J’-—j algorithms

Article

IWO-IGA—A Hybrid Whale Optimization Algorithm Featuring
Improved Genetic Characteristics for Mapping Real-Time
Applications onto 2D Network on Chip

Sharoon Saleem, Fawad Hussain *

check for
updates

Citation: Saleem, S.; Hussain, F.;
Baloch, N.K. IWO-IGA—A Hybrid
Whale Optimization Algorithm
Featuring Improved Genetic
Characteristics for Mapping
Real-Time Applications onto 2D
Network on Chip. Algorithms 2024, 17,
115. https://doi.org/10.3390/
al7030115

Academic Editors: Lukasz Knypiriski,
Ramesh Devarapalli and Marcin

Kaminski

Received: 16 February 2024
Revised: 4 March 2024
Accepted: 6 March 2024
Published: 10 March 2024

Copyright: © 2024 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Naveed Khan Baloch

Department of Computer Engineering, University of Engineering & Technology, Taxila 47050, Pakistan;
sharoon.saleem@uettaxila.edu.pk (S.S.); naveed khan@uettaxila.edu.pk (N.K.B.)
* Correspondence: fawad.hussain@uettaxila.edu.pk

Abstract: Network on Chip (NoC) has emerged as a potential substitute for the communication
model in modern computer systems with extensive integration. Among the numerous design
challenges, application mapping on the NoC system poses one of the most complex and demanding
optimization problems. In this research, we propose a hybrid improved whale optimization algorithm
with enhanced genetic properties IWOA-IGA) to optimally map real-time applications onto the 2D
NoC Platform. The IWOA-IGA is a novel approach combining an improved whale optimization
algorithm with the ability of a refined genetic algorithm to optimally map application tasks. A
comprehensive comparison is performed between the proposed method and other state-of-the-art
algorithms through rigorous analysis. The evaluation consists of real-time applications, benchmarks,
and a collection of arbitrarily scaled and procedurally generated large-task graphs. The proposed
IWOA-IGA indicates an average improvement in power reduction, improved energy consumption,
and latency over state-of-the-art algorithms. Performance based on the Convergence Factor, which
assesses the algorithm’s efficiency in achieving better convergence after running for a specific number
of iterations over other efficiently developed techniques, is introduced in this research work. These
results demonstrate the algorithm’s superior convergence performance when applied to real-world
and synthetic task graphs. Our research findings spotlight the superior performance of hybrid
improved whale optimization integrated with enhanced GA features, emphasizing its potential for
application mapping in NoC-based systems.

Keywords: whale optimization algorithm; genetics algorithm; network-on-chip; real-time; parameter
control

1. Introduction

In the current era of multicore systems, core integration on System-on-Chip (SoC)
devices has increased significantly due to ongoing research and development. However,
this significant growth in the integration density of processing elements on System-on-Chip
(SoC) devices raises significant performance and scalability concerns. The conventional
bus-based architecture fails to satisfy the ever-increasing requirements for high-volume
and high-speed communication imposed by the increasing number of cores. Therefore,
looking for alternate approaches to overcome these constraints and raise the effectiveness of
multicore systems is vital. Network-on-Chip (NoC) has surfaced as a viable solution [1,2] to
meet the current communication needs of the very large scale integration (VLSI) paradigm
at the deep nanoscale level. Network on Chip comprises integrated processor cores (IP), a
network interface (NI), routers, and the links that connect them. In NOC, cores employ a
packet-based switching technique for communication through the routers with the help
of interconnection links. The NoC topology signifies the physical organization of the
architecture, defining the arrangement of routers and cores. Various standard topologies
have been designed and employed for NoC depending on the interconnected networks.

Algorithms 2024, 17, 115. https:/ /doi.org/10.3390/a17030115

https:/ /www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17030115
https://doi.org/10.3390/a17030115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-7819-5990
https://doi.org/10.3390/a17030115
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17030115?type=check_update&version=1

Algorithms 2024, 17, 115

2 of 28

Out of these, the mesh topology is the most prominent [3,4], featuring shorter paths between
interconnected cores and high bisection width. These features make it suitable for use in
numerous application mapping techniques. Due to its built-in parallelism and concurrent
communication features, NoC is a popular computing engine for future many-core real-
time systems [5]. Of the many key concerns in NoC designs, such as router architecture,
topologies, and routing algorithms, the NoC’s IP mapping issue has gained substantial
attention [6]. IP mapping is an NP-hard combinatorial optimization issue [7,8] that requires
discovering the best way to map IPs onto a certain NoC architecture while attempting to
meet predefined metrics [9]. The random placement of the IP core in NoC designs does not
effectively influence the network’s overall efficiency. Achieving high performance with low
communication cost, latency, and throughput requires excellent or even optimal IP core
mapping onto NoC systems.

