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Abstract: When dealing with engineering design problems, designers often encounter nonlinear and
nonconvex features, multiple objectives, coupled decision making, and various levels of fidelity of sub-
systems. To realize the design with limited computational resources, problems with the features above
need to be linearized and then solved using solution algorithms for linear programming. The adaptive
linear programming (ALP) algorithm is an extension of the Sequential Linear Programming algorithm
where a nonlinear compromise decision support problem (cDSP) is iteratively linearized, and the
resulting linear programming problem is solved with satisficing solutions returned. The reduced
move coefficient (RMC) is used to define how far away from the boundary the next linearization is to
be performed, and currently, it is determined based on a heuristic. The choice of RMC significantly
affects the efficacy of the linearization process and, hence, the rapidity of finding the solution. In
this paper, we propose a rule-based parameter-learning procedure to vary the RMC at each iteration,
thereby significantly increasing the speed of determining the ultimate solution. To demonstrate the
efficacy of the ALP algorithm with parameter learning (ALPPL), we use an industry-inspired problem,
namely, the integrated design of a hot-rolling process chain for the production of a steel rod. Using
the proposed ALPPL, we can incorporate domain expertise to identify the most relevant criteria to
evaluate the performance of the linearization algorithm, quantify the criteria as evaluation indices,
and tune the RMC to return the solutions that fall into the most desired range of each evaluation
index. Compared with the old ALP algorithm using the golden section search to update the RMC, the
ALPPL improves the algorithm by identifying the RMC values with better linearization performance
without adding computational complexity. The insensitive region of the RMC is better explored
using the ALPPL—the ALP only explores the insensitive region twice, whereas the ALPPL explores
four times throughout the iterations. With ALPPL, we have a more comprehensive definition of
linearization performance—given multiple design scenarios, using evaluation indices (EIs) including
the statistics of deviations, the numbers of binding (active) constraints and bounds, the numbers of
accumulated linear constraints, and the number of iterations. The desired range of evaluation indices
(DEI) is also learned during the iterations. The RMC value that brings the most EIs into the DEI is
returned as the best RMC, which ensures a balance between the accuracy of the linearization and
the robustness of the solutions. For our test problem, the hot-rolling process chain, the ALP returns
the best RMC in twelve iterations considering only the deviation as the linearization performance
index, whereas the ALPPL returns the best RMC in fourteen iterations considering multiple EIs. The
complexity of both the ALP and the ALPPL is O(n2). The parameter-learning steps can be customized
to improve the parameter determination of other algorithms.
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1. Introduction

Solution algorithms for solving engineering design problems fall into two categories:
(i) an optimizing strategy or (ii) a satisficing strategy. For typical engineering design prob-
lems with nonlinear, nonconvex properties that cannot be solved in a straightforward way
using simplex, Lagrange multipliers, or other gradient-based solution algorithms, when
applying the optimizing strategy, designers need to solve problems approximately, for
example, using pattern search methods [1], particle swarm optimization [2], memetic algo-
rithms [3], penalty function methods [4], or metaheuristic algorithms [5]. When methods
in Category (i) are used, the solutions are desired to be near-Pareto solutions, often on or
close to the boundary of the feasible space (bounded by constraints) but not necessarily at
a vertex of the feasible space. Whereas when methods in Category (ii) are used, such as
sequential linear programming [6] or FEAST [7], the solutions are always at one or multiple
vertices of the linearized (approximated) solution space. Since the solution always includes
a vertex, we are able to use information of the dual problem to explore the solution space [6].
Typically, in engineering design problems the number of constraints in the primal formu-
lation exceeds the number of variables [8]. In these cases, solving the dual formulation is
quicker [6]. For optimization strategies, there are state-of-the-art surveys summarizing and
classifying linearization techniques thoroughly, such as in [9]. Linearization techniques
are classified into two groups—nonlinear equations replaced by an exact equivalent LP
formulation or linear approximations which find the equivalent of a nonlinear function
with the least deviation around the point of interest or separate straight-line segments.

In this paper, our focus is on a method in Category (ii), the satisficing strategy, namely,
the compromise decision support problem (cDSP) and adaptive linear programming (ALP)
algorithm [6], because it is more appropriate for engineering design problems by giving
satisficing solutions and exploring solution space. Satisficing solutions are near-optimal
and on the vertices of the approximated linear problems. The reasons are summarized in
Sections 1.1 and 1.2.

1.1. Frame of Reference

There are special requirements for engineering design methods. Engineering design is
a task that occupies multiple designers with different fields of expertise to make decisions
that meet a variety of requirements [10]. Designers may define objective functions using dif-
ferent methods—utility theory [11], game theory [12], analytic hierarchy process (AHP) [13],
Pareto-optimal methods [14], etc. For optimization problems with one or multiple objective
function(s) to be minimized or maximized, one can define such problems based on maxi-
mization of expected utility. Designers accept assumptions and simplifications when using
utility theory to manage a problem, sometimes without realizing it. Such assumptions
include the abstraction of mathematical relationships between variables to be 100% accurate
and not evolve, the levels of fidelity of different sub-models or segments of a model are
the same, the design preferences among multiple objectives are fully captured, etc. [15].
For many problems, these assumptions are wrong and this may cause problems. For
example, when implementing an optimal solution, a system may not give optimal output,
because of the inaccurate equations used in the model, or because uncertainty breaks the
equilibrium of any Karush–Kuhn–Tucker (KKT) conditions, thus destroying the optimality
of the solution [16].

In addition, when the problem is nonconvex, specifically, when any nonzero linear
combination of the constraints is more convex than the objective function [17], Category (i)
methods cannot return a feasible solution because the sufficient KKT condition cannot be
satisfied [15]. In this case, formulating the problem using the compromise decision support
problem (cDSP) and solving it using the adaptive linear programming (ALP) algorithm is a
way to identify satisficing solutions that meet the necessary KKT condition [15].
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1.2. Mechanisms to Ensure That the cDSP and ALP Find Satisficing Solutions

There are five mechanisms in the cDSP and ALP that enable designers to identify
satisficing solutions to nonlinear, nonconvex engineering design problems, especially when
optimization methods fail. We summarize the mechanisms in Table 1. Two assumptions in
standard optimization methods make optimal solutions unavailable for some nonlinear,
nonconvex problems:

Assumption 1. Mathematical models are 100% complete and accurate abstractions of physical
models, so the optimal solution to the mathematical problem is optimal for the physical problem.

Assumption 2. The convexity degree of at least one nonzero linear combination of all constraints is
higher than the convexity degree of the objective function.

However, for Assumption 1, designers need boundary information to deal with
uncertainties, but such information is normally unavailable [18]. Using the cDSP and ALP,
designers can identify satisficing solutions by removing the two assumptions.

Table 1. The mechanisms in the cDSP and ALP to find satisficing solutions [16].

Mechanisms Advantage Assumption Removed

Using goals and minimizing deviation
variables instead of objectives

At a solution point, only the necessary KKT
condition is met, whereas the sufficient KKT
condition does not have to be met.
Therefore, designers have a greater chance of finding
a solution and a lower chance of losing a solution
due to parameterizable and/or
unparameterizable uncertainties.

Assumption 1

Using second-order sequential linearization Designers can have a balance between linearization
accuracy and computational complexity. Assumption 2

Using accumulated linearization
Designers can manage nonconvex problems and
deal with highly convex, nonlinear problems
relatively more accurately.

Assumption 2

Combining interior-point search and
vertex search

Designers can avoid getting trapped in local optima
to some extent and identify satisficing solutions
which are relatively insensitive when the starting
points change.

Assumption 1

Allowing some violations of soft
requirements, such as the bounds of
deviation variables

Designers can manage rigid requirements and soft
requirements in different ways to ensure feasibility.
As a result, goals and constraints with different
scales can be managed.

Assumptions 1 and 2

There are differences between the satisficing construct using cDSP-ALP and optimiza-
tion including its variant goal programming. Solutions are usually obtained by identifying
the Pareto frontier consisting of nondominated or near-optimal solutions using optimiza-
tion solution algorithms. The formulation of design problems using a satisficing strategy,
namely, the compromise decision support problem (cDSP), has the key features that allow
designers to identify satisficing solutions that meet the necessary KKT condition but not
the sufficient condition.

The format of a nonlinear optimization problem is this: for a given objective function
f(x), Euler and Lagrange developed the Euler–Lagrange equation forming the second-order
ordinary differential equations ∇2

xxf(x) to facilitate finding the stationary solutions. The
value of the variables that maximize f(x) within the feasible set F is the solution to the
optimization problem, where F is the set bounded by constraints and bounds. The format
of an optimization problem O can be represented as follows. x is the vector of decision
variables as real numbers. gi(x) is the ith inequality constraint. hj(x) is the ith equality
constraint. Any point x that is a local extremum of the set mapped by multiplying active
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equations with a nonnegative vector is a local optimum of O [19], denoted as x∗. The
elements of such a nonnegative vector are Lagrange multipliers, µ and λ.

The format of an optimization problem O:
Given

f : Rn → R,F ⊆ Rn

F =
{

x ∈ Rn
∣∣gi(x) ≥ 0, i = 1, . . . , m, hj(x) = 0, j = 1, . . . , ℓ

}
find

x∗ : f(x∗) ≽ f(x), ∀x ∈F

One variant of optimization is goal programming. The format of a goal programming
problem Ogoal is represented as follows. A target value T is predefined for the objective
function f(x) as the right-hand side value, so the objective becomes an equation, and we
call it a goal. d− and d+ are deviation variables measuring the underachievement and
overachievement of the goal towards its target. The problem is solved by minimizing the
deviation variables, which is minimizing the difference between f(x) and T. In other words,
goal programming is aimed at finding T’s closest projection on F .

