding. The parallel computation by the FPGA here consumes 590 ns, compared to
650 ns if the full serial computation method is used.

Algorithms 2024, 17, x FOR PEER REVIEW 16 of 22

5.3. Simulated Waveforms for Optical Axis Pointing Coordinate Transformation Calculation

The simulation of the optical axis pointing coordinate transformation waveform is

shown in Figure 14. The optical axis pointing  0 0 0

T
x y z completes the calculation

process at 625 ns. The divider IP core uses about 500 ns, and then the table lookup method

is used to calculate the value of atan to obtain the values of 0 and 0 at 1205 ns in

accordance with the calculation of Equation (9). The FPGA consumes 580 ns for the calcu-

lation here.

Figure 14. Simulation of the optical axis pointing coordinate transformation waveforms.

5.4. Simulated Waveforms for Star Field Search Range Calculation

The simulation of the star-area search range calculation waveform is shown in Figure

15. The 0 and 0 trigonometric values are obtained by the look-up table method. At

1785 ns and 1795 ns, four adders or subtracters complete the calculation, which is in ac-

cordance with the calculation of Equations (10) and (11). In the simulation waveforms, the

values of the four registers Jl, Jr, Du, and Dd are shown in decimals for ease of under-

standing. The parallel computation by the FPGA here consumes 590 ns, compared to 650

ns if the full serial computation method is used.

Figure 15. Waveform simulation for star field search range calculation.

5.5. Simulated Waveforms for Star Point Coordinate Transformation Calculation

The simulation of the star point coordinate transformation calculation waveform is

shown in Figure 16. The calculation is completed at 2395 ns by converting the star point

coordinates represented by 1 and 1 in the sub-area range to  1 1 1

T
x y z by means

of a look-up table, indicating that the calculation conforms to Equation (7). Moreover, 600

ns are consumed by the FPGA for the calculation.

Figure 15. Waveform simulation for star field search range calculation.

5.5. Simulated Waveforms for Star Point Coordinate Transformation Calculation

The simulation of the star point coordinate transformation calculation waveform is
shown in Figure 16. The calculation is completed at 2395 ns by converting the star point
coordinates represented by α1 and δ1 in the sub-area range to

[
x1 y1 z1

]T by means of a

Algorithms 2024, 17, 117 16 of 22

look-up table, indicating that the calculation conforms to Equation (7). Moreover, 600 ns
are consumed by the FPGA for the calculation.

Algorithms 2024, 17, x FOR PEER REVIEW 17 of 22

Figure 16. Waveform simulation of star point coordinate transformation calculation.

5.6. Simulated Waveforms for Star Point Coordinate Transformation Calculation

The simulation diagram of the effective judgment waveform of the star point is shown

in Figure 17. On the basis of Equation (16), Equation (17) can be introduced. The values of

register xyz0_2 and register xyz1_2 in the figure are the results of the calculation of
2 2 2

0 0 0x y z+ + and
2 2 2

1 1 1x y z+ + , respectively. The value of register sum_xyz_2 is the result

of the calculation of 1 2 1 2 1 2x x y y z z+ + . At 2405 ns, six multipliers complete the operation.

At 2415 ns, two adders completed their operations. At 2425 ns, two adders have completed

their operations in parallel. All the calculations required for the star point judgment were

completed at 2445 ns. The FPGA consumed 50 ns for the parallel calculations here, as op-

posed to 110 ns if a fully serial calculation method was used.

Figure 17. Waveform simulation of star point effective judgment.

5.7. Simulation Waveform of Star Point Coordinate Transformation

The simulation of the star point space coordinate transformation waveform is shown

in Figure 18. The star point space coordinate transformation consists of two parts. The first

part is the transformation of the star point coordinates from the celestial coordinate sys-

tem to the star sensor coordinate system, and the second part is the transformation of the

star points in the star sensor coordinate system to the 2D planar coordinate system.

 1 1 1

T
x y z are the star point coordinates in the celestial coordinate system,

Figure 16. Waveform simulation of star point coordinate transformation calculation.