Because a mapping problem with n number of IPs leads to n! possible solutions,
obtaining optimal solutions through exhaustive enumeration of all permutations is not
practical. Consequently, more efficient methods must be discovered to overcome this
issue. As it is an NP-Hard problem, there are no exact approaches to finding the solution
in polynomial time. Even small-scale cases may need significant computing time [10].
Therefore, heuristic approaches are a practical and effective strategy for finding high-
quality solutions [6,11]. In addition, rapid growth in the amount of data represents a
challenge to researchers and data scientists in analyzing and extracting relevant information.
Swarm intelligence is increasingly used for many optimization tasks, including feature
selection, a complex task essential for reducing data dimensionality in high-dimensional
datasets [12]. Although various heuristic-based techniques have been employed to solve the
NoC application mapping problem, they still solve the problem at the cost of certain factors,
and all have certain drawbacks. The well known Ant Colony optimization method has
disadvantages such as parameter sensitivity, sluggish convergence rate, and precociousness.
Certain evolutionary algorithms suffer from longer computation times in certain cases,
along with poor stability. Although heuristic searches are extensively employed to solve
the IP mapping issue, they often have the drawback of quickly settling on a local optimum.
However, efficient local and global search capabilities on the part of heuristic algorithms
can help to achieve optimum results. Hence, an optimization algorithm that balances
exploration and exploitation while avoiding local optima may solve application mapping
problems for both small-scale and large-scale applications in an ideal manner. Metaheuristic
algorithms use a mathematical model of social evolution to efficiently solve optimization
problems by promoting high-level methods and local improvement strategies.

Based on the factors and characteristics of the algorithm, an improved version of a
nature-inspired meta-heuristic mapping technique is presented to achieve better results
under allowed bandwidth limitations. The modified whale optimization algorithm (IWOA)
features strong exploration and exploitation capabilities and a competitive convergence
rate for a given set of problems. IWOA is proposed as the first step to finding an optimal
solution to NoC application mapping, followed by implementing a hybrid INOA featuring
Improved Genetic Mechanism (IWOA-IGA). The genetic-based technique incorporates
crossover and mutation to optimize INOA-based results for optimal NoC mapping. The
integrated tweaked GA features assist the IWOA in achieving the optimal mapping with
faster convergence, allowing it to avoid local optima with enhanced search ability. These
capabilities of the proposed algorithm make it superior to conventional techniques.

To analyze the NoC efficiency metric, current research seeks to model power, latency,
and communication cost. Successful mapping strategies generate optimum NoC mapping
with low communication costs, fewer iterations, and fewer processing resources. X-Y
routing simplifies mapping problems. In a regular mesh design, network performance is
measured by the cost of communication:

size(ACG) te

Cr=), Y.[CB,] x HopCount) (1)
=1 j=0

Algorithms 2024, 17, 115

30f28

where t, represents a collection of edges within a core graph, B(,,,) represents the communi-
cation bandwidth on edge 7, and the number of hops that separate two communicating cores,
referred to as HopCount), is used to quantify delay and communication costs [13,14].
Thus, as suggested by Equation (1), lowering communication costs indirectly reduces
latency and energy usage.

IWOA-IGA offers an effective trade-off between performance measures and faster
mapping onto 2D NoCs. The hybrid mechanism of the suggested method optimizes map-
ping results, reducing communication, energy, power, and latency costs. The contributions
of the planned research are as follows:

* Based on an improved whale framework incorporating GA characteristics, a novel
and effective solution to NoC application mapping is proposed.

* Improved Initial Mapping for INO and direction-based crossover and mutation ability
are introduced based on a ranked selection-based method during GA evolution.

* The final mapping technique delivers superior performance in terms of total communi-
cation costs. The proposed IWOA-IGA improves power, energy, and communication
costs compared to existing bio-inspired algorithms.

The rest of this paper is arranged in the following manner: Section 2 presents the
literature review; Section 3 discusses the mathematical formulation and performance
metrics; Section 4 presents the framework of the proposed IWOA algorithm; Section 5 shows
the enhanced version of the WOA algorithm featuring the improved genetic mechanism;
our computational findings and analyses are presented in Section 6; Finally, Section 7
contains concluding remarks and discusses future research directions.

