
 
 

 
 

 
Algorithms 2024, 17, 88. https://doi.org/10.3390/a17020088 www.mdpi.com/journal/algorithms 

Article 

An Adaptive Linear Programming Algorithm with  
Parameter Learning 
Lin Guo 1, Anand Balu Nellippallil 2, Warren F. Smith 3, Janet K. Allen 4,* and Farrokh Mistree 4 

1 Department of Industrial Engineering, South Dakota School of Mines and Technology,  
Rapid City, SD 57701, USA; lin.guo@sdsmt.edu 

2 Department of Mechanical and Civil Engineering, Florida Institute of Technology,  
Melbourne, FL 32901, USA; anellippallil@fit.edu 

3 Engineering and Technology, University of New South Wales, Canberra 131318, Australia; 
w.smith@unsw.edu.au 

4 The Systems Realization Laboratory, The University of Oklahoma, Norman, OK 73019, USA;  
farrokh.mistree@ou.edu 

* Correspondence: janet.allen@ou.edu; Tel.: +1-404-403-3296 

Abstract: When dealing with engineering design problems, designers often encounter nonlinear and 
nonconvex features, multiple objectives, coupled decision making, and various levels of fidelity of 
sub-systems. To realize the design with limited computational resources, problems with the features 
above need to be linearized and then solved using solution algorithms for linear programming. The 
adaptive linear programming (ALP) algorithm is an extension of the Sequential Linear Program-
ming algorithm where a nonlinear compromise decision support problem (cDSP) is iteratively line-
arized, and the resulting linear programming problem is solved with satisficing solutions returned. 
The reduced move coefficient (RMC) is used to define how far away from the boundary the next 
linearization is to be performed, and currently, it is determined based on a heuristic. The choice of 
RMC significantly affects the efficacy of the linearization process and, hence, the rapidity of finding 
the solution. In this paper, we propose a rule-based parameter-learning procedure to vary the RMC 
at each iteration, thereby significantly increasing the speed of determining the ultimate solution. To 
demonstrate the efficacy of the ALP algorithm with parameter learning (ALPPL), we use an indus-
try-inspired problem, namely, the integrated design of a hot-rolling process chain for the production 
of a steel rod. Using the proposed ALPPL, we can incorporate domain expertise to identify the most 
relevant criteria to evaluate the performance of the linearization algorithm, quantify the criteria as 
evaluation indices, and tune the RMC to return the solutions that fall into the most desired range of 
each evaluation index. Compared with the old ALP algorithm using the golden section search to 
update the RMC, the ALPPL improves the algorithm by identifying the RMC values with better 
linearization performance without adding computational complexity. The insensitive region of the 
RMC is better explored using the ALPPL—the ALP only explores the insensitive region twice, 
whereas the ALPPL explores four times throughout the iterations. With ALPPL, we have a more 
comprehensive definition of linearization performance—given multiple design scenarios, using 
evaluation indices (EIs) including the statistics of deviations, the numbers of binding (active) con-
straints and bounds, the numbers of accumulated linear constraints, and the number of iterations. 
The desired range of evaluation indices (DEI) is also learned during the iterations. The RMC value 
that brings the most EIs into the DEI is returned as the best RMC, which ensures a balance between 
the accuracy of the linearization and the robustness of the solutions. For our test problem, the hot-
rolling process chain, the ALP returns the best RMC in twelve iterations considering only the devi-
ation as the linearization performance index, whereas the ALPPL returns the best RMC in fourteen 
iterations considering multiple EIs. The complexity of both the ALP and the ALPPL is O(n2). The 
parameter-learning steps can be customized to improve the parameter determination of other algo-
rithms. 
  

Citation: Guo, L.; Nellippallil, A.B.; 

Smith, W.F.; Allen, J.K.; Mistree, F. 

An Adaptive Linear Programming 

Algorithm with Parameter Learning. 

Algorithms 2024, 17, 88. https:// 

doi.org/10.3390/a17020088 

Academic Editor: Binlin Zhang 

Received: 24 December 2023 

Revised: 8 February 2024 

Accepted: 11 February 2024 

Published: 19 February 2024 

 

Copyright: © 2024 by the authors. 

Licensee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



Algorithms 2024, 17, 88 2 of 33 
 

Keywords: linear programming; adaptive linear programming; rule-based; parameter learning 
 

1. Introduction 
Solution algorithms for solving engineering design problems fall into two categories: 

(i) an optimizing strategy or (ii) a satisficing strategy. For typical engineering design prob-
lems with nonlinear, nonconvex properties that cannot be solved in a straightforward way 
using simplex, Lagrange multipliers, or other gradient-based solution algorithms, when 
applying the optimizing strategy, designers need to solve problems approximately, for 
example, using pattern search methods [1], particle swarm optimization [2], memetic al-
gorithms [3], penalty function methods [4], or metaheuristic algorithms [5]. When meth-
ods in Category (i) are used, the solutions are desired to be near-Pareto solutions, often on 
or close to the boundary of the feasible space (bounded by constraints) but not necessarily 
at a vertex of the feasible space. Whereas when methods in Category (ii) are used, such as 
sequential linear programming [6] or FEAST [7], the solutions are always at one or multi-
ple vertices of the linearized (approximated) solution space. Since the solution always in-
cludes a vertex, we are able to use information of the dual problem to explore the solution 
space [6]. Typically, in engineering design problems the number of constraints in the pri-
mal formulation exceeds the number of variables [8]. In these cases, solving the dual for-
mulation is quicker [6]. For optimization strategies, there are state-of-the-art surveys sum-
marizing and classifying linearization techniques thoroughly, such as in [9]. Linearization 
techniques are classified into two groups—nonlinear equations replaced by an exact 
equivalent LP formulation or linear approximations which find the equivalent of a non-
linear function with the least deviation around the point of interest or separate straight-
line segments. 

In this paper, our focus is on a method in Category (ii), the satisficing strategy, 
namely, the compromise decision support problem (cDSP) and adaptive linear program-
ming (ALP) algorithm [6], because it is more appropriate for engineering design problems 
by giving satisficing solutions and exploring solution space. Satisficing solutions are near-
optimal and on the vertices of the approximated linear problems. The reasons are sum-
marized in Sections 1.1 and 1.2. 

1.1. Frame of Reference 
There are special requirements for engineering design methods. Engineering design 

is a task that occupies multiple designers with different fields of expertise to make deci-
sions that meet a variety of requirements [10]. Designers may define objective functions 
using different methods—utility theory [11], game theory [12], analytic hierarchy process 
(AHP) [13], Pareto-optimal methods [14], etc. For optimization problems with one or mul-
tiple objective function(s) to be minimized or maximized, one can define such problems 
based on maximization of expected utility. Designers accept assumptions and simplifica-
tions when using utility theory to manage a problem, sometimes without realizing it. Such 
assumptions include the abstraction of mathematical relationships between variables to 
be 100% accurate and not evolve, the levels of fidelity of different sub-models or segments 
of a model are the same, the design preferences among multiple objectives are fully cap-
tured, etc. [15]. For many problems, these assumptions are wrong and this may cause 
problems. For example, when implementing an optimal solution, a system may not give 
optimal output, because of the inaccurate equations used in the model, or because uncer-
tainty breaks the equilibrium of any Karush–Kuhn–Tucker (KKT) conditions, thus de-
stroying the optimality of the solution [16]. 

In addition, when the problem is nonconvex, specifically, when any nonzero linear 
combination of the constraints is more convex than the objective function [17], Category 
(i) methods cannot return a feasible solution because the sufficient KKT condition cannot 



Algorithms 2024, 17, 88 3 of 33 
 

be satisfied [15]. In this case, formulating the problem using the compromise decision sup-
port problem (cDSP) and solving it using the adaptive linear programming (ALP) algorithm 
is a way to identify satisficing solutions that meet the necessary KKT condition [15]. 

1.2. Mechanisms to Ensure That the cDSP and ALP Find Satisficing Solutions 
There are five mechanisms in the cDSP and ALP that enable designers to identify 

satisficing solutions to nonlinear, nonconvex engineering design problems, especially 
when optimization methods fail. We summarize the mechanisms in Table 1. Two assump-
tions in standard optimization methods make optimal solutions unavailable for some non-
linear, nonconvex problems: 

Assumption 1. Mathematical models are 100% complete and accurate abstractions of physical 
models, so the optimal solution to the mathematical problem is optimal for the physical problem. 

Assumption 2. The convexity degree of at least one nonzero linear combination of all constraints 
is higher than the convexity degree of the objective function. 

However, for Assumption 1, designers need boundary information to deal with un-
certainties, but such information is normally unavailable [18]. Using the cDSP and ALP, 
designers can identify satisficing solutions by removing the two assumptions. 

Table 1. The mechanisms in the cDSP and ALP to find satisficing solutions [16]. 

Mechanisms Advantage 
Assumption Re-

moved 

Using goals and minimizing 
deviation variables instead of 
objectives 

At a solution point, only the necessary KKT condition is met, whereas 
the sufficient KKT condition does not have to be met. 
Therefore, designers have a greater chance of finding a solution and a 
lower chance of losing a solution due to parameterizable and/or un-
parameterizable uncertainties. 

Assumption 1 

Using second-order sequential 
linearization 

Designers can have a balance between linearization accuracy and com-
putational complexity. 

Assumption 2 

Using accumulated lineariza-
tion 

Designers can manage nonconvex problems and deal with highly con-
vex, nonlinear problems relatively more accurately. 

Assumption 2 

Combining interior-point 
search and vertex search 

Designers can avoid getting trapped in local optima to some extent and 
identify satisficing solutions which are relatively insensitive when the 
starting points change. 

Assumption 1 

Allowing some violations of 
soft requirements, such as the 
bounds of deviation variables 

Designers can manage rigid requirements and soft requirements in dif-
ferent ways to ensure feasibility. 
As a result, goals and constraints with different scales can be managed. 

Assumptions 1 
and 2 

There are differences between the satisficing construct using cDSP-ALP and optimi-
zation including its variant goal programming. Solutions are usually obtained by identi-
fying the Pareto frontier consisting of nondominated or near-optimal solutions using op-
timization solution algorithms. The formulation of design problems using a satisficing 
strategy, namely, the compromise decision support problem (cDSP), has the key features 
that allow designers to identify satisficing solutions that meet the necessary KKT condi-
tion but not the sufficient condition. 

The format of a nonlinear optimization problem is this: for a given objective function 
f(x), Euler and Lagrange developed the Euler–Lagrange equation forming the second-or-
der ordinary differential equations ∇xx2 f(x) to facilitate finding the stationary solutions. 
The value of the variables that maximize f(x) within the feasible set ℱ is the solution to 
the optimization problem, where ℱ is the set bounded by constraints and bounds. The 



Algorithms 2024, 17, 88 4 of 33 
 

format of an optimization problem 𝕆𝕆 can be represented as follows. x is the vector of 
decision variables as real numbers. gi(x)  is the ith inequality constraint. hj(x)  is the ith 
equality constraint. Any point x that is a local extremum of the set mapped by multiply-
ing active equations with a nonnegative vector is a local optimum of 𝕆𝕆 [19], denoted as 
x∗. The elements of such a nonnegative vector are Lagrange multipliers, μ and λ. 

The format of an optimization problem 𝕆𝕆: 
Given 

f:  ℝn → ℝ,ℱ ⊆ ℝn 

ℱ = �x ∈ ℝn|gi(x) ≥ 0,  i = 1, … , m, hj(x) = 0,  j = 1, … , ℓ� 
 

find 

x∗:  f(x∗) ≽ f(x), ∀x ∈ ℱ  

One variant of optimization is goal programming. The format of a goal programming 
problem 𝕆𝕆goal is represented as follows. A target value T is predefined for the objective 
function f(x) as the right-hand side value, so the objective becomes an equation, and we 
call it a goal. d− and d+ are deviation variables measuring the underachievement and 
overachievement of the goal towards its target. The problem is solved by minimizing the 
deviation variables, which is minimizing the difference between f(x)  and T . In other 
words, goal programming is aimed at finding T’s closest projection on ℱ. 

