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Abstract: Power flow problems can be solved in a variety of ways by using the Newton–Raphson
approach. The nonlinear power flow equations depend upon voltages |Vi| and phase angle δ.
An electrical power system is obtained by taking the partial derivatives of load flow equations
which contain active and reactive powers. In this paper, we present an efficient seventh-order
iterative scheme to obtain the solutions of nonlinear system of equations, with only three steps in its
formulation. Then, we illustrate the computational cost for different operations such as matrix–matrix
multiplication, matrix–vector multiplication, and LU-decomposition, which is then used to calculate
the cost of our proposed method and is compared with the cost of already seventh-order methods.
Furthermore, we elucidate the applicability of our newly developed scheme in an electrical power
system. The two-bus, three-bus, and four-bus power flow problems are then solved by using load
flow equations that describe the applicability of the new schemes.

Keywords: system of nonlinear equations; Jarratt method; higher order of convergence; electrical
power systems

1. Introduction

In numerical analysis, we investigate, develop, and analyze numerous methods and
algorithms for numerically solving real-life problems in the diverse domains of science such
as physics, chemistry, mechanical engineering, chemical engineering, electrical engineering,
and other applied sciences. Various kinds of efficient iterative methods are constructed to
approximate the roots of system of nonlinear equations of the form

F(X) = 0, (1)

where F : D ⊆ Rm → Rm with m > 1 for multivariate function. One of the powerful
and simplest root finding methods to solve the system of nonlinear equations is Newton–
Raphson technique, expressed as

X(k+1) = X(k) − F′(X(k))−1F(X(k)), (2)

where [F′(X(k))] is the Jacobian matrix evaluated in the iterate X(k). This involves one
function and one Jacobian evaluation at each step. Over the passage of time, the higher-
order and computationally efficient variants are developed to solve the large-scale real-
world problems.

Many researchers have introduced multipoint iterative schemes as a solution to the
limitations of one-point iterative approaches. For example, in 1969, Jarratt [1] developed a
fourth-order two-step optimal method. Some researchers have also developed fifth- and
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sixth-order techniques in an effort to obtain faster algorithms, as seen, for instance, in [2–4].
However, there are only a few Jarratt-type seventh-order iterative schemes for solving
nonlinear systems [5,6] that have less computational cost. Another line of research is based
on Steffensen’s method for solving nonlinear systems, following which some seventh-order
derivative-free schemes were designed [7–11]. It is evident that while efforts are being
made by the researchers to enhance the order of convergence of an iterative approach,
most of the time, this results in an increase in the computational cost per iteration, for
example, the seventh- and eighth-order methods developed recently [12–16]. Therefore,
even when we create new iterative techniques, we ought to make an effort to minimize the
computing expense.

Highly convergent multipoint iterative schemes can be categorized in two different
ways: first, by developing a new scheme for scalar equations and then extending the
same scheme for multidimensional cases with the same convergence order as that for the
scalar equations; and second, developing the iterative schemes for system of equations
with the help of different approaches like divided difference approach, quadratic formula,
etc. Optimal Jarratt fourth-order two-step method and schemes by Abad et al. [5], Yaseen
et al. [6], Behl et al. [2], and Lee and Kim [4] are extendable for a multidimensional case in a
way that is described in the first category. On the other hand, Hueso et al. [3] proposed the
fourth-order method for multivariate case and Sharma et al. [17] developed some fourth-
and sixth-order schemes by using the weight function approach. It seems like the first
technique is an easy way to develop some multidimensional iterative methods, but this is
not the case. The key objective is to retain the order of convergence of the described scheme
while extending it to the multidimensional case.

Nonlinear systems of equations are commonly used to describe scientific and engineer-
ing challenges. There are more and more applications for these systems, and the majority
of the techniques, now in use, have limitations and drawbacks. Thus, it is crucial to create
novel numerical techniques that are computationally efficient, fast and reliable. Among
the problems of electrical engineering, load flow studies are important in planning and
designing the future expansion of power systems [18–21]. Planning the expansion of power
systems and figuring out how to operate the current systems most effectively require a
load-flow study. Additionally, it serves as the foundation for a number of studies that
demand quick processing times, such as those on online applications, optimal power flow,
and continuation power flow. Energy passes from the generator to the load in a power
system through numerous networks. The flow of active power P and reactive power Q
is referred to as the load flow. In a steady-state analysis of a power system, power flow
analysis is an effective approach, and many iterative strategies for solving power flow
equations were developed by researchers; in 1956, the first automated digital solution
to the power flow problem was given by Ward and Hale [22]. The study of power flow
analysis gives different techniques for determining various bus components such as active
power, reactive power, voltage magnitude |V|, and phase angle δ in a power grid. The
resulting equations are known as power flow equations. A power flow study’s goal is to
determine the voltages (magnitude and angle) for a specific load, generation, and network
state. Line flows and losses can be computed after the voltages for each bus are known.
Determining the known and unknown factors in the system is the first step towards solving
power flow issues. Table 1 illustrates the three categories of buses that are created based on
these variables: reference/slack/swing bus, generator/PV bus, and load/PQ bus. Each
bus specifies active and reactive power in a three-phase system. To solve the power flow
equations, each bus consists of two defined and two unidentified variables.

To provide the mismatch between scheduled generation, total system load (including
losses), and total generation, the slack bus is necessary. Each generator bus has a pre-
determined value of real power P excluding a slack bus. As a result of the specification
of both voltage magnitude and angles, the slack bus, also known as the swing bus, is
sometimes regarded as the reference bus. Because the net real power is specified and the
voltage magnitude is regulated, the remaining generator buses are referred to as regulated
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or PV buses. Practical power systems have many load buses. Due to the specification of
both net real and reactive power loads, load buses are also known as PQ buses. For PQ
buses, both voltage magnitudes and angles are unknown, whereas for PV buses, only the
voltage angle is unknown. For slack bus, voltage magnitude and angles are already known
so there are no variables that are unknown. In a system with n buses and g generators,
there are 2(n − 1)− (g − 1) unknowns. To solve these unknowns, real and reactive power
balance equations are used. To obtain these equations, the transmission network is modeled
using the admittance matrix (Y-bus). Under certain conditions, the magnitude of voltage V
and phase angle at each bus in a power flow problems are calculated by using different
iterative techniques.