2. Related Work

In the current section, we briefly look into the current approaches to application
mapping challenges for NoC design from several perspectives, namely, minimizing com-
munication energy, enhancing performance, and reducing computation time. Small-scale IP
mapping issues can be formulated as integer programming problems [15,16] and resolved
using the branch and bound approach [17,18]. However, neither approach can effectively
address extensive IP mapping issues due to their lengthy computation times. The most
prominent approach for large-scale IP mapping issues is heuristic search, which may be
loosely split into two kinds: transformative heuristics and constructive heuristics [13]. Typi-
cally, heuristic approaches map cores onto routers using pre-established criteria. NMAP, an
efficient NoC application mapping approach [19], maps the application tasks to the cores in
three phases: initialization, minimum path computation, and pair-wise swapping until the
optimum mapping solution is obtained. BMAP is a greedy binomial mapping method [20]
in which a candidate solution is first proposed, followed by iterative improvement until the
final mapping is achieved. To achieve more solutions, CastNet generates various alternative
solutions for each core depending on the availability of adjacent free neighbors by using
multiple tiles to work as initial tiles, leveraging the symmetric features of the mesh [21].
In CHMAP (constructive heuristic mapping approach) [22], the root is chosen as the core
with the highest average communication traffic, then a maximum spanning tree is con-
structed from the communicative graph. CHMAP calculates the mapping order based on
the degree and distance of the cores and then assigns each core to the most suitable router
based on mapping criteria. CastNet and CHMAP do not employ further iterative-based
improvements upon the initial solution to reach the best possible solution. Transformative
algorithms often use evolutionary approaches to look for approximations. Examples of
common evolutionary algorithms [6] for optimization encompass genetic algorithms (GAs),
discrete particle swarm optimization (DPSO), and ant colony algorithms. A DPSO-based
technique that employs a multi-stage PSO and certain deterministic particles for the initial
population rather than random ones was reported in [14]. Optimized Mapping solutions
for both 2D and 3D NoC were presented. A novel optimization technique grounded on the
DPSO framework was introduced in [23], where the velocity update process included a
perturbation particle and an elite particle introduced to facilitate the exploration of local

Algorithms 2024, 17, 115

4 of 28

optima. The algorithm allows particles to switch between elite and conventional pools, and
uses a simplified local search of elite particles to find potential solutions. Multi-application
mapping based on a reconfigurable NoC architecture was reported in [24], where a Mesh of
Tree (MoT) topology was implemented. A two-step efficient Particle Swarm Optimization
(PSO) approach was used to reduce the communication cost for a reconfigurable archi-
tecture. A contention-aware genetic algorithm-based application mapping solution was
reported in [25], where both the spatial and temporal attributes of communication were
considered in order to optimize performance by avoiding contention. To optimize the
NoC in terms of communication cost, average latency, and energy, an efficient mapping
technique was proposed [26] using the cuckoo search technique with Levy flight. First, a
greedy algorithm was used to place the most communicative tasks together for an initial
quality solution. Levy flying meta-heuristic cuckoo search was then used to optimize task
placements for optimum mapping. In [27], the authors put forward the IHPSA optimiza-
tion method, an enhanced hybrid PSO, and the simulated annealing technique. Enhanced
Particle Swarm Optimization with SA was combined in the proposed IHPSA for applica-
tion mapping. The K-means clustering machine learning method arranges tasks based on
their communication bandwidth. The K-means clustering algorithm employed the elbow
method to intelligently predict the number of clusters in extensive applications. Eventu-
ally. Heuristics were applied to achieve the optimal cost for real benchmark applications
and synthetic instances. The authors of [28] presented RAMAN, a method inspired by
Reinforcement Learning (RL), for 2D NoC-based application mapping. RAMAN is an
enhanced Q-learning algorithm influenced by RL that aims to achieve mapping solutions
with the lowest possible and optimized communication cost. The results of this method
show tremendous potential in terms of lower complexity and cost while tackling appli-
cation mapping problems. In [29], linear programming was employed to mathematically
model the mapping problem in NoC. Various constraints related to communication ca-
pacity and power budget were incorporated. Finally, simmulated annealing integrated
with GA was implemented to take into account and consider the constraints while finding
the optimum solution. The run-time application mapping technique presented in [30]
aimed to balance the load on the overall network when implementing NoC for a Cube-Tree
Hybrid (CTH) topology. The authors exploited the low network diameter of this topology
with its high scalability, resulting in reduced mapping overhead. A significant reduction
in execution time was observed during experimentation. A hybrid task mapping HyDra
was proposed in [31] that incorporates design time mapping and runtime reconfiguration
with the aim of reducing communication energy. At design time, multiple mapping so-
lutions are produced to reduce latency and energy. As the applications arrive at runtime,
the design time mappings are either used according to the applications or reconfigured
based on the requirements. While many such algorithms have been developed, they may
suffer from suboptimal performance along with inefficient convergence and complexity.
To tackle these challenges, the authors of [32] used Grey Wolf optimization (GWO), which
starts with cluster-based initial mapping followed by a modified GWO heuristic algorithm
with polynomial regression. The modified algorithm enhances runtime efficiency and
optimizes the overall mapping quality. In [33], the authors discussed various real-time
application mapping techniques for complex multicore platforms. They categorized these
techniques by emphasizing their optimization goals, such as communication cost and
energy consumption in NoC-based systems. Future challenges, trends, and simulation
tools in this area were presented as well. Application mapping in both 2D and 3D remains
a complex challenge that requires further development of efficient algorithms. To address
the outstanding challenges, a neural mapping model with a reinforcement learning (RL)
approach (NeurMap3D) was presented in [34] to develop application-specific 3D NoCs.
In addition, a neural congestion-aware mechanism was presented to address application
mapping issues via placement and mapping and to incorporate TSV placement and load
balancing in NoC.