The format of a goal programming problem 𝕆𝕆goal: 
Given 

f: ℝn → ℝ,ℱ ⊆ ℝn 
ℱ = �x ∈ ℝn|gi(x) ≥ 0, i = 1, … , m, hj(x) = 0, j = 1, … , ℓ, d− ∙ d+ = 0, 0 ≤ d∓ ≤ 1, Goal: f(x) + d− − d+ = T� 

 

find 

x∗:ℙx∈ℱ(Goal: f(x) = T)  

In the cDSP, elements of mathematical programming and goal programming are 
combined. A cDSP ℂ is represented as follows. For a nonlinear cDSP, we first linearize the 
nonlinear equations, including nonlinear constraints and nonlinear goal. Therefore, the 
nonlinear cDSP first becomes a linear problem with a linear goal Goallinear, a linear feasi-
ble space ℱli  bounded by linear constraints g(x)li ≥ 0  and h(x)li = 0 . Thus, using a 
cDSP, we seek the closest projection from the linear goal set onto a linear feasible set. We 
define the solution as a satisficing solution, and we use xs to denote it.  

The format of a cDSP ℂ: 
Given 

f: ℝn → ℝ,ℱ ⊆ ℝn 

ℱli = �x ∈ ℝn|gi(x)li ≥ 0, i = 1, … , m, hj(x)li = 0, j = 1, … , ℓ, d− ∙ d+ = 0, 0 ≤ d∓ ≤ 1, Goalli: f(x)li

T
+ d− − d+ = 1�  

 

find 

xs:ℙx∈ℱli�Goalli: f(x)li = T�  

The difference between x∗ and xs is that x∗ conforms to both the necessary (first-
order) and sufficient (second-order) KKT conditions, whereas xs conforms to the neces-
sary KKT condition but may not conform to the sufficient KKT condition. This is because 
the second derivative of the linear equations, Goalli, gi(x)li ≥ 0, and hj(x)li = 0, degener-
ates—as a result, no uncertainty may affect the feasibility of xs because there is no uncer-
tainty to break the equilibrium of the second-order Lagrange equation. In addition, when 
the convexity of ℱ is greater than the convexity of the f(x), x∗ may not be identified as 
the second-order Lagrange equation has no solution, but xs  is obtainable because the 



Algorithms 2024, 17, 88 5 of 33 
 

second-order KKT condition is irrelevant. The relationship among optimal solutions, sat-
isficing solutions, and near-optimal solutions is illustrated in Figure 1. 

 
Figure 1. The relationship between the optimal, satisficing, and near-optimal solutions. 

In Chapter 2 of [15], the author gives five examples to demonstrate how the mecha-
nisms work (we have a demonstration of the comparison of five examples in this video: 
https://www.youtube.com/watch?v=7apDZO-9A74, accessed on 21 November 2020, and 
a tutorial of using DSIDES to formulate and solve a problem in this video: 
https://www.youtube.com/watch?v=tUpVC97Y1L8, accessed on 25 November, 2020. In 
this paper, since our focus is to fill a gap in the ALP, we give only one example in Section 
1.3 to show one of the advantages versus the optimization method. Information such as 
applications using cDSP and ALP to obtain satisficing solutions can be found in [20]. 

1.3. An Example and Explanation Using KKT Conditions 
We use a simple example with multiple goals (objectives), nonlinear and nonconvex 

equations, and the goal targets with various degrees of achievability. We formulate the 
problem using optimization and the cDSP in Table 2. 

Table 2. The optimization model and compromise DSP of the example. 

Optimizing Satisficing 

Objective Functions 
f1(x) = cos(x12 + x23) 

f2(x) = 25 ∙ (x1 − 2)3 + 50 ∙ (x2 − 2)3 + 50
∙ x1 ∙ x22 

Constraints and Bounds 

s. t.

⎩
⎪
⎨

⎪
⎧

x1 ∙ x2 ≤ 1
f1(x) ≥ 0
f2(x) ≥ 0

0 ≤ x1 ≤ 2
0 ≤ x2 ≤ 2

 

Combination of Objective Functions 
Max ∑ wi ∙ fi(x)2

i=1   

Given 
x1, x2, d1

±, d2
± 

f1(x) = cos(x12 + x23) 
f2(x) = 25 ∙ (x1 − 2)3 + 50 ∙ (x2 − 2)3 + 50 ∙ x1

∙ x22 
Find 

x1, x2, d1
∓, d2

∓ 
Satisfy 
Goals:  

f1(x)
1.2

 + d1
− − d1

+=1 
f2(x)
400

 + d2
− − d2

+=1 
Constraints: 

x1 ∙ x2 ≤ 1 
f1(x) ≥ 0 
f2(x) ≥ 0 

di
− ∙ di

+ = 0, i = 1, 2 
Bounds: 

0 ≤ x1, x2 ≤ 2 



Algorithms 2024, 17, 88 6 of 33 
 

0 ≤ d1
±, d2

± ≤ 1 
Minimize 

Merit function Z = ∑ wi ∙2
i=1 (di

− + di
+)  

The methods used in the optimizing and satisficing strategies are listed in Table 3. 
For optimizing methods, we used the “SciPy.optimize” package 
(https://docs.scipy.org/doc/scipy/reference/optimize.html, accessed on 1 January 2008). 
There are ten algorithms in the package. We use three of them to solve the example prob-
lem because they are the only relevant ones. We do not use the Nelder–Mead, Powell 
(Powell’s conjugate direction method) [21], or conjugate gradient (CG) methods [22] or 
the Broyden–Fletcher–Coldfarb–Shannon (BFGS) algorithm [23] because they cannot eas-
ily manage problems with constraints. The Newton conjugate gradient (Newton-CG) 
method [24,25], L-BFGS-B (an extension BFGS for large-scale, bounded problems) [26], 
and TNC (truncated Newton method or Hessian-free optimization) [26] either cannot deal 
with problems without Jacobians (when using Newton-CG, even setting the Jacobian as 
false, and the algorithm may not work without a provided Jacobian partially because the 
default temporary memory of Jacobian cannot be cleared; see: https://stackover-
flow.com/questions/33926357/jacobian-is-required-for-newton-cg-method-when-doing-
a-approximation-to-a-jaco, accessed on 15 May 2019) or return infeasible solutions with-
out recognizing that they are infeasible. Therefore, in SciPy we use the constrained opti-
mization by linear approximation (COBYLA) algorithm [27,28], Trust-constr 
(https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.html, accessed 
on 1 January, 2008), and sequential least squares programming (SLSQP) 
(https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html, accessed on 1 
January 2008) to solve the example problem. 

Table 3. Methods for comparison of the two strategies. 

Strategy 
Item 

Optimizing Satisficing 

Model formulation 
construct 

Mathematical programming 
Goal programming 

Compromise decision 
support problem 

Solution algorithm 

Constrained optimization by linear approxi-
mation (COBYLA) algorithm 

Adaptive linear pro-
graming (ALP) algo-
rithm 

Trust-region constrained (trust-constr) algo-
rithm 
Sequential least squares programming 
(SLSQP) algorithm 
Nondominated sorting generation algorithm 
II/III (NSGA II) 

Solver Python SciPy.optimize DSIDES [6] 

We select nondominated sorting genetic algorithm II (NSGA II) [29] as a verification 
method to compare and evaluate the performance of our selected optimization methods 
and the satisficing method in Table 3. We choose NSGA II as the verification method be-
cause it can solve problems with the complexities of the example problem in Table 2—
nonlinearity, nonconvexity, multiple objectives or goals, and various achievability of the 
goals. We use NSGA II in MATLAB. Some readers may wonder, since NSGA II can solve 
the complexities often incorporated in engineering design problems, why do we study a 
satisficing algorithm, the cDSP, and ALP to manage engineering design problems? The 
reason is that we observe that NSGA II has the following drawbacks that may prevent 
designers from acquiring insight to improve the design formulation and exploring the 
solutions space: 



Algorithms 2024, 17, 88 7 of 33 
 

First, NSGA II cannot give designers information to improve the model, such as the 
bottlenecks in the model, the sensitivity of each segment of the model, the rationality of 
the dimensions of the model, etc. 

Second, the performance of NSGA II, including convergence speed, optimality of so-
lutions, and diversity of solutions, is sensitive to hyperparameter settings. Hyperparame-
ters, such as the population size and generation number, must be predefined. However, 
usually designers only assume that a larger population size or a larger number of gener-
ations returns better solutions, but they may not know how large is “good enough.” De-
signers need to tune those hyperparameters in NSGA II, but it requires much higher com-
putational power than the cDSP and ALP do. 

Therefore, we choose NSGA II in order to assess the optimality and diversity of the 
solutions returned by the tested methods (in Table 3), but we still recommend designers 
use the satisficing method to manage engineering design problems. 

Through applying the three chosen optimizing methods, the satisficing method, and 
the verification method, NSGA II, we obtain the results and summarize them in Table 4. 
Since there are two objectives (goals), we use different weights to combine them linearly, 
so we show the results for each weight. We also use different starting points for the solu-
tion searching to show whether a solution algorithm is sensitive to the starting point. We 
visualize the solutions in objective space and 𝑥𝑥-𝑓𝑓(𝑥𝑥) space in Figures 2 and 3. The three 
optimization algorithms cannot return any feasible solutions. Due to the difference in the 
scale of the two objectives, one cannot use optimizing algorithms to solve the example 
problem by linearly combining them, because (i) the objective with a large scale dominates 
the other objective(s) and (ii) a linearized function of the weighted sum objective in a local 
area can be singular. 

Table 4. Solutions to the example problem—dominated solutions for each weight are in italics; for 
each method, the best solution of each design scenario is marked using a capital letter (A’, B’, C’, D’, 
E’, F’, G’, H’, and J’) [15]. 

Weight 
Start-

ing 
Point 

COBYLA Trust-Constr SLSQP ALP NSGA II/III—Population 
(P) = 20/50 

So-
lu-

tion 

∑ 𝒘𝒘𝒊𝒊
𝟐𝟐
𝒊𝒊=𝟏𝟏
𝐟𝐟𝐢𝐢(𝐱𝐱)  

Solu-
tion 

∑ 𝒘𝒘𝒊𝒊 ∙𝟐𝟐
𝒊𝒊=𝟏𝟏
𝐟𝐟𝐢𝐢(𝐱𝐱)  

Solu-
tion 

∑ 𝒘𝒘𝒊𝒊 ∙𝟐𝟐
𝒊𝒊=𝟏𝟏
𝐟𝐟𝐢𝐢(𝐱𝐱)  Solution ∑ 𝒘𝒘𝒊𝒊 ∙ 𝐟𝐟𝐢𝐢(𝐱𝐱)𝟐𝟐

𝒊𝒊=𝟏𝟏   Solution ∑ 𝒘𝒘𝒊𝒊 ∙𝟐𝟐
𝒊𝒊=𝟏𝟏
𝐟𝐟𝐢𝐢 (𝐱𝐱)  

(1, 0) 

(0.5, 1) 

Cannot man-
age noncon-

vex equations 
with bounds 

All solutions 
violate one or 

more con-
straints 

All solutions 
violate one or 

more con-
straints 

A’ 
(0.51,1.82

) 
1 

P = 20: 
G’ (0.55, 1.85) 

P = 50: 
A’ (0.51, 1.82) 

P = 20: 
0.99 

P = 50: 
1 

(0, 0) 

(2, 0.5) 

(0, 1) 

(0.5, 1) 
B’ (0.51, 

1.96) 
15.27 

P = 20: 
H’ (0.52, 1.92) 

P = 50: 
B’ (0.51, 1.96) 

P = 20: 
14.86 

P = 50: 
15.36 

(0, 0) 

(2, 0.5) 

(0.5, 
0.5) 

(0.5, 1) 
C’ (0.55, 

1.82) 
7.5 

P = 20: 
H’ (0.52, 1.92) 

P = 50: 
D’ (0.53, 1.87) 

P = 20: 
7.69 

P = 50: 
7.78 

(0, 0) 

(2, 0.5) 

(0.7, 
0.3) 

(0.5, 1) 
C’ (0.55, 

1.82) 
4.9 

P = 20: 
C’ (0.55, 1.82) 

P = 50: 
E’ (0.53, 1.88) 

P = 20: 
4.9 

P = 50: 
5.01 

(0, 0) 

(2, 0.5) 

(0.3, 
0.7) 

(0.5, 1) C’ (0.55, 
1.82) 

10.01 
P = 20: 

J’ (0.54, 1.85) 
P = 20: 
10.49 (0, 0) 



Algorithms 2024, 17, 88 8 of 33 
 

(2, 0.5) 
P = 50: 

F’ (0.53, 1.89) 
P = 50: 

10.6 

 
Figure 2. The solution points to the example problem in objective space using two algorithms—
solutions returned by NSGA II are more diverse but sensitive to parameter settings and increasing 
the population and iterations does not always produce better results. 

