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Abstract: Network on Chip (NoC) has emerged as a potential substitute for the communication
model in modern computer systems with extensive integration. Among the numerous design
challenges, application mapping on the NoC system poses one of the most complex and demanding
optimization problems. In this research, we propose a hybrid improved whale optimization algorithm
with enhanced genetic properties (IWOA-IGA) to optimally map real-time applications onto the 2D
NoC Platform. The IWOA-IGA is a novel approach combining an improved whale optimization
algorithm with the ability of a refined genetic algorithm to optimally map application tasks. A
comprehensive comparison is performed between the proposed method and other state-of-the-art
algorithms through rigorous analysis. The evaluation consists of real-time applications, benchmarks,
and a collection of arbitrarily scaled and procedurally generated large-task graphs. The proposed
IWOA-IGA indicates an average improvement in power reduction, improved energy consumption,
and latency over state-of-the-art algorithms. Performance based on the Convergence Factor, which
assesses the algorithm’s efficiency in achieving better convergence after running for a specific number
of iterations over other efficiently developed techniques, is introduced in this research work. These
results demonstrate the algorithm’s superior convergence performance when applied to real-world
and synthetic task graphs. Our research findings spotlight the superior performance of hybrid
improved whale optimization integrated with enhanced GA features, emphasizing its potential for
application mapping in NoC-based systems.

Keywords: whale optimization algorithm; genetics algorithm; network-on-chip; real-time; parameter
control

1. Introduction

In the current era of multicore systems, core integration on System-on-Chip (SoC)
devices has increased significantly due to ongoing research and development. However,
this significant growth in the integration density of processing elements on System-on-Chip
(SoC) devices raises significant performance and scalability concerns. The conventional
bus-based architecture fails to satisfy the ever-increasing requirements for high-volume
and high-speed communication imposed by the increasing number of cores. Therefore,
looking for alternate approaches to overcome these constraints and raise the effectiveness of
multicore systems is vital. Network-on-Chip (NoC) has surfaced as a viable solution [1,2] to
meet the current communication needs of the very large scale integration (VLSI) paradigm
at the deep nanoscale level. Network on Chip comprises integrated processor cores (IP), a
network interface (NI), routers, and the links that connect them. In NOC, cores employ a
packet-based switching technique for communication through the routers with the help
of interconnection links. The NoC topology signifies the physical organization of the
architecture, defining the arrangement of routers and cores. Various standard topologies
have been designed and employed for NoC depending on the interconnected networks.
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Out of these, the mesh topology is the most prominent [3,4], featuring shorter paths between
interconnected cores and high bisection width. These features make it suitable for use in
numerous application mapping techniques. Due to its built-in parallelism and concurrent
communication features, NoC is a popular computing engine for future many-core real-
time systems [5]. Of the many key concerns in NoC designs, such as router architecture,
topologies, and routing algorithms, the NoC’s IP mapping issue has gained substantial
attention [6]. IP mapping is an NP-hard combinatorial optimization issue [7,8] that requires
discovering the best way to map IPs onto a certain NoC architecture while attempting to
meet predefined metrics [9]. The random placement of the IP core in NoC designs does not
effectively influence the network’s overall efficiency. Achieving high performance with low
communication cost, latency, and throughput requires excellent or even optimal IP core
mapping onto NoC systems.

Because a mapping problem with n number of IPs leads to n! possible solutions,
obtaining optimal solutions through exhaustive enumeration of all permutations is not
practical. Consequently, more efficient methods must be discovered to overcome this
issue. As it is an NP-Hard problem, there are no exact approaches to finding the solution
in polynomial time. Even small-scale cases may need significant computing time [10].
Therefore, heuristic approaches are a practical and effective strategy for finding high-
quality solutions [6,11]. In addition, rapid growth in the amount of data represents a
challenge to researchers and data scientists in analyzing and extracting relevant information.
Swarm intelligence is increasingly used for many optimization tasks, including feature
selection, a complex task essential for reducing data dimensionality in high-dimensional
datasets [12]. Although various heuristic-based techniques have been employed to solve the
NoC application mapping problem, they still solve the problem at the cost of certain factors,
and all have certain drawbacks. The well known Ant Colony optimization method has
disadvantages such as parameter sensitivity, sluggish convergence rate, and precociousness.
Certain evolutionary algorithms suffer from longer computation times in certain cases,
along with poor stability. Although heuristic searches are extensively employed to solve
the IP mapping issue, they often have the drawback of quickly settling on a local optimum.
However, efficient local and global search capabilities on the part of heuristic algorithms
can help to achieve optimum results. Hence, an optimization algorithm that balances
exploration and exploitation while avoiding local optima may solve application mapping
problems for both small-scale and large-scale applications in an ideal manner. Metaheuristic
algorithms use a mathematical model of social evolution to efficiently solve optimization
problems by promoting high-level methods and local improvement strategies.

Based on the factors and characteristics of the algorithm, an improved version of a
nature-inspired meta-heuristic mapping technique is presented to achieve better results
under allowed bandwidth limitations. The modified whale optimization algorithm (IWOA)
features strong exploration and exploitation capabilities and a competitive convergence
rate for a given set of problems. IWOA is proposed as the first step to finding an optimal
solution to NoC application mapping, followed by implementing a hybrid IWOA featuring
Improved Genetic Mechanism (IWOA-IGA). The genetic-based technique incorporates
crossover and mutation to optimize IWOA-based results for optimal NoC mapping. The
integrated tweaked GA features assist the IWOA in achieving the optimal mapping with
faster convergence, allowing it to avoid local optima with enhanced search ability. These
capabilities of the proposed algorithm make it superior to conventional techniques.

To analyze the NoC efficiency metric, current research seeks to model power, latency,
and communication cost. Successful mapping strategies generate optimum NoC mapping
with low communication costs, fewer iterations, and fewer processing resources. X–Y
routing simplifies mapping problems. In a regular mesh design, network performance is
measured by the cost of communication:

CT =
size(ACG)

∑
i=1

te

∑
j=0

[CB(tei)
]× HopCount(tei)

(1)
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where te represents a collection of edges within a core graph, B(tei)
represents the communi-

cation bandwidth on edge i, and the number of hops that separate two communicating cores,
referred to as HopCount(tei)

, is used to quantify delay and communication costs [13,14].
Thus, as suggested by Equation (1), lowering communication costs indirectly reduces
latency and energy usage.

IWOA-IGA offers an effective trade-off between performance measures and faster
mapping onto 2D NoCs. The hybrid mechanism of the suggested method optimizes map-
ping results, reducing communication, energy, power, and latency costs. The contributions
of the planned research are as follows:

• Based on an improved whale framework incorporating GA characteristics, a novel
and effective solution to NoC application mapping is proposed.

• Improved Initial Mapping for IWO and direction-based crossover and mutation ability
are introduced based on a ranked selection-based method during GA evolution.

• The final mapping technique delivers superior performance in terms of total communi-
cation costs. The proposed IWOA-IGA improves power, energy, and communication
costs compared to existing bio-inspired algorithms.

The rest of this paper is arranged in the following manner: Section 2 presents the
literature review; Section 3 discusses the mathematical formulation and performance
metrics; Section 4 presents the framework of the proposed IWOA algorithm; Section 5 shows
the enhanced version of the WOA algorithm featuring the improved genetic mechanism;
our computational findings and analyses are presented in Section 6; Finally, Section 7
contains concluding remarks and discusses future research directions.