5.6. Simulated Waveforms for Star Point Coordinate Transformation Calculation

The simulation diagram of the effective judgment waveform of the star point is shown
in Figure 17. On the basis of Equation (16), Equation (17) can be introduced. The values
of register xyz0_2 and register xyz1_2 in the figure are the results of the calculation of
x0

2 + y0
2 + z0

2 and x1
2 + y1

2 + z1
2, respectively. The value of register sum_xyz_2 is the

result of the calculation of x1x2 + y1y2 + z1z2. At 2405 ns, six multipliers complete the
operation. At 2415 ns, two adders completed their operations. At 2425 ns, two adders
have completed their operations in parallel. All the calculations required for the star
point judgment were completed at 2445 ns. The FPGA consumed 50 ns for the parallel
calculations here, as opposed to 110 ns if a fully serial calculation method was used.

Algorithms 2024, 17, x FOR PEER REVIEW 17 of 22

Figure 16. Waveform simulation of star point coordinate transformation calculation.

5.6. Simulated Waveforms for Star Point Coordinate Transformation Calculation

The simulation diagram of the effective judgment waveform of the star point is shown

in Figure 17. On the basis of Equation (16), Equation (17) can be introduced. The values of

register xyz0_2 and register xyz1_2 in the figure are the results of the calculation of
2 2 2

0 0 0x y z+ + and
2 2 2

1 1 1x y z+ + , respectively. The value of register sum_xyz_2 is the result

of the calculation of 1 2 1 2 1 2x x y y z z+ + . At 2405 ns, six multipliers complete the operation.

At 2415 ns, two adders completed their operations. At 2425 ns, two adders have completed

their operations in parallel. All the calculations required for the star point judgment were

completed at 2445 ns. The FPGA consumed 50 ns for the parallel calculations here, as op-

posed to 110 ns if a fully serial calculation method was used.

Figure 17. Waveform simulation of star point effective judgment.

5.7. Simulation Waveform of Star Point Coordinate Transformation

The simulation of the star point space coordinate transformation waveform is shown

in Figure 18. The star point space coordinate transformation consists of two parts. The first

part is the transformation of the star point coordinates from the celestial coordinate sys-

tem to the star sensor coordinate system, and the second part is the transformation of the

star points in the star sensor coordinate system to the 2D planar coordinate system.

 1 1 1

T
x y z are the star point coordinates in the celestial coordinate system,

Figure 17. Waveform simulation of star point effective judgment.

Algorithms 2024, 17, 117 17 of 22

5.7. Simulation Waveform of Star Point Coordinate Transformation

The simulation of the star point space coordinate transformation waveform is shown
in Figure 18. The star point space coordinate transformation consists of two parts. The
first part is the transformation of the star point coordinates from the celestial coordi-
nate system to the star sensor coordinate system, and the second part is the transforma-
tion of the star points in the star sensor coordinate system to the 2D planar coordinate
system.

[
x1 y1 z1

]T are the star point coordinates in the celestial coordinate system,[
x2 y2 z2

]T are the star point coordinates in the star sensor coordinates, and pix_x and
pix_y are the star point coordinates in the 2D planar coordinate system. Sum_xyz_C are
two 32-bit-wide registers that store the star point coordinates and attitude transformation
matrix C in the celestial coordinate system. Registers that host the computed results of
the star point coordinates and attitude transformation matrix C in the celestial sphere
coordinate system. At 6395 ns, the two registers complete the computation simultaneously.
At 7085 ns, two adders completed the calculation. The computation process in the figure
conforms to the representation of Equations (8), (13) and (14). The FPGA consumes 730 ns
for parallel computation here and 770 ns if a fully serial computation method is used.

Algorithms 2024, 17, x FOR PEER REVIEW 18 of 22

 2 2 2

T
x y z are the star point coordinates in the star sensor coordinates, and pix_x

and pix_y are the star point coordinates in the 2D planar coordinate system. Sum_xyz_C

are two 32-bit-wide registers that store the star point coordinates and attitude transfor-

mation matrix C in the celestial coordinate system. Registers that host the computed re-

sults of the star point coordinates and attitude transformation matrix C in the celestial

sphere coordinate system. At 6395 ns, the two registers complete the computation simul-

taneously. At 7085 ns, two adders completed the calculation. The computation process in

the figure conforms to the representation of Equations (8), (13), and (14). The FPGA con-

sumes 730 ns for parallel computation here and 770 ns if a fully serial computation method

is used.

Figure 18. Simulation of star point spatial coordinate transformation waveforms.

