
Citation: Souza, G.K.B.; Santos, S.O.S.;

Ottoni, A.L.C.; Oliveira, M.S.; Oliveira,

D.C.R.; Nepomuceno, E.G. Transfer

Reinforcement Learning for

Combinatorial Optmization Problems.

Algorithms 2024, 17, 87. https://

doi.org/10.3390/a17020087

Academic Editors: Mehmet Aydin,

Rafet Durgut and Abdur Rakib

Received: 18 January 2024

Revised: 12 February 2024

Accepted: 17 February 2024

Published: 18 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Transfer Reinforcement Learning for Combinatorial
Optimization Problems
Gleice Kelly Barbosa Souza 1 , Samara Oliveira Silva Santos 2 , André Luiz Carvalho Ottoni 1 ,
Marcos Santos Oliveira 3 , Daniela Carine Ramires Oliveira 3 and Erivelton Geraldo Nepomuceno 4,*

1 Technologic and Exact Center, Federal University of Recôncavo da Bahia, R. Rui Barbosa,
Cruz das Almas 44380-000, Bahia, Brazil; kelly.189@hotmail.com (G.K.B.S.);
andre.ottoni@ufrb.edu.br (A.L.C.O.)

2 Hamilton Institute, Maynooth University, W23VP22 Maynooth, Co. Kildare, Ireland;
samara.santos.2024@mumail.ie

3 Department of Mathematics and Statistics, Federal University of São João del-Rei, Praça Frei Orlando,
São João del Rei 36309-034, Minas Gerais, Brazil; mso@ufsj.edu.br (M.S.O.); daniela@ufsj.edu.br (D.C.R.O.)

4 Centre for Ocean Energy Research, Department of Electronic Engineering, Maynooth University,
W23VP22 Maynooth, Co. Kildare, Ireland

* Correspondence: erivelton.nepomuceno@mu.ie

Abstract: Reinforcement learning is an important technique in various fields, particularly in auto-
mated machine learning for reinforcement learning (AutoRL). The integration of transfer learning
(TL) with AutoRL in combinatorial optimization is an area that requires further research. This paper
employs both AutoRL and TL to effectively tackle combinatorial optimization challenges, specifically
the asymmetric traveling salesman problem (ATSP) and the sequential ordering problem (SOP). A
statistical analysis was conducted to assess the impact of TL on the aforementioned problems. Fur-
thermore, the Auto_TL_RL algorithm was introduced as a novel contribution, combining the AutoRL
and TL methodologies. Empirical findings strongly support the effectiveness of this integration, re-
sulting in solutions that were significantly more efficient than conventional techniques, with an 85.7%
improvement in the preliminary analysis results. Additionally, the computational time was reduced
in 13 instances (i.e., in 92.8% of the simulated problems). The TL-integrated model outperformed the
optimal benchmarks, demonstrating its superior convergence. The Auto_TL_RL algorithm design
allows for smooth transitions between the ATSP and SOP domains. In a comprehensive evaluation,
Auto_TL_RL significantly outperformed traditional methodologies in 78% of the instances analyzed.

Keywords: machine learning; reinforcement learning; combinatorial optimization; traveling salesman
problem; sequential ordering problem; transfer learning; automated machine learning

1. Introduction

Reinforcement learning (RL) brings together important machine learning (ML) meth-
ods [1–9]. With RL, an agent learns from interaction with the environment [3,4]. Also, RL
is based on Markov decision processes (MDP), and the goal is to maximize the reward
received over time [3,4].

A recent field of research studied in association with RL is automated machine learning
(AutoML). When AutoML is applied to RL, the approach is called automated reinforcement
learning (AutoRL) [10]. AutoRL is an intelligent system designed to select the appropriate
conditions for reinforcement learning before learning begins [11]. The use of AutoRL aims
to reduce the need for knowledge required by the user as well as reduce the computational
cost required during learning [11,12]. These initial conditions can be defined through
metalearning, in which the system will use its previous experiences to carry out future
activities [12–16].

One way of improving AutoRL approaches is through the use of transfer learning (TL).
TL aims to accelerate learning by providing autonomy to the system [17]. The purpose is

Algorithms 2024, 17, 87. https://doi.org/10.3390/a17020087 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17020087
https://doi.org/10.3390/a17020087
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0001-3679-3298
https://orcid.org/0000-0002-0018-8870
https://orcid.org/0000-0003-2136-9870
https://orcid.org/0000-0003-4395-4640
https://orcid.org/0000-0002-9573-8424
https://orcid.org/0000-0002-5841-2193
https://doi.org/10.3390/a17020087
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17020087?type=check_update&version=3


Algorithms 2024, 17, 87 2 of 24

to transfer knowledge between tasks in different domains and provide various benefits,
such as improving the performance of the agent in the target task, improving the agent’s
total reward and reducing the time needed to carry out the learning [17,18]. Along these
lines, transfer reinforcement learning techniques have been applied in important domains,
especially in the areas of robotics [19–24] and multiagent systems [25–27]. However, the
literature has paid little attention to the transfer reinforcement learning for combinatorial
optimization problems.

Indeed, the field of combinatorial optimization has several studies using RL [6,28–34].
Some domains with applications of RL techniques are the traveling salesman problem
(TSP) [29,31], k-server problem [32,34], multidimensional knapsack problem [35], vehicle
routing [36] and sequential ordering problem (SOP) [37].

The TSP [29,31,33] and the SOP [38–41] are problems that have great relevance in
the literature, which has led to several studies on them. The TSP is a problem with
numerous relevant applications, and as a result, several studies have been carried out
to solve it [42–45]. The SOP, like the TSP, also has several important studies, including
energy optimization in compilers [46], search optimization [39,47] and parallel machine
scaling [48]. Moreover, the TSP and SOP are NP-hard combinatorial optimization problems;
that is, in practice, it is necessary to adopt approximate algorithms in the search for better
solutions [39]. However, the literature still lacks studies that address tranfer RL in these
two problems.

Therefore, the goal of this work is to propose and analyze transfer reinforcement
learning between these two relevant combinatorial optimization domains: the ATSP and
SOP. For this purpose, instances of the TSPLIB library [49–51] and the state–action–reward–
state–action (SARSA) algorithm [4] were used. The approach proposed in this work enables
generation of a knowledge base in the source domain (ATSP) to transfer learning to the
target domain (SOP). In addition to the extensive variety of studies on the ATSP and
SOP, these domains were selected due to the similarities in the characteristics of these two
combinatorial optimization problems. In this sense, in this paper, three criteria are proposed
to be evaluated when carrying out transfer reinforcement learning across combinatorial
optimization problems: (1) problems with the same objective function; (2) similar datasets;
and (3) transfer from the simpler domain to the more complex domain.

The main contributions include the following:

• A transfer reinforcement learning approach between two classical combinatorial opti-
mization problems. The asymmetric traveling salesman problem is the source domain,
and the sequential ordering problem is the objective domain.

• Apply transfer learning to these problems and statistically analyze the results obtained
with the transfer.

• Develop a new AutoRL algorithm, apply it to the problems studied and analyze
its results.

The present paper is organized into six sections. Section 2 defines the theoretical
aspects of the combinatorial optimization problems adopted, RL, AutoML and transfer
learning. Sections 3 and 4 present the methodology and results, respectively. Section 5
shows the comparison of this paper with other literature studies. Finally, Section 6 presents
the conclusions of the work.

2. Background

This section will discuss the topics of reinforcement learning, combinatorial optimiza-
tion, the traveling salesman problem, the SOP, automated machine learning and finally, the
transfer learning technique.

2.1. Reinforcement Learning

Reinforcement learning is based on Markov decision processes [3,4]. An MDP is
structured into a finite set of states (S), a finite set of actions (A), a finite set of reinforcements
(R) and a state transition model (T) [3,4].



Algorithms 2024, 17, 87 3 of 24

In RL, an agent learns through trial and error to make decisions in an environment.
Basically, the learning agent performs a sequence of three steps in several repetitions:

(i) Perceive the current state (s);
(ii) Perform an action (a);
(iii) Receive a reward (r(s, a)).

In addition, at each instant of time (t), a learning matrix (Q) is updated which stores
the knowledge learned. This Q matrix has the dimension given by the number of states in
relation to the number of actions in the model.

Equation (1) presents the method for updating the Q matrix using the SARSA algo-
rithm [4]:

Qt+1 = Qt(s, a) + α[r(s, a) + γQt(s′, a′)− Qt(s, a)] (1)

where s is the state, a the action at time t, r(s, a) is the reward for executing a in s, s′ is the
new state, a′ is the new action selected, Qt and Qt+1 are matrices at the current time and at
t + 1, respectively, α is the learning rate and γ is the discount factor.

Algorithm 1 represents the SARSA algorithm [4].

Algorithm 1: SARSA algorithm

1 Set the parameters: α, γ e ϵ
2 In each s,a do Q(s,a) = 0
3 Observe the state s
4 Select action a using policy ϵ-greedy
5 do
6 Run the action a
7 Receive the immediate reward r(s,a)
8 Observe the new state s’
9 Select action a’ using policy ϵ-greedy

10 Q(st, at) = Q(st, at) + α[r(st, at) + γQ(s′, a′)− Q(st, at)]
11 s = s’
12 a = a’
13 while the stop criterion is satisfied;

In Algorithm 1, the ϵ-greedy [4] action selection policy is adopted. This method uses
the ϵ parameter to control gluttony and randomness in decision making. For example,
if ϵ = 0.1, then the system will select random actions in 10% of the cases and the best-
estimated actions for each state in the learning matrix in 90% of the situations.

2.2. Combinatorial Optimization

Combinatorial optimization problems aim to maximize or minimize an objective
function defined in a certain finite domain that classifies the solution to the problem as
optimal [52,53]. Briefly, these problems can be characterized as follows [53–55]:

• Decision variables are the criteria that will be manipulated in the search for the
optimal solution.

• The objective function is the function that contains the decision variables that will be
altered during the search for the best solution to the problem. It should be noted that
every combinatorial optimization issue has at least one objective function.

• Restrictions are conditions imposed on the problem to ensure that the solution found
is feasible. It is important to note that it is not mandatory for a problem to have
constraints, in which case all solutions are considered feasible.