2. Related Work

In the current section, we briefly look into the current approaches to application
mapping challenges for NoC design from several perspectives, namely, minimizing com-
munication energy, enhancing performance, and reducing computation time. Small-scale IP
mapping issues can be formulated as integer programming problems [15,16] and resolved
using the branch and bound approach [17,18]. However, neither approach can effectively
address extensive IP mapping issues due to their lengthy computation times. The most
prominent approach for large-scale IP mapping issues is heuristic search, which may be
loosely split into two kinds: transformative heuristics and constructive heuristics [13]. Typi-
cally, heuristic approaches map cores onto routers using pre-established criteria. NMAP, an
efficient NoC application mapping approach [19], maps the application tasks to the cores in
three phases: initialization, minimum path computation, and pair-wise swapping until the
optimum mapping solution is obtained. BMAP is a greedy binomial mapping method [20]
in which a candidate solution is first proposed, followed by iterative improvement until the
final mapping is achieved. To achieve more solutions, CastNet generates various alternative
solutions for each core depending on the availability of adjacent free neighbors by using
multiple tiles to work as initial tiles, leveraging the symmetric features of the mesh [21].
In CHMAP (constructive heuristic mapping approach) [22], the root is chosen as the core
with the highest average communication traffic, then a maximum spanning tree is con-
structed from the communicative graph. CHMAP calculates the mapping order based on
the degree and distance of the cores and then assigns each core to the most suitable router
based on mapping criteria. CastNet and CHMAP do not employ further iterative-based
improvements upon the initial solution to reach the best possible solution. Transformative
algorithms often use evolutionary approaches to look for approximations. Examples of
common evolutionary algorithms [6] for optimization encompass genetic algorithms (GAs),
discrete particle swarm optimization (DPSO), and ant colony algorithms. A DPSO-based
technique that employs a multi-stage PSO and certain deterministic particles for the initial
population rather than random ones was reported in [14]. Optimized Mapping solutions
for both 2D and 3D NoC were presented. A novel optimization technique grounded on the
DPSO framework was introduced in [23], where the velocity update process included a
perturbation particle and an elite particle introduced to facilitate the exploration of local
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optima. The algorithm allows particles to switch between elite and conventional pools, and
uses a simplified local search of elite particles to find potential solutions. Multi-application
mapping based on a reconfigurable NoC architecture was reported in [24], where a Mesh of
Tree (MoT) topology was implemented. A two-step efficient Particle Swarm Optimization
(PSO) approach was used to reduce the communication cost for a reconfigurable archi-
tecture. A contention-aware genetic algorithm-based application mapping solution was
reported in [25], where both the spatial and temporal attributes of communication were
considered in order to optimize performance by avoiding contention. To optimize the
NoC in terms of communication cost, average latency, and energy, an efficient mapping
technique was proposed [26] using the cuckoo search technique with Levy flight. First, a
greedy algorithm was used to place the most communicative tasks together for an initial
quality solution. Levy flying meta-heuristic cuckoo search was then used to optimize task
placements for optimum mapping. In [27], the authors put forward the IHPSA optimiza-
tion method, an enhanced hybrid PSO, and the simulated annealing technique. Enhanced
Particle Swarm Optimization with SA was combined in the proposed IHPSA for applica-
tion mapping. The K-means clustering machine learning method arranges tasks based on
their communication bandwidth. The K-means clustering algorithm employed the elbow
method to intelligently predict the number of clusters in extensive applications. Eventu-
ally. Heuristics were applied to achieve the optimal cost for real benchmark applications
and synthetic instances. The authors of [28] presented RAMAN, a method inspired by
Reinforcement Learning (RL), for 2D NoC-based application mapping. RAMAN is an
enhanced Q-learning algorithm influenced by RL that aims to achieve mapping solutions
with the lowest possible and optimized communication cost. The results of this method
show tremendous potential in terms of lower complexity and cost while tackling appli-
cation mapping problems. In [29], linear programming was employed to mathematically
model the mapping problem in NoC. Various constraints related to communication ca-
pacity and power budget were incorporated. Finally, simmulated annealing integrated
with GA was implemented to take into account and consider the constraints while finding
the optimum solution. The run-time application mapping technique presented in [30]
aimed to balance the load on the overall network when implementing NoC for a Cube–Tree
Hybrid (CTH) topology. The authors exploited the low network diameter of this topology
with its high scalability, resulting in reduced mapping overhead. A significant reduction
in execution time was observed during experimentation. A hybrid task mapping HyDra
was proposed in [31] that incorporates design time mapping and runtime reconfiguration
with the aim of reducing communication energy. At design time, multiple mapping so-
lutions are produced to reduce latency and energy. As the applications arrive at runtime,
the design time mappings are either used according to the applications or reconfigured
based on the requirements. While many such algorithms have been developed, they may
suffer from suboptimal performance along with inefficient convergence and complexity.
To tackle these challenges, the authors of [32] used Grey Wolf optimization (GWO), which
starts with cluster-based initial mapping followed by a modified GWO heuristic algorithm
with polynomial regression. The modified algorithm enhances runtime efficiency and
optimizes the overall mapping quality. In [33], the authors discussed various real-time
application mapping techniques for complex multicore platforms. They categorized these
techniques by emphasizing their optimization goals, such as communication cost and
energy consumption in NoC-based systems. Future challenges, trends, and simulation
tools in this area were presented as well. Application mapping in both 2D and 3D remains
a complex challenge that requires further development of efficient algorithms. To address
the outstanding challenges, a neural mapping model with a reinforcement learning (RL)
approach (NeurMap3D) was presented in [34] to develop application-specific 3D NoCs.
In addition, a neural congestion-aware mechanism was presented to address application
mapping issues via placement and mapping and to incorporate TSV placement and load
balancing in NoC.
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3. Mathematical Formulation/Performance Metrics

This section discusses NoC platform assessment criteria such as communication cost,
latency, energy, and power.

3.1. Communication Cost Model

Communication Cost in NoC-based formulations is presented in Equation (2):

Cost = ∑
i,j

[Bti ,tj × Ni,j], (2)

where Bti ,tj is the bandwidth between tile ti and tj and Ni,j is the Manhattan distance. The
NoC architecture’s Manhattan distance between the source nodes (xi, yi) and destination
nodes (xj, yj) is provided by

Ni,j = |xi − xj|+ |yi − yj|. (3)

3.2. Power Model

Power and energy are calculated based on the execution of a given traffic pattern.
Pwact,j and Pwinact,j are component j’s active and passive power at 1.0 V and 1.0 GHz,
respectively. Let alphai,j be the active reading of component j in router i; then, the average
power Pwav [35] is expressed by

Pwav =
1
N

N

∑
i=1

Ni

∑
j=1

[αi,j · Pwact,j + (1− αi,j) · Pwinact,j] (4)

where Pwact,j is j’s component power when active, Pwinact,j signifies component j’s power
while inactive, and αi,j reflects active measurement of component j in the router i.

3.3. Latency Model

The average latency of the NoC is shown in Equation (5):

Ltav =
1
N

N

∑
i=1

1
Ni

Ni

∑
j=1

Lti,j (5)

where Lti,j is the latency of packet j from one tile to another, N represents the number of
processors in the mesh, and Ni reflects the quantity of packets received by a processor after
the warm-up period.

3.4. Energy Model

The energy model estimates the network router energy consumption, represented
as follows:

EB = EsB + ELB (6)

where EB consists of the switch energy EsB and link energy ELB of the NoC. It is this
energy that is consumed to transfer one bit data between the source and the destination.
The following equation computes the average network energy consumption, denoted as
EB(pi ,pj)

, used for the transfer of one bit of data between source (pi) and destination (pj):

EB(pi ,pj)
= HcountESB + (Hcount − 1)ELB (7)

where Hcount represents the Manhattan distance between the source nodes (ai, aj) and
destination nodes (bi, bj).

Hcount = |ai − bi|+ |aj − bj| (8)
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Consequently, the network’s total energy consumption (ET) is determined by the
average network energy and the link bandwidth BW(pi ,pj)

from pi to pj.

ET =
Hcount

∑
i,j

(EB(pi ,pj)
× BW(pi ,pj))

(9)

Hence, the final equation takes the form

ET = ∑
i,j

[
(Hcount × ESB + (Hcount − 1)× ELB)× BW(pi ,pj))

]
. (10)

For cost computation (CC), the following equation can be used:

CC = ∑
i,j
(Hcount × BW(pi ,pj)

). (11)

Various mappings lead to distinct energy and communication cost values. The primary
aim is to derive a mapping function for the NoC with minimal cost. In this research, we
use communication cost as the main performance metric for distinct applications.