5.8. Simulation Waveforms of Star Chart Generation

The simulation waveform of target subzone search is shown in Figure 19. In the fig-

ure, pos_qin_en is the data input enable signal, zone_no is the current target subzone

number, zone_done is the current target subzone search completion signal, and all_done

is the whole target subzone search completion signal. It can be observed in the figure that

the time from the rising edge of pos_qin_en to the rising edge of all_done is 75.26 μs,

which is all the time consumed by the generation of a star map.

Figure 19. Target subzone search simulation waveforms.

In the three parts of optical axis pointing calculation, optical axis pointing coordinate

transformation calculation, and star zone search range calculation, a set of attitude qua-

ternions only needs to be calculated once, which takes up a relatively small amount of

Figure 18. Simulation of star point spatial coordinate transformation waveforms.

5.8. Simulation Waveforms of Star Chart Generation

The simulation waveform of target subzone search is shown in Figure 19. In the figure,
pos_qin_en is the data input enable signal, zone_no is the current target subzone number,
zone_done is the current target subzone search completion signal, and all_done is the
whole target subzone search completion signal. It can be observed in the figure that the
time from the rising edge of pos_qin_en to the rising edge of all_done is 75.26 µs, which is
all the time consumed by the generation of a star map.

In the three parts of optical axis pointing calculation, optical axis pointing coordi-
nate transformation calculation, and star zone search range calculation, a set of attitude
quaternions only needs to be calculated once, which takes up a relatively small amount
of calculation time. In the three parts of star point coordinate transformation calculation,
star point effective judgment, and star point coordinate transformation, every star point
data in the subarea range needs to be calculated, and the calculation time takes up a larger
proportion. The greater the parallelism of the star point data calculation, the less time
consumed by the calculation and the less time consumed by the final star map generation.

Algorithms 2024, 17, 117 18 of 22

Algorithms 2024, 17, x FOR PEER REVIEW 18 of 22

 2 2 2

T
x y z are the star point coordinates in the star sensor coordinates, and pix_x

and pix_y are the star point coordinates in the 2D planar coordinate system. Sum_xyz_C

are two 32-bit-wide registers that store the star point coordinates and attitude transfor-

mation matrix C in the celestial coordinate system. Registers that host the computed re-

sults of the star point coordinates and attitude transformation matrix C in the celestial

sphere coordinate system. At 6395 ns, the two registers complete the computation simul-

taneously. At 7085 ns, two adders completed the calculation. The computation process in

the figure conforms to the representation of Equations (8), (13), and (14). The FPGA con-

sumes 730 ns for parallel computation here and 770 ns if a fully serial computation method

is used.

Figure 18. Simulation of star point spatial coordinate transformation waveforms.

5.8. Simulation Waveforms of Star Chart Generation

The simulation waveform of target subzone search is shown in Figure 19. In the fig-

ure, pos_qin_en is the data input enable signal, zone_no is the current target subzone

number, zone_done is the current target subzone search completion signal, and all_done

is the whole target subzone search completion signal. It can be observed in the figure that

the time from the rising edge of pos_qin_en to the rising edge of all_done is 75.26 μs,

which is all the time consumed by the generation of a star map.

Figure 19. Target subzone search simulation waveforms.

In the three parts of optical axis pointing calculation, optical axis pointing coordinate

transformation calculation, and star zone search range calculation, a set of attitude qua-

ternions only needs to be calculated once, which takes up a relatively small amount of

Figure 19. Target subzone search simulation waveforms.

Figure 20 shows the search results of the pixel coordinates and grayscale of the 0th to
44th star points. Moreover, pix_cnt is the effective star points pixel counter, pix_x and pix_y
are the horizontal and vertical coordinates of the effective star points pixels, and pix_gray
is the grayscale of the effective star points pixels. Based on the results in Figure 20, it can
be seen that the computation of the star point pixel coordinates and grayscale values is
consistent with the MATLAB calculations in Figure 8 above. Because the number of star
points within the search area varies, the star map calculation time varies. The higher the
number of star points in the target sub-area, the longer the calculation takes.

Algorithms 2024, 17, x FOR PEER REVIEW 19 of 22

calculation time. In the three parts of star point coordinate transformation calculation, star

point effective judgment, and star point coordinate transformation, every star point data

in the subarea range needs to be calculated, and the calculation time takes up a larger

proportion. The greater the parallelism of the star point data calculation, the less time

consumed by the calculation and the less time consumed by the final star map generation.