Algorithms 2024, 17, 115

50f28

3. Mathematical Formulation/Performance Metrics

This section discusses NoC platform assessment criteria such as communication cost,
latency, energy, and power.

3.1. Communication Cost Model
Communication Cost in NoC-based formulations is presented in Equation (2):

Cost =) [Brt; % Nijl,)
ij
where Bt is the bandwidth between tile {; and t; and N; ; is the Manhattan distance. The

NoC architecture’s Manhattan distance between the source nodes (x;, y;) and destination
nodes (x;,y;) is provided by

Nij = |x; — xj| + [yi — yjl- 3)

3.2. Power Model

Power and energy are calculated based on the execution of a given traffic pattern.
Pwget,j and Pwjyaer,j are component j’s active and passive power at 1.0 V and 1.0 GHz,
respectively. Let alpha; ; be the active reading of component j in router 7; then, the average
power Pw,, [35] is expressed by

z

[a;j Pwacr,j + (1 — i j) - PWingct,j] @
j 1

1
N :

1

1=

Pw,, =

Il
_

where Pw, is j's component power when active, Pw;; . ; signifies component j’s power
while inactive, and «; ; reflects active measurement of component j in the router i.

3.3. Latency Model

The average latency of the NoC is shown in Equation (5):

N

where Lt; j is the latency of packet j from one tile to another, N represents the number of
processors in the mesh, and N; reflects the quantity of packets received by a processor after
the warm-up period.

3.4. Energy Model

The energy model estimates the network router energy consumption, represented
as follows:

Egp = EsB+E;B (6)

where Ep consists of the switch energy EsB and link energy E; B of the NoC. It is this
energy that is consumed to transfer one bit data between the source and the destination.
The following equation computes the average network energy consumption, denoted as
EB(p.), used for the transfer of one bit of data between source (p;) and destination (p;):

EB(P:‘,P,') = HcountESB + (Hcount - 1)ELB (7)

where Hcount represents the Manhattan distance between the source nodes (a;,4;) and
destination nodes (b;, b;).

Heount = |a; — b + |aj - bj| 8)

Algorithms 2024, 17, 115 6 of 28

Consequently, the network’s total energy consumption (ET) is determined by the
average network energy and the link bandwidth BW pip;) from p; to p;.

Hcount
Er =). (Ep(ppp) X BWipip) ©)
)

Hence, the final equation takes the form

Er = 2 (Heount X Esp + (Heount — 1) X Epp) X Bw(pi,pj)) . (10)
ij

For cost computation (CC), the following equation can be used:

CC =Y _(Heount % BW(p,p)- (11)
i,j
Various mappings lead to distinct energy and communication cost values. The primary
aim is to derive a mapping function for the NoC with minimal cost. In this research, we
use communication cost as the main performance metric for distinct applications.