3.5. Mathematical Formulation Model

Application mapping for 2D NoC design, including preliminary knowledge and a
mathematical model, is presented in this subsection. The following elements constitute the
inputs for formulating the application mapping problem.

Definition 1. A Communication Trace Graph (CTG) is defined as an undirected communication
trace graph G = (V, E, M) that is weighted and consists of a set of vertices or cores, with V, E
representing the directed edge set and M referring to the volume of data and the connectivity between
nodes in MS/s.

V = {c1, c2, c3, . . . , cn} (12)

where |V| = f inite(n)

E = {ei,j = (ci, cj) ∈ C× C|(ci, cj) ∈ C, i ̸= j} (13)

and
M : E→ M(ci, cj) = Mij (14)

where |V| = f inite(n).

Definition 2. In the Topology Graph (TG) for a network, TG = (T, L, M) constitutes the tile
collection T placed in the network topology, the collection of links for tiled pairs in T is referred to as
L, and M specifies the data volume and link between the tiles in megabytes per second.

T = {t1, t2, t3, . . . , tn} (15)

L = {li,j = (ti, tj) ∈ TxC|(ti, tj) ∈ T, i ̸= j} (16)

M : L→ M(ti, tj) = Mij (17)

Definition 3. NAG = (R, C) : The NoC Architecture Graph corresponds to the routing path
(ci,j) ∈ C) between any router pairs (ri, rj) in the network. The intermediate links traversing the
path (ri, rj) are termed hop counts (Hops) from the router ri to rj. Data are transferred or received
to and from the cores through the connected routers, and the channel ci,j acts as the physical link for
data transfer between the cores. The routing channel has limited bandwidth (Bi,j) between the nodes.
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4. Proposed Framework of IWO Algorithm

This section presents a new metaheuristic IWOA for a 2D NoC-based multicore
platform with strong local and global search capabilities. On the whole, the algorithm
attains several mapping solutions (explores the promising search space) by emulating
whale hunting behavior, eventually converging to the best possible solution.

4.1. Inspiration for NoC Application Mapping

The metaheuristic method described in [36] simulates hunting behavior using a ran-
dom agent or the best search agent to track prey. Researchers have found that Humpback
Whales pursue prey by creating distinctive bubbles in a circular pattern, and are the only
species known to engage in bubble-net feeding [37,38]. The hunting mechanism of whales
is modeled in the proposed work to carry out NoC application mapping optimization. The
whales’ hunting mechanism uses search agents to find the optimal position. As the search
agent approaches the prey, the other agents update their locations to discover the best
solution. Each search agent corresponds to the task mapping solution, which is assessed on
the basis of communication cost. Based on the reference mapping solution, other mapping
solutions update their locations (tasks to core mapping). The basic WOA algorithm em-
ploys random initial mapping solutions, which are improved over further WOA iteration.
However, in this work we modify the WOA algorithm to generate an initial mapping
solution using a set of criteria, providing the optimization algorithm with a head start. The
algorithm then progressively improves the initial mapping through further iteration.

Modified WOA with Targeted Initial Mapping Generation Heuristic searches for IP
mapping are frequently employed; however, they often become trapped in local optima.
This shortcoming is primarily attributable to the first population/solution generation
stage of heuristic searches. Most transformational heuristics generate a random starting
population, and the search procedure can then be seen as a search of the entire search
space. In some heuristic procedures, the initial population/solution is formed using
predefined criteria, expert information, and/or system attributes. These criteria may not
work for large or complex problems. If the initial population generation is not effective,
incremental improvement towards finding an optimal solution will be limited. In swarm-
based intelligence optimization techniques, the initial population quality has a significant
impact on the algorithm’s speed and accuracy [39,40]. In the proposed work, the WOA
algorithm is modified in terms of initial mapping generation, and is then employed to
enhance overall application mapping to NoC Cores. The initial population is produced
using the good point set approach instead of the random initial population generation
in the standard WOA. This method is an efficient approach that can aid in minimizing
the number of attempts and reaching optimal solutions in fewer iterations. The solutions
produced using the good point set sequence exhibit a better distribution of solutions than
the sequences chosen by the general random method [41]. This approach is used to generate
initial mapping solutions for mesh-based 2D NoC architectures. To generate a mapping
sequence using the good point set method, a sequence of m points in s-dimensional space
is generated and represented as discussed below: Generate points such that

r = r1, r2, r3, (18)

ri = 2× Cos(2i/p), (19)

where i can be set to any value for generating various mapping points, and let p be a prime
which satisfies p ≥ 2s + 3. Now, using the several mapping points generated, a mapping
sequence is generated that is stored in T(s−map):

T(s−map) = (r1 × k), (r1 × k), (r1 × k), ....(rm × k) (20)

where r1 − rm are the total mapping points generated and k = 1, 2, 3, . . . , n, where n is
designated as the total number of cores for which mapping is generated. For NoCs having
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certain application tasks to be mapped onto s × s sized mesh architectures, we can take m
as the number of generated tasks or points. As the population size can be set to any number,
various individual T(s−map) mapping solutions are generated as an initial generation, e.g.,
for 16 tasks to be mapped onto a 4 × 4 Mesh 2D NoC platform, we can set m to a certain
number and set popSize to another number for which diverse task mapping solutions are
to be created. The algorithm of the good point set method is provided in Algorithm 1. The
set of initial mappings generated using the good point set method can be considered as
one of the pools of the initial mapping initMappinggps. The good point set method does
not use any key characteristics such as communication between tasks and the number of
connected neighbors. Thus, application task graph expert knowledge can be utilized to
generate initial solutions. This initial mapping can be placed in a second pool based on
communication between the cores, termed initMappingcomm. The final initial mappings are
selected from the top-ranked mappings of both pools, which participate in the optimization
algorithm. The second pool of initial mappings maps application tasks to the NoC platform
using the communication weights between core edges. A core is first selected from the core
graph and that specific core’s total communication bandwidth and average communication
are noted.

Algorithm 1 Initial Mapping Algorithm

Initialization:
Input: popSize, m
stopCriteria: popSize
while stopCriteria do

for i← 1 to m do
Calculate ri using Equation (19) to generate mapping points considering value of
P
Create Tasks to core mappings T(s−map) using Equation (20)

end for
initMappinggps = T(s−map)

end while

The total weight TW of the selected core is provided by

TWi = ∑
eije/E

twij. (21)

The average communication is expressed as follows:

TWi = ∑
eijϵ/E

twij × (1/Nci ) (22)

where TWi is the total communication weight between the cores and N(ci)
is the number

of available neighbor cores of core ci. In this way, the total communication and average
communication of each specific core are calculated and the neighbors of every core are
noted along with communication-related details. The first task to be selected is the one
with the highest total communication bandwidth, which is placed onto the NoC platform
at any location, and its neighbors are mapped next. If multiple neighbors are available,
then the neighbor with a higher communication weight with the mapped task is placed
at the closest location to the NoC. Then, the other neighbors of the first mapped task are
placed based on their communication weights. When all the neighbors of the mapped task
have been placed, the neighbors of already-mapped (recently mapped) tasks are placed.
The choice is based on the mapped task with the maximum weight; this core is selected
and its neighbors mapped using the same communication weight criteria as above. All of
the cores are mapped in this manner. This initial mapping procedure assumes that any job
mapped to a core must not be mapped to any other NoC location or considered for any
other placement. To serve this statement well in the implementation of this algorithm, a list
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of tasks that have been mapped is maintained in the list Tmapped, while the unallocated cores
are maintained in Tun-allocated. While mapping neighbors of already mapped cores, these
two lists are referenced to reach the appropriate decision. As the algorithm runs, various
mappings are achieved based on placement of cores on the NoC platform in different orders.
The communication cost for both pools is computed and the top-ranked elite mappings are
taken from both initial mapping pools to generate an enhanced initial mapping solution.
The reason for retaining and finally gathering mappings from both pools is to improve the
overall diversity of the solution.

enhancedInitMapping = initMappinggps + initMappingcomm (23)

The best mapping solution is selected as the current best candidate solution. Opti-
mization improves initial mapping solutions across numerous generations to provide final
mappings for varied applications.