The literature contains various optimization problems, including the following [52,55,56]:

• The traveling salesman problem;
• The knapsack problem;
• The sequential ordering problem;



Algorithms 2024, 17, 87 4 of 24

• The quadratic assignment problem.

2.3. Traveling Salesman Problem

The traveling salesman problem is one of the best-known combinatorial optimization
problems [57]. This method aims to determine a Hamiltonian cycle that passes through all
the vertices of a graph. In addition, the problem also aims for the Hamiltonian cycle found
to be the one with the lowest cost [52,57,58].

The TSP is made up of a set of cities, where the cashier must visit all the cities in the
set, and at the end of the journey, the cashier must return to the initial city. As a restriction,
each city in the set must be visited only once, except for the final city, which must be the
same as the starting city [57,58].

The TSP can be classified in various ways, including the symmetrical TSP and asym-
metrical TSP. In the symmetrical TSP, the cost of moving from node A to node B is the
same as the cost of moving from node B to node A. In the case of the asymmetric TSP,
the cost varies according to the direction of travel adopted [57]. Thus, the symmetric TSP
can be represented by a graph with bidirectional edges, while the asymmetric TSP can be
represented by a graph with directional edges [57].

The traveling salesman problem has several applications, and the authors of [52,58]
presented some of them:

• Task sequencing;
• Drilling printed circuit boards;
• Analysis of crystal structures;
• Handling of stock items;
• Optimizing the movement of cutting tools;
• Postal delivery routing.

Formulation

There are several possible formulations for the TSP, some of which are presented
in [52,59]. The following formulation was presented in [59] in Equations (2)–(6):

Minimize
N

∑
i=1

N

∑
j=1

cijxij (2)

subject to

N

∑
i=1

xij = 1 (∀j = 1, . . . , N) (3)

N

∑
j=1

xij = 1 (∀i = 1, . . . , N) (4)

xij ∈ {0, 1} (∀i, j = 1, . . . , N) (5)

X = xij ∈ S (∀i, j = 1, . . . , N) (6)

The objective function of the TSP is represented by Equation (2), in which cij represents
the cost between cities i and j, and xij represents whether the arc (i, j) is part of the solution
to the problem. If xij is equal to one, then the arc is part of the solution. If xij equals zero,
then the arc is not part of the solution. In addition, Equations (3) and (4) ensure that each
city will only be visited once. Equation (5), on the other hand, represents the restriction that
the value of xij will always be binary. Finally, Equation (6) guarantees that no sub-routes
will be formed when solving the problem [58,59].



Algorithms 2024, 17, 87 5 of 24

2.4. Sequential Ordering Problem

The sequential ordering problem is an NP-hard combinatorial optimization problem
and a variation of the asymmetric traveling salesman problem (ATSP), with the addition
of precedence constraints [39,47]. Thus, as with the asymmetric TSP, the SOP also aims to
find a Hamiltonian cycle of a minimum cost in a directed graph [39]. Thus, the search for
the optimal solution to this problem becomes impractical, resulting in the need to apply
algorithms to find the best approximate solutions [39].

Consider that Figure 1 is a representation of an SOP problem. In this case, Figure 1a
shows the graph that depicts this problem. Figure 1b shows the constraints of this problem.
Assuming that the agent starts its trajectory at vertex A, according to the problem constraint,
some valid routes are A → B → C → D → E → A or A → E → B → C → D → A. On
the other hand, routes A → C → D → B → E → A and A → D → E → B → C → A are
some invalid routes, as they do not respect the problem’s precedence restriction.

B E

A

C D

(a)

B D

(b)
Figure 1. Example of SOP problem representation and its constraint. (a) SOP problem diagram.
(b) Problem precedence constraint.

In the SOP, cij also represents the cost of the arc. When cij ≥ 0, this value will represent
the cost of moving from city i to city j. When cij = −1, this value indicates that there is a
precedence constraint. In this case, city j must precede city i [39].

In [37], the authors presented a formulation for the SOP based on the TSP formulation
in [59]. This adds the following restriction to the TSP formulation presented previously,
according to Equation (7):

cij ≥ 0 ∨ cij = −1 ∧ cji ≥ 0(∀i, j = 1, · · · , N) (7)

This new constraint aims to satisfy the existing order of precedence restriction in
the SOP.

2.5. Automated Machine Learning

Automated machine learning was developed with the main aim of reducing the human
effort required when adjusting the learning settings [60,61]. Thus, AutoML is a technique
used to define the parameters and algorithms that will be adopted during learning in order
to obtain better results, given that the settings will be made according to the problem being
studied [62,63].

In this context, due to the improvements observed through the use of AutoML and the
growing need for increasingly robust learning systems, in order to cope with the abundance
of data that is constantly emerging, this technique has also been used to automate other
stages of the learning process [60,63,64].

Metalearning is one of the topics related to AutoML and refers to the system’s ability
to learn how to learn [12,65,66]. In this sense, the goal of metalearning is to reuse previous
experiences in tasks that will be performed in the future [12,13,65]. In this way, the system
does not have to learn from scratch and can adapt to the current situation based on its
previous experiences [67]. Therefore, there will be a reduction in the effort used to carry



Algorithms 2024, 17, 87 6 of 24

out the next tasks compared with the effort used to carry out the previous tasks [12,68]. It
is worth noting that the greater the similarity between the tasks (the tasks already carried
out and the tasks to be carried out), the greater the chances of obtaining good results by
reusing knowledge obtained in previous tasks [14,68].

2.6. Transfer Learning

The main idea of transfer learning techniques is to use the knowledge that has already
been acquired (tasks that have already been carried out) in related problems [17,26,69]. In
this sense, some objectives of TL methods are to improve performance and reduce the time
needed to learn a complex task [17].

For transfer learning, the knowledge base is first generated in a source domain and
then applied to the target domain [17,18]. This approach is extremely beneficial in various
situations, particularly when training for the target problem is complex [70]. By conducting
experiments on a source problem, knowledge can be transferred to the target problem.

There are several possible applications for TL, some of which involve the following:

• Image analysis [71–73];
• Pattern recognition [74];
• Optimization problems [75].

One method for transfer reinforcement learning involves directly transferring the
learning matrix Q as described in [18]. This method adopts the Q values from the source
task as the starting point for the learning matrix in the objective domain. Equation (8)
represents the direct transfer of RL between domains [18]:

∀s, ∀a, Qobjective(s, a) = Qsource(s, a) (8)

3. Methodology

The transfer learning approach proposed in this paper aims to improve the perfor-
mance of RL algorithms for solving combinatorial optimization problems. For this, concepts
from the meta-learning research field were adopted [12]. Initially, the application of repre-
sentational transfer stands out, which refers to the training of source and target models at
different times; in other words, metaknowledge is transferred based on previous experi-
ence acquired. The second concept is the search for similarities in characteristics between
datasets in order to improve the performance of learning algorithms. Thus, transfer of
knowledge across tasks is an area of meta-learning that seeks to explore the experience
obtained in previously learned datasets, domes or problems.

Following this line, this paper proposes three topics to be evaluated when performing
transfer RL between combinatorial optimization problems:

1. Problems with the same objective function: The objective function is a main character-
istic of the mathematical modeling of a combinatorial optimization problem. This was
a relevant criterion in deciding the two problems evaluated in this paper (the ATSP
and SOP), considering that both aim to minimize the distance of a route.

2. Similar datasets: The similarity between datasets can be assessed through the analysis
of metafeatures, such as by performing descriptive statistics [12]. In this paper, the
simulated domains have instances in the TSPLIB library. Furthermore, the instances
selected for the target problem (SOP) originate from the source domain (ATSP), adding
some variations such as precedence restrictions. These characteristics reinforce the
similarities across the evaluated datasets.

3. Transfer from the simpler domain to the more complex domain: This point reflects
the relevance of decreasing the computational cost in the objective problem while
promoting accelerated learning and advancing performance in the best solution. In
this paper, the ATSP is the source domain (simplest), and the SOP is the objective
domain (more complex), as the second problem adds precedence restrictions.



Algorithms 2024, 17, 87 7 of 24

In sequence, this section describes in detail the methodology adopted to carry out
this work. Initially, the dataset was built from the library TSPLIB (http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/, accessed on 1 December 2023). In this context, the
specific problems to be investigated and their respective instances were selected. A model
based on reinforcement learning was then developed, using the SARSA algorithm to
tackle combinatorial optimization problems. As for the application of the transfer learning
technique, the strategy was outlined in three phases: the construction of the knowledge
base, the execution of the necessary experiments and the formulation of the methodology
for analysis. Finally, an automated reinforcement transfer learning algorithm was created
and structured in two stages: proposing an algorithm called Auto_TL_RL and carrying out
practical experiments to validate and evaluate the algorithm.

3.1. Dataset

The TSPLIB [49] library is a data repository with instances for case studies of combina-
torial optimization problems. TSPLIB is frequently adopted in the literature [30,31,37,39,41],
and therefore, it was selected for this paper. Among the data available in the repository are
data from problems such as the following [50]:

• The symmetric traveling salesman problem: the cost of traveling between two nodes
is the same, regardless of the direction of travel;

• The asymmetric traveling salesman problem: the cost of traveling between two nodes
depends on the direction of travel;

• The sequential ordering problem: this problem has precedence restrictions and also
considers that the cost of traveling between two nodes depends on the direction
adopted for travel.

The instances selected for use in the experiments are shown in Table 1 (ATSP) and
Table 2 (SOP). These tables have three columns: problem, nodes and optimal:

• Problem: instance name;
• Nodes: number of nodes in the problem;
• Best known solution: the best known value presented by TSPLIB.

To exemplify the data on the adopted instances, Tables 3 and 4 present instances br17
(ATSP) and br17.12 (SOP), respectively.

Table 1. ATSP instances.

Problem Nodes Best Known Solution

br17 17 39
p43 43 5620

ry48p 48 14,422
ft53 53 6905
ft70 70 38,673

kro124p 100 36,230

Table 2. SOP instances.

Problem Nodes Best Known Solution

br17.10 18 55
br17.12 18 55
p43.1 44 28,140
p43.2 44 28,480
p43.3 44 28,835
p43.4 44 83,005

ry48p.1 49 14,422
ry48p.2 49 16,074

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/


Algorithms 2024, 17, 87 8 of 24

Table 2. Cont.