Figure 20 shows the search results of the pixel coordinates and grayscale of the 0th

to 44th star points. Moreover, pix_cnt is the effective star points pixel counter, pix_x and

pix_y are the horizontal and vertical coordinates of the effective star points pixels, and

pix_gray is the grayscale of the effective star points pixels. Based on the results in Figure

20, it can be seen that the computation of the star point pixel coordinates and grayscale

values is consistent with the MATLAB calculations in Figure 8 above. Because the number

of star points within the search area varies, the star map calculation time varies. The higher

the number of star points in the target sub-area, the longer the calculation takes.

(a)

(b)

(c)

Figure 20. (a) Data for the 0th to 14th valid star points; (b) data for the 14th to 39th active star

points; (c) 39th to 44th valid star point data.

5.9. Simulation and Analysis of Dynamic Star Chart Systems

In the three parts of optical axis pointing calculation, optical axis pointing coordinate

transformation calculation, and star zone search range calculation, a set of attitude qua-

ternions only needs to be calculated once, consuming a smaller proportion of the total

calculation time. In the three parts of star point coordinate transformation calculation, star

point effective judgment, and star point coordinate transformation, every star point data

in the subarea range needs to be calculated, consuming a larger proportion of the total

calculation time. The stronger the parallelism of the star point data calculation, the less

time is consumed for calculation, and the less time is consumed for the final star map

generation.

Under the Vivado 2018.3 development environment, 100 sets of attitude quaternions

are input randomly in this design to simulate the star chart display algorithm to calculate

100 star charts. As shown in Figure 21, the horizontal coordinate indicates the number of

frames of the star charts, and the vertical coordinate represents the time taken by the star

chart display algorithm system to compute a star chart. By doing Post-Synthesis Func-

tional Simulation on the project, the experimental schematic of 100 sets of random quater-

nions at a simulated pixel clock of 148.5 MHz shows that the longest time for the

Figure 20. (a) Data for the 0th to 14th valid star points; (b) data for the 14th to 39th active star points;
(c) 39th to 44th valid star point data.

5.9. Simulation and Analysis of Dynamic Star Chart Systems

In the three parts of optical axis pointing calculation, optical axis pointing coordi-
nate transformation calculation, and star zone search range calculation, a set of attitude

Algorithms 2024, 17, 117 19 of 22

quaternions only needs to be calculated once, consuming a smaller proportion of the total
calculation time. In the three parts of star point coordinate transformation calculation,
star point effective judgment, and star point coordinate transformation, every star point
data in the subarea range needs to be calculated, consuming a larger proportion of the
total calculation time. The stronger the parallelism of the star point data calculation, the
less time is consumed for calculation, and the less time is consumed for the final star
map generation.

Under the Vivado 2018.3 development environment, 100 sets of attitude quaternions
are input randomly in this design to simulate the star chart display algorithm to calculate
100 star charts. As shown in Figure 21, the horizontal coordinate indicates the number of
frames of the star charts, and the vertical coordinate represents the time taken by the star
chart display algorithm system to compute a star chart. By doing Post-Synthesis Functional
Simulation on the project, the experimental schematic of 100 sets of random quaternions at
a simulated pixel clock of 148.5 MHz shows that the longest time for the completion of all
the sub-area searches is about 72 µs. Compared with the computation time of the current
star chart display algorithm of the Dynamic Star Simulator, the computation time of the
star chart display algorithm of the present design is about 1/80 of the former [21].

Algorithms 2024, 17, x FOR PEER REVIEW 20 of 22

completion of all the sub-area searches is about 72 μs. Compared with the computation

time of the current star chart display algorithm of the Dynamic Star Simulator, the com-

putation time of the star chart display algorithm of the present design is about 1/80 of

the former [21].

Figure 21. Hundred sets of random poses display star map time.

The number of hardware resources for the FPGA-based dynamic star map algorithm

designed in this paper is shown in Table 4. It can be seen that, due to the large number of

LUTs used for storing the data streams and the star catalog data, the sub-modules under

the computational part of u_sao_top are U_get_zone, U_sao_disp, and U1_div, which use

a larger number of DSPs. But there is still a certain amount of margin in the resource usage

to complete the subsequent modifications.

Table 4. FPGA hardware resource usage.