Table 1. Classification of buses.

Types of Bus Specified Quantities Unspecified Quantities

Slack bus |V|, δ P, Q

Generator/PV bus P, |V| Q, δ

Load/PQ bus P, Q |V|, δ

Nodal power balancing equations must be solved in order to conduct power flow
analysis. Due to the nonlinear nature of these equations, iterative approaches like the
Newton–Raphson, Gauss–Seidel, fast-decoupled, modified Newton, DC load flow methods,
and sparse matrix techniques are frequently employed to resolve this issue. The following
are the advantages and disadvantages of these techniques:

1. Gauss–Seidel Method:

• Advantages: Simple implementation, low memory requirement, suitable for
small to medium-sized systems.

• Disadvantages: Slow convergence for large and highly nonlinear systems, may
not converge for certain network configurations, sensitive to initial guesses.

2. Newton–Raphson Method:

• Advantages: Faster convergence compared to Gauss–Seidel, suitable for large and
highly nonlinear systems, allows for simultaneous solution of multiple equations.

• Disadvantages: Higher computational complexity, requires initial estimates
for all variables, may encounter convergence issues for ill-conditioned sys-
tems. Moreover, it starts to lose its ability to converge fast with the increasing
system size.

3. Fast Decoupled Method:

• Advantages: Improves convergence speed compared to Newton–Raphson,
less computational burden, suitable for medium to large systems with
moderate nonlinearity.

• Disadvantages: Less accurate than Newton–Raphson, may not converge for
highly nonlinear systems, requires assumptions to decouple real and reactive
power calculations.

4. Modified Newton Method:

• Advantages: Combines advantages of Newton–Raphson and fast decoupled
methods, faster convergence than traditional Newton–Raphson.

• Disadvantages: May require more computational resources than fast decoupled
method, convergence issues still possible for highly nonlinear systems.

5. DC Load Flow Method:

• Advantages: Extremely fast convergence, suitable for initial approximations or
preliminary studies, computationally efficient.
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• Disadvantages: Limited accuracy due to linearization of power flow equations,
not suitable for highly nonlinear systems or systems with voltage deviations.

6. Sparse Matrix Techniques:

• Advantages: Memory-efficient for large systems, reduces computational burden
by exploiting network sparsity.

• Disadvantages: Requires additional implementation complexity, may not signifi-
cantly improve computational speed for small to medium-sized systems.

Each technique has its own trade-offs in terms of convergence speed, accuracy, com-
putational complexity, and suitability for different system sizes and nonlinearities. The
choice of method depends on the specific requirements and characteristics of the power
system being analyzed. Thus, development of new algorithms is required to meet the needs,
including those related to speed, storage, dependability, calculation time, convergence
characteristics, etc. On the other hand, Newton–Raphson and its higher-order variants are
reliable and give robust solutions. Higher-order Jarratt methods offer several merits for
solving load flow equations in power system analysis. These methods exhibit faster conver-
gence compared to traditional methods like Gauss–Seidel or Newton–Raphson, especially
for power systems with highly nonlinear characteristics, improved stability properties,
making them more robust in handling systems with large mismatches between generation
and consumption or systems with voltage stability issues, enhanced robustness against
initial guess selection and system parameter variations, reducing the likelihood of con-
vergence failures and improving overall solution reliability. Higher-order Jarratt methods
offer higher-order accuracy in approximating the solutions to load flow equations, leading
to more accurate results compared to lower-order methods. Jarratt methods, particularly
higher-order variants, are efficient for solving load flow equations in large-scale power
systems, where traditional methods may suffer from slow convergence or computational
inefficiencies. These methods typically require fewer iterations to converge compared to
lower-order methods, resulting in reduced computational burden and faster solution times,
which is crucial for real-time and large-scale power system analysis. With the increasing
complexity and nonlinearity of modern power systems, higher-order Jarratt methods offer
a viable solution approach that can effectively handle the intricacies of these systems,
ensuring accurate and efficient load flow analysis.

The nonlinear power flow equations are influenced by voltages |V| and phase angle
δ. Newton–Raphson type methods are widely used for the power flow analysis which
comprises the bus admittance matrix. In order to solve the power system, the derivative of
a function is expressed by a matrix, and the Jacobian is computed. Furthermore, we obtain
the partial derivatives of power flow equations containing active and reactive powers. The
basic procedure to address the power flow problem is described as follows:

• Constructing a mathematical model that illustrates the relationship between voltages
|V| and powers in an interconnected system.

• Specifying the voltage and power conditions for each network bus.
• Calculating the voltage magnitude |V| and phase angle δ at each bus in a power

system under some balanced steady-state conditions

Each power system has one slack bus containing two known quantities, voltage
magnitude and phase angle. The power station in a power system refers to the generator
bus, sometimes known as the PV bus or generation bus. In the PV bus, the known
quantities are voltage magnitude |V| and active power P. The load bus, also known as the
PQ bus, is a type of bus in the network that holds both active and reactive power.

The main purpose of this paper is to develop and examine a new Jarratt-type method
with higher convergence order in order to solve the systems of nonlinear equations, so
that we can achieve higher convergence order as well as better computational efficiency
for solving the load flow problem. The outline is as follows. Section 2 consists of the
development of an efficient seventh-order method in order to solve the system of nonlinear
equations. The structure and various cases of the weight functions are also introduced
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in this section. The computational cost for various operations is also calculated such as
matrix–vector multiplication, matrix–matrix multiplication, and LU decomposition. Then,
the total computational cost for our newly developed three-step seventh-order method is
calculated and compared with the cost of some existing methods. Furthermore, in Section 3,
the power flow equations in an electrical power systems are described and converted into
systems of nonlinear equations by using our newly introduced family of seventh-order
method. For this, power flow problems are considered and the results are compared with a
seventh-order method proposed by Yaseen et al. [6]. Conclusions are given in Section 4.