Problem Nodes Best Known Solution

ry48p.3 49 19,490
ry48p.4 49 31,446
ft53.1 54 7531
ft53.2 54 8026
ft53.3 54 10,262
ft53.4 54 14,425
ft70.1 71 39,313
ft70.2 71 40,101
ft70.3 71 42,535
ft70.4 71 53,530

kro124p.1 101 38,762
kro124p.2 101 39,841
kro124p.3 101 43,904
kro124p.4 101 73,021

Table 3. Example of ATSP instance br17 (TSPLIB).

9999 3 5 48 48 8 8 5 5 3 3 0 3 5 8 8 5
3 9999 3 48 48 8 8 5 5 0 0 3 0 3 8 8 5
5 3 9999 72 72 48 48 24 24 3 3 5 3 0 48 48 24
48 48 74 9999 0 6 6 12 12 48 48 48 48 74 6 6 12
48 48 74 0 9999 6 6 12 12 48 48 48 48 74 6 6 12
8 8 50 6 6 9999 0 8 8 8 8 8 8 50 0 0 8
8 8 50 6 6 0 9999 8 8 8 8 8 8 50 0 0 8
5 5 26 12 12 8 8 9999 0 5 5 5 5 26 8 8 0
5 5 26 12 12 8 8 0 9999 5 5 5 5 26 8 8 0
3 0 3 48 48 8 8 5 5 9999 0 3 0 3 8 8 5
3 0 3 48 48 8 8 5 5 0 9999 3 0 3 8 8 5
0 3 5 48 48 8 8 5 5 3 3 9999 3 5 8 8 5
3 0 3 48 48 8 8 5 5 0 0 3 9999 3 8 8 5
5 3 0 72 72 48 48 24 24 3 3 5 3 9999 48 48 24
8 8 50 6 6 0 0 8 8 8 8 8 8 50 9999 0 8
8 8 50 6 6 0 0 8 8 8 8 8 8 50 0 9999 8
5 5 26 12 12 8 8 0 0 5 5 5 5 26 8 8 9999

Tables 3 and 4 reveal some characteristics of the data matrices adopted in this paper.
Initially, it is worth highlighting that the values in the matrix cells represent the weights
between vertices. For example, looking at the first row and second column of Table 3, cij
is equal to three, as it represents the weight of traveling from i = 1 to j = 2. It was also
observed that the dimension of the matrix revealed the number of nodes in the instance.
In this sense, br17 had a dimension of 17 (Table 3), while br17.12 had a dimension of
18 (Table 4). This relationship shows that the SOP instances had dimensions of N + 1
in relation to the corresponding ATSP instances, where N is the dimension of the ATSP
instance. Note also the changes made to Table 4 in relation to Table 4, where some data
positions were replaced with the value “−1”, indicating the addition of a precedence
constraint. For example, in the second row and fifth column in Table 3, the value is
cij = 48. On the other hand, in Table 4, this value was changed to “−1”, becoming an SOP
precedence restriction.



Algorithms 2024, 17, 87 9 of 24

Table 4. Example of SOP instance br17.12 (TSPLIB).

0 3 5 48 48 8 8 5 5 3 3 0 3 5 8 8 5 1,000,000
−1 0 3 48 −1 −1 8 5 −1 0 0 3 0 3 8 −1 5 3
−1 3 0 72 −1 48 48 24 −1 −1 3 5 3 0 48 −1 24 5
−1 48 74 0 0 6 6 12 −1 48 48 48 48 74 6 6 12 48
−1 48 74 0 0 6 6 12 −1 48 48 48 48 74 6 6 12 48
−1 8 50 6 6 0 0 8 8 8 8 8 8 50 0 0 8 8
−1 8 50 6 6 0 0 8 8 8 8 8 8 50 0 0 8 8
−1 5 26 12 12 −1 8 0 0 5 5 5 −1 26 8 8 0 5
−1 5 26 12 12 8 8 0 0 5 5 5 5 26 8 8 0 5
−1 0 3 48 −1 8 8 5 −1 0 0 3 0 3 8 8 5 3
-1 0 3 48 48 8 8 5 5 0 0 3 0 3 8 8 5 3
−1 3 5 48 48 8 8 5 5 3 3 0 3 5 8 8 5 0
−1 0 3 48 48 −1 8 5 5 0 0 3 0 3 8 8 5 3
−1 3 0 72 −1 48 48 24 −1 3 3 5 3 0 48 48 24 5
−1 8 50 6 6 −1 0 −1 8 8 8 8 −1 50 0 0 8 8
−1 8 50 6 −1 0 0 8 −1 8 8 8 8 50 0 0 8 8
−1 5 26 12 12 8 8 0 0 5 5 5 5 26 8 8 0 5
−1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 −1 0

3.2. Reinforcement Learning Model

The RL system developed was designed to apply the SARSA algorithm to experiments
with combinatorial optimization problems: the ATSP and SOP. For this purpose, the
model structure (actions, states and reinforcements) was adopted based on works in the
literature [29–31,37,76]:

• States are the locations that must be visited to form the route. Thus, the number of
states varies according to the number of nodes (N) in the instance.

• Actions represent the possible movements between locations (states). The initial
number of actions is equivalent to the number of states in the model. However,
the actions available for execution vary according to the cities already visited when
developing the route.

• Reinforcements are the cost of travel (cij) between the departure city (i) and the
destination city (j), given as a function of the cost of travel (cij). The greater the
distance between the nodes, the more negative the reinforcement will be, according to
Equation (9):

R = −cij (9)

Also, the RLSOP algorithm [37] was adopted to deal with the precedence restrictions
of the SOP. The RLSOP (Algorithm 2) checks whether the actions (arrival location) selected
by the ϵ-greedy method have precedence restrictions. If this is the case, then another
destination is selected and checked again.



Algorithms 2024, 17, 87 10 of 24

Algorithm 2: Algorithm for analyzing precedence restrictions in the selection of
actions from RL to SOP (RLSOP) [37]

1 a_t = e-greedy();
2 cont = 0;
3 while cont == 0 do
4 if there are precedence restrictions for the selected action then
5 if at least one action corresponding to the precedence constraints of a_t has not yet

been selected then
6 cont = 0;
7 else
8 cont = 1;
9 end

10 end
11 if cont == 0 then
12 remove the action a_t from the list of available actions at time t;
13 a_t = e-greedy();
14 end
15 end
16 Return to_t;

3.3. Transfer Learning Approach

To implement the transfer learning technique, it is necessary to follow three steps:

• Generation of the knowledge base;
• Experiments for transfer learning;
• Elaboration of the methodology for analysis.

3.3.1. Generation of the Knowledge Base

The knowledge base generation stage was conducted through experiments with
TSPLIB instances of the asymmetric traveling salesman problem. Among the instances
shown in Table 1, the following ATSP instances were selected for use in this approach: br17,
p43, ft53 and kro124p. SOP instances derived from the selected ATSP instances were also
used (Table 2).

The experiments with each of the four ATSP instances were configured with
10,000 episodes, where one episode is equivalent to a complete route between the nodes.
The learning matrix in these simulations was initialized with zeros. In addition, the param-
eters were set to α = 0.75, γ = 0.15 and ϵ = 0.01, based on the results in [37,76].

At the end of each simulation, the final learning matrix (QATSP) was stored. In this
sense, four QATSP matrices were generated, with one per ATSP instance (br17, p43, ft53
and kro124p). This knowledge base was adopted in the transfer learning experiments for
the SOP domain, which are explained in the next subsection.

3.3.2. Experiments for Transfer Learning

In this phase, experiments were carried out to assess the influence of knowledge trans-
fer between the ATSP (source) and SOP (goal) domains. Table 5 shows the 14 SOP instances
adopted in this stage, as well as their respective optimal values, number of nodes and
precedence restrictions.

Experiments were carried out using two initial conditions for the learning matrix (Q):

• Q0, meaning without transfer learning. The learning matrix was initialized with all
null values.

• The QATSP, adopting the knowledge base generated from the experiments with the
source domain (ATSP).



Algorithms 2024, 17, 87 11 of 24

Table 5. SOP problems adopted and respective numbers of nodes, precedence constraints and best
known solution values according to TSPLIB. The number of constraints refers to the number of
values of cji = −1 in the instance.

Problem Nodes Restrictions Best Known Solution

br17.10 18 48 55
br17.12 18 55 55
ft53.1 54 117 7536
ft53.2 54 135 8026
ft53.3 54 322 10,262
ft53.4 54 865 14,425
kro124p.1 101 232 38,762
kro124p.2 101 267 39,841
kro124p.3 101 465 43,904
kro124p.4 101 2504 73,021
p43.1 44 96 28,140
p43.2 44 119 28,480
p43.3 44 181 28,835
p43.4 44 581 83,005

In order to use the knowledge base (QATSP), adjustments had to be made to the
original learning matrices (experiments with the ATSP). The reason for this is that the state
spaces of the ATSP and SOP domains are different. For example, the kro124p instance
(ATSP source) has 100 nodes, while the equivalent SOP problems contain N + 1 locations:
kro124.p1, kro124.p2, kro124.p3 and kro124.p4. Thus, a row and a column (with zeros)
were added to the QATSP knowledge base matrices for use by the SOP domain.

Figure 2 illustrates how the transfer RL process takes place. Normally, during experi-
ments, the learning matrix is initialized with zeros (Figure 2b). Assuming that Figure 2a
shows the learning matrix of an ATSP instance at the end of the experiment, with the
proposed learning transfer approach, the experiment learning matrix of an SOP instance
would initially be filled in as shown in Figure 2c.

-6.1 -5.8 -4.1 -0.7 -0.1

-9.3 -0.6 -46.9 -3.8 -25.3

-0.8 -8.4 -0.4 -2.6 -18.5

-2.1 -7.1 -0.2 -0.9 -1.7

-3.5 -19.4 -6.2 -1.5 -0.6

(a)

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(b)

-6.1 0

-9.3 0

-0.8 0

-2.1 0

-3.5 -6.2 0

0 0 0 0 0 0

-5.8 -4.1 -0.7 -0.1

-0.6 -46.9 -3.8 -25.3

-8.4 -0.4 -2.6 -18.5

-7.1 -0.2 -0.9 -1.7

-19.4 -1.5 -0.6

(c)
Figure 2. Example of the transfer RL process. (a) ATSP instance learning matrix. (b) SOP instance
learning matrix without transfer learning. (c) SOP instance learning matrix with transfer learning.