The format of a goal programming problem Ogoal:
Given

f : Rn → R,F ⊆ Rn

F =
{

x ∈ Rn
∣∣gi(x) ≥ 0, i = 1, . . . , m, hj(x) = 0, j = 1, . . . , ℓ, d−·d+ = 0, 0 ≤ d∓ ≤ 1, Goal : f(x) + d− − d+ = T

}
find

x∗ : Px∈F (Goal : f(x) = T)

In the cDSP, elements of mathematical programming and goal programming are
combined. A cDSP C is represented as follows. For a nonlinear cDSP, we first linearize the
nonlinear equations, including nonlinear constraints and nonlinear goal. Therefore, the
nonlinear cDSP first becomes a linear problem with a linear goal Goallinear, a linear feasible
space F li bounded by linear constraints g(x)li ≥ 0 and h(x)li = 0. Thus, using a cDSP, we
seek the closest projection from the linear goal set onto a linear feasible set. We define the
solution as a satisficing solution, and we use xs to denote it.

The format of a cDSP C:
Given

f : Rn → R,F ⊆ Rn

F li =

{
x ∈ Rn|gi(x)

li ≥ 0, i = 1, . . . , m, hj(x)
li = 0, j = 1, . . . , ℓ, d−·d+ = 0, 0 ≤ d∓ ≤ 1, Goalli : f(x)li

T + d− − d+ = 1
}

find
xs : Px∈F li

(
Goalli : f(x)li = T

)
The difference between x∗ and xs is that x∗ conforms to both the necessary (first-order)

and sufficient (second-order) KKT conditions, whereas xs conforms to the necessary KKT
condition but may not conform to the sufficient KKT condition. This is because the second
derivative of the linear equations, Goalli, gi(x)

li ≥ 0, and hj(x)
li = 0, degenerates—as a

result, no uncertainty may affect the feasibility of xs because there is no uncertainty to break
the equilibrium of the second-order Lagrange equation. In addition, when the convexity of
F is greater than the convexity of the f(x), x∗ may not be identified as the second-order
Lagrange equation has no solution, but xs is obtainable because the second-order KKT
condition is irrelevant. The relationship among optimal solutions, satisficing solutions, and
near-optimal solutions is illustrated in Figure 1.
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In Chapter 2 of [15], the author gives five examples to demonstrate how the mecha-
nisms work (we have a demonstration of the comparison of five examples in this video:
https://www.youtube.com/watch?v=7apDZO-9A74, accessed on 21 November 2020, and
a tutorial of using DSIDES to formulate and solve a problem in this video: https://www.
youtube.com/watch?v=tUpVC97Y1L8, accessed on 25 November 2020. In this paper, since
our focus is to fill a gap in the ALP, we give only one example in Section 1.3 to show one of
the advantages versus the optimization method. Information such as applications using
cDSP and ALP to obtain satisficing solutions can be found in [20].

1.3. An Example and Explanation Using KKT Conditions

We use a simple example with multiple goals (objectives), nonlinear and nonconvex
equations, and the goal targets with various degrees of achievability. We formulate the
problem using optimization and the cDSP in Table 2.

Table 2. The optimization model and compromise DSP of the example.

Optimizing Satisficing

Objective Functions

f1(x) = cos
(

x1
2 + x2

3
)

f2(x) = 25·(x1 − 2)3 + 50·(x2 − 2)3 + 50·x1·x2
2

Constraints and Bounds

s.t.


x1·x2 ≤ 1
f1(x) ≥ 0
f2(x) ≥ 0

0 ≤ x1 ≤ 2
0 ≤ x2 ≤ 2

Combination of Objective Functions

Max ∑2
i=1 wi·fi(x)

Given
x1, x2, d1

±, d2
±

f1(x) = cos
(

x1
2 + x2

3
)

f2(x) = 25·(x1 − 2)3 + 50·(x2 − 2)3 + 50·x1·x2
2

Find
x1, x2, d1

∓, d2
∓

Satisfy
Goals:

f1(x)
1.2

+ d1
− − d1

+ = 1

f2(x)
400

+ d2
− − d2

+ = 1

Constraints:
x1·x2 ≤ 1

f1(x) ≥ 0

f2(x) ≥ 0

di
−·di

+ = 0, i = 1, 2

Bounds:
0 ≤ x1, x2 ≤ 2

0 ≤ d1
±, d2

± ≤ 1

Minimize

Merit function Z = ∑2
i=1 wi·

(
di

− + di
+)

https://www.youtube.com/watch?v=7apDZO-9A74
https://www.youtube.com/watch?v=tUpVC97Y1L8
https://www.youtube.com/watch?v=tUpVC97Y1L8
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The methods used in the optimizing and satisficing strategies are listed in Table 3.
For optimizing methods, we used the “SciPy.optimize” package (https://docs.scipy.org/
doc/scipy/reference/optimize.html, accessed on 1 January 2008). There are ten algorithms
in the package. We use three of them to solve the example problem because they are the
only relevant ones. We do not use the Nelder–Mead, Powell (Powell’s conjugate direction
method) [21], or conjugate gradient (CG) methods [22] or the Broyden–Fletcher–Coldfarb–
Shannon (BFGS) algorithm [23] because they cannot easily manage problems with con-
straints. The Newton conjugate gradient (Newton-CG) method [24,25], L-BFGS-B (an exten-
sion BFGS for large-scale, bounded problems) [26], and TNC (truncated Newton method or
Hessian-free optimization) [26] either cannot deal with problems without Jacobians (when
using Newton-CG, even setting the Jacobian as false, and the algorithm may not work with-
out a provided Jacobian partially because the default temporary memory of Jacobian cannot
be cleared; see: https://stackoverflow.com/questions/33926357/jacobian-is-required-for-
newton-cg-method-when-doing-a-approximation-to-a-jaco, accessed on 15 May 2019) or
return infeasible solutions without recognizing that they are infeasible. Therefore, in SciPy
we use the constrained optimization by linear approximation (COBYLA) algorithm [27,28],
Trust-constr (https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.
html, accessed on 1 January 2008), and sequential least squares programming (SLSQP)
(https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html, accessed on
1 January 2008) to solve the example problem.

Table 3. Methods for comparison of the two strategies.

Item
Strategy Optimizing Satisficing

Model formulation construct Mathematical programming
Goal programming

Compromise decision
support problem

Solution algorithm

Constrained optimization by linear
approximation (COBYLA) algorithm

Adaptive linear programing
(ALP) algorithm

Trust-region constrained
(trust-constr) algorithm

Sequential least squares programming
(SLSQP) algorithm

Nondominated sorting generation
algorithm II/III (NSGA II)

Solver Python SciPy.optimize DSIDES [6]

We select nondominated sorting genetic algorithm II (NSGA II) [29] as a verification
method to compare and evaluate the performance of our selected optimization methods and
the satisficing method in Table 3. We choose NSGA II as the verification method because it
can solve problems with the complexities of the example problem in Table 2—nonlinearity,
nonconvexity, multiple objectives or goals, and various achievability of the goals. We use
NSGA II in MATLAB. Some readers may wonder, since NSGA II can solve the complexities
often incorporated in engineering design problems, why do we study a satisficing algorithm,
the cDSP, and ALP to manage engineering design problems? The reason is that we observe
that NSGA II has the following drawbacks that may prevent designers from acquiring
insight to improve the design formulation and exploring the solutions space:

First, NSGA II cannot give designers information to improve the model, such as the
bottlenecks in the model, the sensitivity of each segment of the model, the rationality of the
dimensions of the model, etc.

Second, the performance of NSGA II, including convergence speed, optimality of solu-
tions, and diversity of solutions, is sensitive to hyperparameter settings. Hyperparameters,
such as the population size and generation number, must be predefined. However, usually
designers only assume that a larger population size or a larger number of generations
returns better solutions, but they may not know how large is “good enough”. Designers

https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://stackoverflow.com/questions/33926357/jacobian-is-required-for-newton-cg-method-when-doing-a-approximation-to-a-jaco
https://stackoverflow.com/questions/33926357/jacobian-is-required-for-newton-cg-method-when-doing-a-approximation-to-a-jaco
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-trustconstr.html
https://docs.scipy.org/doc/scipy/reference/optimize.minimize-slsqp.html


Algorithms 2024, 17, 88 7 of 31

need to tune those hyperparameters in NSGA II, but it requires much higher computational
power than the cDSP and ALP do.

Therefore, we choose NSGA II in order to assess the optimality and diversity of the
solutions returned by the tested methods (in Table 3), but we still recommend designers
use the satisficing method to manage engineering design problems.

Through applying the three chosen optimizing methods, the satisficing method, and
the verification method, NSGA II, we obtain the results and summarize them in Table 4.
Since there are two objectives (goals), we use different weights to combine them linearly, so
we show the results for each weight. We also use different starting points for the solution
searching to show whether a solution algorithm is sensitive to the starting point. We
visualize the solutions in objective space and x-f(x) space in Figures 2 and 3. The three
optimization algorithms cannot return any feasible solutions. Due to the difference in the
scale of the two objectives, one cannot use optimizing algorithms to solve the example
problem by linearly combining them, because (i) the objective with a large scale dominates
the other objective(s) and (ii) a linearized function of the weighted sum objective in a local
area can be singular.
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Figure 3. The solution points in the x-f(x) space. Subfigure (a) is the x-f1(x) space and Subfigure (b) is
the x-f2(x) space. All solutions’ f1(x) values are close to 1.0 except B’ and H’; all solutions’ f2(x) values
are close to 400 except A’ [15].
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Table 4. Solutions to the example problem—dominated solutions for each weight are in italics; for each method, the best solution of each design scenario is marked
using a capital letter (A’, B’, C’, D’, E’, F’, G’, H’, and J’) [15].