2. Development of Seventh-Order Method and Convergence Analysis

For a multidimensional scheme, let us first define the divided difference as follows:

[y, x; F]ji = (Fj[y1, y2, . . . , yi−1, yi, xi+1, . . . , xk]−
Fj[y1, y2, . . . , yi−1, xi, xi+1, . . . , xk])/(yi − xi),

1 ≤ j, i ≤ m,

where the index j indicates the jth function and the index i denotes the nodes.
We propose the following three-step seventh-order iterative scheme as

yk = xk −
f (xk)

f ′(xk)
,

zk = yk − G(tk)
f (yk)

f ′(xk)
,

xk+1 = zk − H(tk)V(uk)
f (zk)

f ′(xk)
, (3)

where tk =
f (yk)
f (xk)

and uk =
f (zk)
f (yk)

. Now,

f (xk) = (xk − yk) f ′(xk).

Thus,

tk =
f (yk)

f (xk)
=

f (yk)− f (xk) + f (xk)

(xk − yk) f ′(xk)
= 1 − f [xk, yk]

f ′(xk)
.

For a multivariate vector-valued function F : D⊆ Rm → Rm, we have

T(k) = I − [F′(X(k))]−1[X(k), Y(k); F].

Similarly, f (yk) =
f ′(xk)(yk−zk)

G(tk)
. So,

uk =
f (zk)

f (yk)

= G(tk)
f (zk)− f (yk) + f (yk)

(yk − zk) f ′(xk)
.

Thus,

uk = 1 − f [zk, yk]
G(tk)

f ′(xk)

and for multivariate case, we have

U(k) = I − G(T(k))[F′(X(k))]−1[Z(k), Y(k); F].
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The new scheme for the multidimensional case with weight functions G(T(k)), H(T(k)) and
V(U(k)) can be written as

Y(k) = X(k) − F′(X(k))−1F(X(k)),

Z(k) = Y(k) − G(T(k))F′(X(k))−1F(Y(k)),

X(k+1) = Z(k) − H(T(k))V(U(k))F′(X(k))−1F(Z(k)), (4)

where G, H, V : Mm×m(R) → A(Rm) with Mm×m as the set of m × m matrices and A(Rm)
is defined as the set of linear operators from Rm to Rm.

Theorem 1. Let us consider that F : D ⊆ Rm → Rm be a Frechet differentiable function in domain
D containing zero Q of F. We suppose that F′(X) is continuous and nonsingular at Q.

The proposed scheme (4) has seventh-order convergence if we the take initial guess X(0)

sufficiently close to the root Q and satisfies the following conditions:

G0 = G(0) = I, G1 = G′(0) = 2I, G2 = G′′(0) = −2I,

G3 = G′′′(0) = 36I, ∥G(iv)(0)∥ < ∞,

H0 = H(0) = I, H1 = H′(0) = 2I,

H2 = H′′(0) = 0, ∥H′′′(0)∥ < ∞,

V0 = V(0) = I, V1 = V′(0) = I, ∥V′′(0)∥ < ∞.

The final error equation is

E(k+1) = −1
6
(−C3 + 6C2

2)C
2
2(−72C2

2 + C2
2 H′′′(0) + 12C3)E(k)7

+ O(E(k)8
), (5)

where

Cj =
F(j)(Q)

j!F′(Q)
.

Proof. We assume that
E(k) = X(k) − Q,

represents error at kth step, where Q is a real root of a differentiable function F : D ⊆ Rm →
Rm. By applying Taylor’s series on F(X(k)) and F′(X(k)) about the root Q, we have

F(X(k)) = F′(Q)(E(k) + C2E(k)2
+ C3E(k)3

+ C4E(k)4
+

7

∑
j=5

AjE(k)j
+ O(E(k)8

)), (6)

where

Cj =
F(j)(Q)

j!F′(Q)
,

Aj = Aj(C2, C3, . . . , C7), 5 ≤ j ≤ 7,

for j = 2, 3, . . . and

F′(X(k)) = F′(Q)(I + 2C2E(k) + 3C3E(k)2
+ 4C4E(k)3

+ 5C5E(k)4
+

7

∑
j=5

BjE(k)j
+ O(E(k)8

)), (7)

where
Bj = Bj(C2, C3, . . . , C7), 5 ≤ j ≤ 7.
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Now,

Y(k) = X(k) − F(X(k))

F′(X(k))
. (8)

By using (6) and (7) in (8), we have

Y(k) = CnE(k)2
+ (−2C2

2 + 2C3)E(k)3
+ (4C3

2 − 7C2C3 + 3C4)E(k)4
+ (−8C4

2 −

6C2
3 + 20C3C2

2 − 10C2C4 + 4C5)E(k)5
+

7

∑
j=6

DjE(k)j
+ O(E(k)8

), (9)

where
Dj = Dj(C2, C3, . . . , C7), 6 ≤ j ≤ 7.

Now, by using Taylor’s series on F(Y(k)) about the root Q, we obtain

F(Y(k)) = F′(Q)(C2E(k)2
+ (−2C2

2 + 2C3)E(k)3
+ (4C3

2 − 7C2C3 + 3C4)E(k)4
+ (−8C4

2 −

6C2
3 + 20C3C2

2 − 10C2C4 + 4C5)E(k)5
+

7

∑
j=6

TjE(k)j
+ O(E(k)8

)), (10)

where
Tj = Tj(C2, C3, . . . , C7), 6 ≤ j ≤ 7.

Now, we calculate the divided difference [X(k), Y(k); F] at X(k) and Y(k) as

[X(k), Y(k); F] = C1 + C1C2E(k) + (C1C3 + C1C2
2)E(k)2

+ (C1C4 − C1(3C4 − 7C2C3 +

5C3
2) + C1(3C4 − 7C2C3 + 4C3

2) + C1C2(2C3 − 2C2
2)− (−C1C3 −

C1C2
2)C2)E(k)3

+ (−C1(4C5 − 10C2C4 − 6C2
3 + 20C3C2

2 − 8C4
2 +

2C2
2(2C3 − 2C2

2)) + C1C5 + C1(4C5 − 10C2C4 − 6C2
3 + 20C3C2

2 −
8C4

2) + C1C2(3C4 − 7C2C3 + 4C3
2)− (−C1C3 − C1C2

2)(2C3 − 2C2
2)−

(−C1C4 − 3C1C2C3 + 2C1C3
2)C2)E(k)4

+
7

∑
j=5

δjE(k)j
+ O(E(k)8

), (11)

where
δj = δj(C2, C3, . . . , C7), 5 ≤ j ≤ 7.