The experiments with each of the SOP problems and initial conditions (Q0 and
QATSP) were run with 100 episodes in 10 epochs (repetitions). It is worth noting that
only 100 episodes were used in this stage, as the goal was to analyze the adoption of
transfer learning as a method to accelerate RL in the objective domain [17]. In this way, the
aim was to assess whether the adoption of the knowledge base (QATSP) reproduced good
results in a few episodes of SOP simulation.

The parameters for this stage were defined in the same way as in the previous section:
α = 0.75, γ = 0.15 and ϵ = 0.01.

3.3.3. Analysis Methodology

The analysis methodology proposed in this paper has three stages. This methodology
was based on metrics found in the literature [17,26]:

(i) Preliminary analysis;



Algorithms 2024, 17, 87 12 of 24

(ii) Computational time analysis;
(iii) Results visualization and interpretation.

The preliminary analysis compares the average results achieved in the SOP instances
with and without transfer learning from the source domain (ATSP). This metric is similar
to the “total reward” [17], which adopts the total reinforcement received by the agent
during learning.

The second stage aims to evaluate the differences between the computational times of
the simulations with Q0 and the QATSP. According to [17], one possible goal of transferring
knowledge between domains is to reduce the time it takes to learn a complex task.

In these first two steps, the t test is used to compare the means of two independent
samples. This statistical method assesses whether two population means (µ1 and µ2) are
statistically equal or different [77] through the following hypotheses:{

H0 : µ1 = µ2,
H1 : µ1 ̸= µ2.

Adopting a significance level of 5%, the decision rule is as follows. If p > 0.05, then
the means are considered to be statistically equal. On the other hand, when p ≤ 0.05, the
means are concluded to be statistically different. To validate the results, it is necessary
to test the normality assumption for each of the independent samples. In this study, the
Kolmogorov–Smirnov (KS) test was adopted [78], where the normality assumption was
satisfied as long as the p value of this test was greater than 5%. Thus, after verifying that
the assumptions were guaranteed by the KS test for all the samples, the t test was applied
to compare the average results for the distance on the route (preliminary analysis) and
computational time for each of the 14 simulated instances.

Finally, results visualization and interpretation evaluates the learning curves of the
following SOP instances: krop124p.1, krop124p.2, krop124p.3 and krop124p.4. Three
metrics were analyzed: the distance calculated in the first episode (d0), the distance in the
last episode (d f ) and the smallest solution found (dmin). Evaluating the solution of the first
(“jump start”) and last (“asymptotic performance”) episodes was important for seeing the
difference in the results of Q0 and the QATSP in these situations [17]. The value of dmin, on
the other hand, allowed us to compare whether adopting a knowledge base (QATSP) led to
better solutions.

3.4. Automated Transfer Reinforcement Learning Method

This section introduces the automated reinforcement learning transfer method, which
aims to automate the transfer of reinforcement learning between the ATSP and SOP prob-
lems. The method consists of two stages:

• A new automated transfer reinforcement learning algorithm (Auto_TL_RL).
• Automated transfer reinforcement learning experiments.

3.4.1. Automated Transfer Reinforcement Learning Algorithm (Auto_TL_RL)

The flowchart depicted in Figure 3 illustrates the proposed automated transfer rein-
forcement learning algorithm flow, which has been named Auto_TL_RL. Initially, an SOP
instance is selected, and if a knowledge base already exists for the selected SOP instance,
then the problem is executed directly. Otherwise, the knowledge base is generated from an
ATSP instance, this database is then stored, and finally the SOP is executed.

Algorithm 3 represents the proposed Auto_TL_RL algorithm procedurally, which was
developed using the R language. It is worth noting that the proposed algorithm uses the
SARSA algorithm to perform the ATSP and SOP.



Algorithms 2024, 17, 87 13 of 24

Algorithm 3: Auto_TL_RL Algorithm

1 Specify the SOP instance to be executed
2 Extract the size of the SOP instance
3 Set the parameter: ϵ
4 Set the number of episodes: 1000

Stage 1

5 Checking the existence of the knowledge base

Stage 2

6 Specify the ATSP instance that will be executed
7 Extract the size of the ATSP instance
8 Set the parameters: α and γ
9 Set the number of epochs: 5

10 foreach αt ∈ α do
11 foreach γt ∈ γ do
12 for epoch to numberEpochs do
13 SARSA(α, γ, sizeOfInstance)
14 end
15 end
16 end
17 Stores the database generated

Stage 3

18 Set the parameters: α and γ
19 Set the number of epochs: 10
20 for epoch to numberEpochs do
21 SARSA(α, γ, sizeOfInstance)
22 end

Initially, the user must select the instance of the SOP to execute (line 1), and from
this, the size of the instance is extracted (line 2). Next, the value of the ϵ-greedy parameter
and the number of episodes that will be executed during learning must be defined (lines
3 and 4). Next, the execution of the algorithm is divided into three stages. The first stage
checks for the existence of the database related to the selected problem (line 5). To check
for the existence of the knowledge base, a document is used that records the name of the
instance, the dimension, the status of the knowledge base (whether it exists or not) and the
name of the file that stores the knowledge base corresponding to the instance analyzed.

The second path is taken if there is no pre-existing knowledge base for the selected
SOP instance. It defines an ATSP instance and extracts its dimension (lines 6 and 7).
Furthermore, the values for the learning rate, the discount factor and the number of epochs
are defined (lines 8 and 9). In this sense, with the learning rate and discount factor values
defined, different parameter combinations are performed. For each simulated parameter
combination, the selected ATSP instance is executed for the defined number of epochs
(lines 10–16). At the end of the execution, the knowledge base that resulted in the shortest
route distance in the ATSP instance used is stored among all generated databases (line 17),
allowing it to be reused in future applications. Finally, in the third step, the SOP is executed
(lines 18–22) using the knowledge base generated in the previous step.



Algorithms 2024, 17, 87 14 of 24

User selects SOP problem

Is there already a
database related to this

problem?
Run the ATSP problem that is related to

the selected SOP problem

Yes

No

Executes the SOP

Generates the knowledge base

Stores the generated knowledge
base

Start

End

Figure 3. Flowchart showing how the proposed Auto_TL_RL algorithm works.

The second path is adopted when there is no pre-existing knowledge base for the
selected SOP instance. Thus, an ATSP instance is defined, and its dimension is extracted
(lines 6 and 7). Furthermore, the values for the learning rate, discount factor and number of
epochs are defined (lines 8 and 9). In this sense, with the learning rate and discount factor
values established, various combinations of parameters are performed. For each simulated
parameter combination, the selected ATSP instance is executed for the defined number of
epochs (lines 10–16). At the end of the execution, the knowledge base that resulted in the
shortest route distance in the ATSP instance used is stored among all generated databases
(line 17), allowing it to be reused in future applications. Finally, the third stage is where the
SOP is executed (lines 18–22) using the knowledge base generated in the previous step.

The Auto_TL_RL algorithm in R language has been made available in an open repos-
itory to provide detailed visualization of the technical aspects of the code and to ensure
its reproducibility (https://github.com/KellyBarbosa/auto_tl_rl, accessed on 12 Febru-
ary 2024).

3.4.2. Automated Transfer Reinforcement Learning Experiments

Automated transfer reinforcement learning experiments were also performed using
SOP and ATSP instances provided by the TSPLIB library. The selected ATSP and SOP
instances are shown in Tables 1 and 2, respectively. In this approach, the following ATSP
instances were selected: br17, p43, ry48p, ft53 and ft70. In addition to the ATSP problems,
the SOP instances that were derived from the selected ATSP instances were also selected.

The parameters, number of epochs and number of episodes to be used in the proposed
Auto_TL_RL algorithm (Algorithm 3) during the experiments were also defined. The
configurations for the second stage were the same as those presented in [79], and they can
be seen in Table 6. The learning conditions for the final stage followed the same structure.
However, some adaptations were made to better suit the experimental scenarios, as shown
in Table 7.

https://github.com/KellyBarbosa/auto_tl_rl


Algorithms 2024, 17, 87 15 of 24

Table 6. Configurations used during the second stage of the experiment.

Parameters Quantity Values

α 8 0.01; 0.15; 0.30; 0.45; 0.60; 0.75;
0.90; 0.99

γ 8 0.01; 0.15; 0.30; 0.45; 0.60; 0.75;
0.90; 0.99

ϵ 1 0.01
Combinations 8 × 8 × 1 = 64 -

Epochs per Combination 5 -
Episodes per Epoch 1000 -

Episodes per Combination 5 × 1000 = 5000 -
Total Epochs 5 × 64 = 320 -

Total Episodes 1000 × 320 = 320,000 -

Table 7. Configurations used during the third stage of the experiment.

Parameters Quantity Values

α 1 0.75
γ 1 0.15
ϵ 1 0.01

Combinations 1 × 1 × 1 = 1 -
Epochs per Combination 10 -

Episodes per Epoch 1000 -
Episodes per Combination 10 × 1000 = 10,000 -

Total Epochs 10 -
Total Episodes 10 × 1000 = 10,000 -

4. Results

This section presents the results of the preliminary analysis and the automated transfer
learning experiments.

4.1. Results of Preliminary Analysis

For a more comprehensive understanding, the results of the preliminary analysis are
presented and detailed in three separate sections: Preliminary Analysis, Computational
Time Analysis, Results Visualization and Interpretation.

4.1.1. Preliminary Analysis

The preliminary analysis compares the solutions (distance on the route) according to
the initial learning condition adopted (Q0 or the QATSP). For each instance, the average
solution of the 10 simulated repetitions was calculated. Table 8 shows the results of
this stage.

Table 8 shows that the more negative the percentage difference between the results,
the greater the efficiency of adopting the knowledge base (QATSP) compared with Q0. It
can be seen that the experiments with the QATSP had a lower solution (shorter path) in
12 SOP problems (85.7%) out of 14 instances in total.