 
 

(a) (b) 

Figure 3. The solution points in the x-f(x) space. Subfigure (a) is the x-f1(x) space and Subfigure 
(b) is the x−f2(x) space. All solutions’ f1(x) values are close to 1.0 except B’ and H’; all solutions’ 
f2(x) values are close to 400 except A’ [15]. 

For a multi-objective (multi-goal) problem with nonconvex functions, when the scale 
of the objectives varies largely, optimizing algorithms cannot return feasible solutions, 
whereas a satisficing strategy may allow designers to identify adequate solutions. This is 
explained using the KKT conditions hereafter. 

When using optimizing algorithms to solve optimization problems, the first-order 
derivative of the Lagrange equation with respect to decision variable x, which is a function 
of the parameters 𝒫𝒫 of the model (the coefficients in objectives and constraints), decision 
variables 𝑥𝑥 (if any objective or constraint is nonlinear), Lagrange multipliers 𝜇𝜇 and 𝜆𝜆, 
and weights 𝓅𝓅, combining the multiple goals, is shown in Equation (1). 

∇xL(x,μ, λ) = 𝓎𝓎(𝒫𝒫, x,μ, λ,𝓅𝓅) (1) 

For a satisficing strategy, the first-order derivative of the Lagrange equation contains 
only the coefficients of the deviation variables in the objective, since only deviation varia-
bles d∓constitute the objective (not the decision variables, x). For a κ-goal cDSP with m 
inequality constraints g(x) and ℓ equality constraints h(x), if we use weights to combine 
the κ goals G(x, d), i.e., using the Archimedean strategy to manage a multi-goal cDSP, 
then the coefficients in the first-order Lagrange equation are only the weights and τ—τ is 
the Lagrange multiplier of the goal functions; see Equation (2). 



Algorithms 2024, 17, 88 9 of 33 
 

∇dL(xs, d, μ, λ, τ) = ∇d𝓏𝓏(d) + � μi∇dgi(xs)
m

i=1
−� λj∇dhj(xs)

ℓ

j=1
−� τk∇dG(xs, d)

κ

k=1
 

= 𝓎𝓎(𝓅𝓅, τ) 

(2) 

when using optimization, the second-order Lagrange equation may still have parameters 
and decision variables due to nonlinearity; see Equation (3). For satisficing, the second-
order Lagrange equation with respect to deviation variables degenerates to zero because 
the objective of a cDSP is a linear combination of deviation variables; see Equation (4). 
That is why satisficing solutions do not need to meet the second-order KKT conditions. 

∇xx2 L(x,μ, λ) = ∇x𝓎𝓎(𝒫𝒫, x, μ, λ,𝓅𝓅) = 𝓎𝓎’�𝒫𝒫’, x� (3) 

∇dd2 L(xs, d, μ, λ, τ) = ∇d(𝓎𝓎(𝓅𝓅, τ)) ≡ 0 (4) 

Although both optimal solutions 𝑥𝑥∗ and satisficing solutions xs meet the first-order 
KKT conditions, the chance of maintaining the first-order KKT conditions for the two 
strategies under uncertainties varies. If any uncertainty with probability P takes place to 
an item ℑ  in the first-order equation that destroys its equilibrium, we denote it as 
Pr�ℑ��P�. For an N-dimension, Q-parameter (here, we define a coefficient or an intercept 
of a constraint or an objective as a parameter. A parameter has a given value (either a 
constant value or a stochastic value) and the value does not depend on any decision vari-
ables), and κ-goal problem, using optimizing strategy, the source of ℑ� can be decision 
variables xn�, Lagrange multipliers μı�  and λȷ� , and weights 𝓅𝓅k� ; for satisficing strategy, the 
source of ℑ� can only be the weights 𝓅𝓅k�  and the Lagrange multipliers for the goals τk� . If 
and only if none of the items under the uncertainty breaks the equilibrium of the first-
order equation, then the optimal/satisficing solution is still optimal/satisficing under this 
uncertainty. For an N-dimension, Q-parameter, and κ-goal problem, the probabilities of 
maintaining an optimal solution and a satisficing solution under Uncertainty P are given 
in Equations (5) and (6), respectively.  

Pr(x∗|P) ≈� �1 − Pr�𝒫𝒫q��P��
Q

q=1
� [1 − Pr(xn�|P)]

N

n=1
� [1 − Pr(μı� |P)]

m

i=1
� �1 −        Pr(λȷ�|P)�

ℓ

j=1
� [1

κ

k=1

− Pr(𝓅𝓅k� |P)] 
(5) 

Pr(xs|P) ≈� [1 − Pr(𝓅𝓅k� |P)]
κ

k=1
� [1 − Pr(τk� |P)]

κ

k=1
 (6) 

As the value of any probability is in the range of [0, 1], the more items on the right-
hand side we multiply (the more items the probability depends on), the lower the proba-
bility becomes. The items in Equation (6) are fewer than those of Equation (5). Hence, the 
chance of maintaining an optimal solution under Uncertainty P is often smaller than the 
chance of maintaining a satisficing solution with the same uncertainty; Equation (7). 

Pr(x∗|P) ≤ Pr(xs|P) (7) 

In summary, using the satisficing strategy, we are less likely to lose a solution due to 
uncertainty for nonconvex problems with multiple objectives that have various scales; see 
Equations (8) and (9). Using satisficing, designers can deal with nonconvex, multi-objec-
tive problems that may be incomplete or inaccurate and with uncertainties, which helps 
remove Assumptions 1 and 2. 

�Pr �𝒮𝒮 ≠ ∅| �
Nonconvexity

objectives with various scales���Satisficing
≥  



Algorithms 2024, 17, 88 10 of 33 
 

�Pr �𝒮𝒮 ≠ ∅| �
Nonconvexity

objectives with various scales���Optimizing
 (8) 

[Pr (xs|P)]Satisficing ≥ [Pr (x∗|P)]Optimizing (9) 

1.4. A Limitation in the ALP to Be Improved 
Just like NSGA II, the ALP also has a parameter, the reduced move coefficient, or 

RMC, that may impact the solution space, especially for multi-goal problems. The prob-
lems as simple as the example problem in Section 1.3 is not sensitive to RMC setting, but 
more complicated problems are. We use a test problem of steel rod manufacturing to il-
lustrate it in Section 4.  

The RMC is a fractional step size [6] defining the starting point for the next iteration. 
In the ALP, the RMC has been set at 0.5 as a default value. In fact, in the ALP, a designer 
has no knowledge of the connection between the RMC and solution quality or the oppor-
tunity for improving solution efficiency by controlling the RMC. Improving the RMC de-
termination is discussed in [30]. In this paper, we give more explanations about the moti-
vation, the advantages of the satisficing strategy using the cDSP and ALP, and the benefits 
of parameter learning.  

We introduce the ALP and discuss the limitation of using a fixed RMC in Section 2. 
In Section 3, we introduce parameter learning to make the RMC adaptive for each itera-
tion. In Section 4, we use a test problem that is sensitive to the RMC value—the steel hot 
rod-rolling process—to demonstrate efficacy of the augmented ALP, that is, the adaptive 
linear programming algorithm with parameter learning (ALPPL). In Section 5, we sum-
marize the contributions and comment on the generalization of parameter learning for use 
in gradient-based optimization methods. 

2. How Does the ALP Work? 
2.1. The Adaptive Linear Programming (ALP) Algorithm 

The ALP algorithm is implemented in DSIDES. DSIDES is used to formulate and 
solve engineering design problems, and it is especially efficient in dealing with nonlinear 
problems [6]. In DSIDES, the nonlinear problem is formulated as a compromise decision 
support problem (cDSP). Then, the ALP is invoked to solve the nonlinear problem. The 
nonlinear problem is linearized in a synthesis cycle. The resulting linear problem is solved 
using the revised dual simplex algorithm. The synthesis cycle is repeated until the solu-
tion satisfies a set of stopping criteria or is terminated after a fixed number of iterations. 

The ALP incorporates a local approximation algorithm [6,31], in which a secant plane 
of the paraboloid (with the second-order derivatives at the starting point as the coeffi-
cients) replaces the original nonlinear function. In Figure 4, we show two dimensions of a 
problem being approximated in two iterations (synthesis cycle). The weighted sum of the 
goals is ∑ Wk ∙ Gkk∈K . The starting point X00 may not be in the feasible region. A random 
search or a Hooke–Jeeves pattern search can be invoked to identify a point X10 in the feasi-
ble area. In the ith first iteration, the problem is linearized at X10. 



Algorithms 2024, 17, 88 11 of 33 
 

 
Figure 4. The approximation and solution using ALP in two iterations when RMC = 0.4. Subfigure 
(a) is Iteration i and Subfigure (b) is Iteration i+1. 

In iteration i, Figure 4a, a projection of a nonlinear constraint NFj onto a two-dimen-
sional plane, X1-X2, is approximated at Xi0, so an approximated constraint LFi,j is obtained. 
Doing this for all nonlinear functions and framing a linear model, the revised simplex dual 
algorithm is used to obtain solution Xi∗. Using the RMC heuristic, we find the starting 
point of the next iteration Xi+10 . In iteration i+1, Figure 4b, the approximated linear con-
straints of both iterations LFi,j and LFi+1,j are accumulated, and a solution Xi+1∗  is returned 
and the starting point of iteration i+2 is again defined using the RMC, Xi+10  and Xi+1∗ .  

In Figure 5a, we illustrate the two-step linear approximation method. First, NFj (Pa-
raboloid ABC) is approximated to NFi,j” (Paraboloid AB*C*) with the diagonal terms of its 
Hessian matrix at Xi0 as coefficients. Then, NFj” is approximated to a secant Plane LFi,j 
(Plane AB*C*). NFj” and LFi,j are computed as follows. 

  
(a) (b) 

Figure 5. The two-step linear approximation methods using the ALP. Subfigure (a) illustrates the 
situation when the second-order paraboloid of the riginal nonlinear constraint NFj has intersection 
with Plane x1x2, whereas Subfigure (b) illustrates the situation when the second-order paraboloid 
has no intersection with Plane x1x2 hence the first-order tangent is used to approximate NFj. 

NFi,j” is obtained using the second-order full derivatives at Xi0, Equation (10), because 
the second-order partial derivatives have limited impact on the gradient. 

NFi,j′′  = NFj(Xi0) + � �xip − xip0 � �
∂NFj
∂xip

�
0

n

p=1
+

1
2
� �xip − xip0 �

2 �
∂2NFj
∂xip2

�
0

n

p=1
     (10) 

From Equation (10), for the pth dimension, the quadratic to be solved to obtain 
�xip − xip0 � is: 



Algorithms 2024, 17, 88 12 of 33 
 

NFj(Xi0) + �xip − xip0 � �
∂NFj
∂xip

�
0

+
1
2
�xip − xip0 �

2 �
∂2NFj
∂xip2

�
0

= 0 (11) 

If Equation (11) has real roots, Figure 5a, by solving Equation (11) and selecting the root 
between Equations (12) and (13) with the smaller absolute value for each dimension, we 
obtain the intersection that is closer to the paraboloid in each dimension, such as B* and C*. 

�
∂NFj
∂xip

�
0

∗
=

−NFj�Xi
0��

∂2NFj
∂xip2

�
0

−�
∂NFj
∂xip

�
0
−��

∂NFj
∂xip

�
0

2
−2NFj�Xi

0��
∂2NFj
∂xip2

�
0

  (12) 

�
∂NFj
∂xip

�
0

∗
=

−NFj�Xi
0��

∂2NFj
∂xip2

�
0

−�
∂NFj
∂xip

�
0
+��

∂NFj
∂xip

�
0

2
−2NFj�Xi

0��
∂2NFj
∂xip2

�
0

  (13) 

If Equation (11) has no real roots, Figure 5b, NFi does not intersect Plane x, then the 
first-order derivative at Xi0 is used, Equation (14). 