Weight Starting Point
COBYLA Trust-Constr SLSQP ALP NSGA II/III—Population (P) = 20/50

Solution ∑2
i=1wi · fi(x) Solution ∑2

i=1wi · fi(x) Solution ∑2
i=1wi · fi(x) Solution ∑2

i=1wi · fi(x) Solution ∑2
i=1wi · fi(x)

(1, 0)

(0.5, 1)

Cannot manage
nonconvex equations

with bounds

All solutions violate one or
more constraints

All solutions violate one or
more constraints

A’ (0.51,1.82) 1

P = 20:
G’ (0.55, 1.85)

P = 50:
A’ (0.51, 1.82)

P = 20:
0.99

P = 50:
1

(0, 0)

(2, 0.5)

(0, 1)

(0.5, 1)

B’ (0.51, 1.96) 15.27

P = 20:
H’ (0.52, 1.92)

P = 50:
B’ (0.51, 1.96)

P = 20:
14.86

P = 50:
15.36

(0, 0)

(2, 0.5)

(0.5, 0.5)

(0.5, 1)

C’ (0.55, 1.82) 7.5

P = 20:
H’ (0.52, 1.92)

P = 50:
D’ (0.53, 1.87)

P = 20:
7.69

P = 50:
7.78

(0, 0)

(2, 0.5)

(0.7, 0.3)

(0.5, 1)

C’ (0.55, 1.82) 4.9

P = 20:
C’ (0.55, 1.82)

P = 50:
E’ (0.53, 1.88)

P = 20:
4.9

P = 50:
5.01

(0, 0)

(2, 0.5)

(0.3, 0.7)

(0.5, 1)

C’ (0.55, 1.82) 10.01

P = 20:
J’ (0.54, 1.85)

P = 50:
F’ (0.53, 1.89)

P = 20:
10.49

P = 50:
10.6

(0, 0)

(2, 0.5)
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For a multi-objective (multi-goal) problem with nonconvex functions, when the scale
of the objectives varies largely, optimizing algorithms cannot return feasible solutions,
whereas a satisficing strategy may allow designers to identify adequate solutions. This is
explained using the KKT conditions hereafter.

When using optimizing algorithms to solve optimization problems, the first-order
derivative of the Lagrange equation with respect to decision variable x, which is a function
of the parameters P of the model (the coefficients in objectives and constraints), decision
variables x (if any objective or constraint is nonlinear), Lagrange multipliers µ and λ, and
weights
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) (1)

For a satisficing strategy, the first-order derivative of the Lagrange equation contains
only the coefficients of the deviation variables in the objective, since only deviation variables
d∓ constitute the objective (not the decision variables, x). For a κ-goal cDSP with m
inequality constraints g(x) and ℓ equality constraints h(x), if we use weights to combine
the κ goals G(x,d), i.e., using the Archimedean strategy to manage a multi-goal cDSP, then
the coefficients in the first-order Lagrange equation are only the weights and τ—τ is the
Lagrange multiplier of the goal functions; see Equation (2).

∇dL(xs, d,µ, λ, τ) = ∇d
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variables xñ, Lagrange multipliers μĩ and λj̃, and weights 𝓅k̃; for satisficing strategy, the 
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order equation, then the optimal/satisficing solution is still optimal/satisficing under this 

uncertainty. For an N-dimension, Q-parameter, and κ-goal problem, the probabilities of 

maintaining an optimal solution and a satisficing solution under Uncertainty P are given 

in Equations (5) and (6), respectively.  

Pr(x∗|P) ≈∏ [1 − Pr(𝒫q̃|P)]
Q

q=1
∏ [1− Pr(xñ|P)]

N

n=1
∏ [1 − Pr(μĩ|P)]

m

i=1
∏ [1−        Pr(λj̃|P)]

ℓ

j=1
∏ [1

κ

k=1

− Pr(𝓅k̃|P)] 

(5) 

Pr(xs|P) ≈∏ [1 − Pr(𝓅k̃|P)]
κ

k=1
∏ [1 − Pr(τk̃|P)]

κ

k=1
 (6) 

As the value of any probability is in the range of [0, 1], the more items on the right-

hand side we multiply (the more items the probability depends on), the lower the proba-

bility becomes. The items in Equation (6) are fewer than those of Equation (5). Hence, the 

chance of maintaining an optimal solution under Uncertainty P is often smaller than the 

chance of maintaining a satisficing solution with the same uncertainty; Equation (7). 

Pr(x∗|P) ≤ Pr(xs|P) (7) 

In summary, using the satisficing strategy, we are less likely to lose a solution due to 

uncertainty for nonconvex problems with multiple objectives that have various scales; see 

Equations (8) and (9). Using satisficing, designers can deal with nonconvex, multi-objec-

tive problems that may be incomplete or inaccurate and with uncertainties, which helps 

remove Assumptions 1 and 2. 

[Pr (𝒮 ≠ ∅| {
Nonconvexity

objectives with various scales
})]

Satisficing

≥  

(d) + ∑m
i=1 µi∇dgi(x

s)− ∑ℓ
j=1 λj∇dhj(xs)− ∑κ

k=1 τk∇dG(xs, d)
=
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, τ)
(2)

when using optimization, the second-order Lagrange equation may still have parameters
and decision variables due to nonlinearity; see Equation (3). For satisficing, the second-
order Lagrange equation with respect to deviation variables degenerates to zero because
the objective of a cDSP is a linear combination of deviation variables; see Equation (4). That
is why satisficing solutions do not need to meet the second-order KKT conditions.

∇2
xxL(x,µ, λ) = ∇x
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, τ)) ≡ 0 (4)

Although both optimal solutions x∗ and satisficing solutions xs meet the first-order
KKT conditions, the chance of maintaining the first-order KKT conditions for the two
strategies under uncertainties varies. If any uncertainty with probability P takes place
to an item ℑ in the first-order equation that destroys its equilibrium, we denote it as
Pr
(
ℑ̃ |P

)
. For an N-dimension, Q-parameter (here, we define a coefficient or an intercept

of a constraint or an objective as a parameter. A parameter has a given value (either
a constant value or a stochastic value) and the value does not depend on any decision
variables), and κ-goal problem, using optimizing strategy, the source of ℑ̃ can be decision
variables x̃n, Lagrange multipliers µ̃i and λ̃j, and weights ˜
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k and the Lagrange multipliers for the goals τ̃k. If
and only if none of the items under the uncertainty breaks the equilibrium of the first-
order equation, then the optimal/satisficing solution is still optimal/satisficing under this
uncertainty. For an N-dimension, Q-parameter, and κ-goal problem, the probabilities of
maintaining an optimal solution and a satisficing solution under Uncertainty P are given in
Equations (5) and (6), respectively.

Pr(x∗ |P ) ≈ ∏Q
q=1

[
1 − Pr

(
P̃q |P

)]
∏N

n=1[1 − Pr(x̃n |P )]∏m
i=1[1 − Pr(µ̃i|P)]∏ℓ

j=1

[
1 − Pr(λ̃j

∣∣∣P)]∏κ

k=1

[
1 − Pr(˜
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∣∣∣P)] (5)

Pr(xs|P) ≈ ∏κ

k=1

[
1 − Pr(˜
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k

∣∣∣P)]∏κ

k=1[1 − Pr(τ̃k|P)] (6)

As the value of any probability is in the range of [0, 1], the more items on the right-hand
side we multiply (the more items the probability depends on), the lower the probability
becomes. The items in Equation (6) are fewer than those of Equation (5). Hence, the chance
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of maintaining an optimal solution under Uncertainty P is often smaller than the chance of
maintaining a satisficing solution with the same uncertainty; Equation (7).

Pr(x∗ |P ) ≤ Pr(xs |P ) (7)

In summary, using the satisficing strategy, we are less likely to lose a solution due to
uncertainty for nonconvex problems with multiple objectives that have various scales; see
Equations (8) and (9). Using satisficing, designers can deal with nonconvex, multi-objective
problems that may be incomplete or inaccurate and with uncertainties, which helps remove
Assumptions 1 and 2.[

Pr
(
S ̸= ∅|

{
Nonconvexity

objectives with various scales

})]
Satisficing

≥

[
Pr
(
S ̸= ∅|

{
Nonconvexity

objectives with various scales

})]
Optimizing

(8)

[Pr(xs|P)]Satisficing ≥ [Pr(x∗|P)]Optimizing (9)

1.4. A Limitation in the ALP to Be Improved

Just like NSGA II, the ALP also has a parameter, the reduced move coefficient, or RMC,
that may impact the solution space, especially for multi-goal problems. The problems as
simple as the example problem in Section 1.3 is not sensitive to RMC setting, but more
complicated problems are. We use a test problem of steel rod manufacturing to illustrate it
in Section 4.

The RMC is a fractional step size [6] defining the starting point for the next iteration.
In the ALP, the RMC has been set at 0.5 as a default value. In fact, in the ALP, a designer has
no knowledge of the connection between the RMC and solution quality or the opportunity
for improving solution efficiency by controlling the RMC. Improving the RMC determina-
tion is discussed in [30]. In this paper, we give more explanations about the motivation,
the advantages of the satisficing strategy using the cDSP and ALP, and the benefits of
parameter learning.

We introduce the ALP and discuss the limitation of using a fixed RMC in Section 2. In
Section 3, we introduce parameter learning to make the RMC adaptive for each iteration.
In Section 4, we use a test problem that is sensitive to the RMC value—the steel hot rod-
rolling process—to demonstrate efficacy of the augmented ALP, that is, the adaptive linear
programming algorithm with parameter learning (ALPPL). In Section 5, we summarize
the contributions and comment on the generalization of parameter learning for use in
gradient-based optimization methods.

2. How Does the ALP Work?
2.1. The Adaptive Linear Programming (ALP) Algorithm

The ALP algorithm is implemented in DSIDES. DSIDES is used to formulate and
solve engineering design problems, and it is especially efficient in dealing with nonlinear
problems [6]. In DSIDES, the nonlinear problem is formulated as a compromise decision
support problem (cDSP). Then, the ALP is invoked to solve the nonlinear problem. The
nonlinear problem is linearized in a synthesis cycle. The resulting linear problem is solved
using the revised dual simplex algorithm. The synthesis cycle is repeated until the solution
satisfies a set of stopping criteria or is terminated after a fixed number of iterations.