Now by putting F′(X(k)) from (7) and [X(k), Y(k); F] from (11), T(k) = I − [F′(X(k))]−1

[X(k), Y(k); F] is given by

T(k) = C2E(k) + (2C3 − 3C2
2)E(k)2

+ (3C4 − 10C2C3 + 8C3
2)E(k)3

+ (4C5 − 14C2C4 −

4C2
3 + 37C3C2

2 − 20C4
2)E(k)4

+
7

∑
j=5

HjE(k)j
+ O(E(k)8

), (12)

where
Hj = Hj(C2, C3, . . . , C7), 5 ≤ j ≤ 7.

By Taylor’s expansion of the weight function G(T(k)) about T(k) = 0 as

G(T(k)) = G(0) + G′(0)(T(k) − I) + G′(0)(T(k) − I)2 + G′′′(0)(T(k) − I)3 +

G(iv)(0)(T(k) − I)4 +
7

∑
j=5

LjE(k)j
+ O(E(k)8

),



Algorithms 2024, 17, 86 8 of 20

where

Lj = Lj(C2, C3, . . . , C7, H(0), H′(0), H′′(0), H′′′(0), H(iv)(0)), 5 ≤ j ≤ 7.

Thus,

G(T(k)) = G(0) + G′(0)C2E(k) + (2G′(0)C3 − 3G′(0)C2
2 +

1
2

G′′(0)C2
2)E(k)2

+

(3G′(0)C4 − 10G′(0)C2C3 + 8G′(0)C3
2 +

1
6

G′′′(0)C3
2 +

2G′(0)C2C3 − 3G′′(0)C3
2)E(k)3

+ (3G′(0)C2C4 − 16G′′(0)C3C2
2 +

25
2

G′(0)C4
2 + 2G′′(0)C2

3 +
1

24
G(iv)(0)C4

2 + G′′′(0)C2
2C3 −

3
2

G′′′(0)C4
2 + 4G′(0)C5 − 14G′(0)C2C4 − 8G′(0)C2

3 +

37G′(0)C3C2
2 − 20G′(0)C4

2)E(k)4
+

7

∑
j=5

KjE(k)j
+ O(E(k)8

), (13)

where

Kj = Kj(C2, C3, . . . , C7, G(0), G′(0), G′′(0), G′′′(0), G(iv)(0)), 5 ≤ j ≤ 7.

By substituting values of G(T(k)), F′(X(k)) and F(Y(k)) in the second step of our method (4),
we have

Z(k) = Y(k) − G(T(k))F′(X(k))−1F(Y(k)) = (C2 − G(0)C2)E(k)2
+ (2C3 − 2C2

2 −
2G(0)C3 + 4G(0)C2

2 − G′(0)C2
2)E(k)3

+ (3C4 − 7C2C3 + 4C3
2 −

3G(0)C4 + 14G(0)C2C3 − 13G(0)C3
2 − 4G′(0)C2C3 + 7G′(0)C3

2 −
1
2

G′′(0)C3
2)E(k)4

+
7

∑
j=5

MjE(k)j
+ O(E(k)8

), (14)

such that

Mj = Mj(C2, C3, . . . , C7, G(0), G′(0), G′′(0), G′′′(0), G(iv)(0)), 5 ≤ j ≤ 7.

For the conditions

G(0) = I, G′(0) = 2I, G′′(0) = −2I, G′′′(0) = 36I (optional), ∥G(iv)(0)∥ < ∞,

Equation (14) becomes

Z(k) = (−C2C3 + 6C3
2)E(k)4

+ (−2C2C4 + 38C3C2
2 − 52C4

2 − 2C2
3)E(k)5

+
7

∑
j=6

PjE(k)j
+ O(E(k)8

), (15)

where
Pj = Pj(C2, C3, . . . , C7, H′′′(0), H(iv)(0), H(v)(0)), 6 ≤ j ≤ 7.

Now, by F(Z(k)) = F(X(k)) |E(k)→Z(k)−Q, we determine the following:

F(Z(k)) = F′(Q)((−C2C3 + 6C3
2)E(k)4

+ (−2C2C4 + 38C3C2
2 −

52C4
2 − 2C2

3)E(k)5
+

7

∑
j=6

RjE(k)j
+ O(E(k)8

)), (16)
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with
Rj = Rj(C2, C3, . . . , C7, G′′′(0), G(iv)(0), G(v)(0)), 6 ≤ j ≤ 7.

The weight function, H(T(k)), about T(k) = 0 is determined using (12):

H(T(k)) = H(0) + H′(0)C2E(k) + ((2C3 − 3C2
2)H′(0) +

1
2

H′′(0)C2
2)E(k)2

+

((3C4 − 10C2C3 + 8C3
2 + 2C2C3)H′(0)− 3H′′(0)C3

2 +

1
6

H′′′(0)C3
2)E(k)3

+
7

∑
j=4

SjE(k)j
+ O(E(k)8

), (17)

where

Sj = Sj(C2, C3, . . . , C7, H(0), H′(0), H′(0), H′′′(0), H(iv)(0)), 4 ≤ j ≤ 7.

Next, we calculate the divided difference of function F at Z(k) and Y(k) as

[Z(k), Y(k); F] = C1 + C1C2
2 E(k)2 − 2C1C2(−C3 + C2

2)E(k)3
+ (C1C2(−7C2C3 +

10C3
2 + 3C4))E(k)4

+
7

∑
j=5

ΩjE(k)j
+ O(E(k)8

), (18)

where
Ωj = Ωj(C2, C3, . . . , C7, ), 5 ≤ j ≤ 7.

By using F′(X(k)), [Z(k), Y(k); F] and G(T(k)) in U(k) = I −G(T(k))[F′(X(k))]−1[Z(k), Y(k); F],
we obtain

U(k) = (−C3 + 6C2
2)E(k)2

+ (−2C4 + 24C3C2 − 40C3
2)E(k)3

+ (200C4
2 − 3C5 +

35C2C4 + 23C2
3 − 209C3C2

2 −
1
24

G(iv)(0)C4
2)E(k)4

+
7

∑
j=5

WjE(k)j
+ O(E(k)8

), (19)

where
Wj = Wj(C2, C3, . . . , C7, ), 5 ≤ j ≤ 7.