�
∂NFj
∂xip

�
0

∗

= �
∂NFj
∂xip

�
0

 (14) 

Based on the intersections in each dimension, such as B* and C*, we obtain LFi.  

LFi,j = � xip �
∂NFj
∂xip

�
0

∗n

p=1
− �� xip0 �

∂NFj
∂xip

�
0

∗n

p=1
− NFj(Xi0)� (15) 

Algorithm 1 summarizes the constraint accumulation algorithm. If the degree of con-
vexity of NFj is positive or slightly negative (greater than −0.015) at the starting point of 
the ith iteration, and if the constraint is active in the (i-1)th iteration, that is, Xi−1∗  is on the 
surface of NFj, then the accumulated constraints replace NFj, Equation (16); otherwise, 
the single linear constraint in the ith iteration is NFj. 

Algorithm 1. Constraint Accumulation Algorithm 
In the ith iteration,  
for every j in J 

if       1
n
∑ ∂2NFj

∂xip2
n
p=1 ≤ −0.015 

and NFj(Xi−1∗ ) = 0 
 

LFi,j, = LFi-1,j  ∪  LFi,j (16) 

Then, the revised simplex dual algorithm is invoked to solve the linear problem PiL, 
so a solution Xi∗ is obtained. A point Xi+10 , between the starting point Xi0 and the solution 
Xi∗, becomes the starting point of the next iteration. The RMC is used to determine Xi+10 , 
Equation (17).  

Xi+10 =  Xi0 +  RMC ∙ (Xi∗ −  Xi0) (17) 

  



Algorithms 2024, 17, 88 13 of 33 
 

2.2. The Reduced Move Coefficient 
The RMC is in the range [0, 1] and it defaults to 0.5 based on experimental observa-

tions [6], but 0.5 may not be the best for every problem. An optional golden section search 
algorithm is added to progressively narrow the range of the RMC by cutting off the sub-
range with large deviations or larger violations of the constraints until the range is too 
small to reduce, Figure 6. The golden section search algorithm is given as follows – visu-
alized in Figure 6 and summarized a Algorithm 2. 

 
Figure 6. The golden section search for the RMCs in the ALP. 

Algorithm 2. Golden section search for updating the RMC 

#Define Performance function using RMC to linearize the model and obtain the merit 
function value 
FUNCTION Performance (Model, RMC) 
Linearize Model using ALP with RMC into Linear_Model 
Solve Linear_Model using Dual Simplex 
RETURN Z 
 
#Define Golden Section Search function 
FUNCTION GoldenSectionSearchForRMC (Rmin, Rmax, Th): 
RMCa = Rmin + (0.382)*(Rmax − Rmin) 
RMCb = Rmin + (1 − 0.382)*(Rmax − Rmin)     
WHILE (RMCb − RMCa > Th): 
 #Compare the performance of using RMCa versus RMCb 
IF Performance (Original_Model, RMCa) < Performance (Original_Model, RMCb): 
RMC = RMCa   
Rmax = RMCb 
ELSE: 
RMC = RMCb 
Rmin = RMCa     
RETURN RMC 
 
#Initialize parameters 
Rmin = 0 



Algorithms 2024, 17, 88 14 of 33 
 

Rmax = 1 
Th = 0.0001 
 
#Call the Golden Section Search Function 
GoldenSectionSearchForRMC (Rmin, Rmax, Th) 

With the golden section search approach, the desired sub-range of the RMC may be 
missed if the performance oscillates in the range of the RMC. The criterion to evaluate the 
approximation performance is oversimplified—the deviations and the constraint viola-
tions. Given these limitations, in this paper, we propose to use parameter learning to de-
termine the relation between the RMC value and solution quality with more evaluation 
criteria. Machine learning techniques are used to improve algorithms [32,33], so we lever-
age this idea to improve the ALP. 

We hypothesize that by incorporating parameter learning in the ALP, we can update 
the RMC based on richer performance criteria. There are three steps to verify this hypoth-
esis. In Section 3, we propose ALPPL to realize the three steps. 
• Step 1. Identifying the criteria—to evaluate approximation performance. 
• Step 2. Developing evaluation indices (EIs)—to quantify the approximation perfor-

mance with RMC values. 
• Step 3. Learning the desired range of each EI (DEI)—to tune the RMC. 

In the next section, we discuss how parameter learning is used to dynamically change 
the value of the RMC. 

3. Parameter Learning to Dynamically Change the RMC 
In this section, the adaptive linear programming algorithm with parameter learning 

(ALPPL) is proposed, Figure 7. We add parameter updating, results extraction, perfor-
mance evaluation, and feedback on parameter updating to the ALP. 

 
Figure 7. The concept of adaptive linear programming algorithm with parameter learning (ALPPL). 

3.1. Step 1—Identifying the Criteria 
In ALPPL, we add more criteria to the two criteria considered in the golden section 

search—deviation and constraint violation. We use a list, EIs[best], to record all the eval-
uation indices. 
• Criterion 1—deviation.  

The deviation in every iteration is recorded and ranked among all iterations. The best 
deviation in all iterations is stored in EIs[best]. Through implementing multiple design 



Algorithms 2024, 17, 88 15 of 33 
 

scenarios (lexicographic and/or weight scenarios), we obtain the deviations for all scenar-
ios and iterations, and the desired range DEI is updated accordingly. 
• Criterion 2—robustness of solutions. 

We extend the notion of “feasibility” to “robustness,” which means the solutions 
should be feasible under multiple design scenarios and relatively insensitive to model er-
rors and uncertainties. We assume errors and uncertainties result in changes in the bound-
ary of the feasible region. The nonlinear surface is a part of the boundary. Therefore, the 
robustness of the solution can be measured by how far it is away from the nonlinear sur-
face. In Figure 8, we show two situations. The arrows indicate the direction of the feasible 
space bounded by the inequality constraints while minimizing the deviation. In Figure 8a, 
the solution xi∗ is not on the boundary, so it is relatively insensitive to errors and varia-
tions of the model, and the nonlinear constraint NFj is not an active constraint. In contrast, 
in Figure 8b, the solution is on the boundary and NFj is an active constraint. The RMC 
affects the approximation in the next iteration, so we adjust the RMC to obtain more robust 
solutions. 

 
Figure 8. A relatively sensitive solution and a robust solution. Subfigure (a) shows the situation 
when the solution xi∗ is not on the boundary - the surface of NFj, whereas Subfigure (b) shows the 
situation when the solution xi∗ is on the boundary. 

• Criterion 3—approximation accuracy.  
More accumulated constraints may not necessarily lead to a more accurate approxi-

mation. We want sufficient and useful accumulated constraints—Figure 9b—rather than 
many unnecessary accumulated constraints—Figure 9a. 

 
Figure 9. Unnecessary accumulated constraints versus necessary accumulated constraints. Subfig-
ure (a) illustrates the situation when the accumulated constraints are in the “wrong” region, which 



Algorithms 2024, 17, 88 16 of 33 
 

results from the linearization points in multiple iterations being in a region that gives poor 
achieved values of the goal. Subfigure (b) illustrates the opposite situation – when the accumu-
lated constraints are in the “right” region. 

In Table 5, we summarize the criteria for approximation performance evaluation. 
Based on these criteria, we develop evaluation indices (EIs) in Section 3.2 

Table 5. Criteria for the evaluation of approximation performance. 

Criteria Meaning and Representation 
Weight-sum deviations The unfulfilled percentage of the goals compared with their targets 

Robustness Whether a solution is away from the boundary of the system as defined by the 
nonlinear model 

Approximation accuracy 
Whether the nonlinear constraints are approximated well by a set of linear 

constraints in the sub-region that contains the solutions that fulfill the goals to an 
extent 

3.2. Step 2—Developing the Evaluation Indices (EIs) 
To manage different design preferences for multiple goals, we obtain solutions using 

multiple design scenarios. As the design scenarios are discrete and cannot enumerate all 
situations, we use the limited, discrete solutions to predict a satisficing solution space. 

By implementing multiple design scenarios, we acquire the results of the weight-sum 
deviations, active constraints, accumulated constraints, etc., using which, we develop sta-
tistical-based evaluation indices (EIs) as shown in Table 6. Statistical-based quality control 
has been used to monitor model profiles [34], so we leverage the statistics to obtain EIs.  

Our development of the EIs is based on the index for the robust concept exploration 
method, error margin index (EMI) [31], and design capability index (DCI) [35]. This is 
based on the central limit theorem that the results as samplings of each criterion follow 
Gaussian distributions, and the sampling statistics represent their characteristics. There-
fore, we use the mean (μ) and the standard deviation (𝜎𝜎) as EIs and tune the RMC by 
minimizing the μ and 𝜎𝜎 of each EI.  

Index for evaluating the weight-sum deviation—µZ and 𝜎𝜎Z. To maintain the goal ful-
fillment (one minus weight-sum deviation) relatively insensitive to design scenario changes, 
we control the center and spread of the sample solutions by minimizing  μZ and 𝜎𝜎Z. 

Index for evaluating the robustness—µNab, 𝜎𝜎Nab, µNaoc, and 𝜎𝜎Naoc. Using the simplex 
algorithm, we obtain the vertex solution to the approximated linear problem. At a vertex 
solution, there is at least one active constraint (AOC) or active bound (AB) of the approx-
imated linear problem, but we prefer fewer AOCs and ABs so the chance of losing a solu-
tion due to potential errors or variations is relatively small, so we minimize the 𝜇𝜇Nab, 𝜎𝜎Nab, 
μNaoc, and 𝜎𝜎Naoc. 

Index for evaluating the computational complexity—µNacc, 𝜎𝜎Nacc, µNit, and 𝜎𝜎Nit. As the 
approximation accuracy is not necessarily improved by increasing the number of accu-
mulated constraints (Nacc) or the number of approximation iterations (Nit), we need to 
find the ranges of Nacc and Nit associated with good weight-sum deviations and robust-
ness. We desire Nacc and Nit to be acceptable under all design scenarios and be insensitive 
to scenarios changing, so we measure µNacc, 𝜎𝜎Nacc, µNit, and 𝜎𝜎Nit and identify their appropri-
ate ranges. 

In summary, we tune the RMC by satisfying the EIs—µNab, 𝜎𝜎Nab, mNaoc, 𝜎𝜎Naoc, µNacc, 
𝜎𝜎Nacc, µNit, and 𝜎𝜎Nit— to obtain desired ranges (DEI). Then, the RMC tuning becomes: 
“given” the parameters and variables, “find” the value of decision variables that can “sat-
isfy” constraints and bounds and “minimize” an objective. Here, we rank the EIs in the ith 
iteration among all iterations and choose the first κ items with minimum values. These are 
the most important κ where EIs attain their best and most stable performance. Algorithm 
3 is a summary of the RMC parameter learning algorithm. 



Algorithms 2024, 17, 88 17 of 33 
 

Table 6. Develop evaluation indices (EIs)—mean (μ) and standard deviation (SD) (𝜎𝜎). 