The ALP incorporates a local approximation algorithm [6,31], in which a secant plane
of the paraboloid (with the second-order derivatives at the starting point as the coefficients)
replaces the original nonlinear function. In Figure 4, we show two dimensions of a problem
being approximated in two iterations (synthesis cycle). The weighted sum of the goals is
∑k∈K Wk·Gk. The starting point X0

0 may not be in the feasible region. A random search or a
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Hooke–Jeeves pattern search can be invoked to identify a point X0
1 in the feasible area. In

the ith first iteration, the problem is linearized at X0
1.
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In iteration i, Figure 4a, a projection of a nonlinear constraint NFj onto a two-dimensional
plane, X1-X2, is approximated at X0

i , so an approximated constraint LFi,j is obtained. Doing
this for all nonlinear functions and framing a linear model, the revised simplex dual
algorithm is used to obtain solution X∗

i . Using the RMC heuristic, we find the starting point
of the next iteration X0

i+1. In iteration i + 1, Figure 4b, the approximated linear constraints
of both iterations LFi,j and LFi+1,j are accumulated, and a solution X∗

i+1 is returned and the
starting point of iteration i + 2 is again defined using the RMC, X0

i+1 and X∗
i+1.

In Figure 5a, we illustrate the two-step linear approximation method. First, NFj

(Paraboloid ABC) is approximated to NFi,j
′′ (Paraboloid AB*C*) with the diagonal terms of

its Hessian matrix at X0
i as coefficients. Then, NFj

′′ is approximated to a secant Plane LFi,j

(Plane AB*C*). NFj
′′ and LFi,j are computed as follows.
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NFi,j
′′ is obtained using the second-order full derivatives at X0

i , Equation (10), because
the second-order partial derivatives have limited impact on the gradient.

NFi,j
′′ = NFj

(
X0

i

)
+ ∑n

p=1

(
xip − x0

ip

)(∂NFj

∂xip

)
0

+
1
2 ∑n

p=1

(
xip − x0

ip

)2
(

∂2NFj

∂xip
2

)
0

(10)
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From Equation (10), for the pth dimension, the quadratic to be solved to obtain(
xip − x0

ip

)
is:

NFj

(
X0

i

)
+
(

xip − x0
ip

)(∂NFj

∂xip

)
0

+
1
2

(
xip − x0

ip

)2
(

∂2NFj

∂xip
2

)
0

= 0 (11)

If Equation (11) has real roots, Figure 5a, by solving Equation (11) and selecting the
root between Equations (12) and (13) with the smaller absolute value for each dimension,
we obtain the intersection that is closer to the paraboloid in each dimension, such as B*
and C*. (

∂NFj

∂xip

)∗

0

=

−NFj

(
X0

i

)(
∂2NFj
∂xip

2

)
0

−
(

∂NFj
∂xip

)
0
−
√(

∂NFj
∂xip

)2

0
− 2NFj

(
X0

i

)(
∂2NFj
∂xip

2

)
0

(12)

(
∂NFj

∂xip

)∗

0

=

−NFj

(
X0

i

)(
∂2NFj
∂xip

2

)
0

−
(

∂NFj
∂xip

)
0
+

√(
∂NFj
∂xip

)2

0
− 2NFj

(
X0

i

)(
∂2NFj
∂xip

2

)
0

(13)

If Equation (11) has no real roots, Figure 5b, NFi does not intersect Plane x, then the
first-order derivative at X0

i is used, Equation (14).(
∂NFj

∂xip

)∗

0

=

(
∂NFj

∂xip

)
0

(14)

Based on the intersections in each dimension, such as B* and C*, we obtain LFi.

LFi,j = ∑n
p=1 xip

(
∂NFj

∂xip

)∗

0

−
(

∑n
p=1 x0

ip

(
∂NFj

∂xip

)∗

0

− NFj

(
X0

i

))
(15)

Algorithm 1 summarizes the constraint accumulation algorithm. If the degree of
convexity of NFj is positive or slightly negative (greater than −0.015) at the starting point
of the ith iteration, and if the constraint is active in the (i − 1)th iteration, that is, X∗

i−1 is on
the surface of NFj, then the accumulated constraints replace NFj, Equation (16); otherwise,
the single linear constraint in the ith iteration is NFj.

Algorithm 1. Constraint Accumulation Algorithm

In the ith iteration,
for every j in J

if 1
n ∑n

p=1
∂2NFj

∂xip
2 ≤ −0.015

and NFj
(
X∗

i−1
)
= 0

LFi,j, = LFi-1,j ∪ LFi,j (16)

Then, the revised simplex dual algorithm is invoked to solve the linear problem PL
i ,

so a solution X∗
i is obtained. A point X0

i+1, between the starting point X0
i and the solution

X∗
i , becomes the starting point of the next iteration. The RMC is used to determine X0

i+1,
Equation (17).

X0
i+1 = X0

i + RMC ·
(

X∗
i − X0

i

)
(17)
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2.2. The Reduced Move Coefficient

The RMC is in the range [0, 1] and it defaults to 0.5 based on experimental obser-
vations [6], but 0.5 may not be the best for every problem. An optional golden section
search algorithm is added to progressively narrow the range of the RMC by cutting off
the sub-range with large deviations or larger violations of the constraints until the range
is too small to reduce, Figure 6. The golden section search algorithm is given as follows –
visualized in Figure 6 and summarized a Algorithm 2.

Algorithm 2. Golden section search for updating the RMC

#Define Performance function using RMC to linearize the model and obtain the merit function value
FUNCTION Performance (Model, RMC)
Linearize Model using ALP with RMC into Linear_Model
Solve Linear_Model using Dual Simplex
RETURN Z

#Define Golden Section Search function
FUNCTION GoldenSectionSearchForRMC (Rmin, Rmax, Th):
RMCa = Rmin + (0.382)*(Rmax − Rmin)
RMCb = Rmin + (1 − 0.382)*(Rmax − Rmin)
WHILE (RMCb − RMCa > Th):

#Compare the performance of using RMCa versus RMCb
IF Performance (Original_Model, RMCa) < Performance (Original_Model, RMCb):
RMC = RMCa
Rmax = RMCb
ELSE:
RMC = RMCb
Rmin = RMCa
RETURN RMC

#Initialize parameters
Rmin = 0
Rmax = 1
Th = 0.0001

#Call the Golden Section Search Function
GoldenSectionSearchForRMC (Rmin, Rmax, Th)
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With the golden section search approach, the desired sub-range of the RMC may be
missed if the performance oscillates in the range of the RMC. The criterion to evaluate the
approximation performance is oversimplified—the deviations and the constraint violations.
Given these limitations, in this paper, we propose to use parameter learning to determine
the relation between the RMC value and solution quality with more evaluation criteria.
Machine learning techniques are used to improve algorithms [32,33], so we leverage this
idea to improve the ALP.

We hypothesize that by incorporating parameter learning in the ALP, we can update
the RMC based on richer performance criteria. There are three steps to verify this hypothesis.
In Section 3, we propose ALPPL to realize the three steps.

• Step 1. Identifying the criteria—to evaluate approximation performance.
• Step 2. Developing evaluation indices (EIs)—to quantify the approximation perfor-

mance with RMC values.
• Step 3. Learning the desired range of each EI (DEI)—to tune the RMC.

In the next section, we discuss how parameter learning is used to dynamically change
the value of the RMC.

3. Parameter Learning to Dynamically Change the RMC

In this section, the adaptive linear programming algorithm with parameter learning
(ALPPL) is proposed, Figure 7. We add parameter updating, results extraction, performance
evaluation, and feedback on parameter updating to the ALP.
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3.1. Step 1—Identifying the Criteria

In ALPPL, we add more criteria to the two criteria considered in the golden sec-
tion search—deviation and constraint violation. We use a list, EIs[best], to record all the
evaluation indices.

• Criterion 1—deviation.

The deviation in every iteration is recorded and ranked among all iterations. The best
deviation in all iterations is stored in EIs[best]. Through implementing multiple design
scenarios (lexicographic and/or weight scenarios), we obtain the deviations for all scenarios
and iterations, and the desired range DEI is updated accordingly.

• Criterion 2—robustness of solutions.

We extend the notion of “feasibility” to “robustness”, which means the solutions
should be feasible under multiple design scenarios and relatively insensitive to model
errors and uncertainties. We assume errors and uncertainties result in changes in the
boundary of the feasible region. The nonlinear surface is a part of the boundary. Therefore,
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the robustness of the solution can be measured by how far it is away from the nonlinear
surface. In Figure 8, we show two situations. The arrows indicate the direction of the
feasible space bounded by the inequality constraints while minimizing the deviation. In
Figure 8a, the solution x∗i is not on the boundary, so it is relatively insensitive to errors and
variations of the model, and the nonlinear constraint NFj is not an active constraint. In
contrast, in Figure 8b, the solution is on the boundary and NFj is an active constraint. The
RMC affects the approximation in the next iteration, so we adjust the RMC to obtain more
robust solutions.
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Figure 8. A relatively sensitive solution and a robust solution. Subfigure (a) shows the situation when
the solution x∗i is not on the boundary - the surface of NFj, whereas Subfigure (b) shows the situation
when the solution x∗i is on the boundary.

• Criterion 3—approximation accuracy.

More accumulated constraints may not necessarily lead to a more accurate approxima-
tion. We want sufficient and useful accumulated constraints—Figure 9b—rather than many
unnecessary accumulated constraints—Figure 9a.
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Figure 9. Unnecessary accumulated constraints versus necessary accumulated constraints. Subfigure
(a) illustrates the situation when the accumulated constraints are in the “wrong” region, which results
from the linearization points in multiple iterations being in a region that gives poor achieved values
of the goal. Subfigure (b) illustrates the opposite situation – when the accumulated constraints are in
the “right” region.

In Table 5, we summarize the criteria for approximation performance evaluation.
Based on these criteria, we develop evaluation indices (EIs) in Section 3.2
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Table 5. Criteria for the evaluation of approximation performance.