Now, expanding the weight function, V(U(k)), with the Taylor’s expansion about U(k) = I,
we have

V(U(k)) = V(0) + V′(0)(U(k) − I) + V′′(0)(U(k) − I)2 + V′′′(0)(U(k) − I)3 +

V(iv)(0)(U(k) − I)4 + . . . + O(E(k)8
).

Thus,

V(T(k)) = V(0) + V′(0)(−C3 + 6C2
2)E(k)2 − 2V′(0)(C4 − 12C2C3 + 20C3

2)E(k)3
+

(23V′(0)C2
3 − 209V′(0)C3C2

2 + 35V′(0)C2C4 + 200V′(0)C4
2 −

3V′(0)C5 −
1

24
V′(0)G(iv)(0)C4

2 +
1
2

V′′(0)C2
3 − 6V′′(0)C3C2

2 +

18V′′(0)C4
2)E(k)4

+
7

∑
j=5

QjE(k)j
+ O(E(k)8

), (20)

where

Qj = Qj(C2, C3, . . . , C7, V(0), V′(0), V′′(0), V′′′(0), V(iv)(0)), 5 ≤ j ≤ 7.
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Therefore, by substituting Equations (15)–(17) and (20) in the third step of Equation (4), we
obtain the final expression X(k+1) such that

X(k+1) = (−C2C3 − 6C3
2)(−I + G(0)V(0))E(k)4

+ (2G(0)V(0)C2
3 − 40G(0)V(0)C3C2

2 +

2G(0)V(0)C2C4 + 64G(0)V(0)C4
2 + G′(0)V(0)C2

2C3 − 6G′(0)V(0)C4
2 −

2C2
3 + 38C3C2

2 − 2C2C4 − 52C4
2)E(k)5

+
7

∑
j=6

ξ jE(k)j
+ O(E(k)8

),

where
ξ j = ξ j(C2, C3, . . . , C7, V(0), V′(0), G(0), G′(0), G′′(0)), 6 ≤ j ≤ 7.

For the following conditions,

H(0) = I, H′(0) = 2I, H′′(0) = 0,
∥∥H′′′(0)

∥∥ < ∞,

V(0) = I, V′(0) = I,
∥∥V′′(0)

∥∥ < ∞,

the error term for our proposed scheme is E(k+1) such that

E(k+1) = −1
6
(−C3 + 6C2

2)C
2
2(−72C2

2 + C2
2 H′′′(0) + 12C3)E(k)7

+ O(E(k)8
), (21)

which is the final error term for this method, and completes the proof.

For various choices of weight functions in the Theorem 1, we obtain several multidi-
mensional schemes for our newly developed seventh-order method as below.

2.1. Special Cases

Case 1. We take G(T(k)) as a polynomial function:

G(T(k)) = a0 I + a1T(k) + a2(T(k))2 + a3(T(k))3,

and other weight functions H(T(k)) and V(U(k)) as rational functions:

H(T(k)) = [b0 I + b1T(k) + b2(T(k))2]−1,

V(U(k)) = (c1U(k) + I)−1(c0 I),

where
a0 = 1, a1 = 2, a2 = −1, a3 = 6,

b0 = 1, b1 = −2, b2 = 4,

c0 = 1, c1 = −1.

Then for multidimensional case, a new seventh-order scheme is obtained by using the above weight
functions in the scheme (4):

Y(k) = X(k) − (F′(X(k)))−1F(X(k)),

Z(k) = Y(k) − (a0 I + a1T(k) + a2(T(k))2 + a3(T(k))3)(F′(X(k)))−1F(Y(k)),

X(k+1) = Z(k) − [b0 I + b1T(k) + b2(T(k))2]−1(c1U(k) + I)−1(c0 I)

(F′(X(k)))−1F(Z(k)), (22)

where

a0 = 1, a1 = 2, a2 = −1, a3 = 6,

b0 = 1, b1 = −2, b2 = 4,

c0 = 1, c1 = −1.
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For this case, the scheme is represented as HM1.

Case 2. By taking weight functions G(T(k)), H(T(k)) and V(U(k)) as rational functions such that

G(T(k)) =
[

a2 I + a3T(k)
]−1

(I + a0T(k) + a1(T(k))2),

H(T(k)) = [I + b1T(k) + b2(T(k))2]−1(I + b0T(k)),

and
V(U(k)) = [c0 I + c1U(k)]−1,

where
a0 = 8, a1 = 11, a2 = 1, a3 = 6,

b0 = 3, b1 = 1, b2 = −2,

c0 = 1, c1 = −1.

Then, by substituting these weight functions in (4), another scheme having seventh-order conver-
gence is obtained for a multidimensional system:

Y(k) = X(k) − F′(X(k))−1F(X(k)),

Z(k) = Y(k) −
[

a2 I + a3T(k)
]−1

(I + a0T(k) + a1(T(k))2)F′(X(k))−1F(Y(k)),

X(k+1) = Z(k) − [I + b1T(k) + b2(T(k))2]−1(I + b0T(k))[c0 I + c1U(k)]−1

F′(X(k))−1F(Z(k)). (23)

The above scheme is represented as HM2, where

a0 = 8, a1 = 11, a2 = 1, a3 = 6,

b0 = 3, b1 = 1, b2 = −2,

c0 = 1, c1 = −1.

Case 3. Choosing weight function G(T(k)) as a rational function,

G(T(k)) =

[
a1 I + a2T(k) + a3

(
T(k)

)2
]−1(

I + a0T(k)
)

,

and weight functions H(T(k)) and V(U(k)) as the polynomial functions such that

L(T(k)) = b0 I + b1T(k) + b2(T(k))2,

K(U(k)) = c0 I + c1U(k),

where
a0 =

18
5

, a1 = 1, a2 =
8
5

, a3 =
−11

5
b0 = 1, b1 = 2, b2 = 0, c0 = 1, c1 = 1.
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Then, we obtain another seventh-order multivariate scheme, i.e., HM3, by substituting G(T(k)),
H(T(k)) and V(U(k)) in the scheme (4) such as

Y(k) = X(k) − F′(X(k))F(X(k)),

Z(k) = Y(k) −
[

a1 I + a2T(k) + a3

(
T(k)

)2
]−1(

I + a0T(k)
)

F′(X(k))F(Y(k)),

X(k+1) = Z(k) − (b0 I + b1T(k) + b2(T(k))2)(c0 I + c1U(k))

F′(X(k))F(Z(k)), (24)

where

a0 =
18
5

, a1 = 1, a2 =
8
5

, a3 =
−11

5
,

b0 = 1, b1 = 2, b2 = 0,

c0 = 1, c1 = 1.