Regarding the results of the t test, in 13 SOP instances, there was a significant differ-
ence (p ≤ 0.05) between the average route distances. More specifically, of the 13 instances
where there were differences, 12 of them showed better results with the use of the knowl-
edge base (QATSP). Only one instance, br17.10, showed a disadvantage when adopting
transfer learning.



Algorithms 2024, 17, 87 16 of 24

Table 8. Average solution (distance) over the course of learning to solve the SOP, percentage difference
(D) between the results of Q0 and the QATSP and results of the t test. There was a significant difference
between the mean solutions of Q0 and the QATSP if p ≤ 0.05.

Problem Q0 QATSP D(%) t p

br17.10 99.6 117.2 17.67 −3.20 0.01
br17.12 92.7 100.8 8.74 −2.14 0.06
ft53.1 19,054.3 10,003.9 −47.50 126.10 0.00
ft53.2 19,735.9 12,057.4 −38.91 138.95 0.00
ft53.3 19,583.6 16,173.2 −17.41 25.40 0.00
ft53.4 19,360.0 18,245.4 −5.76 26.56 0.00
kro124p.1 179,266.4 56,146.9 −68.68 789.13 0.00
kro124p.2 179,859.2 59,280.3 −67.04 432.24 0.00
kro124p.3 168,223.3 71,605.7 −57.43 221.92 0.00
kro124p.4 124,900.0 99,131.0 −20.63 67.09 0.00
p43.1 72,411.4 30,453.1 −57.94 117.94 0.00
p43.2 71,953.6 32,726.0 −54.52 101.90 0.00
p43.3 67,146.8 33,151.5 −50.63 84.45 0.00
p43.4 93,488.1 86,304.4 −7.68 25.96 0.00

4.1.2. Computational Time Analysis

Table 9 shows the average computational times of the simulations of the SOP problems
according to the initial learning matrix (Q0 or the QATSP), the respective percentage
difference and the results of the t test. Again, as described in Table 8, the more negative the
percentage value of the difference between the simulation computational times, the more
efficient the adoption of the knowledge base (QATSP) with respect to Q0 was.

Table 9. Average computational times (in seconds) for solving the SOP, percentage difference (D)
between the results of Q0 and the QATSP and the results of the t test. There was a significant
difference between the mean computational times for Q0 and the QATSP if p ≤ 0.05.

Problem Q0 QATSP D(%) t p

br17.10 0.33 0.22 −33.33 3.24 0.01
br17.12 0.30 0.22 −26.67 9.62 0.00
ft53.1 0.65 0.59 −9.23 2.87 0.01
ft53.2 0.84 0.66 −21.43 9.95 0.00
ft53.3 1.79 0.89 −50.28 60.65 0.00
ft53.4 2.62 1.27 −51.53 73.37 0.00
kro124p.1 1.63 1.15 −29.45 10.42 0.00
kro124p.2 2.12 1.12 −47.17 73.63 0.00
kro124p.3 3.36 1.57 −53.27 57.10 0.00
kro124p.4 7.61 2.88 −62.16 158.77 0.00
p43.1 0.55 0.59 7.27 −1.49 0.15
p43.2 0.79 0.72 −8.86 4.53 0.00
p43.3 1.13 1.08 −4.42 2.73 0.01
p43.4 1.84 1.51 −17.93 27.04 0.00

According to the t test, in 13 instances (of the 14 analyzed)—that is, in 92.8% of the
simulated problems—the average execution time was lower when adopting the knowledge
base (p ≤ 0.05).

4.1.3. Results Visualization and Interpretation

In this stage, the learning evolution graphs (distance calculated over the episodes) are
analyzed for the following SOP problems: kro124p.1, kro124p.2, kro124p.3 and kro124p.4.
These four problems are based on kro124p (ATSP), and the data between these instances
vary depending on the number and arrangement of precedence constraints between the
nodes (see Tables 1 and 5).



Algorithms 2024, 17, 87 17 of 24

Figures 4–7 show that the QATSP learning curves started the episodes closer to the
optimal value of the instance than the simulations with Q0. This is most evident when
comparing the d0 values. In all the graphs shown, the difference between the solution in the
initial episode of the QATSP and Q0 was greater than 0.8 × 105 (80,000) distance units. This
highlights the importance of transferring knowledge between the ATSP and SOP domains
in the initial episodes, favoring the acceleration of learning.

In addition, the graphs in Figures 4–6 also show the differences between the d f
values for Q0 and the QATSP. For instances kro124p.1, kro124p.2 and kro124p.3, adopting
transfer learning resulted in better results in the last episode of the simulation. In the
worst case (experiments on problem kro124p.4), the Q0 learning curve still needed around
50 episodes to achieve results close to those presented by the simulations using the ATSP
knowledge base.

Finally, it is worth highlighting that for the graphs presented in Figures 4–7, employing
transfer learning between the ATSP and SOP domains resulted in calculating better solu-
tions during learning. For example, for the kro124p.1 instance, dmin = 52,029 when adopting
the QATSP, while for learning without prior knowledge, the result was dmin = 136,261.

Episodes
0 20 40 60 80 100

S
ol

ut
io
n

×105

0

0.5

1

1.5

2

2.5

kro124p.1

Q0
QATSP
Optimal

Figure 4. Learning curves for the kro124p.1 instance (without learning transfer (QO) and with
learning transfer (QATSP)) and TSPLIB’s optimal value line (38,762). Performance measures for Q0
(d0 = 206,824, d f = 136,261 and dmin = 136,261) and QATSP (d0 = 58,497, d f = 54,649 and dmin = 52,029).

Episodes
0 20 40 60 80 100

S
ol

ut
io
n

×105

0

0.5

1

1.5

2

2.5

kro124p.2

Q0
QATSP
Optimal

Figure 5. Learning curves for the kro124p.2 instance (without learning transfer (QO) and with
learning transfer (QATSP)) and TSPLIB’s optimal value line (39,841). Performance measures for Q0
(d0 = 201,214, d f = 150,206 and dmin = 138,704) and QATSP (d0 = 57,230, d f = 62,778 and dmin = 55,334).



Algorithms 2024, 17, 87 18 of 24

Episodes
0 20 40 60 80 100

S
ol

ut
io
n

×105

0

0.5

1

1.5

2

2.5

kro124p.3

Q0
QATSP
Optimal

Figure 6. Learning curves for the kro124p.3 instance (without learning transfer (QO) and with
learning transfer (QATSP)) and TSPLIB’s optimal value line (43,904). Performance measures for Q0
(d0 = 190,308, d f = 102,856 and dmin = 102,856) and QATSP (d0 = 73,178, d f = 73,407 and dmin = 61,146).

Episodes
0 20 40 60 80 100

S
ol

ut
io
n

×105

0

0.5

1

1.5

2

kro124p.4

Q0
QATSP
Optimal

Figure 7. Learning curves for the kro124p.4 instance (without learning transfer (QO) and with
learning transfer (QATSP)) and TSPLIB’s optimal value line (73,021). Performance measures for Q0
(d0 = 186,028, d f = 96,283 and dmin = 96,139) and QATSP (d0 = 99,903, d f = 95,602 and dmin = 92,542).

4.2. Results of Automated Transfer Learning

First, for comparison purposes, the selected SOP instances were run without using
transfer learning. Next, the knowledge bases were generated using the ATSP instances at
the time of execution of problems br17.10, p43.1, ry48p.1, ft53.1 and ft70.1. Thus, at the time
of execution of these instances, all the stages of the proposed algorithm were executed.

For the remaining instances, as there was already a pre-existing knowledge base, only
the first and third stages of the algorithm were run. Table 10 shows all the results obtained
during the execution of the experiments.

Based on the results shown in Table 10, it can be seen that the final distance achieved
by the proposed transfer learning system showed better results in several of the instances
tested, more precisely in 14 of the 18 instances (i.e., in approximately 78% of the simulated
SOP problems). Among these results, the final distance values obtained in instances ft70.4,
ft70.1, ft53.4 and ry48p.4 stand out. In these four instances, there was a difference of
more than 500 units in the values obtained when learning with the Auto_TL_RL system
and without the Auto_TL_RL system. Consequently, it can be seen that by using the
proposed Auto_TL_RL system, it was possible to obtain final distance values closer to those
presented as the best known solution by TSPLIB compared with the results obtained when
the Auto_TL_RL system was not used.



Algorithms 2024, 17, 87 19 of 24

Table 10. Results of running SOP instances without the Auto_TL_RL algorithm and with the
Auto_TL_RL algorithm, with the asymmetric traveling salesman problem (ATSP); sequential order-
ing problem (SOP); best known solution value presented by TSPLIB; and the proposed algorithm
(Auto_TL_RL).

ATSP SOP Best Known
Solution

Without
Auto_TL_RL

With
Auto_TL_RL

br17 br17.10 55 57 55
br17.12 55 57 57

p43

p43.1 28,140 28,765 28,715
p43.2 28,480 29,265 29,170
p43.3 28,835 29,545 29,535
p43.4 83,005 84,110 83,985

ry48p

ry48p.1 14422 18,154 17,922
ry48p.2 16,074 18,549 18,459
ry48p.3 19,490 22,789 22,853
ry48p.4 31,446 38,235 37,679

ft53

ft53.1 7531 8852 9056
ft53.2 8026 9839 9588
ft53.3 10,262 12,598 12,594
ft53.4 14,425 17,650 16,935

ft70

ft70.1 39,313 43,460 42,707
ft70.2 40,101 44,841 44,499
ft70.3 42,535 48,015 48,311
ft70.4 53,530 60,049 59,275

5. Comparison with Other Studies

This section presents a comparison of this proposal with other literature studies. For
this, three papers that applied AI algorithms to solve the SOP were selected [37,39,80].
Table 11 shows a summary of this analysis.

Table 11. Comparison of this proposal with different studies that applied algorithms for the sequential
ordering problem’s solution.

Proposed [37] [39] [80]

Dataset TSPLIB ✓ ✓ ✓ ✓
SOPLIB – – – ✓

Ant Colony System – – ✓ –
Algorithm Particle Swarm Optimization – – ✓

Reinforcement Learning ✓ ✓ – –

Hyperparameter Tuning – ✓ – ✓
Meta-learning Transfer Learning ✓ – – –

AutoML ✓ – – –

The first point to emphasize is the relevance of the dataset used in this paper. In
this sense, TSPLIB is frequently adopted in the literature when applying methods to
combinatorial optimization problems, especially those related to the TSP and SOP.