Criteria Information EIs Meaning 

Weight-sum 
deviation 

Z = � Wk ∙ (dk− + dk+)
k∈K

 
μz The average weight-sum deviations 

𝜎𝜎z 
The stability of the weight-sum deviations when changing 

design scenarios 

Robustness 

The number of active bounds:  
μNab 

The average sensitivity of the solutions under all design 
scenarios to variable bounds  

𝜎𝜎Nab 
The stability of the sensitivity of the solutions to variable 

bounds when changing design scenarios 

The number of active original 
constraints:  

μNaoc 
The average sensitivity of the solutions under all design 

scenarios to original constraints  

𝜎𝜎Naoc 
The stability of the sensitivity of the solutions to original 

constraints when changing design scenarios 

Approximation 
accuracy 

The number of accumulated 
constraints:  

μNacc 
The average complexity of the approximated problem 

under all design scenarios 

𝜎𝜎Nacc 
The stability of the complexity of the approximated 

problem when changing design scenarios 

The number of iterations:  
μNit The average convergence speed under all design scenarios 

𝜎𝜎Ni 
The stability of the convergence speed when changing 

design scenarios 
 

Algorithm 3. #Define Parameter-learning function 
FUNCTION ParameterLearning(Model, Design scenarios, RMC, EIs, κ, I): 
WHILE i < I: 
 IF RMC[i-1] = RMC_best: 
     RMC[i] = average(RMC[i-2], RMC_best) 
 ELSE: 
     RMC[i] = average(RMC[i-1], RMC_best) 
 FOR N Design Scenarios: 
     Linearize Model using ALP with RMC[i] into Linear_Model 
     Solve Linear_Model using Dual Simplex 
 RETURN EIs[i] 
 
 FOR j in Range(0, i): 
     Rank EIs[i][j] from minimum to maximum 
     DEI = EIs[i][round(κ*i)] 
 
 IF (number of EIs[i] ∈ DEI for all Design scenarios) >  
(number of EIs[Cycle of RMC_best] ∈ DEI for all Design scenarios): 
     RMC_best = RMC[i] 
 
RETURN RMC_best 
 
#Initialize parameters 
Model = Original_Model 
Design scenarios = N weight scenarios 
RMC [0] = 0.5 
EIs = [μZ, σZ, μNab, σNab, μNaoc, σNaoc, μNacc, σNacc, μNit, σNit] 
Z, Nab, Naoc, Nacc, Nit = 0 
DEI = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 



Algorithms 2024, 17, 88 18 of 33 
 

κ = 0.6 
I = 50 
 
#Call Parameter-Learning function 
FUNCTION ParameterLearning(Model, Design scenarios, RMC, EIs, κ, I) 

3.3. Step 3—Learning the DEI to Tune the RMC 
We identify the desired range of the EIs (DEI), learn the connections between the 

RMC and the EIs, and bring the EIs into the DEI by setting the RMC. To make the process 
efficient, we combine off-line learning and the on-line learning. First, we use off-line learn-
ing using a sample of RMC values to initialize the DEI and parameters and then adopt on-
line learning to update the DEI and tune the RMC. In Figure 10, we illustrate the two 
processes (Rectangles B and C) and show their relationship with the synthesis cycle A. 

During parameter initialization (B), we generate sample values of RMC (B1). By run-
ning the synthesis cycle (A) with each RMC value, we obtain the corresponding EIs (B2) 
and evaluate them (B3). We choose the RMC value associated with the best EIs as the 
starting RMC value for tuning (B3-1) and remove the EIs that are insensitive to RMC 
changes (B3-2). We initialize the DEI based on the sample results (B3-3) to allow a certain 
proportion (e.g., 75%) of RMC values to fall into the DEI. We choose the best RMC among 
the sample (B3-4) to start the on-line learning. These results (B3-1 to B3-4) are aggregated 
as the “actions to be taken” (B3-5) and the input of the RMC tuning cycle (C). 

For the RMC tuning cycle (C), with an RMC value (C1-1), we run the synthesis cycle 
(A) and obtain the results (C2). By evaluating the results using the DEI and comparing 
with previous iterations (C3), we determine the next RMC value (C3-1), update the DEI if 
necessary—either restrict or relax the DEI based on the tradeoffs among EIs (C3-2)—and 
update the best RMC if necessary (C3-3). These evaluation results are aggregated (C3-4) 
for judging whether to stop iterating (C4)—the program either goes to the next iteration 
of RMC tuning with the aggregated results (C3-4) as input or stops with the best RMC as 
the returned value. The stopping criteria include the number of total iterations and the 
number of iterations without updating the best RMC. This part is summarized as Algo-
rithm 4. 



Algorithms 2024, 17, 88 19 of 33 
 

 
Figure 10. ALPPL including parameter initialization and RMC tuning. 

Algorithm 4. The RMC parameter-learning algorithm 
1 Given: the best RMC sample value, updating rules 
2 Initialize: t = 0, best = the best RMC sample value, RMC0 = the best RMC sample value, 
the maximum iteration number T, stopping criterion 2 = {best has not been updated in n 
iterations} 
3  While t =  do T // Define stopping criterion 1 
4      RMCt  = Next_RMC 
5       Run synthesis cycle 

4. A Test Problem 
In this section, we apply ALPPL to an industry-inspired problem, the integrated de-

sign of a hot-rolling process chain for the production of a steel rod [36]. It is a nonlinear 
problem, and the RMC value has a significant impact on the result. 

4.1. The Hot Rod-Rolling Process Chain 
Hot rod rolling is a multi-stage manufacturing process in which a reheated billet, 

slab, or bloom produced after the casting process is further thermo-mechanically pro-
cessed by passing it through a series of rollers [36]. During the thermo-mechanical pro-
cessing, there is an evolution of microstructure of the material, in this case, steel. 



Algorithms 2024, 17, 88 20 of 33 
 

Columnar grains in the cast material are broken down to equiaxed grains. Along with the 
evolution of grain size, there is a phase transformation of the steel. The phase transfor-
mation is predominant during the cooling stage that follows the hot rod-rolling process 
chain. The transformation of the austenite phase of steel to other phases like ferrite, pearl-
ite, or martensite takes place during this stage. The final microstructure of the material 
after the rolling and cooling process defines the mechanical properties of the product. 

Many plant trials are required to produce a new steel grade with improved proper-
ties and performance. These trials are usually expensive and time-consuming. Hence, 
there is a need to address the problem from a simulation-based design perspective to ex-
plore solutions reaching multiple conflicting property/performance goals. The require-
ment is to produce steel rods with improved mechanical properties such as yield strength 
(YS), tensile strength (TS), and hardness (HV). These mechanical properties are defined 
by the microstructure after cooling, which includes the phase fractions (ferrite and pearlite 
phases are only considered in this problem), pearlite interlamellar spacing, ferrite grain 
size, and chemical compositions of steel. Nellippallil et al. [36] identify the microstructural 
requirements after the cooling stage to meet the mechanical properties of the rod. The 
microstructural requirements are to achieve a high ferrite fraction value, low pearlite in-
terlamellar spacing, and low ferrite grain size values within the defined ranges. The re-
quirement is to carry out the integrated design of the material and the process by manag-
ing the cooling rate (cooling process variable), final austenite grain size after rolling (roll-
ing microstructure variable), and the chemical compositions of the material. Hence, we 
explore the solution space of the defined variables using ALPPL to meet the target values 
identified for the microstructure after the cooling stage such that the mechanical property 
requirements of the steel rod are met. Our focus in this paper is to use this example in 
improving the solution algorithm rather than the design of the material and the manufac-
turing. The initial design formulation of the problem is shown as follows. 

Given 
Target values for microstructure after cooling 
Ferrite grain size target, D𝛼𝛼,Target = 8 μm 
Ferrite fraction target, Xf ,Target = 0 
Pearlite interlamellar spacing target, S0,Target = 0.15 
Find 
System variables 
X1 cooling rate (CR) 
X2 austenite grain size (D) 
X3 the carbon concentration ([C]) 
X4 the manganese concentration after rolling ([Mn]) 
Deviation variables 
di−, di+, i =1,2,3 
Satisfy 
System constraints 

Minimum ferrite grain size constraint                               D𝛼𝛼 ≥ 8 μm (18) 

Maximum ferrite grain size constraint                               D𝛼𝛼   ≤ 20 μm (19) 

Minimum pearlite interlamellar spacing constraint            So ≥ 0.15 μm (20) 

Maximum pearlite interlamellar spacing constraint            So ≤ 0.25 μm (21) 

Minimum ferrite phase fraction constraint (manage banding)           Xf  ≥  0.5 (22) 

Maximum ferrite phase fraction constraint (manage banding)  Xf  ≤ 0.9 (23) 



Algorithms 2024, 17, 88 21 of 33 
 

Maximum carbon equivalent constraint          Ceq = (C + Mn)/6 ;    Ceq ≤  0.35 (24) 

Mechanical Property Constraints 

Minimum yield strength constraint                      YS  ≥  250 MPa (25) 

Maximum yield strength constraint                       YS ≤ 330 MPa (26) 

Minimum tensile strength constraint                        TS ≤ 480 MPa (27) 

Maximum tensile strength constraint                            TS ≥ 625 MPa (28) 

Minimum hardness constraint                                  HV ≥ 130 (29) 

Maximum hardness constraint                                   HV ≤ 150 (30) 

System goals 
The target values for system goals are identified in [36] and are listed under the key-

word Given above. 

Goal 1: Achieve ferrite grain size target          DαTarget Dα(Xi)⁄ + d1+ − d1− = 1        (31) 

Goal 2: Achieve ferrite fraction target               Xf(Xi) XfTarget� + d2− − d2+ = 1 (32) 

Goal 3: Achieve pearlite interlamellar spacing target  SoTarget So(Xi)⁄ + d3+ − d3− = 1  (33) 

Variable bounds 
11 ≤ X1 ≤ 100 (K/min) 
30 ≤ X2 ≤ 100 (μm) 
0.18 ≤ X3 ≤ 0.3 (%) 
0.7 ≤ X4  ≤ 1.5 (%) 
Bounds on deviation variables 

di−, di+ ≥  0 and di− ∗ di+ =  0 , i = 1,2,3  (34) 

Minimize 
Minimize the deviation function in the initial design 

Z = ∑ Wi(di− + di+); ∑ Wi = 13
i=1

3
i=1   (35) 

There are three goals in the problem—(i) minimize ferrite grain size (D𝛼𝛼), (ii) maxim-
ize ferrite Fraction (Xf), and (iii) minimize interlamellar spacing (So). The targets and the 
acceptable values of the three goals are given. All three goals are nonlinear. There are four 
design/system variables—cooling rate (CR), final austenite grain size after rolling (D), the 
carbon concentration ([C]), and the manganese concentration after rolling ([Mn]). We aim 
to obtain: 
• The range of the system variables to reach the target of each goal of the best RMC for 

different design preferences and 
• The weight set, Ws = ⋂ Wk

s
k∈K , that is a compromise of the three goals for different 

design preferences. 
In [36], the authors formulate and execute the initial compromise decision support 

problem for the hot-rolling process chain problem and carry out a weight sensitivity anal-
ysis to identify variable values and the weight set. Ternary plots are generated to visualize 
and explore the weight set. In each ternary plot, the three axes represent the weights as-
signed to the three goals, respectively, and the contours indicate the fulfillment of each 
goal, Gk

Tk
 , k = 1, 2, 3 . Since the goals conflict, compromise solutions are desired. Weight 

sensitivity analysis is a way to mediate compromise around the conflicts among the goals. 



Algorithms 2024, 17, 88 22 of 33 
 

W1
s, W2

s W3
s, and Ws are the satisficing weight regions identified in the ternary plots, see 

areas marked using arrows in Figure 11a–d, respectively. To compare Gk
Tk

, k = 1, 2, 3 at 
the same scale, we normalize the fulfillments of each goal under all weight scenarios in 
the range [0, 1]. An acceptable fulfillment Gk

Tk
 of each goal is the dashed line in each ternary 

plot. The area between the corner (best Gk
Tk

) and the dashed line (acceptable Gk
Tk

) is the sat-
isficing weight area of Goal k, Wk

s and the superimposed area is the satisficing weight set 
of all three goals, Ws. 

The steps in the RMC tuning algorithm as applied to the hot rod-rolling problem are 
given in Algorithm A1, Appendix A. In Figures 11d, 12d and 13d, the satisficing weight 
set Ws when the RMC is 0.1, 0.5, and 0.8 is shown, respectively. When RMC is 0.1, as Figure 
11d shows, Ws is large, whereas when RMC is 0.8, as Figure 13d shows, Ws is small. How-
ever, using the ALP, there is no mechanism to evaluate which RMC value results in a 
relatively accurate approximation that gives us a robust Ws. So, we fill this gap using 
ALPPL. 

 
Figure 11. The satisficing weight set when setting RMC = 0.1. Subfigure (a–c) show the acceptable 
regions of weights for the three goals, respectively. Subfigure (d) shows the acceptable region 
weights for all three goals. The dashed lines demarcate acceptable regions for the goals and the 
arrows indicate the direction of acceptability. 