Criteria Meaning and Representation

Weight-sum deviations The unfulfilled percentage of the goals compared with
their targets

Robustness Whether a solution is away from the boundary of the
system as defined by the nonlinear model

Approximation accuracy
Whether the nonlinear constraints are approximated

well by a set of linear constraints in the sub-region that
contains the solutions that fulfill the goals to an extent

3.2. Step 2—Developing the Evaluation Indices (EIs)

To manage different design preferences for multiple goals, we obtain solutions using
multiple design scenarios. As the design scenarios are discrete and cannot enumerate all
situations, we use the limited, discrete solutions to predict a satisficing solution space.

By implementing multiple design scenarios, we acquire the results of the weight-sum
deviations, active constraints, accumulated constraints, etc., using which, we develop
statistical-based evaluation indices (EIs) as shown in Table 6. Statistical-based quality
control has been used to monitor model profiles [34], so we leverage the statistics to
obtain EIs.

Our development of the EIs is based on the index for the robust concept exploration
method, error margin index (EMI) [31], and design capability index (DCI) [35]. This is
based on the central limit theorem that the results as samplings of each criterion follow
Gaussian distributions, and the sampling statistics represent their characteristics. Therefore,
we use the mean (µ) and the standard deviation (σ) as EIs and tune the RMC by minimizing
the µ and σ of each EI.

Index for evaluating the weight-sum deviation—µZ and σZ. To maintain the goal
fulfillment (one minus weight-sum deviation) relatively insensitive to design scenario
changes, we control the center and spread of the sample solutions by minimizing µZ
and σZ.

Index for evaluating the robustness—µNab, σNab, µNaoc, and σNaoc. Using the sim-
plex algorithm, we obtain the vertex solution to the approximated linear problem. At a
vertex solution, there is at least one active constraint (AOC) or active bound (AB) of the
approximated linear problem, but we prefer fewer AOCs and ABs so the chance of losing a
solution due to potential errors or variations is relatively small, so we minimize the µNab,
σNab, µNaoc, and σNaoc.

Index for evaluating the computational complexity—µNacc, σNacc, µNit, and σNit. As
the approximation accuracy is not necessarily improved by increasing the number of
accumulated constraints (Nacc) or the number of approximation iterations (Nit), we need
to find the ranges of Nacc and Nit associated with good weight-sum deviations and
robustness. We desire Nacc and Nit to be acceptable under all design scenarios and be
insensitive to scenarios changing, so we measure µNacc, σNacc, µNit, and σNit and identify
their appropriate ranges.

In summary, we tune the RMC by satisfying the EIs—µNab, σNab, mNaoc, σNaoc, µNacc,
σNacc, µNit, and σNit— to obtain desired ranges (DEI). Then, the RMC tuning becomes:
“given” the parameters and variables, “find” the value of decision variables that can
“satisfy” constraints and bounds and “minimize” an objective. Here, we rank the EIs in
the ith iteration among all iterations and choose the first κ items with minimum values.
These are the most important κ where EIs attain their best and most stable performance.
Algorithm 3 is a summary of the RMC parameter learning algorithm.
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Table 6. Develop evaluation indices (EIs)—mean (µ) and standard deviation (SD) (σ).

Criteria Information EIs Meaning

Weight-sum deviation Z = ∑k∈K Wk·
(
d−

k + d+
k
) µz The average weight-sum deviations

σz
The stability of the weight-sum deviations when

changing design scenarios

Robustness

The number of active bounds:
µNab

The average sensitivity of the solutions under all
design scenarios to variable bounds

σNab
The stability of the sensitivity of the solutions to

variable bounds when changing design scenarios

The number of active original constraints:
µNaoc

The average sensitivity of the solutions under all
design scenarios to original constraints

σNaoc
The stability of the sensitivity of the solutions to

original constraints when changing design scenarios

Approximation accuracy

The number of accumulated constraints:
µNacc

The average complexity of the approximated
problem under all design scenarios

σNacc
The stability of the complexity of the approximated

problem when changing design scenarios

The number of iterations:
µNit

The average convergence speed under all
design scenarios

σNi
The stability of the convergence speed when

changing design scenarios

Algorithm 3. #Define Parameter-learning function

FUNCTION ParameterLearning(Model, Design scenarios, RMC, EIs, κ, I):
WHILE i < I:

IF RMC[i-1] = RMC_best:
RMC[i] = average(RMC[i-2], RMC_best)

ELSE:
RMC[i] = average(RMC[i-1], RMC_best)

FOR N Design Scenarios:
Linearize Model using ALP with RMC[i] into Linear_Model
Solve Linear_Model using Dual Simplex

RETURN EIs[i]

FOR j in Range(0, i):
Rank EIs[i][j] from minimum to maximum
DEI = EIs[i][round(κ*i)]

IF (number of EIs[i] ∈ DEI for all Design scenarios) >
(number of EIs[Cycle of RMC_best] ∈ DEI for all Design scenarios):

RMC_best = RMC[i]

RETURN RMC_best

#Initialize parameters
Model = Original_Model
Design scenarios = N weight scenarios
RMC [0] = 0.5
EIs = [µZ, σZ, µNab, σNab, µNaoc, σNaoc, µNacc, σNacc, µNit, σNit]
Z, Nab, Naoc, Nacc, Nit = 0
DEI = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
κ = 0.6
I = 50

#Call Parameter-Learning function
FUNCTION ParameterLearning(Model, Design scenarios, RMC, EIs, κ, I)

3.3. Step 3—Learning the DEI to Tune the RMC

We identify the desired range of the EIs (DEI), learn the connections between the
RMC and the EIs, and bring the EIs into the DEI by setting the RMC. To make the process



Algorithms 2024, 17, 88 18 of 31

efficient, we combine off-line learning and the on-line learning. First, we use off-line
learning using a sample of RMC values to initialize the DEI and parameters and then adopt
on-line learning to update the DEI and tune the RMC. In Figure 10, we illustrate the two
processes (Rectangles B and C) and show their relationship with the synthesis cycle A.
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During parameter initialization (B), we generate sample values of RMC (B1). By
running the synthesis cycle (A) with each RMC value, we obtain the corresponding EIs
(B2) and evaluate them (B3). We choose the RMC value associated with the best EIs as
the starting RMC value for tuning (B3-1) and remove the EIs that are insensitive to RMC
changes (B3-2). We initialize the DEI based on the sample results (B3-3) to allow a certain
proportion (e.g., 75%) of RMC values to fall into the DEI. We choose the best RMC among
the sample (B3-4) to start the on-line learning. These results (B3-1 to B3-4) are aggregated
as the “actions to be taken” (B3-5) and the input of the RMC tuning cycle (C).

For the RMC tuning cycle (C), with an RMC value (C1-1), we run the synthesis cycle (A)
and obtain the results (C2). By evaluating the results using the DEI and comparing with
previous iterations (C3), we determine the next RMC value (C3-1), update the DEI if
necessary—either restrict or relax the DEI based on the tradeoffs among EIs (C3-2)—and
update the best RMC if necessary (C3-3). These evaluation results are aggregated (C3-4)
for judging whether to stop iterating (C4)—the program either goes to the next iteration of
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RMC tuning with the aggregated results (C3-4) as input or stops with the best RMC as the
returned value. The stopping criteria include the number of total iterations and the number
of iterations without updating the best RMC. This part is summarized as Algorithm 4.

Algorithm 4. The RMC parameter-learning algorithm

1 Given: the best RMC sample value, updating rules
2 Initialize: t = 0, best = the best RMC sample value, RMC0 = the best RMC sample value, the maximum
iteration number T, stopping criterion 2 = {best has not been updated in n iterations}
3 While t = do T // Define stopping criterion 1
4 RMCt = Next_RMC
5 Run synthesis cycle

4. A Test Problem

In this section, we apply ALPPL to an industry-inspired problem, the integrated
design of a hot-rolling process chain for the production of a steel rod [36]. It is a nonlinear
problem, and the RMC value has a significant impact on the result.

4.1. The Hot Rod-Rolling Process Chain

Hot rod rolling is a multi-stage manufacturing process in which a reheated billet, slab,
or bloom produced after the casting process is further thermo-mechanically processed by
passing it through a series of rollers [36]. During the thermo-mechanical processing, there
is an evolution of microstructure of the material, in this case, steel. Columnar grains in
the cast material are broken down to equiaxed grains. Along with the evolution of grain
size, there is a phase transformation of the steel. The phase transformation is predominant
during the cooling stage that follows the hot rod-rolling process chain. The transformation
of the austenite phase of steel to other phases like ferrite, pearlite, or martensite takes place
during this stage. The final microstructure of the material after the rolling and cooling
process defines the mechanical properties of the product.

Many plant trials are required to produce a new steel grade with improved properties
and performance. These trials are usually expensive and time-consuming. Hence, there
is a need to address the problem from a simulation-based design perspective to explore
solutions reaching multiple conflicting property/performance goals. The requirement is
to produce steel rods with improved mechanical properties such as yield strength (YS),
tensile strength (TS), and hardness (HV). These mechanical properties are defined by the mi-
crostructure after cooling, which includes the phase fractions (ferrite and pearlite phases are
only considered in this problem), pearlite interlamellar spacing, ferrite grain size, and chem-
ical compositions of steel. Nellippallil et al. [36] identify the microstructural requirements
after the cooling stage to meet the mechanical properties of the rod. The microstructural
requirements are to achieve a high ferrite fraction value, low pearlite interlamellar spacing,
and low ferrite grain size values within the defined ranges. The requirement is to carry
out the integrated design of the material and the process by managing the cooling rate
(cooling process variable), final austenite grain size after rolling (rolling microstructure
variable), and the chemical compositions of the material. Hence, we explore the solution
space of the defined variables using ALPPL to meet the target values identified for the
microstructure after the cooling stage such that the mechanical property requirements
of the steel rod are met. Our focus in this paper is to use this example in improving the
solution algorithm rather than the design of the material and the manufacturing. The initial
design formulation of the problem is shown as follows.