3.5. Mathematical Formulation Model

Application mapping for 2D NoC design, including preliminary knowledge and a
mathematical model, is presented in this subsection. The following elements constitute the
inputs for formulating the application mapping problem.

Definition 1. A Communication Trace Graph (CTG) is defined as an undirected communication
trace graph G = (V,E, M) that is weighted and consists of a set of vertices or cores, with V, E
representing the directed edge set and M referring to the volume of data and the connectivity between
nodes in MS/s.

V= {Cl,Cz,C3,...,Cn} (12)

where |V| = finite(n)
E= {61‘,]' = (Cl', C]) e Cx C|(C,’, C]) eC,i#]} (13)

and

M:E — M(Ci,C]‘) = Mij (14)

where |V| = finite(n).
Definition 2. In the Topology Graph (TG) for a network, TG = (T, L, M) constitutes the tile

collection T placed in the network topology, the collection of links for tiled pairs in T is referred to as
L, and M specifies the data volume and link between the tiles in megabytes per second.

T:{tl,tz,tg,...,tn} (15)
L= {li,j = (ti/ t]) € TXC|(ti, t]) eT,i 7&]} (16)
M:L— M(tl’, t]> = MZ] (17)

Definition 3. NAG = (R, C) : The NoC Architecture Graph corresponds to the routing path
(cij) € C) between any router pairs (r;,1;) in the network. The intermediate links traversing the
path (r;,r;) are termed hop counts (Hops) from the router r; to rj. Data are transferred or received
to and from the cores through the connected routers, and the channel c; j acts as the physical link for
data transfer between the cores. The routing channel has limited bandwidth (B; ;) between the nodes.

Algorithms 2024, 17, 115

7 of 28

4. Proposed Framework of IWO Algorithm

This section presents a new metaheuristic IWNOA for a 2D NoC-based multicore
platform with strong local and global search capabilities. On the whole, the algorithm
attains several mapping solutions (explores the promising search space) by emulating
whale hunting behavior, eventually converging to the best possible solution.

4.1. Inspiration for NoC Application Mapping

The metaheuristic method described in [36] simulates hunting behavior using a ran-
dom agent or the best search agent to track prey. Researchers have found that Humpback
Whales pursue prey by creating distinctive bubbles in a circular pattern, and are the only
species known to engage in bubble-net feeding [37,38]. The hunting mechanism of whales
is modeled in the proposed work to carry out NoC application mapping optimization. The
whales” hunting mechanism uses search agents to find the optimal position. As the search
agent approaches the prey, the other agents update their locations to discover the best
solution. Each search agent corresponds to the task mapping solution, which is assessed on
the basis of communication cost. Based on the reference mapping solution, other mapping
solutions update their locations (tasks to core mapping). The basic WOA algorithm em-
ploys random initial mapping solutions, which are improved over further WOA iteration.
However, in this work we modify the WOA algorithm to generate an initial mapping
solution using a set of criteria, providing the optimization algorithm with a head start. The
algorithm then progressively improves the initial mapping through further iteration.

Modified WOA with Targeted Initial Mapping Generation Heuristic searches for IP
mapping are frequently employed; however, they often become trapped in local optima.
This shortcoming is primarily attributable to the first population/solution generation
stage of heuristic searches. Most transformational heuristics generate a random starting
population, and the search procedure can then be seen as a search of the entire search
space. In some heuristic procedures, the initial population/solution is formed using
predefined criteria, expert information, and/or system attributes. These criteria may not
work for large or complex problems. If the initial population generation is not effective,
incremental improvement towards finding an optimal solution will be limited. In swarm-
based intelligence optimization techniques, the initial population quality has a significant
impact on the algorithm’s speed and accuracy [39,40]. In the proposed work, the WOA
algorithm is modified in terms of initial mapping generation, and is then employed to
enhance overall application mapping to NoC Cores. The initial population is produced
using the good point set approach instead of the random initial population generation
in the standard WOA. This method is an efficient approach that can aid in minimizing
the number of attempts and reaching optimal solutions in fewer iterations. The solutions
produced using the good point set sequence exhibit a better distribution of solutions than
the sequences chosen by the general random method [41]. This approach is used to generate
initial mapping solutions for mesh-based 2D NoC architectures. To generate a mapping
sequence using the good point set method, a sequence of m points in s-dimensional space
is generated and represented as discussed below: Generate points such that

r=7r1,1,13, (18)

ri =2 x Cos(2i/p), (19)

where i can be set to any value for generating various mapping points, and let p be a prime
which satisfies p > 2s + 3. Now, using the several mapping points generated, a mapping
sequence is generated that is stored in T(s_;,4):