Algorithms 2024, 17, 88 23 of 33 
 

 
Figure 12. The satisficing weight set when setting RMC = 0.5. Subfigure (a–c) show the acceptable 
regions of weights for the three goals, respectively. Subfigure (d) shows the acceptable region 
weights for all three goals. The dashed lines demarcate acceptable regions for the goals and the 
arrows indicate the direction of acceptability. 

 
Figure 13. The satisficing weight set when setting RMC = 0.8. Subfigure (a–c) show the acceptable 
regions of weights for the three goals, respectively. Subfigure (d) shows the acceptable region 
weights for all three goals. The dashed lines demarcate acceptable regions for the goals and the 
arrows indicate the direction of acceptability. 

4.2. Parameter Initialization 
There are nineteen weight scenarios used in Table 7, representing a variety of design 

preferences. 

Table 7. Weight vectors used in [36] as different design scenarios. 

 W1 W2 W3  W1 W2 W3 
1 1 0 0 11 0 0.75 0.25 



Algorithms 2024, 17, 88 24 of 33 
 

2 0 1 0 12 0 0.25 0.75 
3 0 0 1 13 0.33 0.33 0.33 
4 0.5 0.5 0 14 0.2 0.2 0.6 
5 0.5 0 0.5 15 0.4 0.2 0.4 
6 0 0.5 0.5 16 0.2 0.4 0.4 
7 0.25 0.75 0 17 0.6 0.2 0.2 
8 0.25 0 0.75 18 0.4 0.4 0.2 
9 0.75 0 0.25 19 0.2 0.6 0.2 

10 0.75 0.25 0     

Running Processes B1 and B2 using the sample RMC (0.1, 0.5, and 0.8), we obtain the 
EIs in Table 8. 

Table 8. Results of EIs using sample RMC values with nineteen design scenarios. 

RMC Statistics Z Nit Nacc Nab Naoc 

0.1 
μ 0.1480 46.58 18.74 1.79 0.84 
𝜎𝜎 0.0679 5.95 0.87 0.63 0.50 

0.5 
μ 0.1467 20.42 19.47 2.05 0.79 
𝜎𝜎 0.0675 9.47 0.84 0.62 0.42 

0.8 
μ 0.1480 8.32 14.16 2.21 0.79 
𝜎𝜎 0.0675 5.56 6.94 0.63 0.71 

Running Process B3, we obtain the initial RMC (RMC0) and the best RMC as 0.5 (its 
μZ and σZ are bold italic), and we initialize the DEI as shown in Table 9. The results of 
the parameter initialization—RMC0 (0.5), EIs (Table 5), DEIs (Table 9), and “best” RMC 
value 0.5—are the input of RMC tuning (C). 

Table 9. The initial DEIs. 

DEI of μz DEI of 𝜎𝜎z DEI of μNaoc DEI of 𝜎𝜎Naoc DEI of μNab DEI of 𝜎𝜎Nab 
[0, 0.1477] [0, 0.0677] [0, 0.82] [0, 0.55] [0, 1.95] [0, 0.63] 

4.3. RMC Tuning 
We make rules for each procedure of RMC tuning based on heuristics. The heuristics 

are generalized from parameter learning and can be adjusted through the search process. 
C3: Evaluate the result of current RMC based on EIs and DEI. 
C3-1: Determine the next RMC value. 
Rule 1: Compare the performance of multiple EIs and define the comparison rules. 

Lines 22–30 in Algorithm A1 in Appendix A are an expansion of this rule. RMC A is better 
than RMC B because no less than κ of the EI(A) are better than EI(B), whereas other EI(A) 
do not exceed 𝛾𝛾 of the upper and lower bound of DEI. In this problem, we set κ = 1/2 and 
𝛾𝛾 =3 0%. 

Rule 2: Determine when and how the RMC should be updated. Lines 6–13 in Appen-
dix A explain this rule. We use a hill-climbing approach to update the RMC. If the updat-
ing in the previous RMC-tuning cycle improves the performance, then the previous up-
dating is in the “hill-climbing direction,” and we continue updating the RMC in this di-
rection with a step size 𝛼𝛼; otherwise, we need the best RMC to “pull us back” to the right 
direction with a portion 𝛽𝛽; hence, we update the RMC as a linear combination of the best 
RMC (elite) and the RMC two cycles ago (parent). In this problem, we set 𝛼𝛼 as a random 
value in [0, 1] and 𝛽𝛽 as a random value in [0.5, 1]. In this way, we incorporate greediness, 
elitism, and randomness in evolution. 

C3-2: Evaluate whether DEI needs to be updated. 



Algorithms 2024, 17, 88 25 of 33 
 

Rule 3: Determine when and how the DEI should be updated. See Algorithm A1 in 
Appendix A, Lines 18–38. In an RMC-tuning cycle, if more than κ EIs are better than the 
previous cycle, and more than ι EIs are in the DEI, whereas no more than 𝛾𝛾𝛾𝛾 EIs have 
minor violations, then the DEI is updated. Here, we set κ = ι = 2/3. For a problem with 
more EIs, κ and ι can be tuned using the performance improvement rate. This rule pre-
vents an over restrictive DEI from blocking us from a better range while ensuring gradual 
and relatively conservative updating of the DEI. 

C3-3: Evaluate whether “the best RMC” needs to be updated. 
Rule 4: Determine when and how the best RMC is updated. See Algorithm A1 in 

Appendix A, Lines 34–36. We use a variable (“best”) to store the best RMC. If more than κ 
EIs of the current RMC are better than the EIs of the best, the current RMC becomes the 
new best. 

C3-4: We aggregate the results of the RMC tuning RMC t+1, DEI, and best as inputs for 
the next tuning iteration. 

C4: Determine whether to stop iterating. 
Rule 5: Make the stopping criteria. To stop RMC tuning at the appropriate time, we 

use “the maximum number of RMC-tuning iterations” and “the maximum number of 
RMC-tuning iterations without updating the best RMC” as the stopping criteria. 

4.4. Results 
Using our test problem, the RMC tuning stops after fourteen iterations. We identify 

0.55 as the best RMC for the test problem. Compared with the initial RMC of 0.5, the final 
best RMC of 0.55 improves σZ, σNaoc, and σNab. The RMCs and EIs in the fourteen itera-
tions are in Table 10. The DEI is updated four times, and the best RMC is updated three 
times. The final best RMC is in the ninth iteration. 

Table 10. The EIs, DEI, RMC, best RMC of the fourteen iterations of RMC tuning. 

Iteration RMC 
Weight-Sum 

Deviation 

Number of 
Active Original 

Constraints 

Number of 
Active Bounds Better than Cycle  

(t-1) 
Better than 
Best RMC 

Update DEI 

μz 𝜎𝜎z μNaoc 𝜎𝜎Naoc μNab 𝜎𝜎Nab 

1 0.5 0.147 0.068 0.79 0.42 2.05 0.62 - - 
[1, 1.95] 

-> 
[1, 2.05] 

2 1.0 0.152 0.071 0.95 0.78 2.26 0.45 N N - 
3 0.8 0.148 0.068 0.79 0.71 2.21 0.63 N N - 

4 0.6 0.147 0.067 0.95 0.52 2.00 0.58 Y Y 
 

-> 
5 0.4 0.147 0.068 0.68 0.48 2.00 0.58 Y Y - 

6 0.2 0.147 0.068 0.84 0.60 1.84 0.60 N N  
-> 

7 0.3 0.154 0.069 0.95 0.52 1.79 0.71 N N - 
8 0.45 0.147 0.068 0.89 0.66 2.00 0.58 Y N - 
9 0.55 0.147 0.067 0.84 0.37 2.05 0.52 Y Y - 

10 0.65 0.147 0.067 1.00 0.58 2.05 0.62 N N 
 

-> 
11 0.48 0.147 0.068 0.89 0.66 2.05 0.62 N N - 
12 0.53 0.147 0.067 0.84 0.69 2.00 0.58 Y N - 
13 0.57 0.147 0.067 0.84 0.37 2.11 0.57 N N - 
14 0.43 0.145 0.069 0.84 0.60 2.00 0.58 N N - 

4.5. Verification and Validation 



Algorithms 2024, 17, 88 26 of 33 
 

To verify the efficacy of ALPPL, we evaluate its adequacy and the necessity in return-
ing robust solutions. 

Adequacy—We tested 20 RMC values randomly spread in [0, 1] and identified the 
relatively insensitive range(s); see Figure 14. If the best RMC returned by the ALPPL falls 
into the relatively insensitive range(s), then we show that the ALPPL can identify the best 
RMC. It turns out that the best RMC (0.55) ensures the solutions to fall in a relatively in-
sensitive range. For each pair of EIs (the mean and standard deviation), we identify the 
range(s) of RMC values, within which, both the mean and the standard deviation have 
acceptable values and are flat (stable). For example, for the deviation Z, we desire both its 
mean µz and standard deviation 𝜎𝜎z to be low values and flat. The two ranges bounded by 
the dotted rectangles are such ranges. For all EIs, the overlapped desired range is [0.5, 
0.55], so this is the relatively insensitive range. The value of 0.55 is in the insensitive RMC 
range for all EIs, so it is verified that when RMC is 0.55, it gives a relatively robust perfor-
mance. 

 
Figure 14. Identifying the insensitive range of RMC value using twenty RMC values. Subfigure (a–
c) show the insensitive ranges of the mean and standard deviation of Z, Naoc, and Nab, respec-
tively. 

Necessity—The insensitive range is sufficiently explored during the RMC tuning. 
First, we identify the insensitive range of RMC values—testing 20 RMC values uniformly 
distributed in [0, 1] with their EIs, we identify two ranges where the solutions are rela-
tively insensitive to scenario changing, [0.35, 0.4] and [0.5, 0.55]. In Figure 15a, we illustrate 
all fourteen RMC values in RMC tuning. The horizontal axis represents the iteration num-
ber and the vertical axis represents the RMC value. Four of the fourteen RMC values fall 
in the two insensitive ranges, so 28.5% of the tested RMC values fall in the insensitive 
ranges, whereas the insensitive ranges only occupy 10% of the whole RMC range. Hence, 



Algorithms 2024, 17, 88 27 of 33 
 

we conclude that our RMC tuning enables a relatively sufficient exploration of the insen-
sitive ranges. 

 
Figure 15. The comparison of ALPPL and ALP regarding RMC updating. Subfigure (a) illustrates 
the best RMC of the fourteen iterations when applying ALPPL. Subfigure (b) illustrates the best 
RMC of the twelve iterations when applying ALP. 

Validation of the improvement of ALPPL versus the ALP. We compare the tested 
RMC values using parameter learning (ALPPL) in Figure 15a with the tested RMC values 
using the golden section search (ALP) in Figure 15b. The best RMC identified using the 
golden section search is 0.65, which is not in the insensitive range; in addition, the RMC 
values tested in the golden section search are concentrated in [0.57, 0.77], which misses 
the insensitive ranges [0.35, 0.4] and [0.5, 0.55]. For a solution algorithm that sequentially 
linearizes the problems in multiple synthesis cycles, the computational complexity is O(n2) 
[37]—this applies to both the ALP and ALPPL, so the parameter-learning method in this 
paper does not require much computational power. Other improvements of ALPPL over 
ALP are summarized in Table 11. 

Table 11. ALPPL with RMS tuning versus ALP with golden section search. 

  ALPPL ALP 

General 
compariso

n 

Search method Rule-based parameter learning Golden section search 
Criteria used for evaluation of 

the RMC 
Deviation (fulfillment of the goals), the 

robustness of the solution 
Fulfillment of the goals 

If the approximation is 
sensitive to the scenario 

changing 

Considering different scenarios, the 
most appropriate RMC is identified. 