4.2. Mathematical Model of IWOA

This section provides the mathematical models of various hunting capabilities of the
IWOA in terms of the NoC application mapping problem. Later, the IWOA algorithm
using the specified features and characteristics is presented.

4.2.1. Encircling/Navigating the Hunt: Unveiling Optimal Application Mapping Strategies

The whales have a special feature of trying to identify and encircle the prey’s location.
Because the ideal location within the search domain is not known in advance, the algorithm
implies that the current leading/best candidate mapping solution is near the optimal design.
The algorithm runs for a specific number of generations and iterations; consequently, the
other solutions endeavor to modify their positions with the optimal mapping solution.
These equations serve to represent this:

D = |C⃗.X⃗∗(t)− X⃗(t)|, (24)

X⃗(t + 1) = X⃗∗(t)− A⃗D⃗, (25)

where t represents the current iteration, A⃗ and C⃗ are quantities that represent coefficient
vectors, X⃗∗ is supposed to be the most effective mapping solution found in the present
generation, and X⃗ represents position vector. If a superior mapping solution exists, then
XX⃗∗ should be updated after each generation or iteration. A⃗ and C⃗ are computed using
the following equations:

A⃗ = 2⃗a⃗r− a⃗, (26)

C⃗ = 2.⃗r (27)

In both the exploration and exploitation phases, a diminishes linearly from 2 to 0
throughout the iterations, while r represents a random number between [0, 1]. Figure 1
demonstrates the information behind Equation (25) for the 2D NoC problem and shows how
mapping solution 1 (with a certain communication cost, commCost1) is updated to a new
mapping solution 2 with a better communication cost (commCost2), where commCost2 <
commCost1. Equation (25) allows the algorithm to update the mapping solution within the
vicinity of the current best solution, leading to an optimum solution over a certain number
of iterations and population sizes. The same principle can be applied to an n-dimensional
search space in 2D NoC, with the mapping search agents traversing in hypercubes around
the current most promising mapping solution.
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Figure 1. Task allocation and fitness updating process in IWOA for NoC platform.

As noted in the preceding section, the IWOA employs the bubble-net hunting tactic of
the WOA integrated into NoC-based application mapping. This strengthens the algorithm’s
ability to exploit and explore, leading to better mapping solutions. The mathematical
formulation of this procedure is as follows.

4.2.2. Exploitation Phase

To efficiently solve the application mapping problem, the IWOA uses the bubble
net behavior of whales to achieve an optimum mapping solution within a faster conver-
gence time.

1—Shrinking Encircling Mechanism: Exploitation for Mapping. In a 2D space,
Figure 2 depicts the potential positions starting from (X) towards (X∗) that can be obtained
by 0 ≤ A ≤. The shrinking encircling mechanism is modeled in a 2D NoC architecture such
that X represents a mapping solution with a certain communication cost. In contrast, X∗ is a
better solution with a better communication cost than the earlier one. The mapping denoted
as X tries to achieve a better solution, represented by X*, with a better communication cost.
This mechanism runs for a certain number of iterations until final mapping is achieved.
This mechanism to achieve optimal mapping uses Equation (26) by altering a value. In the
equation, A represents a random value with a range of ˘a to a, where a gradually diminishes
from 2 to 0 over a specified number of iterations.

2—Spiral Strategies: Elevating NOC Application Mapping. This approach first
approximates the deviation between the value of the objective function for the current
mapping solution X and the optimal value that needs to be achieved. The spiral update
position to achieve the optimal mapping is derived using the following equation:

X⃗(t + 1) = D⃗
′
(t) · ebl · cos(2πl) + X⃗∗(t) (28)

where D⃗
′
(t) is provided by

D⃗
′
(t) = |X⃗∗(t)− X⃗(t)|. (29)

The equation shows the value of the ith mapping from the best mapping solution
obtained thus far, where b determines the logarithmic spiral’s shape while l is a random
number. As the mapping is achieved using the shrinking circle and the spiral-shaped
mechanism simultaneously, it is presumed that there is an equal 50% probability of selecting
either the shrinking circular mechanism or the spiral model to update the mapping methods.
The mathematical model takes the following form:
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Dit =

{
X⃗∗(t)− X⃗(t) if p < 0.5
D⃗
′
(t) · ebl · cos(2πl) + X⃗∗(t) if p ≥ 0.5

(30)

where p represents a random value between 0 and 1. Figure 3 shows how various mapping
solutions are created from X until reaching the final solution X*.

Figure 2. Shrinking encircling mechanism (X∗ is the current best mapping solution).

Figure 3. Spiral update position implemented in WOA (X∗ is the current best solution).

4.2.3. Search for the Optimal Mapping Solution (Exploration Phase)

Thanks to its faster operation, the IWOA can use the strong exploration capabilities of
the whale optimization algorithm to thoroughly explore in order to converge to the optimal
solution. A variation pattern of vector A helps to find the best potential mapping with the
lowest communication cost. As the mapping solutions are created by taking inspiration
from the neighboring mapping solutions, we utilize A with certain randomized values
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between 1 and −1 in order to compel the search agents to distance themselves from the
reference mapping solution and explore more of the overall search space. Compared to the
exploitation phase, adjusting the placement of a search agent (mapping solution) does not
take place during exploration based on the best solution. Instead, we choose a search agent
(a random mapping solution) at random and perform updates based on it. This method,
along with | A | > 1, emphasizes exploration and enables the IWOA to perform a global
search. Its mathematical model is presented as follows:

D⃗ = |C⃗ · ⃗Xrand − X⃗|, (31)

X(t + 1) = ⃗Xrand − A⃗− D⃗, (32)

where X rand is a mapping solution picked at random from the current population. Several
mapping solutions surrounding a specific solution with A > 1 are created.

4.3. Proposed IWOA

In this section, a new and improved metaheuristic IWOA is presented that has power-
ful local and global search functionality. Each search agent that constitutes the mapping
solution is initialized using a certain approach between the minimum and maximum limit
in the range. In the proposed technique, the fitness function is often a primary goal to be
reduced. The proposed algorithm commences with a collection of solutions achieved using
the enhanced initial mapping mechanism instead of the conventional random mappings.
At each iteration, search agents that represent individual mapping solutions adjust their
positions concerning either a randomly chosen search agent or the current optimal solution
with the minimum communication cost. The number of iterations is predefined, and varies
depending on the application. Each mapping solution S is in the solution space SS, where
S ϵ SS represents its components such that n > 0 components, i.e., S = S1, S2, . . . ..Sn, where
i = 1, 2, 3, . . . .., n; here, n represents the scope of the optimization problem to be solved.
To promote better exploration and exploitation, the value of parameter a is varied from
2 to 0. Random mapping is chosen in the proposed mapping technique when | A | > 1.
In contrast, the selection of the best candidate mapping is carried out when | A | < 1 for
modifying the mapping solutions of other search agents within the search space. This
adaptive variation-based feature of the vector A⃗ permits the IWOA to transition seamlessly
between exploration and exploitation while achieving better mapping results. After per-
forming in-depth analysis and comparison, the appropriate values for the input parameters
of the algorithm are determined. It should be noted that a parameter combination that
works well for one situation may not work the same way for another. Algorithm 2 provides
the pseudocode of the IWOA. In each iteration, the algorithm efficiently obtains a better
mapping solution as compared to the previous iterations, depending upon the fitness
function. The termination criteria is the achievement of the required fitness value, that is,
when the mapping solution with the lowest communication cost has been obtained. The
IWOA’s method for solving the optimization issue is a global optimizer which includes
exploration and exploitation capabilities. As the algorithm runs, the initial mappings are
fine-tuned to adjust the placement of tasks to the cores, ensuring that better solutions are
achieved in each iteration. The flowchat of IWOA is presented in Figure 4.
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Algorithm 2 Improved Whale Optimization Mapping Algorithm

Initialization:
Input: enhancedInitMapping, taskGraph, itrWOA, itrIGA, a, C, l, A, p
stopCriteria: itrTotal, OptimalCommCost
// Find pop, v, fitness
initPopFitness(enhancedInitMapping, popsize, meshSize)
// Find gbestpop, gbestfitness
getinitbest( f itness, pop) //X∗ = BestSearchAgent
while stopCriteria do

for i← 1 to itrWOA do
for searchAgentj← 1 to popsize do

Update parameters A, C, a, l, p
A⃗ = 2⃗a.⃗r− a⃗
C⃗ = 2.⃗r
if p < 0.5 then

if |A| < 1 then
Update the current mapping solution using Equation (24), finally updating
pop[j]

end if
if |A| ≥ 1 then

Select a random mapping solution-Xrand
Update the position of the current mapping solution by the Equation (32),
finally updating pop[j]

end if
end if
if p ≥ 0.5 then

Update the position of the current mapping solution by the Equation (28)
updating pop[j]

end if
end for
// Check If a search agent-based solution exceeds the search space, modify it.
for particlej← 1 to pop_size do

calCommCost(meshSize, pop[j], tashGraph)
end for
gbest f itness = mim(pop[j])
gbestpop = min(pop)

end for
if gbest f itness == optimalCommCost then

f inalmapping← gbestpop
optimalCommCost← gbest f itness

end if
itrIWOA = itrIWOA + 1
update(gbest f itness, f inalMapping

end while
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Figure 4. IWOA Flowchart.