Given
Target values for microstructure after cooling
Ferrite grain size target, Dα,Target = 8 µm
Ferrite fraction target, Xf,Target = 0
Pearlite interlamellar spacing target, S0,Target = 0.15
Find
System variables
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X1 cooling rate (CR)
X2 austenite grain size (D)
X3 the carbon concentration ([C])
X4 the manganese concentration after rolling ([Mn])
Deviation variables
d−

i , d+
i , i =1,2,3

Satisfy
System constraints

Minimum ferrite grain size constraint Dα ≥ 8 µm (18)

Maximum ferrite grain size constraint Dα ≤ 20 µm (19)

Minimum pearlite interlamellar spacing constraint So ≥ 0.15 µm (20)

Maximum pearlite interlamellar spacing constraint So ≤ 0.25 µm (21)

Minimum ferrite phase fraction constraint (manage banding) Xf ≥ 0.5 (22)

Maximum ferrite phase fraction constraint (manage banding) Xf ≤ 0.9 (23)

Maximum carbon equivalent constraint Ceq = (C + Mn)/6; Ceq ≤ 0.35 (24)

Mechanical Property Constraints

Minimum yield strength constraint YS ≥ 250 MPa (25)

Maximum yield strength constraint YS ≤ 330 MPa (26)

Minimum tensile strength constraint TS ≤ 480 MPa (27)

Maximum tensile strength constraint TS ≥ 625 MPa (28)

Minimum hardness constraint HV ≥ 130 (29)

Maximum hardness constraint HV ≤ 150 (30)

System goals
The target values for system goals are identified in [36] and are listed under the

keyword Given above.

Goal 1 : Achieve ferrite grain size target DαTarget/Dα(Xi) + d+
1 − d−

1 = 1 (31)

Goal 2 : Achieve ferrite fraction target Xf(Xi)/XfTarget + d−
2 − d+

2 = 1 (32)

Goal 3 : Achieve pearlite interlamellar spacing target SoTarget/So(Xi) + d+
3 − d−

3 = 1 (33)

Variable bounds
11 ≤ X1 ≤ 100 (K/min)
30 ≤ X2 ≤ 100 (µm)
0.18 ≤ X3 ≤ 0.3 (%)
0.7 ≤ X4 ≤ 1.5 (%)
Bounds on deviation variables

d−
i , d+

i ≥ 0 and d−
i ∗d+

i = 0 , i = 1, 2, 3 (34)

Minimize
Minimize the deviation function in the initial design

Z = ∑3
i=1 Wi

(
d−

i + d+
i
)
; ∑3

i=1 Wi = 1 (35)
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There are three goals in the problem—(i) minimize ferrite grain size (Dα), (ii) maximize
ferrite Fraction (Xf), and (iii) minimize interlamellar spacing (So). The targets and the
acceptable values of the three goals are given. All three goals are nonlinear. There are four
design/system variables—cooling rate (CR), final austenite grain size after rolling (D), the
carbon concentration ([C]), and the manganese concentration after rolling ([Mn]). We aim
to obtain:

• The range of the system variables to reach the target of each goal of the best RMC for
different design preferences and

• The weight set, Ws = ∩k∈KWs
k, that is a compromise of the three goals for different

design preferences.

In [36], the authors formulate and execute the initial compromise decision support
problem for the hot-rolling process chain problem and carry out a weight sensitivity analysis
to identify variable values and the weight set. Ternary plots are generated to visualize and
explore the weight set. In each ternary plot, the three axes represent the weights assigned
to the three goals, respectively, and the contours indicate the fulfillment of each goal, Gk

Tk
,

k = 1, 2, 3. Since the goals conflict, compromise solutions are desired. Weight sensitivity
analysis is a way to mediate compromise around the conflicts among the goals. Ws

1, Ws
2 Ws

3,
and Ws are the satisficing weight regions identified in the ternary plots, see areas marked
using arrows in Figure 11a–d, respectively. To compare Gk

Tk
, k = 1, 2, 3 at the same scale,

we normalize the fulfillments of each goal under all weight scenarios in the range [0, 1].
An acceptable fulfillment Gk

Tk
of each goal is the dashed line in each ternary plot. The area

between the corner (best Gk
Tk

) and the dashed line (acceptable Gk
Tk

) is the satisficing weight
area of Goal k, Ws

k and the superimposed area is the satisficing weight set of all three
goals, Ws.
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Figure 11. The satisficing weight set when setting RMC = 0.1. Subfigure (a–c) show the acceptable
regions of weights for the three goals, respectively. Subfigure (d) shows the acceptable region weights
for all three goals. The dashed lines demarcate acceptable regions for the goals and the arrows
indicate the direction of acceptability.

The steps in the RMC tuning algorithm as applied to the hot rod-rolling problem are
given in Algorithm A1, Appendix A. In Figures 11d, 12d and 13d, the satisficing weight set
Ws when the RMC is 0.1, 0.5, and 0.8 is shown, respectively. When RMC is 0.1, as Figure 11d
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shows, Ws is large, whereas when RMC is 0.8, as Figure 13d shows, Ws is small. However,
using the ALP, there is no mechanism to evaluate which RMC value results in a relatively
accurate approximation that gives us a robust Ws. So, we fill this gap using ALPPL.

Algorithms 2024, 17, x FOR PEER REVIEW 23 of 33 
 

 

Figure 12. The satisficing weight set when setting RMC = 0.5. Subfigure (a–c) show the acceptable 

regions of weights for the three goals, respectively. Subfigure (d) shows the acceptable region 

weights for all three goals. The dashed lines demarcate acceptable regions for the goals and the 

arrows indicate the direction of acceptability. 

 

Figure 13. The satisficing weight set when setting RMC = 0.8. Subfigure (a–c) show the acceptable 

regions of weights for the three goals, respectively. Subfigure (d) shows the acceptable region 

weights for all three goals. The dashed lines demarcate acceptable regions for the goals and the 

arrows indicate the direction of acceptability. 

4.2. Parameter Initialization 

There are nineteen weight scenarios used in Table 7, representing a variety of design 

preferences. 

Table 7. Weight vectors used in [36] as different design scenarios. 

 W1 W2 W3  W1 W2 W3 

1 1 0 0 11 0 0.75 0.25 

Figure 12. The satisficing weight set when setting RMC = 0.5. Subfigure (a–c) show the acceptable
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4.2. Parameter Initialization

There are nineteen weight scenarios used in Table 7, representing a variety of de-
sign preferences.

Table 7. Weight vectors used in [36] as different design scenarios.

W1 W2 W3 W1 W2 W3

1 1 0 0 11 0 0.75 0.25
2 0 1 0 12 0 0.25 0.75
3 0 0 1 13 0.33 0.33 0.33
4 0.5 0.5 0 14 0.2 0.2 0.6
5 0.5 0 0.5 15 0.4 0.2 0.4
6 0 0.5 0.5 16 0.2 0.4 0.4
7 0.25 0.75 0 17 0.6 0.2 0.2
8 0.25 0 0.75 18 0.4 0.4 0.2
9 0.75 0 0.25 19 0.2 0.6 0.2

10 0.75 0.25 0

Running Processes B1 and B2 using the sample RMC (0.1, 0.5, and 0.8), we obtain the
EIs in Table 8.

Table 8. Results of EIs using sample RMC values with nineteen design scenarios.

RMC Statistics Z Nit Nacc Nab Naoc

0.1
µ 0.1480 46.58 18.74 1.79 0.84
σ 0.0679 5.95 0.87 0.63 0.50

0.5
µ 0.1467 20.42 19.47 2.05 0.79
σ 0.0675 9.47 0.84 0.62 0.42

0.8
µ 0.1480 8.32 14.16 2.21 0.79
σ 0.0675 5.56 6.94 0.63 0.71

Running Process B3, we obtain the initial RMC (RMC0) and the best RMC as 0.5 (its
µZ and σZ are bold italic), and we initialize the DEI as shown in Table 9. The results of the
parameter initialization—RMC0 (0.5), EIs (Table 5), DEIs (Table 9), and “best” RMC value
0.5—are the input of RMC tuning (C).

Table 9. The initial DEIs.

DEI of µz DEI of σz DEI of µNaoc DEI of σNaoc DEI of µNab DEI of σNab

[0, 0.1477] [0, 0.0677] [0, 0.82] [0, 0.55] [0, 1.95] [0, 0.63]

4.3. RMC Tuning

We make rules for each procedure of RMC tuning based on heuristics. The heuristics
are generalized from parameter learning and can be adjusted through the search process.

C3: Evaluate the result of current RMC based on EIs and DEI.
C3-1: Determine the next RMC value.
Rule 1: Compare the performance of multiple EIs and define the comparison rules.

Lines 22–30 in Algorithm A1 in Appendix A are an expansion of this rule. RMC A is better
than RMC B because no less than κ of the EI(A) are better than EI(B), whereas other EI(A)
do not exceed γ of the upper and lower bound of DEI. In this problem, we set κ = 1/2 and
γ = 3 0%.

Rule 2: Determine when and how the RMC should be updated. Lines 6–13 in Ap-
pendix A explain this rule. We use a hill-climbing approach to update the RMC. If the
updating in the previous RMC-tuning cycle improves the performance, then the previous
updating is in the “hill-climbing direction,” and we continue updating the RMC in this
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direction with a step size α; otherwise, we need the best RMC to “pull us back” to the right
direction with a portion β; hence, we update the RMC as a linear combination of the best
RMC (elite) and the RMC two cycles ago (parent). In this problem, we set α as a random
value in [0, 1] and β as a random value in [0.5, 1]. In this way, we incorporate greediness,
elitism, and randomness in evolution.