The approximation is relatively 
insensitive to scenario changes 

In each scenario, the best RMC is 
identified; it may vary as the 

scenario changes. The 
approximation is relatively 

sensitive to scenario changes 

Stopping criteria 
The best RMC has not been updated for 

n iterations, or the total iteration 
number reaches a threshold 

The distance between two golden 
section points is less than a 

threshold 𝜀𝜀 

 Complexity O(n2) O(n2) 

Compariso
n of the 
cooling 
problem 
results 

Number of search iterations 14 12 
If the identified best RMC is in 

the insensitive range 
Yes No 

Number of tested RMC values 
falling into insensitive range 

4 2 



Algorithms 2024, 17, 88 28 of 33 
 

Is the insensitive range 
explored sufficiently 

Relatively sufficiently Insufficiently 

5. Closing Remarks 
Our aim in this paper is to improve the determination of one critical parameter in a 

satisficing method regarding the robustness of the solution and the accuracy of the line-
arization. We show the benefits of using a satisficing strategy, the cDSP, and ALP to man-
age engineering design problems, especially when there are multiple goals, nonlinear and 
nonconvex equations, and the goals have different levels of achievability. However, there 
is a drawback of the current ALP—one of its parameters, the RMC, has an impact on the 
linearization and the solution space. For years, the RMC was either user-defined or deter-
mined using golden section search. However, there was no mechanism for obtaining in-
sight to improve the approximation by controlling the RMC. The golden section approach 
may result in missing the sub-range of the RMC with good approximation performance. 
The best RMC value is sensitive to design scenario changes; only the weighted-sum devi-
ations and feasibility of the solutions are considered when evaluating approximation per-
formance. Hence, to improve the ALP, we incorporate parameter learning into the algo-
rithm and upgrade it to the adaptive linear programming algorithm with parameter learn-
ing algorithm (ALPPL). In the ALPPL, we improve the approximation performance in 
three steps—identifying the criteria for approximation performance, developing evalua-
tion indices (EIs), and tuning the RMC. We use an industry-inspired problem, namely, the 
hot-rolling process for a steel rod, to demonstrate the improvements of ALPPL (to access 
DSIDES and ALPPL, please contact the corresponding author. The tutorial for using 
DSIDES to formulate a cDSP is in this video: 
https://www.youtube.com/watch?v=tUpVC97Y1L8, accessed on 25 November 2020) over 
the ALP. The computational complexity of ALPPL is the same as the ALP, which is O(n2). 

The parameter-learning method used in this paper can be expanded to other algo-
rithms that apply heuristics to determine the value of parameters. Domain expertise can 
be helpful in identifying the criteria for performance evaluation and developing evalua-
tion indices. With domain knowledge, the computational complexity of the parameter-
learning algorithms can be well controlled within an inexpensive range. This can custom-
ize the parameter learning for each algorithm and each problem. 

One limitation of this paper is that we did not discuss in great detail the computa-
tional complexity of the ALPPL or the parameter learning for algorithm improvement in 
general, because it can vary for different algorithms or problems. One thing that we can 
ensure is that, with designers’ domain expertise, by identifying the most critical criteria 
and then quantifying them as the most representative evaluation indices, the computa-
tional power required for the proposed parameter-learning algorithm can be less than that 
for parameter tuning without domain expertise, since designers can remove the less rele-
vant criteria and insensitive evaluation indices. 

In future research, there are several promising directions to explore in the realm of 
engineering design using the satisficing strategy. Firstly, investigating the applicability 
and effectiveness of the proposed rule-based parameter-learning procedure across a 
broader range of engineering problems could provide valuable insights into its generali-
zability and robustness. Additionally, exploring alternative satisficing algorithms or en-
hancements to existing algorithms could further improve the efficiency and robustness of 
design processes. Furthermore, incorporating advanced machine learning techniques, 
such as reinforcement learning or neural networks, into the satisficing framework may 
offer new opportunities for adaptive and intelligent decision making in engineering de-
sign. Finally, conducting empirical studies and applications in diverse industries and con-
texts could validate the practical value and benefits of the proposed approach, thereby 
facilitating its adoption and integration into engineering practice. Overall, these future 
research directions hold the potential to advance the state of the art in satisficing 



Algorithms 2024, 17, 88 29 of 33 
 

engineering design and contribute to the development of more automated and robust de-
sign methods. 

6. Glossary 
Accumulated constraint(s): When a nonlinear constraint is concave (the degree of the 

convexity is lower than −0.015), the approximated linear constraint of the previous itera-
tion is carried forward and combined with its approximated linear constraint in the cur-
rent iteration. Thus, a concave nonlinear constraint is represented by multiple linear con-
straints, and those carried forward are called accumulated constraints. 

Active constraint: If the slack or surplus of a constraint at a solution point is zero, 
then it is an active constraint. 

Convexity degree: The average value of the diagonal terms of the Hessian matrix of 
a function. This definition is applied to any paper on the cDSP and ALP. 

Deviation: The percentage difference between the value of a goal at a solution and its 
target. 

DSIDES: DSIDES is short for decision support in the design of engineering systems, 
which is a computational platform for designers to formulate engineering design prob-
lems using the compromise decision support problem (cDSP) and linearize and solve the 
problems using the adaptive linear programming (ALP) algorithm. 

Parameter learning: This includes a set of activities to maximize the approximation 
performance—identifying the evaluation indices (EIs), the desired range of each evalua-
tion index (DEI), and the value of a parameter, namely, the reduced move coefficient 
(RMC), that makes each EI fall into its desired range, DEI. 

Parameter tuning: This means finding the value of a parameter, namely, the reduced 
move coefficient (RMC), that makes each EI fall into its desired range, DEI. It is a part of 
parameter learning. 

Author Contributions: L.G. was responsible for developing and implementing the advanced adap-
tive linear programming algorithm with parameter learning and writing this paper with input from 
her co-authors. F.M. is the originator of the adaptive linear programming (ALP) algorithm. F.M. is 
responsible for coding the algorithm; see [6]. W.F.S. incorporated the ALP algorithm into the deci-
sion support environment, DSIDES. He was instrumental in advising L.G. about the use of DSIDES 
and ensuring what is written is accurate; see [30]. A.B.N. provided the test example for L.G. to use 
in her dissertation. He was instrumental in advising L.G. about how the data were structured, the 
interpretation of the results, and ensuring that what is written is accurate; see [36]. J.K.A. and F.M. 
mentored L.G.to complete her PhD dissertation. Both supported L.G. financially during her PhD 
program. Both revised and edited the manuscript. All authors have read and agreed to the published 
version of the manuscript. All authors have read and agreed to the published version of the manu-
script. 

Funding: Lin Guo was supported by the LA Comp Chair and the John and Mary Moore Chair at 
the University of Oklahoma till August 2021, then is supported by the Pietz Professorship funds and 
the start-up fund from the Research Affairs Office at South Dakota School of Mines and Technology 
since September 2021. All the three funding sources are internal. 

Data Availability Statement: The data used in this work are taken from the publication by Nellip-
pallil [36]. 

Acknowledgments: We are grateful to the late O.F. Hughes for originating the adaptive linear pro-
gramming (ALP) algorithm. We are grateful to H.B. Phouc for coding the ALP algorithm. We are 
grateful to Krishna Atluri and Zhenjun Ming for their help in testing the ALPPL algorithm. Lin Guo 
acknowledges the Pietz Professorship funds and the start-up fund from the Research Affairs Office 
at South Dakota School of Mines and Technology. Farrokh Mistree and Janet K. Allen gratefully 
acknowledge support from the LA Comp Chair and the John and Mary Moore Chair at the Univer-
sity of Oklahoma. 

Conflicts of Interest: On behalf of all authors, the corresponding author states that there is no con-
flict of interest. 



Algorithms 2024, 17, 88 30 of 33 
 

Nomenclature 
ALP Adaptive Linear Programming 
ALPPL Adaptive Linear Programming with Parameter Learning 
cDSP  Compromise Decision Support Problem 
DEI Desired Range of Evaluation Index 
DSP Decision Support Problem 
EI/EIs Evaluation Index/Indices 
RMC Reduced Move Coefficient 

Appendix A 
The RMC Parameter-Learning Algorithm Customized for the Hot Rolling Process Chain 
Problem 

Appendix A is the RMC parameter-learning algorithm (Algorithm 4) customized for 
the Cooling Procedure of the Hot Rolling Problem. Appendix A is referenced in Section 4. 
This algorithm is an extension of the Algorithm 4. More auxiliary parameters are defined 
to assist parameter learning—T, 𝛼𝛼, 𝛽𝛽, 𝛾𝛾𝛾𝛾, 𝜃𝜃𝜃𝜃, 𝜄𝜄, 𝜅𝜅, 𝑀𝑀. For the parameters that are relatively 
more important (the results are more sensitive to their values), e.g. 𝜃𝜃𝜃𝜃, we tune their values. 
For the parameters that are relatively less important, e.g. 𝜄𝜄, 𝜅𝜅, 𝑀𝑀, we set values to them with 
heuristics. 

Algorithm A1. The RMC parameter-learning algorithm (Algorithm 4) customized for the Cooling Procedure of the Hot 
Rolling Problem 

1 𝑡𝑡 <- 0 // Initiate the number of synthesis cycles 

2 b <- 0 // Initiate the time of updating the best RMC 

3 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 <- a random value // Initiate RMC with a random value (here we set 𝑅𝑅𝑀𝑀𝑅𝑅0<- 0.5) 

4 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏 <- a random value // Initiate the “best RMC” with a random value (here we set 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡0<- 0.5) 

5 While 𝑡𝑡 ≤ 𝑇𝑇 Do // Search for best RMC for T synthesis cycles (the first stop criterion, here we set T <- 20) 

6 if 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−1] ≻ 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−2] // If 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−1 performs better than 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−2 

7 
𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 <- 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−1 + α ∙ (𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−1 − 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−2) // Update 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 in the improving direction (α ∈ [0, 1], and here we set α as ran-

dom values that uniformly distributed in [0, 1]) 

8 else if 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏 ≠ 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−2 

9 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 <- β ∙ 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏 + (1 − β) ∙ 𝑃𝑃𝐸𝐸𝐸𝐸−1[𝑏𝑏𝑏𝑏𝑡𝑡𝑡𝑡𝑏𝑏𝑏𝑏{𝑃𝑃𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−2], 𝑃𝑃𝐸𝐸𝐸𝐸[𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏−1]}] // Update 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 as the linear com-

bination of best RMC and the last best RMC (𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏−1) iff 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏−1 performs better than 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−2; otherwise 

update 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 as the linear combination of best RMC and 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−2 (β ∈ [0,1], and here we set β as ran-

dom values that uniformly distributed in [0.5, 1]) 

10 else if 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏−1 

11 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 <- β ∙ 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏 + (1 − β) ∙ 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡𝑏𝑏−1 // Update 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 as the linear combination of the current best 

RMC and the last best RMC 

12 else 

13 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 <- β ∙ 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−1 + (1 − β) ∙ 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−2 

14 if 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 > 1 // If 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 is larger than its upper bound 

15 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 <- 1 // Pull 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 back to range 

16 if 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 < 0 // if 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 is lower than its lower bound 

17 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 = 0 // Pull 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 back to range 



Algorithms 2024, 17, 88 31 of 33 
 

18 𝐸𝐸 <- 0 // Initiate the number of EIs of 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 in 𝐷𝐷𝐸𝐸𝐸𝐸 

19 𝐽𝐽 <- 0 // Initiate the number of EIs of 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 that are better than the EIs of best RMC 

20 𝐾𝐾 <- 0 // Initiate the number of EIs of 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 that violate 𝐷𝐷𝐸𝐸𝐸𝐸 within θ. We tune θ maximizing the 𝐿𝐿2 − 𝑛𝑛𝑛𝑛𝑏𝑏𝑛𝑛 distance between 

EIs of two adjacent iterations and get 10% 

21 𝐿𝐿 <- 0 // Initiate the number of EIs of 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 that are better than the EIs of 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−1 

22 for 𝑖𝑖 in 1 to 𝑛𝑛 // For all the EIs (n is the number of EIs) 

23 
th th 

if𝑃𝑃𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡]𝑖𝑖 ∈ 𝐷𝐷𝐸𝐸𝐸𝐸𝑖𝑖 // If the 𝑖𝑖P  EI of 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 is in the desired range of the 𝑖𝑖P  EI 

24 𝐸𝐸 <- 𝐸𝐸 + 1 // Update the number of EIs of 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 in 𝐷𝐷𝐸𝐸𝐸𝐸 

25 if 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡]𝑖𝑖 ≽ 𝐸𝐸𝐸𝐸[best]𝑖𝑖11 // If for the 𝑖𝑖th EI 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 performs better than or equal to best RMC 
P 