5. IWOA-IGA—Enhanced WOA Algorithm Featuring Improved Genetic Mechanism

In this paper, a modified and improved WOA (IWOA) is presented to solve the ap-
plication mapping problem in NoC. The incorporated IWOA algorithm has better global
and local search ability; however, for certain scenarios, such as large-scale complex prob-
lems, it may undergo lower convergence accuracy and can fall into local optimum. To
avoid such problems and scenarios, an improved GA is executed along with the IWOA to
achieve optimal solutions. The GA uses a biological evolutionary mechanism, and, as a
global-based search optimizer, it searches for the optimum solution in the search space for
complex problems. GAs have proven to be robust and effective in exploring complex spaces.
Hence, they can effectively solve a wide range of pattern recognition, artificial intelligence,
resource allocation, and similar complex challenges. To achieve better mapping solutions,
the proposed modified IWOA algorithm is integrated with an improved genetic algorithm
incorporating improved crossover and mutation abilities. This further enhances the ability
to find the optimum solution within the search space with better convergence towards the
final mapping solution. In addition, according to the original whale optimization algo-
rithm [30], in order to accurately mimic whale behavior and obtain improved optimization
results, evolution-based characteristics must be added to the WOA algorithm. Instead of
using conventional GA characteristics such as random selection of parents and choosing
random points for crossover [42], the proposed technique uses modified crossover and
mutation. This can help to avoid local optima and promotes faster convergence with better
searchability and higher population diversity. Hence, to achieve optimal mapping solutions
for the 2D NOC platform, the modified GA is directly integrated with the IWOA, influ-
encing the overall algorithm’s ability to generate high-quality individuals with reduced
energy, latency, and power requirements.

5.1. Important Aspects of Genetic Algorithm

The genetic flowchart depicted in Figure 5 resembles biological evolution [9]. A
traditional GA begins with an initial random population comprised of randomly chosen
chromosomes that produce offspring via crossover and mutation. It continues to work
iteratively until a predetermined count of iterations is completed or a termination criterion
is satisfied. A pre-set fitness function determines the fitness of the chromosomes and the
communication cost on the NoC platform.
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Figure 5. Genetic algorithm flowchart.

5.2. IGA Framework

This article focuses solely on a single objective, namely, use of an improved GA
integrated with an improved WOA for solving application mapping through better search
ability and population diversity. The population obtained from the IWOA is fed into the
modified GA, which uses direction-based crossover features [43] and mutation ability
to generate high-quality mapping solutions. Each chromosome in the GA signifies a
mapping solution of the 2D NoC mapping problem. The subtasks imply the genes in the
chromosomes. The various individual mapping solutions undergo through the genetic-
based process for some number of iterations and generations to produce high-quality
mapping solutions.

5.2.1. Improved Genetic Algorithm Formulation

The genetic operators exert different levels of impact on the algorithm, with selec-
tion identifying the most promising chromosomes for crossover to enhance the solutions.
Crossover combines genetic data to improve population characteristics, while mutation
introduces new genes to address the weaknesses of crossover.

5.2.2. Expert Initial Curation for NoC Application Mapping Excellence

The selection operator selects the individuals that participate in crossover and muta-
tion; hence, their selection substantially impacts the entire GA process [44]. The proposed
modified algorithm uses expert criteria-based selection to choose the initial mapping solu-
tions to undergo crossover and mutation. This is contrary to the random selection used in
the conventional GA. Initially, the mapping solutions achieved by the IWOA are ordered
according to the objective function F(X) (communication cost) and treated as an initial
population for the IGA, represented as

X = {X1, X2, . . . . . . Xn, } (33)

while the sorted population is provided by

Xs = {Xs
1, Xs

2, .....Xs
n} (34)

which satisfies F(Xs
1) ≥ F(Xs

2) ≥, . . . . . . F(Xs
n). Each element in X and Xs shows individual

mapping solutions. The population obtained by the IWOA is sorted and divided into
four groups (X1, X2, X3, X4), which are paired with each other ((X1, X2), (X1, X3), (X1, X4),
(X2, X3), (X2, X4), (X3, X4)) to form X(mapa) and X(mapb). Crossover is performed using
the elements of X(mapa) and X(mapb).

5.2.3. NoC Application Mapping: Directional Optimization Incorporating Crossover
and Mutation

The GA’s central process significantly affects the algorithm’s ability to seek improved
and optimal solutions [45]. The more optimal the objective function is for any individual
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solution, the closer the mapping combination will be to the optimal region. Hence, the
proposed IWOA-IGA uses a direction-based crossover operator. The modified crossover
operation has good ability for searching the overall search space, and can produce mapping
solutions with a larger probability of enhancing the objective function, thereby speeding up
the algorithm’s convergence. As in the initial step of the GA, the population of mapping
solutions is divided into two groups, X(mapa) and X(mapb). The communication cost of
the individual solutions in X(mapa) is superior to those of the solutions in X(mapb); thus,
X(mapa) is the leader in the direction of crossovers for producing high quality solutions.
The mathematical equation that generates the mapping solutions with directional-based
crossover is provided by{

X∗i = Xmapa
i + rij · D⃗ij

D⃗ij = Xmapa
i − Xmapb

i i = 1, .....3n/2, j = 1, ....., m
, (35)

where D⃗ij represents the directional vector. The parameter rij is a uniformly distributed ran-
dom number ranging from −1 to 1. Thus, in directional crossover based on grouping-wise
solutions, each mapping pair develops into one mapping solution, eventually generat-
ing new individuals. Finally, it sorts the high-quality mapping solutions with the best
communication cost, developing n individuals as offspring of the crossover.

To see the effect of the direction-based crossover operation on two of the paired map-
ping solutions, paired individuals are shown to occupy a certain space in the appropriate
region. As rij takes on boundaries between 1 and −1, the paired mapping solutions will
take various directions to reach the optimal communication cost value. The various direc-
tions for solution X1 can be X1 with D11, D12, D11, D12, as shown in Figure 6. The solution
in the region is shown by the rectangle with its center at X1 and X2 as one vertex. Having
now obtained various paired mapping solutions, they can be used to generate many such
rectangular patterns; along with the selection process, direction-based crossover assists
the algorithm in generating high-quality solutions in the direction of the optimal solution.
Parents X1 and X2 can produce offspring that will tend to have better communication costs.
The crossover operation recombines the parents’ chromosomes, and the best offspring
undergo mutation and continue on to produce superior results.

Figure 6. Direction-based crossover.