2.2. Computational Cost

The efficiency index, defined as

E.I. = ρ
1
α ,

is used to compute the operational cost of different iterative methods, where ρ is the
convergence order and α is the overall cost of the scheme at each iteration, i.e., total number
of computations performed, and the sum of functional evaluations F, F′ and [., .; F] at each
iteration. Furthermore, m, m2 and m(m − 1) functional evaluations are essential to analyze
F, F′ and [., .; F], respectively, where F : D ⊆ Rm → Rm with m > 1. The cost of different
operations is shown in the following Table 2.

Table 2. Computational cost of different operations.

Multiplication Division CC

LU-decomposition m(m−1)(2m−1)
6

m(m−1)
2

m(m2−1)
3

Two-triangular system m(m − 1) m m2

Matrix–vector multiplication m2 m2

Matrix–matrix multiplication m m

Table 3 compares the computational cost of a three-step seventh-order method (PM),
given by Behl and Arora [12], seventh-order three-step method (SF), proposed by Yaseen
et al. [6], and our proposed seventh-order method (HM).

Table 3. Comparison between cost of various schemes.

Methods Convergence Order Function Evaluations CC

HM 7 3m2 + m m3

3 + 4m2 + 2m
3

SF 7 3m2 + m m3

3 + 4m2 + 2m
3

PM 7 2m2 + 3m m3

3 + 4m2 + 2m
3

3. Numerical Experiments

Here, we consider general power flow problems and solve the system for our proposed
schemes HM1, HM2, and HM3. In order to check the efficiency and effectiveness of our
method, we compare these results with the seventh-order three-step method proposed by
Yaseen et al. [6] for the cases SF1 and SF2. The first three iterations are taken in each case
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in the comparison Tables 4–6, which includes the number of iterations, k, residual error
∥ F(X(k)) ∥∞, computational time t(k) in seconds, and the error between two consecutive
terms ∥ X(k) − X(k−1) ∥∞. The software MATLAB R2014a on a PC with the following
specifications: Intel(R) Core(TM) i7 CPU 8550U @ 2.40 GHz, 1.80 GHz, Microsoft Windows
10 Professional (64-bit Operating System) and 8 GB RAM with a precision of 100 digits is
used to carry out all the computations.

Formation of Load Flow Equations

In terms of the real power (P), reactive power (Q), and the voltage (V), the general
power flow equation is as follows:

Si = Pi + jQi, (25)

where Pi represents real power injection, Qi represents reactive power injection, and Si is
the complex power injection into the ith bus from the generating source. Thus,

Si = Pi + jQi = Vi I∗i , (26)

with

I∗i = (
n

∑
k=1

YjkVk)
∗, and I∗ = ( Ī)t.

By taking the complex conjugate of Equation (26), we obtain

S∗
i = Pi − jQi = V∗

i Ii = V∗
i

n

∑
k=1

YikVk, i = 1, 2, . . . , k. (27)

In polar coordinate system, the Equation (27) for ith bus is described as

S∗
i = Pi − jQi = (Vi∠− δi)

n

∑
k=1

(Yik∠θik)(Vk∠δk),

S∗
i =

n

∑
k=1

| ViVkYjk | ∠(θik + δk − δi).

Now, for real power Pi of ith bus, we have

Pi =
n

∑
k=1

| ViVkYjk | cos(θik + δk − δi). (28)

Similarly, for the reactive power Qi of ith bus, we have

Qi = −
n

∑
k=1

| ViVkYjk | sin(θik + δk − δi). (29)

Therefore,

Pi = ViViYii cos(θii) +
n

∑
k=1
k ̸=i

| ViVkYik | cos(θik + δk − δi). (30)

and

Qi = −ViViYii sin(θii)−
n

∑
k=1
k ̸=i

| ViVkYik | sin(θik + δk − δi). (31)

Four quantities at each bus are involved in order to solve the power flow equations, i.e.,
the real power Pi , reactive power Qi, voltage Vi, and phase angle δi.

Pi = g1(δ, V) and Qi = g2(δ, V).



Algorithms 2024, 17, 86 14 of 20

We suppose that

∆Pi = Ps
i − Pi(δ2, δ3, . . . , δk, V2, V3, . . . , Vk),

∆Qi = Qs
i − Qi(δ2, δ3, . . . , δk, V2, V3, . . . , Vk),

where Ps
i and Qs

i are the defined values of Pi and Qi, respectively. By taking partial
derivatives of Pi and Qi with respect to δj and Vj, we obtain

∂∆Pi
∂δj

=
∂(Ps

i − Pi(δ, V))

∂δj
= −∂Pi

∂δj

∂∆Pi
∂Vj

= − ∂Pi
∂Vj

.

Similarly,

∂∆Qi
∂δj

=
∂(Qs

i − Qi(δ, V))

∂δj
= −∂Qi

∂δj

∂∆Qi
∂Vj

= −∂Qi
∂Vj

.

The Jacobian matrix is partitioned into the submatrices indicated below:

J =
[

J11 J12
J21 J22

]
.

[
∆P
∆Q

]
=

[
J11 J12
J21 J22

][
∆δ
∆V

]
,

where

∆δ =


∆δ2
∆δ3

...
∆δn

, ∆V =


∆V2
∆V3

...
∆Vn

, ∆P =


∆P2
∆P3

...
∆Pn

, ∆Q =


∆Q2
∆Q3

...
∆Qn

.

The off-diagonal and diagonal elements of Jacobian submatrices are obtained by taking the
partial derivatives of Equations (28) and (29) with respect to V and δ.

J11 =
∂P
∂δ

, J12 =
∂P
∂V

, J21 =
∂Q
∂δ

, J22 =
∂Q
∂V

.