C3-2: Evaluate whether DEI needs to be updated.
Rule 3: Determine when and how the DEI should be updated. See Algorithm A1 in

Appendix A, Lines 18–38. In an RMC-tuning cycle, if more than κ EIs are better than the
previous cycle, and more than ι EIs are in the DEI, whereas no more than γγ EIs have minor
violations, then the DEI is updated. Here, we set κ = ι = 2/3. For a problem with more EIs,
κ and ι can be tuned using the performance improvement rate. This rule prevents an over
restrictive DEI from blocking us from a better range while ensuring gradual and relatively
conservative updating of the DEI.

C3-3: Evaluate whether “the best RMC” needs to be updated.
Rule 4: Determine when and how the best RMC is updated. See Algorithm A1 in

Appendix A, Lines 34–36. We use a variable (“best”) to store the best RMC. If more than κ

EIs of the current RMC are better than the EIs of the best, the current RMC becomes the
new best.

C3-4: We aggregate the results of the RMC tuning RMC t+1, DEI, and best as inputs for
the next tuning iteration.

C4: Determine whether to stop iterating.
Rule 5: Make the stopping criteria. To stop RMC tuning at the appropriate time, we

use “the maximum number of RMC-tuning iterations” and “the maximum number of
RMC-tuning iterations without updating the best RMC” as the stopping criteria.

4.4. Results

Using our test problem, the RMC tuning stops after fourteen iterations. We identify
0.55 as the best RMC for the test problem. Compared with the initial RMC of 0.5, the
final best RMC of 0.55 improves σZ, σNaoc, and σNab. The RMCs and EIs in the fourteen
iterations are in Table 10. The DEI is updated four times, and the best RMC is updated
three times. The final best RMC is in the ninth iteration.

Table 10. The EIs, DEI, RMC, best RMC of the fourteen iterations of RMC tuning.

Iteration RMC Weight-Sum Deviation Number of Active
Original Constraints

Number of
Active Bounds Better Than

Cycle (t-1)
Better Than
Best RMC

Update
DEIµz σz µNaoc σNaoc µNab σNab

1 0.5 0.147 0.068 0.79 0.42 2.05 0.62 - -
[1, 1.95]

->
[1, 2.05]

2 1.0 0.152 0.071 0.95 0.78 2.26 0.45 N N -

3 0.8 0.148 0.068 0.79 0.71 2.21 0.63 N N -

4 0.6 0.147 0.067 0.95 0.52 2.00 0.58 Y Y ->

5 0.4 0.147 0.068 0.68 0.48 2.00 0.58 Y Y -

6 0.2 0.147 0.068 0.84 0.60 1.84 0.60 N N ->

7 0.3 0.154 0.069 0.95 0.52 1.79 0.71 N N -

8 0.45 0.147 0.068 0.89 0.66 2.00 0.58 Y N -

9 0.55 0.147 0.067 0.84 0.37 2.05 0.52 Y Y -

10 0.65 0.147 0.067 1.00 0.58 2.05 0.62 N N ->

11 0.48 0.147 0.068 0.89 0.66 2.05 0.62 N N -

12 0.53 0.147 0.067 0.84 0.69 2.00 0.58 Y N -

13 0.57 0.147 0.067 0.84 0.37 2.11 0.57 N N -

14 0.43 0.145 0.069 0.84 0.60 2.00 0.58 N N -
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4.5. Verification and Validation

To verify the efficacy of ALPPL, we evaluate its adequacy and the necessity in returning
robust solutions.

Adequacy—We tested 20 RMC values randomly spread in [0, 1] and identified the
relatively insensitive range(s); see Figure 14. If the best RMC returned by the ALPPL falls
into the relatively insensitive range(s), then we show that the ALPPL can identify the
best RMC. It turns out that the best RMC (0.55) ensures the solutions to fall in a relatively
insensitive range. For each pair of EIs (the mean and standard deviation), we identify the
range(s) of RMC values, within which, both the mean and the standard deviation have
acceptable values and are flat (stable). For example, for the deviation Z, we desire both its
mean µz and standard deviation σz to be low values and flat. The two ranges bounded by
the dotted rectangles are such ranges. For all EIs, the overlapped desired range is [0.5, 0.55],
so this is the relatively insensitive range. The value of 0.55 is in the insensitive RMC range
for all EIs, so it is verified that when RMC is 0.55, it gives a relatively robust performance.
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Figure 14. Identifying the insensitive range of RMC value using twenty RMC values. Subfigure
(a–c) show the insensitive ranges of the mean and standard deviation of Z, Naoc, and Nab, respectively.

Necessity—The insensitive range is sufficiently explored during the RMC tuning.
First, we identify the insensitive range of RMC values—testing 20 RMC values uniformly
distributed in [0, 1] with their EIs, we identify two ranges where the solutions are relatively
insensitive to scenario changing, [0.35, 0.4] and [0.5, 0.55]. In Figure 15a, we illustrate all
fourteen RMC values in RMC tuning. The horizontal axis represents the iteration num-
ber and the vertical axis represents the RMC value. Four of the fourteen RMC values
fall in the two insensitive ranges, so 28.5% of the tested RMC values fall in the insensi-
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tive ranges, whereas the insensitive ranges only occupy 10% of the whole RMC range.
Hence, we conclude that our RMC tuning enables a relatively sufficient exploration of the
insensitive ranges.
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Figure 15. The comparison of ALPPL and ALP regarding RMC updating. Subfigure (a) illustrates the
best RMC of the fourteen iterations when applying ALPPL. Subfigure (b) illustrates the best RMC of
the twelve iterations when applying ALP.

Validation of the improvement of ALPPL versus the ALP. We compare the tested
RMC values using parameter learning (ALPPL) in Figure 15a with the tested RMC values
using the golden section search (ALP) in Figure 15b. The best RMC identified using the
golden section search is 0.65, which is not in the insensitive range; in addition, the RMC
values tested in the golden section search are concentrated in [0.57, 0.77], which misses
the insensitive ranges [0.35, 0.4] and [0.5, 0.55]. For a solution algorithm that sequentially
linearizes the problems in multiple synthesis cycles, the computational complexity is
O(n2) [37]—this applies to both the ALP and ALPPL, so the parameter-learning method in
this paper does not require much computational power. Other improvements of ALPPL
over ALP are summarized in Table 11.

Table 11. ALPPL with RMS tuning versus ALP with golden section search.

ALPPL ALP

General comparison

Search method Rule-based parameter learning Golden section search

Criteria used for evaluation of
the RMC

Deviation (fulfillment of the goals),
the robustness of the solution Fulfillment of the goals

If the approximation is sensitive to
the scenario changing

Considering different scenarios, the
most appropriate RMC is identified.

The approximation is relatively
insensitive to scenario changes

In each scenario, the best RMC is
identified; it may vary as the

scenario changes. The
approximation is relatively

sensitive to scenario changes

Stopping criteria
The best RMC has not been updated
for n iterations, or the total iteration

number reaches a threshold

The distance between two golden
section points is less than a

threshold ε

Complexity O(n2) O(n2)

Comparison of the cooling
problem results

Number of search iterations 14 12

If the identified best RMC is in the
insensitive range Yes No

Number of tested RMC values
falling into insensitive range 4 2

Is the insensitive range
explored sufficiently Relatively sufficiently Insufficiently
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5. Closing Remarks

Our aim in this paper is to improve the determination of one critical parameter in a
satisficing method regarding the robustness of the solution and the accuracy of the lineariza-
tion. We show the benefits of using a satisficing strategy, the cDSP, and ALP to manage
engineering design problems, especially when there are multiple goals, nonlinear and
nonconvex equations, and the goals have different levels of achievability. However, there is
a drawback of the current ALP—one of its parameters, the RMC, has an impact on the lin-
earization and the solution space. For years, the RMC was either user-defined or determined
using golden section search. However, there was no mechanism for obtaining insight to im-
prove the approximation by controlling the RMC. The golden section approach may result
in missing the sub-range of the RMC with good approximation performance. The best RMC
value is sensitive to design scenario changes; only the weighted-sum deviations and feasi-
bility of the solutions are considered when evaluating approximation performance. Hence,
to improve the ALP, we incorporate parameter learning into the algorithm and upgrade it
to the adaptive linear programming algorithm with parameter learning algorithm (ALPPL).
In the ALPPL, we improve the approximation performance in three steps—identifying the
criteria for approximation performance, developing evaluation indices (EIs), and tuning
the RMC. We use an industry-inspired problem, namely, the hot-rolling process for a steel
rod, to demonstrate the improvements of ALPPL (to access DSIDES and ALPPL, please
contact the corresponding author. The tutorial for using DSIDES to formulate a cDSP is in
this video: https://www.youtube.com/watch?v=tUpVC97Y1L8, accessed on 25 November
2020) over the ALP. The computational complexity of ALPPL is the same as the ALP, which
is O(n2).

The parameter-learning method used in this paper can be expanded to other algo-
rithms that apply heuristics to determine the value of parameters. Domain expertise can be
helpful in identifying the criteria for performance evaluation and developing evaluation
indices. With domain knowledge, the computational complexity of the parameter-learning
algorithms can be well controlled within an inexpensive range. This can customize the
parameter learning for each algorithm and each problem.

One limitation of this paper is that we did not discuss in great detail the computational
complexity of the ALPPL or the parameter learning for algorithm improvement in general,
because it can vary for different algorithms or problems. One thing that we can ensure is
that, with designers’ domain expertise, by identifying the most critical criteria and then
quantifying them as the most representative evaluation indices, the computational power
required for the proposed parameter-learning algorithm can be less than that for parameter
tuning without domain expertise, since designers can remove the less relevant criteria and
insensitive evaluation indices.