The mutation operation is applied to offspring to achieve more optimal results. Mu-
tation allows for altering the placement of one or more mapped tasks of individuals in a
population with a specified mutation probability, which can help to promote population
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diversity and prevent premature events. The communication cost of all the resulting map-
pings are computed after mutation, and the mutation is accepted if the communication
cost of the mutated mapping is less than that of the original ones. To increase population
diversity and prevent the GA version from falling into local optima, the mechanism of
replacement operation is incorporated [43]. The basic goal of the replacement operation
is to set aside the most elite K individuals from the population for every K generation. In
traditional approaches, certain elite individual solutions are retained in parents. Never-
theless, the high-quality solutions created as a result of crossover may be affected by the
mutation operation, and their quality may degrade to some extent. Thus, in this work we
adopt a better approach to retain the most elite mapping solutions produced by the genetic
operation. In this way, the number of elite mapping solutions can be maximized to enhance
the population attributes.

5.3. IWOA-IGA: Modified IWO Algorithm Featuring IGA Characteristics

This section proposes a new enhanced hybrid IWOA-IGA application mapping tech-
nique for 2D NoCs. This algorithm combines a modified GA with improved whale features
to create a powerful local and global search capability with faster convergence. The pro-
posed hybrid approach effectively combines the exploratory advantages of the IWOA with
improved search capability with the accelerated convergence and local optima avoidance
features of the IGA. Their combination can maintain a high level of population diversity
to achieve the global optimal application mapping solution. The initial mapping solution
is generated using the enhanced initial mapping to give a head start to the optimization
algorithm, enhancing its performance in the search space. To effectively integrate the IGA
and IWOA, The IWOA incorporates the IGA into each of its K iterations until the ideal
solution is found. The algorithm runs for a certain number of iterations and simulations.
Each K iteration is predetermined and changes depending on the application. The fitness
function holds significant importance within the realm of optimization mapping problems,
as it represents the objective we seek to minimize in order to reach the optimal solution.
If the best global solution remains unchanged for the last K number of iterations, this
suggests that the algorithm might have become stuck at an optimal local value. The IWOA
optimizes the mapping solution in certain generations, and the adaptive strategy drives
a well balanced search operation. To enhance the rate of convergence and prevent the
algorithm from becoming stuck in local optima, additional improved genetic features
such as groupwise selection, direction-based crossover, and mutation characteristics are
incorporated. Direction-based crossover allows the diverse mapping solutions in each
generation to efficiently converge towards the optimum solution. The input parameters
for the technique are chosen after a thorough assessment. Certain parameters are allowed
to adapt according to the environment and the solutions acquired in each K iteration,
allowing the algorithm to achieve better convergence and search features. The IWOA-IGA
pseudocode and framework are presented in Algorithm 3 and Figure 7, respectively.

Parameter Settings for the Proposed Hybrid Algorithm

The proposed hybrid method necessitates the specification of a few fundamental
parameters to determine the efficacy of group searching. Numerous simulations and
satisfying results were used to pick the parameter values for the proposed algorithm in
order to produce an effective solution. Well balanced exploration and exploitation ability is
derived using adaptive parameter adjustment, which results in updating of the vector A⃗.
The algorithm uses a few other parameters, such as r (a random vector between [0,1]), and
a linear decline from 2 to 0 is performed throughout iteration during both the exploration
and exploitation phases. For the shrinking encircling mechanism, A takes a random
value between −a and a, where a gradually diminishes from 2 to 0 throughout iteration.
Configuring A within [−1, 1] can result in a new position for the mapping solution between
the original position and the current best position. For the spiral mapping position, the
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parameter b is kept at a constant value to maintain the shape of the spiral, while l is varied
between [−1, 1] to help the algorithm achieve better mapping solutions.

Algorithm 3 IWOA Integrated with IGA
Input: enhancedInitMapping, taskGraph, itrWOA, itrIGA, a, C, l, A, p
stopCriteria: itrTotal, OptimalCommCost
// Find pop, v, fitness and gbestpop, gbestfitness
initPopFitness(enhancedInitMapping, popsize, meshSize)
getinitbest( f itness, pop) //X∗ = BestSearchAgent
while stopCriteria do

for i← 1 to itrWOA do
for searchAgentj← 1 to popsize do

Update parameters A, C, a, l, p
A⃗ = 2⃗a.⃗r− a⃗ , C⃗ = 2.⃗r
if p < 0.5 then

if |A| < 1 then
Update current solution using Equation (24), finally updating pop[j]

end if
if |A| ≥ 1 then

Choose random mapping solution-Xrand
Update current mapping solution by the Equation (32), updating pop[j]

end if
end if
if p ≥ 0.5 then

Update Current mapping solution by Equation (28), updating pop[j]
end if

end for
for particlej← 1 to pop_size do

calCommCost(meshSize, pop[j], tashGraph)
end for
gbest f itness = mim(pop[j])
gbestpop = min(pop)

end for
if (gbest f itness == optimalCommCost) then

f inalmapping← gbestpop
optimalCommCost← gbest f itness

end if
//Apply IGA to global best solution
itrIGA← 0
//Take Pop as initial population for IGA to Optimize
//Find gbestpop, gbestfitness
getinitbest( f itness, pop)
currentbest← gbestpop//X∗ = bestsearchagent
currentbestpop← gbest f itness
SetParametersr
while itrIGA do

//Execute Selection Process
Xmapa & Xmapb

//Apply Direction Based CrossOver
Update X∗i and D⃗ij using Equation (35)
itrIWOA = itrIWOA + 1
update(gbest f itness, f inalMapping
Keep Elite Solutions & then perform Mutation forming Offsprings
if commCostO f f springs > currentBestCost then

currentBest← gbesto f f spring
currentbestCost← gbest f itness

end if
if gbest f itness == optimalCommCost then

f inalmapping← gbestpop
optimalCommCost← gbest f itness

end if
itrIGA = itrIGA + 1

end while
end while
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Figure 7. IWOA-IGA framework.

The direction-based vector D allows the algorithm to converge more quickly towards
the optimum. It entails a significant probability of producing high quality mapping so-
lutions in the direction of the optimal communication cost. The parameter rij in the
direction-based crossover mechanism is randomly generated. The parameter’s population
size and generations are set to 150 and 100, respectively. The algorithm first generates
an initial mapping, which is iteratively improved for the population size and number of
generations, eventually leading to an optimal mapping solution for a set of benchmarks.

6. Simulation Results

The simulation results of the IWOA and IWOA-IGA are examined in this part and
compared with those of existing mapping methods.

6.1. Simulation Setup and Scenario

Experiments were conducted on available real-time benchmarks and synthetic task
graphs to assess the algorithms. All benchmarks for real-world applications are limited to
small-scale tasks, often demanding fewer than 32 cores; consequently, custom benchmarks
were produced using task graph tools to evaluate the performance of our method on more
challenging issues. TGFF instances can have a problem scale anywhere from 16 to 196,
with small-scale (core count < 35), medium-scale (36 < core count < 70), and extensive-scale
(core count > 70) problems all taken into account. The TGFF tool takes the heterogeneous
communication characteristics of the cores into account and builds task graphs at random
depending on this behaviour. The set of real-world benchmark instances we used were
video object plan decoder (VOPD), 263decoder (263DEC), MPEG-4 decoder, 263encoder
(263ENC), Mp3encoder (Mp3ENC), and MWD. All real-time benchmark applications we
examined used the standard network size of 4 × 4. This network size is the same as in
prior state-of-the-art architectures, allowing for a fair comparison. The VOPD application
was divided into 16 subtasks, each of which could be allocated to a 4 × 4 mesh. Larger
mesh sizes were used for the synthetic task graphs. Details of the real-time benchmark
applications are listed in Table 1.

Modifications were implemented in the NoCTweak simulator to conduct a compar-
ative analysis of different application mapping techniques [38]. ENoCTweak was used
by applying the algorithm on various real-time and synthetic task graphs. NoCTweak is
a SystemC-based open-source NoC simulator that offers a variety of performance char-
acteristics, including energy, latency, communication cost, and throughput. In order to
apply the proposed algorithm on both the synthetic and real-time applications, it was
run on a computer system equipped with an Intel Core i3 platform, 8 GB of RAM, and a
clock frequency of 1.6 Ghz. The simulation environment used to execute the benchmark
applications on a 2D NoC architecture is detailed in Table 2. The proposed application
mapping approach was implemented in Python to provide the optimal task mapping for
the NoC. The resulting optimized mapping was executed on the NoC using the unified
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simulation framework known as ENoCTweak, which was used to simulate and analyze
critical NoC system characteristics such as latency, throughput, energy, and power.

