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Abstract: Cardiovascular disease is the leading cause of global mortality and responsible for millions
of deaths annually. The mortality rate and overall consequences of cardiac disease can be reduced with
early disease detection. However, conventional diagnostic methods encounter various challenges,
including delayed treatment and misdiagnoses, which can impede the course of treatment and raise
healthcare costs. The application of artificial intelligence (AI) techniques, especially machine learning
(ML) algorithms, offers a promising pathway to address these challenges. This paper emphasizes
the central role of machine learning in cardiac health and focuses on precise cardiovascular disease
prediction. In particular, this paper is driven by the urgent need to fully utilize the potential of
machine learning to enhance cardiovascular disease prediction. In light of the continued progress in
machine learning and the growing public health implications of cardiovascular disease, this paper
aims to offer a comprehensive analysis of the topic. This review paper encompasses a wide range of
topics, including the types of cardiovascular disease, the significance of machine learning, feature
selection, the evaluation of machine learning models, data collection & preprocessing, evaluation
metrics for cardiovascular disease prediction, and the recent trends & suggestion for future works.
In addition, this paper offers a holistic view of machine learning’s role in cardiovascular disease
prediction and public health. We believe that our comprehensive review will contribute significantly
to the existing body of knowledge in this essential area.

Keywords: machine Learning; cardiovascular disease; cardiovascular disease types; classification;
prediction; cardiac care; feature selection; healthcare; explainable AI (XAI); disease diagnosis;
intelligent system; classification; artificial general intelligence (AGI)

1. Introduction

To date, healthcare systems face significant challenges, including the increasing preva-
lence of diseases, the simultaneous presence of multiple health conditions, a growing need
for healthcare services, disability due to aging, and rising healthcare expenditures [1,2].
However, among other diseases, cardiovascular disease, is, in particular, considered a
major public health problem, affecting millions of people across the globe [3–5]. Specifically,
cardiovascular disease poses not only a medical challenge on healthcare systems but also
an economic and societal one [6,7]. Table 1 summarizes the major cardiovascular disease
types and the deception of each of the types. Therefore, with the right treatment and
early detection of cardiovascular disease, the symptoms of the disease can be reduced
and the function of the heart can be significantly improved [8,9]. It would also help in
allowing early intervention, and personalized treatment plans, hence, enhancing healthcare
systems [10]. The predicted results of cardiovascular disease can be used to prevent, and
thus, reduce the cost of surgical treatment [11,12]. However, conventional methods for
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cardiovascular disease prediction are either costly or lack efficiency in human cardiovas-
cular disease prediction. Hence, the indispensability of smart and advanced healthcare
systems has become apparent, emphasizing the urgent need for their development [13].
Smart healthcare systems enable physicians to conduct remote patient monitoring, facilitat-
ing the continuous tracking of disease progression [14,15]. Additionally, these intelligent
systems play a crucial role in disease identification, diagnosis, categorization, forecasting,
prevention, and treatment [16,17]. To this end, various artificial intelligence (AI) methods,
particularly machine learning algorithms, can be applied to healthcare systems [18], and
hence, the mortality rate associated with cardiovascular disease can be reduced [19].

Table 1. List of major cardiovascular disease types and a description of each type.

Cardiovascular Disease Type Description

CAD CAD occurs when the blood vessels (coronary arteries) that sup-
ply the heart with oxygen and nutrients become narrowed or
blocked due to the buildup of cholesterol and fatty deposits
(atherosclerosis).

Heart failure Occurs when the heart cannot pump blood effectively, leading to
a reduced supply of oxygen and nutrients to the body’s tissues
and organs. It can result from CAD, hypertension, and heart
valve diseases.

Arrhythmias This condition involves problems with one or more of the heart’s
valves. It can lead to valve stenosis (narrowing) or regurgitation
(leakage). Common valve disorders include aortic stenosis and
mitral regurgitation.

Valvular This condition involves problems with one or more of the heart’s
valves. It can lead to valve stenosis (narrowing) or regurgitation
(leakage). Common valve disorders include aortic stenosis and
mitral regurgitation.

Cardiomyopathy This is related to the muscle and can weaken the heart’s ability
to pump blood effectively. It can be inherited or acquired, and
there are different types, such as dilated cardiomyopathy and
hypertrophic cardiomyopathy.

Congenital This is present at birth and involves structural abnormalities in
the heart. It can affect the heart’s walls, valves, or blood vessels.

Infective Endocarditis This is an infection of the inner lining of the heart (endocardium)
and the heart valves. It is typically caused by bacteria or other mi-
croorganisms that enter the bloodstream and settle in the heart.

Vascular This refers to conditions or disorders that affect the blood vessels,
which include arteries and veins throughout the body, which can
disrupt the normal flow of blood.