Name
Slice LUTs

(20,800)

Slice Registers

(41,600)

Block RAM Tile

(50)

DSPs

(90)

project 52.20% 33.14% 8.00% 48.89%

U_sao_top 20.80% 19.26% 0.00% 48.89%

U_sao_zone 6.36% 2.73% 0.00% 32.22%

U_sao_disp 5.37% 4.05% 0.00% 0.00%

U1_div 8.05% 11.52% 0.00% 0.00%

Uart_to_img 0.40% 0.55% 0.00% 0.00%

PLL 0.00% 0.00% 0.00% 0.00%

Dvi_pll 0.00% 0.00% 0.00% 0.00%

Dvi_encoder1 0.89% 0.38% 0.00% 0.00%

Disp_driver 0.25% 0.11% 0.00% 0.00%

DDR3_ctrl_2port 30.16% 12.85% 8.00% 0.00%

According to the power consumption analysis of Vivado 2018.3, as shown in Figure

22, it can be seen that the dynamic power of this design is 1.307 W, which is significantly

lower than the power consumption of using a computer.

Figure 21. Hundred sets of random poses display star map time.

The number of hardware resources for the FPGA-based dynamic star map algorithm
designed in this paper is shown in Table 4. It can be seen that, due to the large number of
LUTs used for storing the data streams and the star catalog data, the sub-modules under
the computational part of u_sao_top are U_get_zone, U_sao_disp, and U1_div, which use a
larger number of DSPs. But there is still a certain amount of margin in the resource usage
to complete the subsequent modifications.

According to the power consumption analysis of Vivado 2018.3, as shown in Figure 22,
it can be seen that the dynamic power of this design is 1.307 W, which is significantly lower
than the power consumption of using a computer.

Algorithms 2024, 17, 117 20 of 22

Table 4. FPGA hardware resource usage.

Name Slice LUTs
(20,800)

Slice Registers
(41,600)

Block RAM Tile
(50)

DSPs
(90)

project 52.20% 33.14% 8.00% 48.89%
U_sao_top 20.80% 19.26% 0.00% 48.89%

U_sao_zone 6.36% 2.73% 0.00% 32.22%
U_sao_disp 5.37% 4.05% 0.00% 0.00%

U1_div 8.05% 11.52% 0.00% 0.00%
Uart_to_img 0.40% 0.55% 0.00% 0.00%

PLL 0.00% 0.00% 0.00% 0.00%
Dvi_pll 0.00% 0.00% 0.00% 0.00%

Dvi_encoder1 0.89% 0.38% 0.00% 0.00%
Disp_driver 0.25% 0.11% 0.00% 0.00%

DDR3_ctrl_2port 30.16% 12.85% 8.00% 0.00%

Algorithms 2024, 17, x FOR PEER REVIEW 21 of 22

Figure 22. FPGA hardware resource usage schematic.

Table 5 shows the comparison of the performance of different methods for star chart

computation.

Table 5. Comparison of the performance of different methods.

References Calculation Method Number of Stars Computation Time

[5] serial 9006 56 ms

[6] serial 15,914 9.43 ms

[7] serial 5103 7.98 ms

article parallel 5067 72 μs

6. Conclusions

In this paper, an FPGA-based algorithm for displaying star charts of a dynamic star

simulator is designed that can output star charts under the condition that the star chart

field of view is 20  and the simulated magnitude is 2.0 6.0 Mv .

(1) The article analyzes the calculation of the optical axis pointing calculation part,

the optical axis pointing coordinate transformation calculation part, the star area search

range calculation part, the star point coordinate transformation calculation part, the star

point validity judgment part, and the calculation of the star point coordinate transfor-

mation part. The article uses the characteristics of FPGA parallel computing with pipelin-

ing to improve the calculation speed of data and accelerate the display speed of dynamic

star charts.

(2) This design utilizes FPGA to reduce the size and power consumption of the dy-

namic star simulator, get rid of the dependence of the existing algorithm on the computer,

and significantly reduce the star point display time.

Overall, the FPGA-based dynamic star chart algorithm design improves the display

speed of star charts. However, there is still room for further optimization of hardware

resources, especially the usage of LUTs. At the same time, there are more suitable algo-

rithms for FPGA implementation, which is the direction of the future development of dy-

namic star map displays.