Table 1. Standard NoC benchmarks with 2D mesh sizes.

Benchmarks Nodes Edges Mesh Size

PIP 8 8 3 × 3
MPEG-4 12 26 4 × 4

MWD 12 13 4 × 4
263encMP3dec 12 12 4 × 4
263decMP3dec 14 15 4 × 4

Mp3EncMp3Dec 13 14 4 × 4
VOPD 16 21 4 × 4

CAVLC 16 22 4 × 4
MMS 25 38 5 × 5

Table 2. Simulation setup details.

Configuration Detail

Network Type Mesh
Type of Platform Embedded

Applications VOPD, , MP3encMp3dec, MPEG4, MWD, 263encMp3dec,
263decMp3dec

Mapping Algorithm IWOA, IWO-IGA, SA, PSO
PacketDeliveryMode Without ACK
SendingACKPolicy Send ACK Optimally
Packet Distribution Exponential
Fixed Packet Length 10 (flits) moment
FlitinInjectionRate 0.1 (flits/cycle/node)

Type of Router Wormhole-Pipeline
Routing Algorithm XY DIMENSION-ORDER

OutputChannelSelection XY-ORDER
BufferSize 1 (flit)

Pipeline Type 8
StagesOfPipeline 4

InputVoltage 1 (V)
Operating Clock Frequency 100,000 (MHz)

Warm-Uptime 20,000 cycles

6.2. Performance-Based Comparative Analysis

As the main aim of this study was to enhance the communication cost, which repre-
sents the overall cost associated with running a particular application on NoC (depicted
by Equation (1)), the communication cost for both the IWOA and IWOA-IGA were first
evaluated based on real-world and TGFF-based graphs.

6.2.1. Performance Analysis Based on Standard Benchmark Instances

Both of the developed techniques were tested using real-world applications as well as
TGFF-based graphs (presented in the next section). A comparison of the IWOA and IWOA-
IGA with other advanced heuristic algorithms and with the exact mathematical solution was
carried out. Table 3 depicts the performance comparison in terms of communication cost for
various standard benchmark applications. When it comes to estimation of communication
cost, ILP (Integer Linear Programming) is regarded as the optimal solution [3]. The results
demonstrate that the proposed modified IWOA and its genetically integrated version
obtained optimal results derived from real-world instances.
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Table 3. Communication cost (bw × nh) comparison with real-world benchmark applications.

Algorithm VOPD CALVC MMS MPEG4 MWD Mp3Enc 263enc 263dec PIP

ILP 4119 - - 3567 1120 17.021 230.407 19.823 -
ONMAP 4119 - 663,379 3567 - - - - 640

GA 4141 - - 3567 1321 17.133 230.69 19.911 -
SA 4125 - - 3567 1451 - - - -

BEMAP 4119 6701 664,636 3567 - - - - 640
ACO - - - 3670 - 17.231 - - -
PSO 4119 - - 3567 1120 17.021 230.45 19.823 -
BA 4119 - - 3567 1120 17.834 231.45 19.936 -

HDPSO 4119 - - 3567 - - - - -
CSO 4119 6721 652,637 3567 - - - - 640

SCSO 4119 - - 3567 1122 17.021 230.407 19.823 -
DPSO 4119 - 688,297 3567 1120 17.021 - 19.823 640

RAMAN 4135 - - 3774 1184 17.87 234.4 19.87 640
SFOA 4119 - - 3567 1120 17.021 230.407 19.823 -
ACA 4119 6721 652,637 3567 1120 17.021 - - -

iHPSA 4119 - - 3567 1120 17.021 230.407 19.823 -
IWOA 4119 6701 663,379 3567 1122 17.021 230.69 19.823 -

IWOA-IGA 4119 6701 663,379 3567 1122 17.021 230.69 19.82 -

6.2.2. Performance Analysis on TGFF Random Instances

This section presents the details of the generated TGFF random instances and their
use in evaluating the algorithms with varying mesh sizes. For the sake of experimentation
with large-scale applications, random synthetic task graphs were generated using the TGFF
tool, which generates task graphs with 32, 64, and 128 cores. TGFF, known as Task Graphs
For Free, is meticulously crafted to offer a standardized approach for generating arbitrary
task graphs for experimentation purposes in research work. In our evaluation, we used
mesh sizes of 6 × 6 for up to 32 core placements, 8 × 8 to accommodate 64 core graphs, and
12 × 12 for 128 core task graphs. The task graphs were configured to use a communication
bandwidth of 50–600 MB/s between the interconnected tasks. As the tasks using the TGFF
tools are randomly generated, there is no specific optimal value for the communication
cost; however, there must be some criteria to evaluate the performance of the generated
large-scale tasks. A few important considerations could include the number of generations
for which the algorithms can execute and the communication cost value be achieved at that
instance. Another consideration is the number of iterations for which the algorithm runs
and the targeted communication cost to be achieved after a specified number of iterations.
We observed that when the number of iterations was configured to a value between 180–200
and the IWAO-IGA was executed for the 200 iterations, the IWAO-IGA achieved the desired
communication cost in fewer iterations than the IWOA for larger applications.

This is due to the integration of directional crossover and mutation features into the
IWAO mechanism, allowing the algorithm to perform better when searching for optimal
solutions in the search space and to attain the desired cost in a lesser number of iterations
than to the simple IWOA. Moreover, the proposed algorithm attains the desired cost within
a reduced number of iterations in comparison with other advanced and optimization algo-
rithms, e.g., SA, GA, and PSO. A cost savings-based comparative analysis is presented in
Tables 4 and 5 and in Figure 8. Across the tested benchmarks, the proposed IWOA reliably
lowers the communication cost by an average of 41.31%, 46.61%, and 44.00% compared
to PSO, SA, and GA, respectively, for 32 cores. In the case with 64 cores, the average
improvement in cost is 38.70%, 31.94%, and 39.78%, respectively. The proposed algorithm
consistently achieves a significant average reduction in communication cost when applied
to scenarios involving 128 cores, with respective improvements of 17.37%, 20.99%, and
16.12% over PSO, SA, and GA. These outcomes highlight that the proposed algorithm
outperforms applications with a moderate number of cores. However, as the nubmer of
cores rises to surpass a certain threshold, the algorithm’s performance becomes average
compared to its efficiency with a lower number of cores. As the algorithm was further
modified by adding an improved GA algorithm to ensure better results when larger appli-
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cations are executed on it, the modified IWOA-IGA was tested again on larger TGFF-based
applications implemented on 32, 64, and 128 cores. The IWOA-IGA minimizes commu-
nication costs effectively, with an average improvement of 45.66%, 50.56%, and 48.15%,
respectively, for 32 cores. For the configuration with 64 cores, the average improvement
in communication cost was 40.29%, 33.70%, and 41.33%, respectively. With 128 cores, the
proposed technique produced respective average reductions in communication cost of
30.60%, 33.31%, and 26.67%. Table 5 shows the results.

Table 4. Percent communication cost savings with IWOA compared to other algorithms for extensive
task graphs.

Task Graph Over PSO Over SA Over GA

32 Cores 41.31% 46.661% 44.00%
64 Cores 38.70% 31.94% 39.78%

128 Cores 17.37% 20.99% 16.12%

Table 5. Percent communication cost savings with IWOA-IGA compared to other algorithms for
extensive task graphs.

Task Graph Over PSO Over SA Over GA

32 Cores 45.66% 50.56% 48.15%
64 Cores 40.29% 33.70% 41.33%

128 Cores 30.60% 33.31% 26.67%

Figure 8. Comparison of communication costs for large synthetic task graphs.