Example 1. Suppose we have a two-bus power system as shown in the Figure 1. Bus 1 is taken as
slack bus having δ1 = 0, |V1| = 1.0 pu, and Bus 2 is a load bus with P2 = −1.0 pu, Q2 = −0.5 pu.
A load of 100 mw and 50 Mvar is taken for Bus 2. The line impedance is Z12 = 0.12 + j0.16 pu.
Let us suppose an initial estimate of voltage magnitude |V2| = 1 pu and phase angle δ2 = 0.

As the numbers of buses in this system are two, so Ybus can be written as

Ybus =

[
Y11 Y12
Y21 Y22

]
,

Ybus =

[
5∠− 53.130 5∠126.870

5∠126.870 5∠− 53.130

]
.

By expanding power flow equations, (28) and (29) for n = 2, we obtain

P2 = V2

2

∑
k=1

Y2kVk cos(θ2k + δk − δ2), (32)
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Q2 = −V2

2

∑
k=1

Y2k sin(θ2k + δk − δ2). (33)

A 2 × 2 system of nonlinear equations is obtained by substituting values of Ybus in
Equations (32) and (33):

P2 = 5V2 cos(126.870 − δ2) + 5V2
2 cos(−53.130),

Q2 = −5V2 sin(126.870 − δ2)− 5V2
2 sin(−53.130).

The initial guess is taken as X(0) = (1, 1)t.

Figure 1. Two-bus system.

Numerical results are shown in Table 4.

Table 4. Comparison of seventh-order schemes for load flow problem.

Cases k ∥ X(k) − X(k−1) ∥∞ ∥ F(X(k)) ∥∞ t(k)

HM1 1 9.89838070 (−1) 4.78059596 (−2)

2 1.01619291 (−2) 2.07001814 (−12)

3 4.43800774 (−13) 4.21224910 (−55) 1.353641

HM2 1 9.90403466 4.447803895 (−2)

2 9.59653379 (−3) 6.44704740 (−13)

3 6.71636130 (−5) 1.84188372 (−43) 1.409686

HM3 1 9.86538347 (−1) 6.33730798 (−2)

2 1.34616521 (−2) 8.90751822 (−12)

3 1.91374962 (−12) 1.49111311 (−56) 2.496505

SF1 1 9.82754355 (−1) 8.02911898 (−2)

2 1.724564463 (−2) 7.46401068 (−11)

3 1.62714696 (−11) 4.50928147 (−54) 1.454692

SF2 1 9.84331415 (−1) 7.30705632 (−2)

2 1.56685847 (−2) 1.70343570 (−11)

3 3.70209774 (−12) 2.20545208 (−55) 1.40545

It can be noted from Table 4, that our method HM1 dominates all the methods in terms
of less error and less computational time.

Example 2. Consider a general three-bus power system [6]. Bus 1 is considered as a slack bus
with voltage magnitude |V1| = 1.05 pu, Bus 2 is a PQ bus with a load of P2 = −4.0 pu and
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Q2 = −2.5 pu, and Bus 3 is a generation bus having magnitude of voltage as |V3| = 1.04 pu and
P3 = 2.0 pu. The impedances are shown in Figure 2.

Figure 2. Three-bus system.

Ybus matrix for this system is written as

Ybus =

 Y11 Y12 Y13
Y21 Y22 Y23
Y31 Y32 Y33

,

|Ybus| =

 53.8516 22.3606 31.6228
22.3606 58.1378 35.7771
31.6228 35.7771 67.2309

 and
∣∣YθBus

∣∣ =
 68.1986 116.5651 108.4349

116.5651 63.4349 116.5651
108.4349 116.5631 67.2490

.

Thus, in this case, YBus admittance matrix is

Ybus =

 53.8516∠− 68.19860 22.3606∠116.56510 31.6228∠108.43490

22.3606∠116.56510 58.1378∠− 63.43490 35.7771∠116.56510

31.6228∠108.43490 35.7771∠116.56310 67.2309∠− 67.24900

.

For n = 3, the power flow Equations (28) and (29) for the unknowns, i.e., P2, P3, and
Q2, can be written as

P2 = V2

3

∑
k=1

Y2kVk cos(θ2k + δk − δ2), (34)

P3 = V3

3

∑
k=1

Y3kVk cos(θ3k + δk − δ3), (35)

Q2 = −V2

3

∑
k=1

Y2kVk sin(θ2k + δk − δ2). (36)

A 3× 3 nonlinear system of equations is obtained by substituting the values in (34)–(36):

P2 = 23.478630V2 cos(−2.03444 + δ2) + 26.00005V2
2 + 37.20818V2 cos(−2.0344 − δ3 + δ2) + 4,
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P3 = 34.53209 cos(−1.89254 + δ3) + 37.208184V2 cos(2.034444788 − δ3 + δ2) + 26.12160874,

Q2 = 23.478630V2 sin(−2.03444 + δ2) + 52.0000V2
2 + 37.20818V2 sin(−2.034444788 − δ3 + δ2) + 2.5.

The required solution for the system of nonlinear equations for our problem is
X = (−2.6964802629,−0.4988374911, 0.9716777891)t and the initial guess is taken as
X(0) = (0, 0, 1)t.

Numerical results are shown in the following Table 5.

Table 5. Comparison of seventh-order schemes for power flow problem.

Cases k ∥ X(k) − X(k−1) ∥∞ ∥ F(X(k)) ∥∞ t(k)

HM1 1 4.7062458908 (−2) 2.9429422347 (−6)

2 5.3524284668 (−8) 1.8153562097 (−36)

3 3.35876206 (−38) 2.84164745 (−47) 1.987282

HM2 1 4.7062482460 (−2) 3.0040159229 (−6)

2 4.1730381388 (−8) 2.1707785791 (−36)

3 3.49657037 (−38) 2.84164745 (−47) 1.972989

HM3 1 4.7062549068 (−2) 8.0832420909 (−6)

2 9.0817922071 (−8) 3.6267951935 (−34)

3 6.02690441 (−36) 2.84164745 (−47) 1.963466

SF1 1 4.70624694 (−2) 1.46430173 (−6)

2 2.63918687 (−8) 2.26013119 (−38)

3 3.73850774 (−40) 2.84164745 (−47) 2.006422

SF2 1 4.70624886 (−2) 7.32584352 (−7)

2 2.71328333 (−8) 3.11954284 (−38)

3 7.52218608 (−40) 2.84164745 (−47) 2.003059

As observed from Table 5, the newly proposed methods are relatively efficient in terms
of error while we also observe mere difference in terms of computational time.