Author Contributions: Conceptualization, B.C., L.W., and G.L.; methodology, B.C. and L.W.; soft-

ware, B.C.; validation, B.C., L.W., and X.R.; formal analysis, B.C.; investigation, B.C. and L.W.; re-

sources, B.C.; data curation, B.C.; writing—original draft preparation, B.C.; writing—review and

editing, B.C., L.W., G.L., and X.R.; visualization, B.C. and X.R.; supervision, L.W. and G.L.; project

Figure 22. FPGA hardware resource usage schematic.

Table 5 shows the comparison of the performance of different methods for star
chart computation.

Table 5. Comparison of the performance of different methods.

References Calculation Method Number of Stars Computation Time

[5] serial 9006 56 ms
[6] serial 15,914 9.43 ms
[7] serial 5103 7.98 ms

article parallel 5067 72 µs

6. Conclusions

In this paper, an FPGA-based algorithm for displaying star charts of a dynamic star
simulator is designed that can output star charts under the condition that the star chart
field of view is Φ20◦ and the simulated magnitude is 2.0 ∼ 6.0 Mv.

(1) The article analyzes the calculation of the optical axis pointing calculation part, the
optical axis pointing coordinate transformation calculation part, the star area search range
calculation part, the star point coordinate transformation calculation part, the star point

Algorithms 2024, 17, 117 21 of 22

validity judgment part, and the calculation of the star point coordinate transformation part.
The article uses the characteristics of FPGA parallel computing with pipelining to improve
the calculation speed of data and accelerate the display speed of dynamic star charts.

(2) This design utilizes FPGA to reduce the size and power consumption of the
dynamic star simulator, get rid of the dependence of the existing algorithm on the computer,
and significantly reduce the star point display time.

Overall, the FPGA-based dynamic star chart algorithm design improves the display
speed of star charts. However, there is still room for further optimization of hardware
resources, especially the usage of LUTs. At the same time, there are more suitable algorithms
for FPGA implementation, which is the direction of the future development of dynamic
star map displays.

Author Contributions: Conceptualization, B.C., L.W. and G.L.; methodology, B.C. and L.W.; software,
B.C.; validation, B.C., L.W. and X.R.; formal analysis, B.C.; investigation, B.C. and L.W.; resources,
B.C.; data curation, B.C.; writing—original draft preparation, B.C.; writing—review and editing, B.C.,
L.W., G.L. and X.R.; visualization, B.C. and X.R.; supervision, L.W. and G.L.; project administration,
B.C. and L.W.; funding acquisition, L.W. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was funded by the Science and Technology Development Plan of Jilin
Province, China, under Grant 20220201089GX.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Tang, Y.X.; Zhu, G.M.; Nie, R.Q. Design of electronic star simulator based on FPGA and PCIe bus. Comput. Meas. Control 2022, 30,

258–262.
2. Liu, Y.H.; Huang, X.S.; Tan, H.L. Navigation computer system based on high-performance DSP and high-precision A/D. J. China

Inert. Technol. 2008, 2, 140–143.
3. Zhang, H.; Zhou, X.D.; Wang, X.M.; Tian, H. Review on the status quo and development of all-day star sensor technology in

near-Earth space. J. Aeronaut. 2020, 41, 19–31.
4. Wang, H.; Wang, Y.; Li, Z.; Song, Z. Systematic centroid error compensation for the simple Gaussian PSF in an electronic star map

simulator. Chin. J. Aeronaut. 2014, 27, 884–891. [CrossRef]
5. Wu, X.M. Design of electronic starry sky simulator based on DSP and FPGA. Comput. Meas. Control 2013, 21, 1666–1667+1671.
6. Hao, G.N.; Wang, L.Y.; Li, G.X.; Mu, S.D. Research on the algorithm of high dynamic star map display. J. Chang. Univ. Sci. Technol.

(Nat. Sci. Ed.) 2022, 45, 63–69.
7. Li, G.; Wang, L.; Zheng, R.; Yu, X.; Ma, Y.; Liu, X.; Liu, B. Research on Partitioning Algorithm Based on Dynamic Star Simulator

Guide Star Catalog. IEEE Access 2021, 9, 54663–54670. [CrossRef]
8. Zhou, F.D.; Han, S.Y.; Qi, Z.W.; Li, G.; Sun, C. Digital Processing System for Shallow Surface Frequency Domain Electromagnetic

Detection Based on FPGA + DSP. J. Hunan Univ. (Nat. Sci. Ed.) 2016, 43, 94–101.
9. Liu, H.L.; Zhao, R.J.; Lin, L.; Zhong, J.Y. An All-day Star Map Recognition Algorithm and FPGA Implementation under Star

Radiation Mode. Semicond. Optoelectron. 2023, 44, 128–133.
10. Wang, A.H.; Che, W.; Fang, J.H.; Meng, E.T. Research on high-speed and low-complexity parallel blind equalization and FPGA

implementation. Trans. Beijing Inst. Technol. 2019, 39, 1192–1197.
11. Jiang, J.; Chen, K. FPGA-based accurate star segmentation with moon interference. J. Real Time Image Process. 2019, 16, 1289–1299.