6.2.3. Performance Comparison of IWOA and IWOA-IGA: Optimizing Power and Energy
in 2D NoC Benchmark Applications.

To assess the proposed algorithm’s power efficiency, we opted for the Orion Model [40,46],
which analyzes the power and energy of the network and can be integrated into a simulation
environment to compute the network’s overall energy. The NoCtweak simulator was used
for power estimation, which was conducted using a standard cell library and the ORION-2
model, allowing for accurate evaluation of power consumption at different CMOS nodes.
This simulation tool derives both power and energy consumption. By utilizing post-
layout power details sourced from 2D NoC components, these estimations are based on
component behavior when executing traffic patterns or real-time programs with a given
mapping. Regarding the power metrics, the proposed IWOA improves power reduction by
an average of 21.93%, 30.20%, 22.07%, 26.92%, 15.84%, 8.70%, 7.78%, 1.9%, 7.66%, and 5.48%
over the PSO, SA, GA, ACO, BA, SCSO, ILP, iHPSO, CSO, and SFO algorithms, respectively.
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We observed that IWOA integrated with GA further improves the power reduction by an
average of 22.09%, 30.34%, 22.23%, 27.07%, 16.24%, 8.89%, 7.97%, 2.07%, 7.84%, and 5.63%
over the PSO, SA, GA, ACO, BA, SCSO, ILP, iHPSO, CSO, and SFO algorithms, respectively.
It is notable that there was an average power difference of 3–4% when the simulation was
carried out using the IWOA-IGA instead of the IWOA with real-time benchmarks. This is
because both algorithms have different features and abilities to achieve optimal mapping
solutions. Overall, these results demonstrate that the proposed algorithms consume less
power than existing bio-inspired algorithms. The comparison of projected power values
through the proposed methods is visually depicted in Figure 9.

Figure 10 shows the energy consumption for the various methods. The mapping tech-
nique implemented in the proposed work outshines competing state-of-the-art techniques
such as PSO, SA, GA, and iHPSA in terms of energy consumption. In comparison to PSO,
SA, GA, and iHPSA, IWOA reduces energy consumption by 1.7%, 13.89%, 17.47%, and
0.2%. The improved version yields improvements of over 3.22% compared to PSO, 15.38%
compared to SA, 27.58% compared to GA, and 1.64% compared to iHPSA.

Figure 9. Power estimation for standard benchmarks.

Figure 10. Energy estimation for standard benchmarks (normalized).

6.2.4. Performance Comparison of IWOA and IWOA-IGA: Optimizing Latency for 2D NoC
Benchmark Applications

Network communication latency is a crucial factor to consider when evaluating map-
ping solutions. This subsection discusses the average latency derived with various ap-
proaches. Utilizing the NoC simulator [39], the proposed work was evaluated on a 4 × 4
mesh topology with an X–Y routing algorithm and wormhole-based routers. The evaluation
showed that the IWO algorithm yielded latency improvements of 1.91% over PSO, 5.14%
over SA, 5.7% over GA, and 1% over iHPSA. The extended IWOA-IGA version showed
improvements of 2.87% over PSO, 6.08% over SA, 6.61% over GA, and 2% over iHPSA.
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The comparison is illustrated in the Figure 11.

Figure 11. Average latency for standard benchmarks.

6.2.5. Convergence Evaluation Based on Convergence Factor

Convergence of any algorithm is one of the most important factors of an application
mapping technique intended to acquire optimal mapping in a lesser number of iterations.
Different algorithms running different applications may utilize different numbers of itera-
tions and communication costs for the calculation of optimal mapping. Mathematically
exact methods are able to solve small-scale problems (less than 20 cores) in around 7–8 h.
While heuristic techniques are much faster, they may not offer optimal communication
cost. They normally achieve near-optimal cost after the algorithm has run for a specific
number of iterations. An algorithm that requires fewer iterations to achieve the lowest
communication cost is considered to converge well, and is rated as highly suitable for the
application mapping problem domain. Thus, one of the performance metrics considered in
this paper is the convergence factor, which evaluates the algorithm’s ability to converge
effectively. Performance based on algorithm convergence ability is measured by calculating
the average number of times the algorithm successfully converges, taking into account
the number of hits achieved by the algorithm out of the total number of runs. To evaluate
performance based on the convergence factor, the algorithms were tested 30 times while
measuring the convergence factor for a range of real-time and synthetic task graphs of
varying sizes. The proposed method was compared with PSO, SA, GA, and iHPSA based
on the number of times the algorithms achieved the lowest communication cost over a
certain number of runs. The equation for calculating the convergence factor is provided by

Per fc f = Navc/NRtotal , (36)

where Per fc f is the performance based on the convergence factor, Navc is the average
number of times the algorithm converged, and NRtotal is the total number of times the
algorithm was run. The comparison results for the real-world and synthetic applications are
shown in Table 6, which shows that the algorithm converged several times when being run
30 times. The table shows Navc, the average number of times the algorithm converged for
the specific application, which is calculated here based on half of the algorithm’s executions
R1–R15 (average halved) instead of 30, which is NRtotal , the total number of times the
algorithm was run for a specific application.

Table 6. Performance evaluation based on convergence.

Applications Navc NRtotal Per fc f

PSO 10.71 15 7.14
SA 10.28 15 6.85
GA 11.14 15 7.42

IWOA 11.42 15 7.61
IWOA-IGA 12.42 15 8.2
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The average value of convergence NavC calculated for PSO, SA, GA, IWOA, and
IWOA-IGA against real and synthetic benchmarks was found to be 10.71, 10.28, 11.14,
11.42, and 12.42, respectively. As NavC is directly proportional to Per fCF, a higher NavC
value for an algorithm indicates better performance in terms of average convergence for
a specified number of runs. The calculated Per fCF values for PSO, SA, GA, IWOA, and
IWOA-IGA are 0.71, 0.68, 0.74, 0.76, and 0.82 respectively, which shows that the proposed
algorithms converged several more times compared to the others when applied to the real
and synthetic task graphs.

Figure 12 shows the graphical representation of the convergence factor results as
derived using NavC. The graph shows the better values of NavC and performance based
on the convergence factor achieved by the proposed algorithms in comparison to other
competitive algorithms.

A statistical analysis of the results reveals that the IWOA-IGA hybrid algorithm
significantly reduces communication costs across different core configurations. For 32 cores,
the hybrid algorithm achieves an average reduction of 48.12% compared to the other
optimization algorithms. Similarly, for 64 cores the reduction is 38.11%, whie for 128 cores
it is 30.53%. Regarding energy efficiency, the algorithm outperforms PSO by 3.22%, SA
by 15.38%, GA by 27.58%, and iHPSA by 1.64%. Additionally, the IWOA-IGA exhibits
superior convergence, with a Per fCF value of 0.82, indicating its effectiveness on both real
and synthetic task graphs. The IWOA-IGA shows improved latency as well, achieving
improvements of 2.87% over PSO, 6.08% over SA, 6.61% over GA, and 2% over iHPSA.
In conclusion, the improved whale optimization algorithm integrated with specialized
modified genetic algorithm properties presents superior performance in solving mapping
problems within Network-on-Chip (NoC) architectures. Its effectiveness surpasses that of
other state-of-the-art algorithms, establishing it as a viable and advantageous solution for
addressing complex NoC challenges.

Figure 12. Performance based on convergence factor.

7. Conclusions

In this paper, we have presented a hybrid model incorporating an improved whale
optimization algorithm with a modified enhanced version of genetic algorithm for the
allocation of real-world applications onto 2D NoCs. The proposed algorithm incorporates
enhanced initial mapping instead of random initial mapping to provide a head start to
the optimization algorithm in achieving the global optimum solution. In the first step, the
IWOA algorithm is introduced to address the application mapping challenge. To further
improve the efficiency of the proposed algorithm, an enhanced and modified genetic algo-
rithm which uses expert-based selection, direction-based cross-over, and mutation abilities
is integrated with the IWOA to produce high-quality mapping solutions. This tweaked GA
features helps the IWOA to achieve optimal mapping with faster convergence, allowing it
to avoid local optima through its enhanced search capability. Extensive experimentation
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and analysis were performed with both real-time benchmarks and synthetic large-scale
task graphs. The proposed IWOA-IGA shows significant improvements regarding com-
munication cost, average power, energy, and latency over other competitive algorithms,
demonstrating its high potential. In future work, the proposed algorithm can be employed
to map real-time applications onto alternative NoC topologies.
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