T(sfmup) = (}’1 X k), (}’1 X k), (}’1 X k),(}’m X k) (20)

where 1y — 1y, are the total mapping points generated and k =1, 2, 3, ..., n, where n is
designated as the total number of cores for which mapping is generated. For NoCs having

Algorithms 2024, 17, 115

8 of 28

certain application tasks to be mapped onto s x s sized mesh architectures, we can take m
as the number of generated tasks or points. As the population size can be set to any number,
various individual T(,_,,,,) mapping solutions are generated as an initial generation, e.g.,
for 16 tasks to be mapped onto a 4 x 4 Mesh 2D NoC platform, we can set m to a certain
number and set popSize to another number for which diverse task mapping solutions are
to be created. The algorithm of the good point set method is provided in Algorithm 1. The
set of initial mappings generated using the good point set method can be considered as
one of the pools of the initial mapping initMappingeps. The good point set method does
not use any key characteristics such as communication between tasks and the number of
connected neighbors. Thus, application task graph expert knowledge can be utilized to
generate initial solutions. This initial mapping can be placed in a second pool based on
communication between the cores, termed init Mappingcomm. The final initial mappings are
selected from the top-ranked mappings of both pools, which participate in the optimization
algorithm. The second pool of initial mappings maps application tasks to the NoC platform
using the communication weights between core edges. A core is first selected from the core
graph and that specific core’s total communication bandwidth and average communication
are noted.

Algorithm 1 Initial Mapping Algorithm

Initialization:
Input: popSize, m
stopCriteria: popSize
while stopCriteria do
fori < 1tomdo
Calculate r; using Equation (19) to generate mapping points considering value of

p
Create Tasks to core mappings T(;_,p) using Equation (20)
end for
initMappingeps = T(s_map)
end while

The total weight TW of the selected core is provided by

TW; =) tw. (21)
eije/E

The average communication is expressed as follows:

TW; = Y twijx (1/Ng) (22)
eije/E

where TW; is the total communication weight between the cores and N, is the number
of available neighbor cores of core c;. In this way, the total communication and average
communication of each specific core are calculated and the neighbors of every core are
noted along with communication-related details. The first task to be selected is the one
with the highest total communication bandwidth, which is placed onto the NoC platform
at any location, and its neighbors are mapped next. If multiple neighbors are available,
then the neighbor with a higher communication weight with the mapped task is placed
at the closest location to the NoC. Then, the other neighbors of the first mapped task are
placed based on their communication weights. When all the neighbors of the mapped task
have been placed, the neighbors of already-mapped (recently mapped) tasks are placed.
The choice is based on the mapped task with the maximum weight; this core is selected
and its neighbors mapped using the same communication weight criteria as above. All of
the cores are mapped in this manner. This initial mapping procedure assumes that any job
mapped to a core must not be mapped to any other NoC location or considered for any
other placement. To serve this statement well in the implementation of this algorithm, a list

Algorithms 2024, 17, 115

9 of 28

of tasks that have been mapped is maintained in the list T;4ppeq, while the unallocated cores
are maintained in T}, _;jj0cated- While mapping neighbors of already mapped cores, these
two lists are referenced to reach the appropriate decision. As the algorithm runs, various
mappings are achieved based on placement of cores on the NoC platform in different orders.
The communication cost for both pools is computed and the top-ranked elite mappings are
taken from both initial mapping pools to generate an enhanced initial mapping solution.
The reason for retaining and finally gathering mappings from both pools is to improve the
overall diversity of the solution.

enhancedInitMapping = initMappingeps + initMappingcomm (23)

The best mapping solution is selected as the current best candidate solution. Opti-
mization improves initial mapping solutions across numerous generations to provide final
mappings for varied applications.

4.2. Mathematical Model of INOA

This section provides the mathematical models of various hunting capabilities of the
IWOA in terms of the NoC application mapping problem. Later, the IWOA algorithm
using the specified features and characteristics is presented.