26 𝐽𝐽 <- 𝐽𝐽 + 1 // Update the number of EIs of 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 that are better than best RMC 

27 if 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡]𝑖𝑖 ∉ 𝐷𝐷𝐸𝐸𝐸𝐸𝑖𝑖 and 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡]𝑖𝑖 ∈ [𝐷𝐷𝐸𝐸𝐸𝐸𝑖𝑖]+𝛾𝛾𝛾𝛾𝑖𝑖 // If the 𝑖𝑖th EI of 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 violates the desired range of the 
−𝛾𝛾𝛾𝛾𝑖𝑖 

𝑖𝑖th EI within 𝛾𝛾𝛾𝛾𝑖𝑖 (in this problem, 𝛾𝛾𝛾𝛾𝑖𝑖=30%) 

28 𝐾𝐾 <- 𝐾𝐾 + 1 // Update the number of EIs of 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 that violate 𝐷𝐷𝐸𝐸𝐸𝐸 within 𝛾𝛾𝛾𝛾𝑖𝑖 
29 if 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡]𝑖𝑖 ≽ 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−1]𝑖𝑖 // If for the 𝑖𝑖th EI, 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 performs better than or equal to 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−1 
30 𝐿𝐿 <- 𝐿𝐿 + 1 // Update the number of EIs that 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 improves versus 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−1 
31 if 𝐸𝐸 ≥ 𝜄𝜄 ∙ 𝑛𝑛 and 𝐸𝐸 + 𝐾𝐾 = 𝑛𝑛 // If for at least 𝜄𝜄 (we set it as 2/3) EIs are in 𝐷𝐷𝐸𝐸𝐸𝐸, and the violation rate are all within 𝛾𝛾𝛾𝛾𝑖𝑖 
32 if 𝐿𝐿 ≥ 𝜅𝜅 ∙ 𝑛𝑛 // If at least 𝜅𝜅 (we set it as 2/3) EIs are better than previous synthesis cycle 

33 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡] ≻ 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−1] // We define that 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 overall performs better than 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡−1 

34 if 𝐽𝐽 ≥ 𝜅𝜅 ∙ 𝑛𝑛 // If at least 𝜅𝜅 EIs is better than best RMC 

35 𝑏𝑏𝑏𝑏𝑏𝑏𝑡𝑡 <- 𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡 // Update best RMC 

36 nupdt <- −1 // Reset no updating pointer “nupdt” as “−1” 

37 if 𝐾𝐾 ≥ 1 // If at least one violation EI 

38 
𝐷𝐷𝐸𝐸𝐸𝐸𝑖𝑖 <- 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡]𝑖𝑖 which 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡]𝑖𝑖 ∉ 𝐷𝐷𝐸𝐸𝐸𝐸𝑖𝑖 and 𝐸𝐸𝐸𝐸[𝑅𝑅𝑀𝑀𝑅𝑅𝑡𝑡]𝑖𝑖 ∈ [𝐷𝐷𝐸𝐸𝐸𝐸𝑖𝑖]+𝜃𝜃 // Update 𝐷𝐷𝐸𝐸𝐸𝐸𝑖𝑖−𝜃𝜃 

 nupdt <- nupdt + 1 // Increase no updating pointer “nupdt” by 1 

39 else 

40 nupdt <- nupdt + 1 // Increase no updating pointer “nupdt” by 1 

41 if nupdt ≥ 𝑀𝑀 // If no updating in 𝑀𝑀 synthesis cycles in a row (the second stop criterion, and here we set M<−5) 

42 Break 

43 t <- t+1 // Move on to the next synthesis cycle 
44 Return best // Return the final best RMC as the appropriate RMC 

Steps in the RMC-tuning algorithm: Determine the evaluation indices (EIs) based on 
multiple criteria to classify good results from the bad ones; initialize the desired range of 
each EI (DEI) of the test problem; identify auxiliary parameters to assist RMC tuning; bring 
the EIs into DEI by tuning the auxiliary parameters; update DEI to ensure a proportion of 
good results out of all results; tradeoff between elitism and randomness to ensure a diver-
sity while obtaining rapid convergence. 

  



Algorithms 2024, 17, 88 32 of 33 
 

References 
1. Rios, L.M.; Sahinidis, N.V. Derivative-Free Optimization: A Review of Algorithms and Comparison of Software 

Implementations. J. Glob. Optim. 2013, 56, 1247–1293. 
2. Vrahatis, M.N.; Kontogiorgos, P.; Papavassilopoulos, G.P. Particle Swarm Optimization for Computing Nash and Stackelberg 

Equilibria in Energy Markets. SN Oper. Res. Forum 2020, 1, 20. 
3. Behmanesh, E.; Pannek, J. A Comparison between Memetic Algorithm and Genetic Algorithm for an Integrated Logistics 

Network with Flexible Delivery Path. Oper. Res. Forum 2021, 2, 47. 
4. Viswanathan, J.; Grossmann, I.E. A Combined Penalty Function and Outer-Approximation Method for MINLP Optimization. 

Comput. Chem. Eng. 1990, 14, 769–782. 
5. Nagadurga, T.; Devarapalli, R.; Knypiński, Ł. Comparison of Meta-Heuristic Optimization Algorithms for Global Maximum 

Power Point Tracking of Partially Shaded Solar Photovoltaic Systems. Algorithms 2023, 16, 376. 
6. Mistree, F.; Hughes, O.F.; Bras, B. Compromise decision support problem and the adaptive linear programming algorithm. 

Prog. Astronaut. Aeronaut. Struct. Optim. Status Promise 1993, 150, 251. 
7. Teng, Z.; Lu, L. A FEAST algorithm for the linear response eigenvalue problem. Algorithms 2019, 12, 181. 
8. Rao, S.; Mulkay, E. Engineering design optimization using interior-point algorithms. AIAA J. 2000, 38, 2127–2132. 
9. Asghari, M.; Fathollahi-Fard, A.M.; Al-E-Hashem, S.M.; Dulebenets, M.A. Transformation and linearization techniques in 

optimization: A state-of-the-art survey. Mathematics 2022, 10, 283. 
10. Reich, D.; Green, R.E.; Kircher, M.; Krause, J.; Patterson, N.; Durand, E.Y.; Viola, B.; Briggs, A.W.; Stenzel, U.; Johnson, P.L. 

Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 2010, 468, 1053–1060. 
11. Fishburn, P.C. Utility theory. Manag. Sci. 1968, 14, 335–378. 
12. Nash, J.F., Jr. The bargaining problem. Econom. J. Econom. Soc. 1950, 18, 155–162. 
13. Saaty, T.L. What Is the Analytic Hierarchy Process?; Springer: Berlin/Heidelberg, Germany, 1988. 
14. Calpine, H.; Golding, A. Some properties of Pareto-optimal choices in decision problems. Omega 1976, 4, 141–147. 
15. Guo, L. Model Evolution for the Realization of Complex Systems. Ph.D. Thesis, University of Oklahoma, Norman, OK, USA, 

2021. 
16. Speakman, J.; Francois, G. Robust modifier adaptation via worst-case and probabilistic approaches. Ind. Eng. Chem. Res. 2021, 

61, 515–529. 
17. Souza, J.C.O.; Oliveira, P.R.; Soubeyran, A. Global convergence of a proximal linearized algorithm for difference of convex 

functions. Optim. Lett. 2016, 10, 1529–1539. 
18. Su, X.; Yang, X.; Xu, Y. Adaptive parameter learning and neural network control for uncertain permanent magnet linear 

synchronous motors. J. Frankl. Inst. 2023, 360, 11665–11682. 
19. Courant, R.; Hilbert, D. Methods of Mathematical Physics; Interscience: New York, NY, USA, 1953; Volume 1. 
20. Guo, L.; Chen, S. Satisficing Strategy in Engineering Design. J. Mech. Des. 2024, 146, 050801. 
21. Powell, M.J. An Efficient Method for Finding the Minimum of a Function of Several Variables without Calculating Derivatives. 

Comput. J. 1964, 7, 155–162. 
22. Straeter, T.A. On the Extension of the Davidon-Broyden Class of Rank One, Quasi-Newton Minimization Methods to an Infinite 

Dimensional Hilbert Space with Applications to Optimal Control Problems; North Carolina State University: Raleigh, NC, USA, 1971. 
23. Fletcher, R. Practical Methods of Optimization, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 1987. 
24. Khosla, P.; Rubin, S. A Conjugate Gradient Iterative Method. Comput. Fluids 1981, 9, 109–121. 
25. Nash, S.G. Newton-type Minimization via the Lanczos Method. SIAM J. Numer. Anal. 1984, 21, 770–788. 
26. Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran Subroutines for Large-scale Bound-Constrained 

Optimization. ACM Trans. Math. Softw. (TOMS) 1997, 23, 550–560. 
27. Powell, M. A Tolerant Algorithm for Linearly Constrained Optimization Calculations. Math. Program. 1989, 45, 547–566. 
28. Powell, M.J. A View of Algorithms for Optimization without Derivatives. Math. Today Bull. Inst. Math. Its Appl. 2007, 43, 170–

174. 
29. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. 

Comput. 2002, 6, 182–197. 
30. Guo, L.; Balu Nellippallil, A.; Smith, W.F.; Allen, J.K.; Mistree, F. Adaptive Linear Programming Algorithm with Parameter 

Learning for Managing Engineering-Design Problems. In Proceedings of the ASME 2020 International Design Engineering 
Technical Conferences and Computers and Information in Engineering Conference, Online, 17–19 August 2020; American 
Society of Mechanical Engineers: New York, NY, USA, 2020; p. V11BT11A029. 

31. Chen, W.; Allen, J.K.; Tsui, K.-L.; Mistree, F. A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors 
and Control Factors. J. Mech. Des. 1996, 118, 478–485. 

32. Maniezzo, V.; Zhou, T. Learning Individualized Hyperparameter Settings. Algorithms 2023, 16, 267. 
33. Fianu, S.; Davis, L.B. Heuristic algorithm for nested Markov decision process: Solution quality and computational complexity. 

Comput. Oper. Res. 2023, 159, 106297. 
34. Sabahno, H.; Amiri, A. New statistical and machine learning based control charts with variable parameters for monitoring 

generalized linear model profiles. Comput. Ind. Eng. 2023, 184, 109562. 
35. Choi, H.-J.; Austin, R.; Allen, J.K.; McDowell, D.L.; Mistree, F.; Benson, D.J. An Approach for Robust Design of Reactive Power 

Metal Mixtures based on Non-Deterministic Micro-Scale Shock Simulation. J. Comput. Aided Mater. Des. 2005, 12, 57–85. 



Algorithms 2024, 17, 88 33 of 33 
 

36. Nellippallil, A.B.; Rangaraj, V.; Gautham, B.; Singh, A.K.; Allen, J.K.; Mistree, F. An inverse, decision-based design method for 
integrated design exploration of materials, products, and manufacturing processes. J. Mech. Des. 2018, 140, 111403. 

37. Sohrabi, S.; Ziarati, K.; Keshtkaran, M. Revised eight-step feasibility checking procedure with linear time complexity for the 
Dial-a-Ride Problem (DARP). Comput. Oper. Res. 2024, 164, 106530. 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au-
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 


	1. Introduction
	1.1. Frame of Reference
	1.2. Mechanisms to Ensure That the cDSP and ALP Find Satisficing Solutions
	1.3. An Example and Explanation Using KKT Conditions
	1.4. A Limitation in the ALP to Be Improved

	2. How Does the ALP Work?
	2.1. The Adaptive Linear Programming (ALP) Algorithm
	2.2. The Reduced Move Coefficient

	3. Parameter Learning to Dynamically Change the RMC
	3.1. Step 1—Identifying the Criteria
	3.2. Step 2—Developing the Evaluation Indices (EIs)
	3.3. Step 3—Learning the DEI to Tune the RMC

	4. A Test Problem
	4.1. The Hot Rod-Rolling Process Chain
	4.2. Parameter Initialization
	4.3. RMC Tuning
	4.4. Results
	4.5. Verification and Validation

	5. Closing Remarks
	6. Glossary
	Nomenclature
	Appendix A
	The RMC Parameter-Learning Algorithm Customized for the Hot Rolling Process Chain Problem

	References