Example 3. Consider a general four-bus power system as shown in the Figure 3; Bus 1 is considered
as a slack bus with voltage magnitude |V1| = 1.04 pu, δ1 = 0. Bus 2 and Bus 3 are PQ buses,
while Bus 4 is a slack bus. The magnitude of voltage is |V4| = 1.0 pu, δ4 = 0, P2 = 0.5 pu,
Q2 = 0.208 pu and P3 = −1.0 pu, Q3 = 0.5 pu.

Ybus matrix for this system is written as

Ybus =


Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34
Y41 Y42 Y43 Y44

,

|Ybus| =


9.486833 6.324555 3.162277 0
6.324555 11.594807 2.107974 3.162277
3.162277 2.107974 11.594807 6.324555

0 3.162277 6.324555 9.486833


and

∣∣YθBus

∣∣ =


−71.565051 −68.423458 −68.423458 0
−68.423458 −71.568176 −68.440648 −68.423458
−68.423458 −68.440648 −71.568176 −68.423458

0 −68.423458 −68.423458 −71.565051

.
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Figure 3. Four-bus system.

Thus, in this case, the YBus admittance matrix is

Ybus =


3.0 − j9.0 −2.0 + j6.0 −1.0 + j3.0 0
−2.0 + j6.0 3.666 − j11.0 −0.666 + j2.0 −1.0 + j3.0
−1.0 + j3.0 −0.666 + j2.0 3.666 − j11.0 −2.0 + j6.0

0 −1.0 + j3.0 −2.0 + j6.0 3.0 − j9.0

.

For n = 4, the power flow Equations (28) and (29) for the unknowns, i.e., P2, P3, Q2
and Q3, can be written as

P2 = V2

4

∑
k=1

Y2kVk cos(θ2k + δk − δ2), (37)

P3 = V3

4

∑
k=1

Y3kVk cos(θ3k + δk − δ3), (38)

Q2 = −V2

4

∑
k=1

Y2kVk sin(θ2k + δk − δ2), (39)

Q3 = −V3

4

∑
k=1

Y3kVk sin(θ3k + δk − δ3). (40)

A 4 × 4 nonlinear system of equations is obtained by substituting the
values in (37)–(40):

P2 = 6.577537V2 cos(−68.423458 − δ2) + 3.665999V2
2

+2.107974V2V3 cos(−68.440649 + δ3 − δ2) + 3.162277V2 cos(−68.423458 − δ2),

P3 = 3.288768V3 cos(−68.423458 − δ3) + 2.107974V2V3 cos(−68.440649 + δ2 − δ3)

+3.665999V2
3 + 6.324555V3 cos(−68.423458 − δ3),

Q2 = −6.577537V2 sin(−68.423458 − δ2) + 10.999999V2
2

−2.107974V2V3 sin(−68.440649 + δ3 − δ2)− 3.162277V2 sin(−68.423458 − δ2),
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Q3 = −3.288768V3 sin(−68.423458 − δ3)− 2.107974V2V3 sin(−68.440649 + δ2 − δ3)

+10.999999V2
3 − 6.324555V3 sin(−68.423458 − δ3).

The initial guess is taken as X(0) = (0.4, 0.4, 0, 0)t.
Numerical results are shown in the following Table 6.

Table 6. Comparison of seventh-order schemes for power flow problem.

Cases k ∥ X(k) − X(k−1) ∥∞ ∥ F(X(k)) ∥∞ t(k)

HM1 1 3.9406592707102 5.585285030714 2.617419

2 2.3539462998374 1.185340119973

3 3.93041986150 (−1) 2.70471496585 (−2)

HM2 1 1.12028592195 (+1) 1.69904638491 2.672200

2 6.059912678220 4.67290040442 (+2)

3 5.615825776275 7.552107353633

HM3 1 1.153695471270 3.35717069246 (−1) 2.561838

2 3.77060518279 (−1) 3.22883832204 (−4)

3 2.63676291247 (−4) 1.80483165050 (−20)

SF1 1 1.2238519878510 1.0000236962 2.713051

2 1.238095340437 4.5105399975 (−1)

3 3.87777272650 (−1) 1.01937440334 (−3)

SF2 1 1.80701993172 1.78530748656 2.898047

2 6.23700907210 1.527984713366

3 5.81002994904 1.277471753569

Table 6 shows that HM3 is working exceptionally well in terms of less error and less
computational time. Moreover, the methods HM1 and HM2 also use less computational
time in the three iterations. It is pertinent to mention that to acquire accuracy similar to
HM3, the methods HM2 and SF2 need 27 more iterations.

4. Concluding Remarks

We introduced a new efficient three-step seventh-order scheme to obtain the solu-
tions of nonlinear system of equations. The computational cost for different operations
is expressed and is used to calculate the cost of our proposed method, and is compared
with the cost of some existing seventh-order methods. The applicability of our scheme is
interpreted in an electrical power system, and two-bus, three-bus, and four-bus power flow
problems are solved by using load flow equations. In all the examples, we observe that the
newly proposed methods are offering less computational time even when the number of
buses increases. Moreover, our class of iterative schemes has only one inverse operator.
Thus, by using the LU factorization for the linear systems involved per iteration, the com-
putational cost is reduced, even for large systems in relation to other schemes with more
than one inverse operator. Overall, we conclude that the higher-order Jarratt-type methods
provide a valuable alternative for solving load flow equations in power system analysis,
offering faster convergence, improved accuracy, and enhanced stability, particularly in the
context of highly nonlinear power systems. In addition, one of the main drawbacks of these
techniques is the J matrix singularity, due to which the methods are sometimes unable
to produce the solution. The cause could be anything from a sudden big load addition
or subtraction to a change in the line characteristics to an overvoltage or undervoltage
at a specific bus. These demerits may be handled by combining the higher-order Jarratt
methods and evolutionary/intelligent algorithms.
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