4.2.1. Encircling/Navigating the Hunt: Unveiling Optimal Application Mapping Strategies

The whales have a special feature of trying to identify and encircle the prey’s location.
Because the ideal location within the search domain is not known in advance, the algorithm
implies that the current leading /best candidate mapping solution is near the optimal design.
The algorithm runs for a specific number of generations and iterations; consequently, the
other solutions endeavor to modify their positions with the optimal mapping solution.
These equations serve to represent this:

=[C.X* (1) - X(1)], (24)

X(t+1) = X*(t) — AD, (25)

where t represents the current iteration, A and C are quantities that represent coefficient
vectors, X* is supposed to be the most effective mapping solution found in the present
generatlon and X represents position vector. If a superior mapplng solution exists, then
XX* should be updated after each generation or iteration. A and C are computed using
the following equations:

A=2a7-13, (26)

C=27 27)

In both the exploration and exploitation phases, a diminishes linearly from 2 to 0
throughout the iterations, while 7 represents a random number between [0, 1]. Figure 1
demonstrates the information behind Equation (25) for the 2D NoC problem and shows how
mapping solution 1 (with a certain communication cost, commCostl1) is updated to a new
mapping solution 2 with a better communication cost (commCost2), where commCost2 <
commCostl. Equation (25) allows the algorithm to update the mapping solution within the
vicinity of the current best solution, leading to an optimum solution over a certain number
of iterations and population sizes. The same principle can be applied to an n-dimensional
search space in 2D NoC, with the mapping search agents traversing in hypercubes around
the current most promising mapping solution.

Algorithms 2024, 17, 115

10 of 28

Mapping Solution 1
[CommCost1 [3]4[9[5[6[14]11]0 1] 7[10[15] 28]13[12]

Mapping Solution 2

~
[[CommCost2 [1]3[5]6[10] 2 [13[7 {15|14\1\2\ 9[11[418]0] ~~_ -
\ \ N - -
N \ (N . e
(> N T “® previous Position
\ \ X
N
\ \
\ \
N
\\ \
N\
(" (>
T Best Position
X* @ X- Previous Position
@ X*- Best Position
(" Possible Positions

(,\ ‘/\ _(,\
L N

c e

Figure 1. Task allocation and fitness updating process in IWOA for NoC platform.

As noted in the preceding section, the IWOA employs the bubble-net hunting tactic of
the WOA integrated into NoC-based application mapping. This strengthens the algorithm’s
ability to exploit and explore, leading to better mapping solutions. The mathematical
formulation of this procedure is as follows.

4.2.2. Exploitation Phase

To efficiently solve the application mapping problem, the INOA uses the bubble
net behavior of whales to achieve an optimum mapping solution within a faster conver-
gence time.

1—Shrinking Encircling Mechanism: Exploitation for Mapping. In a 2D space,
Figure 2 depicts the potential positions starting from (X) towards (X*) that can be obtained
by 0 < A <. The shrinking encircling mechanism is modeled in a 2D NoC architecture such
that X represents a mapping solution with a certain communication cost. In contrast, X* is a
better solution with a better communication cost than the earlier one. The mapping denoted
as X tries to achieve a better solution, represented by X*, with a better communication cost.
This mechanism runs for a certain number of iterations until final mapping is achieved.
This mechanism to achieve optimal mapping uses Equation (26) by altering a value. In the
equation, A represents a random value with a range of “a to a4, where a gradually diminishes
from 2 to 0 over a specified number of iterations.

2—Spiral Strategies: Elevating NOC Application Mapping. This approach first
approximates the deviation between the value of the objective function for the current
mapping solution X and the optimal value that needs to be achieved. The spiral update
position to achieve the optimal mapping is derived using the following equation:

X(t+1) =D (t) - e - cos(27l) + X*(¢) (28)

where D' (¢) is provided by

D'(t) = [X*(t) — X(1)]. (29)

The equation shows the value of the ith mapping from the best mapping solution
obtained thus far, where b determines the logarithmic spiral’s shape while [is a random
number. As the mapping is achieved using the shrinking circle and the spiral-shaped
mechanism simultaneously, it is presumed that there is an equal 50% probability of selecting
either the shrinking circular mechanism or the spiral model to update the mapping methods.
The mathematical model takes the following form:

Algorithms 2024, 17, 115 11 of 28

=/

X* () — X(t) ifp<05
it — bl D . (30)
D (t)-e” -cos(2ml) + X*(t) ifp>0.5

where p represents a random value between 0 and 1. Figure 3 shows how various mapping
solutions are created from X until reaching the final solution X*.