In future research, there are several promising directions to explore in the realm of
engineering design using the satisficing strategy. Firstly, investigating the applicability and
effectiveness of the proposed rule-based parameter-learning procedure across a broader
range of engineering problems could provide valuable insights into its generalizability and
robustness. Additionally, exploring alternative satisficing algorithms or enhancements to
existing algorithms could further improve the efficiency and robustness of design processes.
Furthermore, incorporating advanced machine learning techniques, such as reinforcement
learning or neural networks, into the satisficing framework may offer new opportunities
for adaptive and intelligent decision making in engineering design. Finally, conducting
empirical studies and applications in diverse industries and contexts could validate the
practical value and benefits of the proposed approach, thereby facilitating its adoption and
integration into engineering practice. Overall, these future research directions hold the
potential to advance the state of the art in satisficing engineering design and contribute to
the development of more automated and robust design methods.

https://www.youtube.com/watch?v=tUpVC97Y1L8
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6. Glossary

Accumulated constraint(s): When a nonlinear constraint is concave (the degree of
the convexity is lower than −0.015), the approximated linear constraint of the previous
iteration is carried forward and combined with its approximated linear constraint in the
current iteration. Thus, a concave nonlinear constraint is represented by multiple linear
constraints, and those carried forward are called accumulated constraints.

Active constraint: If the slack or surplus of a constraint at a solution point is zero, then
it is an active constraint.

Convexity degree: The average value of the diagonal terms of the Hessian matrix of a
function. This definition is applied to any paper on the cDSP and ALP.

Deviation: The percentage difference between the value of a goal at a solution and
its target.

DSIDES: DSIDES is short for decision support in the design of engineering systems,
which is a computational platform for designers to formulate engineering design prob-
lems using the compromise decision support problem (cDSP) and linearize and solve the
problems using the adaptive linear programming (ALP) algorithm.

Parameter learning: This includes a set of activities to maximize the approximation
performance—identifying the evaluation indices (EIs), the desired range of each evaluation
index (DEI), and the value of a parameter, namely, the reduced move coefficient (RMC),
that makes each EI fall into its desired range, DEI.

Parameter tuning: This means finding the value of a parameter, namely, the reduced
move coefficient (RMC), that makes each EI fall into its desired range, DEI. It is a part of
parameter learning.
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Nomenclature

ALP Adaptive Linear Programming
ALPPL Adaptive Linear Programming with Parameter Learning
cDSP Compromise Decision Support Problem
DEI Desired Range of Evaluation Index
DSP Decision Support Problem
EI/EIs Evaluation Index/Indices
RMC Reduced Move Coefficient

Appendix A

The RMC Parameter-Learning Algorithm Customized for the Hot Rolling Process Chain Problem

Appendix A is the RMC parameter-learning algorithm (Algorithm 4) customized for
the Cooling Procedure of the Hot Rolling Problem. Appendix A is referenced in Section 4.
This algorithm is an extension of the Algorithm 4. More auxiliary parameters are defined
to assist parameter learning—T, α, β, γγ, θθ, ι, κ, M. For the parameters that are relatively
more important (the results are more sensitive to their values), e.g., θθ, we tune their values.
For the parameters that are relatively less important, e.g., ι, κ, M, we set values to them
with heuristics.

Steps in the RMC-tuning algorithm: Determine the evaluation indices (EIs) based on
multiple criteria to classify good results from the bad ones; initialize the desired range of
each EI (DEI) of the test problem; identify auxiliary parameters to assist RMC tuning; bring
the EIs into DEI by tuning the auxiliary parameters; update DEI to ensure a proportion
of good results out of all results; tradeoff between elitism and randomness to ensure a
diversity while obtaining rapid convergence.

Algorithm A1. The RMC parameter-learning algorithm (Algorithm 4) customized for the Cooling Procedure of the Hot Rolling Problem
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3 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 <- a random value // Initiate RMC with a random value (here we set 𝑅𝑅𝑅𝑅𝑅𝑅0<- 0.5) 

4 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 <- a random value // Initiate the “best RMC” with a random value (here we set 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏0<- 0.5) 

5 While 𝑡𝑡 ≤ 𝑇𝑇 Do // Search for best RMC for T synthesis cycles (the first stop criterion, here we set T <- 20) 

6 if 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1] ≻ 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−2] // If 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1 performs better than 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−2 

7 
𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 <- 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1 + α ∙ (𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1 − 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−2) // Update 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 in the improving direction (α ∈ [0, 1], and here we set α as ran-

dom values that uniformly distributed in [0, 1]) 

8 else if 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ≠ 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−2 

9 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 <- β ∙ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + (1 − β) ∙ 𝑃𝑃𝑃𝑃𝑃𝑃−1[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏{𝑃𝑃𝑃𝑃𝑃𝑃[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−2], 𝑃𝑃𝑃𝑃𝑃𝑃[𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−1]}] // Update 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 as the linear com-

bination of best RMC and the last best RMC (𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−1) iff 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−1 performs better than 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−2; otherwise 

update 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 as the linear combination of best RMC and 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−2 (β ∈ [0,1], and here we set β as ran-

dom values that uniformly distributed in [0.5, 1]) 

10 else if 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−1 

11 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 <- β ∙ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + (1 − β) ∙ 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏−1 // Update 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 as the linear combination of the current best 

RMC and the last best RMC 

12 else 

13 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 <- β ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1 + (1 − β) ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−2 

14 if 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 > 1 // If 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 is larger than its upper bound 

15 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 <- 1 // Pull 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 back to range 
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16 if 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 < 0 // if 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 is lower than its lower bound 

17 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 = 0 // Pull 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 back to range 

18 𝐼𝐼 <- 0 // Initiate the number of EIs of 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 in 𝐷𝐷𝐷𝐷𝐷𝐷 

19 𝐽𝐽 <- 0 // Initiate the number of EIs of 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 that are better than the EIs of best RMC 

20 𝐾𝐾 <- 0 // Initiate the number of EIs of 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 that violate 𝐷𝐷𝐷𝐷𝐷𝐷 within θ. We tune θ maximizing the 𝐿𝐿2 − 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 distance between 

EIs of two adjacent iterations and get 10% 

21 𝐿𝐿 <- 0 // Initiate the number of EIs of 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 that are better than the EIs of 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1 

22 for 𝑖𝑖 in 1 to 𝑛𝑛 // For all the EIs (n is the number of EIs) 

23 
th th 

if𝑃𝑃𝑃𝑃𝑃𝑃[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡]𝑖𝑖 ∈ 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 // If the 𝑖𝑖P   EI of 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 is in the desired range of the 𝑖𝑖P  EI 

24 𝐼𝐼 <- 𝐼𝐼 + 1 // Update the number of EIs of 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 in 𝐷𝐷𝐷𝐷𝐷𝐷 

25 if 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡]𝑖𝑖 ≽ 𝐸𝐸𝐸𝐸[best]𝑖𝑖11 // If for the 𝑖𝑖th EI 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 performs better than or equal to best RMC 
P 

26 𝐽𝐽 <- 𝐽𝐽 + 1 // Update the number of EIs of 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 that are better than best RMC 

27 if 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡]𝑖𝑖 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 and 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡]𝑖𝑖 ∈ [𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖]+𝛾𝛾𝛾𝛾𝛾𝛾 // If the 𝑖𝑖th EI of 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 violates the desired range of the 
−𝛾𝛾𝛾𝛾𝑖𝑖 

𝑖𝑖th EI within 𝛾𝛾𝛾𝛾𝑖𝑖 (in this problem, 𝛾𝛾𝛾𝛾𝑖𝑖=30%) 

28 𝐾𝐾 <- 𝐾𝐾 + 1 // Update the number of EIs of 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 that violate 𝐷𝐷𝐷𝐷𝐷𝐷 within 𝛾𝛾𝛾𝛾𝑖𝑖 
29 if 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡]𝑖𝑖 ≽ 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1]𝑖𝑖 // If for the 𝑖𝑖th EI, 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 performs better than or equal to 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1 
30 𝐿𝐿 <- 𝐿𝐿 + 1 // Update the number of EIs that 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 improves versus 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1 
31 if 𝐼𝐼 ≥ 𝜄𝜄 ∙ 𝑛𝑛 and 𝐼𝐼 + 𝐾𝐾 = 𝑛𝑛 // If for at least 𝜄𝜄 (we set it as 2/3) EIs are in 𝐷𝐷𝐷𝐷𝐷𝐷, and the violation rate are all within 𝛾𝛾𝛾𝛾𝑖𝑖 
32 if 𝐿𝐿 ≥ 𝜅𝜅 ∙ 𝑛𝑛 // If at least 𝜅𝜅 (we set it as 2/3) EIs are better than previous synthesis cycle 

33 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡] ≻ 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1] // We define that 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 overall performs better than 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1 

34 if 𝐽𝐽 ≥ 𝜅𝜅 ∙ 𝑛𝑛 // If at least 𝜅𝜅 EIs is better than best RMC 

35 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 <- 𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡 // Update best RMC 

36 nupdt <- −1 // Reset no updating pointer “nupdt” as “−1” 

37 if 𝐾𝐾 ≥ 1 // If at least one violation EI 

38 
𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 <- 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡]𝑖𝑖 which 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡]𝑖𝑖 ∉ 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 and 𝐸𝐸𝐸𝐸[𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡]𝑖𝑖 ∈ [𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖]+𝜃𝜃 // Update 𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖−𝜃𝜃 

 nupdt <- nupdt + 1 // Increase no updating pointer “nupdt” by 1 

39 else 

40 nupdt <- nupdt + 1 // Increase no updating pointer “nupdt” by 1 

41 if nupdt ≥ 𝑀𝑀 // If no updating in 𝑀𝑀 synthesis cycles in a row (the second stop criterion, and here we set M<−5) 

42 Break 

43 t <- t+1 // Move on to the next synthesis cycle 
44 Return best // Return the final best RMC as the appropriate RMC 
  

Steps in the RMC-tuning algorithm: Determine the evaluation indices (EIs) based on 
multiple criteria to classify good results from the bad ones; initialize the desired range of 
each EI (DEI) of the test problem; identify auxiliary parameters to assist RMC tuning; bring 
the EIs into DEI by tuning the auxiliary parameters; update DEI to ensure a proportion of 
good results out of all results; tradeoff between elitism and randomness to ensure a diver-
sity while obtaining rapid convergence. 
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