The second criterion to be observed in Table 11 is the algorithm adopted to resolve
SOP instances. Several traditional optimization techniques have already been used, such as
the ant colony system [39] and particle swarm optimization [80]. It is noteworthy that the
authors of [39,80] achieved important results in solving several TSPLIB instances, finding
the best known solution in several simulated situations, thus showing great potential
in these methods for solving combinatorial optimization problems based on the ATSP
and SOP.



Algorithms 2024, 17, 87 20 of 24

However, this paper did not aim to make a direct comparison with these conventional
methods from the literature. The objective was to investigate and propose advances in
reinforcement learning algorithms for solving combinatorial optimization problems. In this
sense, it is noteworthy that, due to the best knowledge of these authors, this work is only
the second paper that addresses reinforcement learning methods for solving the SOP.

For this aspect, the work in [37] made important advances in the application of RL
and hyperparameter tuning for the SOP. For example, the work in [37] assessed that, in
general, the SARSA algorithm outperforms the Q-learning method in the search for better
SOP solutions. Following this line, this paper continued to investigate the possibilities for
improving RL techniques for combinatorial optimization problems. The main advance
of this paper in relation to the literature is the proposal of a transfer learning approach
between the ATSP and SOP, providing a reduction in computational cost and optimization
of the solution with RL algorithms. Furthermore, this paper innovated by proposing a
new AutoML method, which is responsible for applying meta-learning and automatic TL
between simulated combinatorial optimization problems.

6. Conclusions

The main objective of this work was to propose and evaluate the efficiency of a
methodology for transfer RL between two combinatorial optimization domains: the ATSP
and SOP. For this purpose, two approaches were taken. The first approach involved a
general analysis of the transfer of learning. The second addressed the use of AutoML for
transfer learning.

Based on the analysis performed, this work highlights certain aspects:

• Results visualization and interpretation of the impact on the final route distance results
obtained with the transfer of learning between classical combinatorial optimization
problems;

• Statistical analysis of the impact on the computational time and route distance results
obtained by applying learning transfer between combinatorial optimization problems;

• Development of a methodology for learning transfer from the source domain (ATSP)
to the target domain (SOP);

• Proposal of a methodology to perform learning transfer in an automated way;
• Proposal of an AutoML algorithm for transfer learning applied to combinatorial

optimization problems with reinforcement learning.

In terms of analysis, the effects of using the knowledge base (QATSP) in the objec-
tive domain (SOP) were evaluated. The results obtained from the statistical tests show
that, overall, adopting transfer learning led to the calculation of shorter routes in the SOP
problems (TSPLIB). Furthermore, in 13 of the 14 instances simulated (92.8%), the average
computational time was lower in the experiments using the QATSP base. Results visual-
ization made it possible to evaluate the differences in the behavior of the learning curves
when the RL transfer matrix was used or not used.

The AutoML approach involved the development of the Auto_TL_RL algorithm. The
Auto_TL_RL algorithm has a feature that makes it possible to identify the presence or
absence of a knowledge base for a given problem. When the knowledge base already
exists, the issue is executed directly. However, when a previous knowledge base is not
available, a knowledge base is generated and stored for possible reuse in future situations.
To accomplish this, concepts discussed in [79] were used, such as transfer learning and
automated learning.

The transfer learning performed by the Auto_TL_RL algorithm produced better results
in 14 of the 18 TSPLIB instances analyzed (approximately 78%). This demonstrates its
efficiency and importance compared with traditional learning methods. It is also important
to highlight the importance of automated transfer, since all the human and computational
effort required to carry out this study was reduced by using an automated learning system.

In future work, it is expected to apply the proposed approach to other combinato-
rial optimization problems. For this aspect, it is important to observe the three criteria



Algorithms 2024, 17, 87 21 of 24

presented when carrying out transfer reinforcement learning across combinatorial opti-
mization problems: (1) problems with the same objective function; (2) similar datasets; and
(3) transfer from the simple domain to the more complex domain. Moreover, a forthcoming
paper will analyze the transfer of hyperparameter tuning between the domains: α, γ, ϵ and
the reinforcement function [12,37,68,76]. Moreover, the aim is to conduct the experiment
with different instances. It is also intended to improve the Auto_TL_RL system in order to
make it possible to apply the parameters used during the knowledge base generation stage,
which showed the best results. Furthermore, future work will analyze the energy efficiency
of the AUTO_TL_RL algorithm and its CO2 emissions, since the computational time can
hide particularities in energy consumption.

Author Contributions: Methodology, G.K.B.S. and A.L.C.O.; software, G.K.B.S. and A.L.C.O.; valida-
tion, M.S.O. and D.C.R.O.; formal analysis, M.S.O. and D.C.R.O.; writing—original draft, G.K.B.S.
and S.O.S.S.; writing—review and editing, S.O.S.S., A.L.C.O. and E.G.N.; supervision, E.G.N. All
authors have read and agreed to the published version of the manuscript.

Funding: This publication has emanated from research supported in part by a grant from Science
Foundation Ireland under Grant number 18/CRT/6049 (Author: Samara O. S. Santos). For the
purpose of Open Access, the author (Samara O. S. Santos) has applied a CC BY public copyright licence
to any Author Accepted Manuscript version arising from this submission. Erivelton G. Nepomuceno
was supported by Brazilian Research Agencies: CNPq/INERGE (Grant No. 465704/2014-0), CNPq
(Grant No. 425509/2018-4) and FAPEMIG (Grant No. APQ-00870-17). This publication has emanated
from research conducted with the financial support of Science Foundation Ireland under Grant
number 21/FFP-P/10065.

Data Availability Statement: The dataset analyzed during the current study is available from the
TSPLIB repository (http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/, accessed on 1 Decem-
ber 2023).

Acknowledgments: The authors are grateful to UFRB, Maynooth University, UFSJ, FAPEMIG,
CNPq/INERGE and Science Foundation Ireland.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RL Reinforcement learning
ML Machine learning
AutoML Automated machine learning
AutoRL Automated reinforcement learning
TL Transfer learning
TSP Traveling salesman problem
ATSP Asymmetric traveling salesman problem
SOP Sequential ordering problem
TSPLIB Traveling Salesman Problem Library
Auto_TL_RL automated transfer reinforcement learning algorithm
MDP Markov decision processes
S State
s Current state
s′ New state
A Action
a Current action
a′ New action
R Reinforcements
T State transition model
t Statistical test
Q Learning matrix
Qt Learning matrix at the current time

http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/


Algorithms 2024, 17, 87 22 of 24

Qt+1 Learning matrix at a future time
d0 Distance calculated in the initial episode
d f Distance in the final episode
dmin Smallest solution found
Q0 Matrix started with null values
QATSP Matrix from ATSP instance
cij Cost between cities i and j
SARSA State–action–reward–state–action
N Number of nodes
KS Kolmogorov–Smirnov

References
1. Ghanem, M.C.; Chen, T.M.; Nepomuceno, E.G. Hierarchical reinforcement learning for efficient and effective automated

penetration testing of large networks. J. Intell. Inf. Syst. 2023, 60, 281–303. [CrossRef]
2. Watkins, C.J.; Dayan, P. Technical note Q-learning. Mach. Learn. 1992, 8, 279–292. [CrossRef]
3. Russell, S.J.; Norving, P. Artificial Intelligence, 3rd ed.; Pearson: Upper Saddle River, NJ, USA, 2013.
4. Sutton, R.; Barto, A. Reinforcement Learning: An Introduction, 2nd ed.; MIT Press: Cambridge, MA, USA, 2018.
5. Vazquez-Canteli, J.R.; Nagy, Z. Reinforcement learning for demand response: A review of algorithms and modeling techniques.

Appl. Energy 2019, 235, 1072–1089. [CrossRef]
6. Mazyavkina, N.; Sviridov, S.; Ivanov, S.; Burnaev, E. Reinforcement learning for combinatorial optimization: A survey. Comput.

Oper. Res. 2021, 134, 105400. [CrossRef]
7. Ruiz-Serra, J.; Harré, M.S. Inverse Reinforcement Learning as the Algorithmic Basis for Theory of Mind: Current Methods and

Open Problems. Algorithms 2023, 16, 68. [CrossRef]
8. Deák, S.; Levine, P.; Pearlman, J.; Yang, B. Reinforcement Learning in a New Keynesian Model. Algorithms 2023, 16, 280. [CrossRef]
9. Engelhardt, R.C.; Oedingen, M.; Lange, M.; Wiskott, L.; Konen, W. Iterative Oblique Decision Trees Deliver Explainable RL

Models. Algorithms 2023, 16, 282. [CrossRef]
10. Parker-Holder, J.; Rajan, R.; Song, X.; Biedenkapp, A.; Miao, Y.; Eimer, T.; Zhang, B.; Nguyen, V.; Calandra, R.; Faust, A.; et al.

Automated Reinforcement Learning (AutoRL): A Survey and Open Problems. J. Artif. Intell. Res. 2022, 74, 517–568. [CrossRef]
11. Afshar, R.R.; Zhang, Y.; Vanschoren, J.; Kaymak, U. Automated Reinforcement Learning: An Overview. arXiv 2022,

arXiv:2201.05000.
12. Brazdil, P.; van Rijn, J.N.; Soares, C.; Vanschoren, J. Metalearning: Applications to Automated Machine Learning and Data Mining;

Springer Nature: Berlin/Heidelberg, Germany, 2022.
13. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.; Blum, M.; Hutter, F. Efficient and Robust Automated Machine Learning.

In Advances in Neural Information Processing Systems; Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R., Eds.; Curran
Associates, Inc.: Red Hook, NY, USA, 2015; Volume 28, pp. 2962–2970.