Optimal Mapping Solution
chmCostzl{la |s]6]10]2]13]7 [15[14‘12[5;‘11» als]o

Optimal Mappiﬁé\ [] - Mapping Solution
X* CommCostl‘ 3 [4 [9 ‘ 5 ‘ 6 714 117 (o] ‘ 1 [7 710‘157 2 ‘ 8 ‘13712

" Previous Position
X

2\
(

@ X- Previous Solution
*

A *X RN @ Possible Solution

I T @ Possible Solution

A=p.4 @ Possible Solution
A=0.5

D A=/0.8
O O O A=1 @ x*- Optimal Solution

Possible Solution

e
J

0O

Figure 2. Shrinking encircling mechanism (X* is the current best mapping solution).

Optimal Mapping Solution

|commCost2| 1‘\3‘5‘6[10|2|13‘7|15|14l12|/9|11|4|8|0‘

—

T~ _ - Mapping Solution
—
Optimal Mappin
P - PP g\'/ C0"":““3495e;14110171015281312
~ - = -
~ P
~ — - —
X @ \‘ Mapping Solution
) X
x°) x)
o
i
o o
0.5 -1 1 |

Figure 3. Spiral update position implemented in WOA (X* is the current best solution).

4.2.3. Search for the Optimal Mapping Solution (Exploration Phase)

Thanks to its faster operation, the IWOA can use the strong exploration capabilities of
the whale optimization algorithm to thoroughly explore in order to converge to the optimal
solution. A variation pattern of vector A helps to find the best potential mapping with the
lowest communication cost. As the mapping solutions are created by taking inspiration
from the neighboring mapping solutions, we utilize A with certain randomized values

Algorithms 2024, 17, 115

12 of 28

between 1 and —1 in order to compel the search agents to distance themselves from the
reference mapping solution and explore more of the overall search space. Compared to the
exploitation phase, adjusting the placement of a search agent (mapping solution) does not
take place during exploration based on the best solution. Instead, we choose a search agent
(a random mapping solution) at random and perform updates based on it. This method,
along with | A | > 1, emphasizes exploration and enables the IWOA to perform a global
search. Its mathematical model is presented as follows:

D = |C Xyana — X, (31)

X(t+1) = Xr;nd_A)_ﬁz (32)

where X rand is a mapping solution picked at random from the current population. Several
mapping solutions surrounding a specific solution with A > 1 are created.

4.3. Proposed INOA

In this section, a new and improved metaheuristic IWOA is presented that has power-
ful local and global search functionality. Each search agent that constitutes the mapping
solution is initialized using a certain approach between the minimum and maximum limit
in the range. In the proposed technique, the fitness function is often a primary goal to be
reduced. The proposed algorithm commences with a collection of solutions achieved using
the enhanced initial mapping mechanism instead of the conventional random mappings.
At each iteration, search agents that represent individual mapping solutions adjust their
positions concerning either a randomly chosen search agent or the current optimal solution
with the minimum communication cost. The number of iterations is predefined, and varies
depending on the application. Each mapping solution S is in the solution space SS, where
S € 5§ represents its components such that n > 0 components, i.e., S = S1,5»,.....Sy, where
i=1,2,3,....,1n; here, n represents the scope of the optimization problem to be solved.
To promote better exploration and exploitation, the value of parameter a is varied from
2 to 0. Random mapping is chosen in the proposed mapping technique when | A | > 1.
In contrast, the selection of the best candidate mapping is carried out when | A | <1 for
modifying the mapping solutions of other search agents within the search space. This
adaptive variation-based feature of the vector A permits the INOA to transition seamlessly
between exploration and exploitation while achieving better mapping results. After per-
forming in-depth analysis and comparison, the appropriate values for the input parameters
of the algorithm are determined. It should be noted that a parameter combination that
works well for one situation may not work the same way for another. Algorithm 2 provides
the pseudocode of the IWOA. In each iteration, the algorithm efficiently obtains a better
mapping solution as compared to the previous iterations, depending upon the fitness
function. The termination criteria is the achievement of the required fitness value, that is,
when the mapping solution with the lowest communication cost has been obtained. The
IWOA'’s method for solving the optimization issue is a global optimizer which includes
exploration and exploitation capabilities. As the algorithm runs, the initial mappings are
fine-tuned to adjust the placement of tasks to the cores, ensuring that better solutions are
achieved in each iteration. The flowchat of IWOA is presented in Figure 4.

Algorithms 2024, 17, 115

13 of 28

Algorithm 21

mproved Whale Op<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>