[CrossRef]
12. Li, D.B. Research on Star Map Simulation Technology of Small Field of View Star Tracker Based on Inertial Platform. Opt.

Optoelectron. Technol. 2020, 18, 87–92.
13. Wang, H.; Yan, Z.; Mao, X.; Wang, B.; Liu, X.; Kang, W. A new high-precision star map simulation model and experimental

verification. J. Mod. Opt. 2021, 68, 856–867. [CrossRef]
14. Hu, Y.N.; Gong, Y. Design and Implementation of Dynamic Star Map Display Algorithm. J. Astronaut. 2008, 3, 849–853.
15. Schulz, V.H.; Marcelino, G.M.; Seman, L.O.; Santos Barros, J.; Kim, S.; Cho, M.; González, G.V.; Leithardt, V.R.Q.; Bezerra, E.A.

Universal Verification Platform and Star Simulator for Fast Star Tracker Design. Sensors 2021, 21, 907. [CrossRef] [PubMed]

https://doi.org/10.1016/j.cja.2014.03.027
https://doi.org/10.1109/ACCESS.2021.3070408
https://doi.org/10.1007/s11554-016-0633-8
https://doi.org/10.1080/09500340.2021.1955165
https://doi.org/10.3390/s21030907
https://www.ncbi.nlm.nih.gov/pubmed/33572822

Algorithms 2024, 17, 117 22 of 22

16. Ling, X.; Zheng, H.L.; He, Y.J. Design and simulation of digital star map generation algorithm. Lab. Res. Explor. 2018, 37, 120–123.
17. Sun, M.K.; Zhang, N. Design of star map display system for dynamic target simulator. J. Chang. Univ. Sci. Technol. (Nat. Sci. Ed.)

2018, 41, 20–24.
18. Wang, X.F.; Li, C.R.; Lu, K.F. Acceleration Design and FPGA Implementation of CNN Scene Matching Algorithm. Comput. Sci.

2023, 50, 8–14. [CrossRef]
19. Zhang, W.D.; Zhang, F.K.; Zou, Y.; Zhang, M. Multi-objective digital image simulator based on FPGA. Instrum. Technol. Sens. 2022,

6, 95–98+104.
20. Lavrentiev, M.; Lysakov, K.; Marchuk, A.; Oblaukhov, K.; Shadrin, M. Algorithmic Design of an FPGA-Based Calculator for Fast

Evaluation of Tsunami Wave Danger. Algorithms 2021, 14, 343. [CrossRef]
21. Li, X. Research on Star Map Display and Testing Method of High Precision and High Dynamics Star Simulator. Master’s Thesis,

Changchun University of Science and Technology, Changchun, China, 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s10915-023-02219-0
https://doi.org/10.3390/a14120343

	Introduction
	System Components
	Digital Star Chart Generation
	Starlist Pre-Processing
	Grayscale Transformation
	Star Partitioning

	GNSS Search and Coordinate Transformation
	Star-Point Diffuse Spot Generation

	FPGA-Based Hardware and Software Architecture Design
	Calculation Module
	Storage Module
	Pixel Point Display Module

	Simulation Debugging
	Algorithm Accuracy Analysis
	Simulated Waveforms for Optical Axis Pointing Calculation
	Simulated Waveforms for Optical Axis Pointing Coordinate Transformation Calculation
	Simulated Waveforms for Star Field Search Range Calculation
	Simulated Waveforms for Star Point Coordinate Transformation Calculation
	Simulated Waveforms for Star Point Coordinate Transformation Calculation
	Simulation Waveform of Star Point Coordinate Transformation
	Simulation Waveforms of Star Chart Generation
	Simulation and Analysis of Dynamic Star Chart Systems

	Conclusions
	References