14. Tuggener, L.; Amirian, M.; Rombach, K.; Lorwald, S.; Varlet, A.; Westermann, C.; Stadelmann, T. Automated Machine Learning
in Practice: State of the Art and Recent Results. In Proceedings of the 2019 6th Swiss Conference on Data Science (SDS), Bern,
Switzerland, 14 June 2019; pp. 31–36. [CrossRef]

15. Chen, L.; Hu, B.; Guan, Z.H.; Zhao, L.; Shen, X. Multiagent Meta-Reinforcement Learning for Adaptive Multipath Routing
Optimization. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 5374–5386. [CrossRef]

16. Dai, H.; Chen, P.; Yang, H. Metalearning-Based Fault-Tolerant Control for Skid Steering Vehicles under Actuator Fault Conditions.
Sensors 2022, 22, 845. [CrossRef]

17. Taylor, M.E.; Stone, P. Transfer Learning for Reinforcement Learning Domains: A Survey. J. Mach. Learn. Res. 2009, 10, 1633–1685.
18. Carroll, J.L.; Peterson, T. Fixed vs. Dynamic Sub-Transfer in Reinforcement Learning. In Proceedings of the International

Conference on Machine Learning and Applications, Las Vegas, NV, USA, 24–27 June 2002; pp. 3–8.
19. Cao, Z.; Kwon, M.; Sadigh, D. Transfer Reinforcement Learning Across Homotopy Classes. IEEE Robot. Autom. Lett. 2021,

6, 2706–2713. [CrossRef]
20. Peterson, T.S.; Owens, N.E.; Carroll, J.L. Towards automatic shaping in robot navigation. In Proceedings of the 2001 ICRA.

IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Seoul, Republic of Korea, 21–26 May 2001;
Volume 1, pp. 517–522.

21. Wang, H.; Fan, S.; Song, J.; Gao, Y.; Chen, X. Reinforcement learning transfer based on subgoal discovery and subtask similarity.
IEEE/CAA J. Autom. Sin. 2014, 1, 257–266.

22. Tommasino, P.; Caligiore, D.; Mirolli, M.; Baldassarre, G. A Reinforcement Learning Architecture That Transfers Knowledge
Between Skills When Solving Multiple Tasks. IEEE Trans. Cogn. Dev. Syst. 2019, 11, 292–317.

23. Arnekvist, I.; Kragic, D.; Stork, J.A. VPE: Variational Policy Embedding for Transfer Reinforcement Learning. In Proceedings of
the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 36–42.

24. Gao, D.; Wang, S.; Yang, Y.; Zhang, H.; Chen, H.; Mei, X.; Chen, S.; Qiu, J. An Intelligent Control Method for Servo Motor Based
on Reinforcement Learning. Algorithms 2024, 17, 14. [CrossRef]

http://doi.org/10.1007/s10844-022-00738-0
http://dx.doi.org/10.1007/BF00992698
http://dx.doi.org/10.1016/j.apenergy.2018.11.002
http://dx.doi.org/10.1016/j.cor.2021.105400
http://dx.doi.org/10.3390/a16020068
http://dx.doi.org/10.3390/a16060280
http://dx.doi.org/10.3390/a16060282
http://dx.doi.org/10.1613/jair.1.13596
http://dx.doi.org/10.1109/SDS.2019.00-11
http://dx.doi.org/10.1109/TNNLS.2021.3070584
http://dx.doi.org/10.3390/s22030845
http://dx.doi.org/10.1109/LRA.2021.3057050
http://dx.doi.org/10.3390/a17010014


Algorithms 2024, 17, 87 23 of 24

25. Hou, Y.; Ong, Y.S.; Feng, L.; Zurada, J.M. An Evolutionary Transfer Reinforcement Learning Framework for Multiagent Systems.
IEEE Trans. Evol. Comput. 2017, 21, 601–615. [CrossRef]

26. Da Silva, F.; Reali Costa, A. A survey on transfer learning for multiagent reinforcement learning systems. J. Artif. Intell. Res. 2019,
64, 645–703. [CrossRef]

27. Cai, L.; Sun, Q.; Xu, T.; Ma, Y.; Chen, Z. Multi-AUV Collaborative Target Recognition Based on Transfer-Reinforcement Learning.
IEEE Access 2020, 8, 39273–39284. [CrossRef]

28. Ottoni, A.L.; Nepomuceno, E.G.; Oliveira, M.S.d.; Oliveira, D.C.d. Reinforcement learning for the traveling salesman problem
with refueling. Complex Intell. Syst. 2022, 8, 2001–2015. [CrossRef]

29. Gambardella, L.M.; Dorigo, M. Ant-Q: A reinforcement learning approach to the traveling salesman problem. In Proceedings of
the 12th International Conference on Machine Learning, Tahoe, CA, USA, 9–12 July 1995; pp. 252–260.

30. Bianchi, R.A.C.; Ribeiro, C.H.C.; Costa, A.H.R. On the relation between Ant Colony Optimization and Heuristically Accelerated
Reinforcement Learning. In Proceedings of the 1st International Workshop on Hybrid Control of Autonomous System, Pasadena,
CA, USA, 13 July 2009; pp. 49–55.

31. Júnior, F.C.D.L.; Neto, A.D.D.; De Melo, J.D. Hybrid metaheuristics using reinforcement learning applied to salesman traveling
problem. In Traveling Salesman Problem, Theory and Applications; IntechOpen: London, UK, 2010.

32. Costa, M.L.; Padilha, C.A.A.; Melo, J.D.; Neto, A.D.D. Hierarchical Reinforcement Learning and Parallel Computing Applied to
the k-server Problem. IEEE Lat. Am. Trans. 2016, 14, 4351–4357. [CrossRef]

33. Alipour, M.M.; Razavi, S.N.; Feizi Derakhshi, M.R.; Balafar, M.A. A Hybrid Algorithm Using a Genetic Algorithm and Multiagent
Reinforcement Learning Heuristic to Solve the Traveling Salesman Problem. Neural Comput. Appl. 2018, 30, 2935–2951. [CrossRef]

34. Lins, R.A.S.; Dória, A.D.N.; de Melo, J.D. Deep reinforcement learning applied to the k-server problem. Expert Syst. Appl. 2019,
135, 212–218. [CrossRef]

35. Carvalho Ottoni, A.L.; Geraldo Nepomuceno, E.; Santos de Oliveira, M. Development of a Pedagogical Graphical Interface for
the Reinforcement Learning. IEEE Lat. Am. Trans. 2020, 18, 92–101. [CrossRef]

36. Silva, M.A.L.; de Souza, S.R.; Souza, M.J.F.; Bazzan, A.L.C. A reinforcement learning-based multi-agent framework applied for
solving routing and scheduling problems. Expert Syst. Appl. 2019, 131, 148–171. [CrossRef]

37. Ottoni, A.L.C.; Nepomuceno, E.G.; de Oliveira, M.S.; de Oliveira, D.C.R. Tuning of Reinforcement Learning Parameters Applied
to SOP Using the Scott–Knott Method. Soft Comput. 2020, 24, 4441–4453. [CrossRef]

38. Escudero, L. An inexact algorithm for the sequential ordering problem. Eur. J. Oper. Res. 1988, 37, 236–249. [CrossRef]
39. Gambardella, L.M.; Dorigo, M. An Ant Colony System Hybridized with a New Local Search for the Sequential Ordering Problem.

Informs J. Comput. 2000, 12, 237–255. [CrossRef]
40. Letchford, A.N.; Salazar-González, J.J. Stronger multi-commodity flow formulations of the (capacitated) sequential ordering

problem. Eur. J. Oper. Res. 2016, 251, 74–84. [CrossRef]
41. Skinderowicz, R. An improved Ant Colony System for the Sequential Ordering Problem. Comput. Oper. Res. 2017, 86, 1–17.

[CrossRef]
42. Hopfield, J.; Tank, D. “Neural” computation of decisions in optimization problems. Biol. Cybern. 1985, 52, 141–152. [CrossRef]
43. Jäger, G.; Molitor, P. Algorithms and experimental study for the traveling salesman problem of second order. In Proceedings of the

Second International Conference, COCOA 2008, St. John’s, NL, Canada, 21–24 August 2008; Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); 5165 LNCS, pp. 211–224.
[CrossRef]

44. Takashima, Y.; Nakamura, Y. Theoretical and Experimental Analysis of Traveling Salesman Walk Problem. In Proceedings of the
2021 IEEE Asia Pacific Conference on Circuit and Systems (APCCAS), Penang, Malaysia, 22–26 November 2021; pp. 241–244.

45. Alhenawi, E.; Khurma, R.A.; Damaševičius, R.; Hussien, A.G. Solving Traveling Salesman Problem Using Parallel River Formation
Dynamics Optimization Algorithm on Multi-core Architecture Using Apache Spark. Int. J. Comput. Intell. Syst. 2024, 17, 4.
[CrossRef]

46. Shobaki, G.; Jamal, J. An exact algorithm for the sequential ordering problem and its application to switching energy minimization
in compilers. Comput. Optim. Appl. 2015, 61, 343–372. [CrossRef]

47. Libralesso, L.; Bouhassoun, A.; Cambazard, H.; Jost, V. Tree search algorithms for the Sequential Ordering Problem. arXiv 2019,
arXiv:abs/1911.12427.

48. Tavares Neto, R.F.; Godinho Filho, M.; Da Silva, F.M. An ant colony optimization approach for the parallel machine scheduling
problem with outsourcing allowed. J. Intell. Manuf. 2015, 26, 527–538. [CrossRef]

49. Reinelt, G. TSPLIB—A Traveling Salesman Problem Library. ORSA J. Comput. 1991, 3, 376–384. [CrossRef]
50. Reinelt, G. Tsplib95; University Heidelberg: Heidelberg, Germany, 1995.
51. Liu, Y.; Cao, B.; Li, H. Improving ant colony optimization algorithm with epsilon greedy and Levy flight. Complex Intell. Syst.

2021, 7, 1711–1722. [CrossRef]
52. Goldbarg, M.C.; Luna, H. Combinatorial Optimization and Linear Programming: Models and Algorithms; Elsevier Publishing House:

Rio de Janeiro, Brazil, 2015.
53. Queiroz dos Santos, J.P.; de Melo, J.D.; Duarte Neto, A.D.; Aloise, D. Reactive Search strategies using Reinforcement Learning,

local search algorithms and Variable Neighborhood Search. Expert Syst. Appl. 2014, 41, 4939–4949. [CrossRef]

http://dx.doi.org/10.1109/TEVC.2017.2664665
http://dx.doi.org/10.1613/jair.1.11396
http://dx.doi.org/10.1109/ACCESS.2020.2976121
http://dx.doi.org/10.1007/s40747-021-00444-4
http://dx.doi.org/10.1109/TLA.2016.7786315
http://dx.doi.org/10.1007/s00521-017-2880-4
http://dx.doi.org/10.1016/j.eswa.2019.06.015
http://dx.doi.org/10.1109/TLA.2020.9049466
http://dx.doi.org/10.1016/j.eswa.2019.04.056
http://dx.doi.org/10.1007/s00500-019-04206-w
http://dx.doi.org/10.1016/0377-2217(88)90333-5
http://dx.doi.org/10.1287/ijoc.12.3.237.12636
http://dx.doi.org/10.1016/j.ejor.2015.11.001
http://dx.doi.org/10.1016/j.cor.2017.04.012
http://dx.doi.org/10.1007/BF00339943
http://dx.doi.org/10.1007/978-3-540-85097-7_20
http://dx.doi.org/10.1007/s44196-023-00385-5
http://dx.doi.org/10.1007/s10589-015-9725-9
http://dx.doi.org/10.1007/s10845-013-0811-5
http://dx.doi.org/10.1287/ijoc.3.4.376
http://dx.doi.org/10.1007/s40747-020-00138-3
http://dx.doi.org/10.1016/j.eswa.2014.01.040


Algorithms 2024, 17, 87 24 of 24

54. Almeida, C.P.d.; Gonçalves, R.A.; Goldbarg, E.F.; Goldbarg, M.C.; Delgado, M.R. Transgenetic Algorithms for the Multi-objective
Quadratic Assignment Problem. In Proceedings of the 2014 Brazilian Conference on Intelligent Systems, Sao Paulo, Brazil, 18–22
October 2014; pp. 312–317. [CrossRef]

55. Bengio, Y.; Lodi, A.; Prouvost, A. Machine Learning for Combinatorial Optimization: A Methodological Tour d’Horizon. arXiv
2018, arXiv:1811.06128. https://doi.org/10.48550/ARXIV.1811.06128.

56. Bianchi, R.A.; Celiberto, L.A., Jr.; Santos, P.E.; Matsuura, J.P.; De Mantaras, R.L. Transferring knowledge as heuristics in
reinforcement learning: A case-based approach. Artif. Intell. 2015, 226, 102–121. [CrossRef]

57. Pedro, O.; Saldanha, R.; Camargo, R. A tabu search approach for the prize collecting traveling salesman problem. Electron. Notes
Discret. Math. 2013, 41, 261–268. [CrossRef]

58. Montemanni, R.; Dell’Amico, M. Solving the Parallel Drone Scheduling Traveling Salesman Problem via Constraint Programming.
Algorithms 2023, 16, 40. [CrossRef]

59. Bodin, L.; Golden, B.; Assad, A.; Ball, M. Routing and Scheduling of Vehicles and Crews—The State of the Art. Comput. Oper. Res.
1983, 10, 63–211.

60. Majidi, F.; Openja, M.; Khomh, F.; Li, H. An Empirical Study on the Usage of Automated Machine Learning Tools. In Proceedings
of the 2022 IEEE International Conference on Software Maintenance and Evolution (ICSME), Limassol, Cyprus, 2–7 October 2022;
pp. 59–70.

61. Ottoni, A.L.C.; Souza, A.M.; Novo, M.S. Automated hyperparameter tuning for crack image classification with deep learning.
Soft Comput. 2023, 27, 18383–18402. [CrossRef]

62. Barreto, C.A.d.S.; Canuto, A.M.d.P.; Xavier-Júnior, J.C.; Feitosa-Neto, A.; Lima, D.F.A.; Costa, R.R.F.d. PBIL AutoEns: An
Automated Machine Learning Tool integrated to the Weka ML Platform. Braz. J. Dev. 2019, 5, 29226–29242. [CrossRef]

63. Chauhan, K.; Jani, S.; Thakkar, D.; Dave, R.; Bhatia, J.; Tanwar, S.; Obaidat, M.S. Automated Machine Learning: The New Wave of
Machine Learning. In Proceedings of the 2020 2nd International Conference on Innovative Mechanisms for Industry Applications
(ICIMIA), Bangalore, India, 5–7 March 2020; pp. 205–212. [CrossRef]

64. Olson, R.S.; Moore, J.H. TPOT: A tree-based pipeline optimization tool for automating machine learning. In Proceedings of the
Workshop on Automatic Machine Learning, New York, NY, USA, 24 June 2016; pp. 66–74.

65. Li, Y.; Wu, J.; Deng, T. Meta-GNAS: Meta-reinforcement learning for graph neural architecture search. Eng. Appl. Artif. Intell.
2023, 123, 106300. [CrossRef]

66. Ottoni, L.T.C.; Ottoni, A.L.C.; Cerqueira, J.d.J.F. A Deep Learning Approach for Speech Emotion Recognition Optimization Using
Meta-Learning. Electronics 2023, 12, 4859. [CrossRef]

67. Mantovani, R.G.; Rossi, A.L.D.; Alcobaça, E.; Vanschoren, J.; de Carvalho, A.C.P.L.F. A meta-learning recommender system for
hyperparameter tuning: Predicting when tuning improves SVM classifiers. Inf. Sci. 2019, 501, 193–221. [CrossRef]

68. Hutter, F.; Kotthoff, L.; Vanschoren, J. (Eds.) Automated Machine Learning: Methods, Systems, Challenges; Springer:
Berlin/Heidelberg, Germany, 2019; in press. Available online: http://automl.org/book (accessed on 1 December 2023).

69. Fernández, F.; Veloso, M. Probabilistic policy reuse in a reinforcement learning agent. In Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multiagent Systems, Hakodate, Japan, 8–12 May 2006; pp. 720–727.

70. Feng, Y.; Wang, G.; Liu, Z.; Feng, R.; Chen, X.; Tai, N. An Unknown Radar Emitter Identification Method Based on Semi-Supervised
and Transfer Learning. Algorithms 2019, 12, 271. [CrossRef]

71. Pavlyuk, D. Transfer Learning: Video Prediction and Spatiotemporal Urban Traffic Forecasting. Algorithms 2020, 13, 39. [CrossRef]
72. Islam, M.M.; Hossain, M.B.; Akhtar, M.N.; Moni, M.A.; Hasan, K.F. CNN Based on Transfer Learning Models Using Data

Augmentation and Transformation for Detection of Concrete Crack. Algorithms 2022, 15, 287. [CrossRef]
73. Surendran, R.; Chihi, I.; Anitha, J.; Hemanth, D.J. Indoor Scene Recognition: An Attention-Based Approach Using Feature

Selection-Based Transfer Learning and Deep Liquid State Machine. Algorithms 2023, 16, 430. [CrossRef]
74. Pavliuk, O.; Mishchuk, M.; Strauss, C. Transfer Learning Approach for Human Activity Recognition Based on Continuous

Wavelet Transform. Algorithms 2023, 16, 77. [CrossRef]
75. Durgut, R.; Aydin, M.E.; Rakib, A. Transfer Learning for Operator Selection: A Reinforcement Learning Approach. Algorithms

2022, 15, 24. [CrossRef]
76. Ottoni, A.L.C.; Nepomuceno, E.G.; de Oliveira, M.S. A Response Surface Model Approach to Parameter Estimation of Reinforce-

ment Learning for the Travelling Salesman Problem. J. Control. Autom. Electr. Syst. 2018, 29, 350–359. [CrossRef]
77. Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons.: New York, NY, USA, 2017.
78. Lopes, R.H. Kolmogorov-Smirnov Test. Int. Encycl. Stat. Sci. 2011, 1, 718–720.
79. Souza, G.K.B.; Ottoni, A.L.C. AutoRL-TSP-RSM: Automated reinforcement learning system with response surface methodology

for the traveling salesman problem. Braz. J. Appl. Comput. 2021, 13, 86–100. [CrossRef]
80. Anghinolfi, D.; Montemanni, R.; Paolucci, M.; Gambardella, L.M. A hybrid particle swarm optimization approach for the

sequential ordering problem. Comput. Oper. Res. 2011, 38, 1076–1085. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/BRACIS.2014.63
https://doi.org/10.48550/ARXIV.1811.06128
http://dx.doi.org/10.1016/j.artint.2015.05.008
http://dx.doi.org/10.1016/j.endm.2013.05.101
http://dx.doi.org/10.3390/a16010040
http://dx.doi.org/10.1007/s00500-023-09103-x
http://dx.doi.org/10.34117/bjdv5n12-082
http://dx.doi.org/10.1109/ICIMIA48430.2020.9074859
http://dx.doi.org/10.1016/j.engappai.2023.106300
http://dx.doi.org/10.3390/electronics12234859
http://dx.doi.org/10.1016/j.ins.2019.06.005
http://automl.org/book
http://dx.doi.org/10.3390/a12120271
http://dx.doi.org/10.3390/a13020039
http://dx.doi.org/10.3390/a15080287
http://dx.doi.org/10.3390/a16090430
http://dx.doi.org/10.3390/a16020077
http://dx.doi.org/10.3390/a15010024
http://dx.doi.org/10.1007/s40313-018-0374-y
http://dx.doi.org/10.5335/rbca.v13i3.12653
http://dx.doi.org/10.1016/j.cor.2010.10.014

	Introduction
	Background
	Reinforcement Learning
	Combinatorial Optimization
	Traveling Salesman Problem
	Sequential Ordering Problem
	Automated Machine Learning
	Transfer Learning

	Methodology
	Dataset
	Reinforcement Learning Model
	Transfer Learning Approach
	Generation of the Knowledge Base
	Experiments for Transfer Learning
	Analysis Methodology

	Automated Transfer Reinforcement Learning Method
	Automated Transfer Reinforcement Learning Algorithm (Auto_TL_RL)
	Automated Transfer Reinforcement Learning Experiments


	Results
	Results of Preliminary Analysis
	Preliminary Analysis
	Computational Time Analysis
	Results Visualization and Interpretation

	Results of Automated Transfer Learning

	Comparison with Other Studies
	Conclusions
	References