1.1. Motivation and Paper Contributions

This review paper is motivated by the urgent need to assemble the role of machine
learning methods in improving cardiovascular disease prediction, which is to date con-
sidered a critical area of public health concern. With the continuous evolution of machine
learning techniques and the growing public health impact of cardiovascular disease, this
paper seeks to provide an up-to-date and comprehensive evaluation of machine learning
techniques for cardiovascular disease prediction. This paper bridges the gap between
machine learning and cardiology, emphasizing the importance of interdisciplinary collabo-
ration and domain knowledge. The scope of this paper encompasses a thorough analysis
of various machine learning models, feature selection and engineering, evaluation met-
rics, recent advances, and their public health impact. This paper carries out a discussion
encompassing various aspects of machine learning models, including their underlying
mechanisms, applications, strengths, and limitations. Moreover, this paper offers an insight-
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ful review, emphasizing the innovative applications of machine learning in cardiovascular
disease diagnosis. This paper provides an overview of the recent advancements in the
application of machine learning for cardiovascular disease, aiming to elucidate the cur-
rent trends, approaches, and challenges associated with machine learning techniques in
cardiovascular disease diagnosis. What sets this review apart is its unique focus on the
incorporation of domain knowledge, up-to-date coverage of trends, and the holistic view
of the public health impact of machine learning in cardiovascular disease prediction. This
paper aims to be an effective resource for researchers and specialists facilitating informed
decision-making and fostering advancements in the field. Furthermore, the contents of
this review paper are structured to provide a clear and organized presentation of the role
of machine learning in cardiovascular disease prediction. Noting that there are various
health conditions such as Cardiovascular diseases, Chronic Obstructive Pulmonary Dis-
ease (COPD), Influenza (Flu), Tuberculosis (TB), Human Immunodeficiency Virus (HIV),
Neurological Diseases, Cancer, Diabetes Mellitus, Osteoarthritis, Gastroesophageal Reflux
Disease (GERD), Endocrine and Metabolic Diseases, Depression Inflammatory Diseases,
Mental Health Disorders, Gastrointestinal Diseases and Musculoskeletal Disorders. In this
paper, we focus on cardiovascular disease due to its widespread prevalence, significant
impact on public health, and the imperative need for proactive measures in understanding,
preventing, and managing these conditions.

1.2. Papers Selection Strategy

The main objective of this research is to instigate the role of machine learning for
cardiovascular disease prediction, and hence identify research papers that align with
this specific scope and criteria of the investigation. To this end, we seek to provide a
comprehensive overview of the papers that deal with this research topic. To enhance the
probability of retrieving high-quality search results, well-known digital databases were
selected and queried. These databases include Science Direct, providing access to a broad
spectrum of scientific journals in medicine, science, and technology; IEEE Xplore digital
library, featuring publications related to engineering and technology; MDPI, PubMed,
and Google Scholar, offering diverse articles across various domains. The documents
are selected with the English language, which is either a journal or conference format. It
primarily focuses on the development of techniques related to machine learning that are
used for cardiovascular disease prediction. Documents were categorized as irrelevant if
they either did not meet the search criteria or included the specified search terms but did
not address cardiovascular disease. The choice of these databases was influenced by their
established academic credibility and their representation of various academic disciplines.
The study’s search terms were (Machine learning OR machine learning model) AND (heart
disease OR cardiovascular disease) AND (disease types).

1.3. Organization of the Paper

The structure of this review paper is as follows. Section 2, provides a review of the
fundamentals of machine learning and its significance in cardiovascular disease prediction.
Section 3 carries out a discussion about the machine learning models, which can be used
for the prediction of cardiovascular disease, accompanied by an in-depth review of the
state-of-the-art research. The data collection and preprocessing techniques in healthcare
systems are discussed in Section 4. Section 5 describes the commonly used evaluation
metrics for predicting cardiovascular disease. In addition, it presents a discussion about
model validation and cross-validation and sheds light on the significance of interpretability
and explainability for machine learning in the healthcare system. Section 6, provides a
list of some open problems and suggestions related to the application of machine learning
in cardiovascular disease prediction and highlights some further suggestions that can be
considered for future works. Finally, this paper is concluded in Section 7. The following
table of contents outlines various sections and subsections, facilitating easy navigation for
the readers. This structure ensures that the content flows logically and comprehensively,
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aiding in a better understanding of the contributions made in this research. Figure 1
demonstrates the contents of this paper.
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Figure 1. Structure of the review paper demonstrating the contents of each section and subsection.

2. The Role of Machine Learning in Cardiovascular Disease Prediction

This section offers a foundational overview of machine learning, followed by a detailed
discussion of its significant role in cardiovascular disease prediction. In particular, this
section will discuss the applications and the tools of machine learning that can be used for
cardiovascular disease predictions. Furthermore, the discussion is extended to emphasize
the importance of feature selection for cardiovascular disease prediction, highlighting its
significant role in optimizing model performance.

2.1. Background

Healthcare professionals relied on several conventional methods for cardiovascular
disease prediction. An example of conventional methods of cardiovascular disease predic-
tion includes clinical risk factors that are related to age, gender, family history, and personal
medical history. In addition, echocardiography can be used for visualization of the heart
function [20] where electrocardiogram (ECG) can be used to detect signs of congestive
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heart failure [21]. In particular, ECG can help in the prognosis and treatment management
of patients diagnosed with congestive heart failure [22]. Cardiac catheterization can also be
used to diagnose and evaluate coronary artery disease (CAD) and typical issues with the
heart and blood vessels [23,24].

However, recently, there has been a growing need for more advanced predictive mod-
els, such as those powered by machine learning, to improve the accuracy and efficiency of
cardiovascular disease prediction [25]. Machine learning is a subset of artificial intelligence
(AI) that uses algorithms to allow computer agents to perceive, acquire knowledge, identify
patterns, and make intelligent decisions by analyzing collected data [26–28]. With its ability
to evaluate enormous amounts of patient data, machine learning has emerged as a key
player for achieving accurate and trustworthy cardiovascular disease prediction [29]. The
predictive power of machine learning techniques has emerged as a promising path for
revolutionizing the management of cardiovascular disease [17,30,31].

Machine learning can enhance early disease detection, accelerate the development of
drugs, provide data-driven insights, enable remote monitoring, acquire crucial information
from patient’s datasets, allow data-driven decision-making, improve image and speech
recognition, and simplify administrative procedures [32–34]. This enables early detection,
often before symptoms become severe, allowing for timely intervention and treatment,
hence potentially lowering healthcare costs. Analyzing such vast amounts of data in
the healthcare field is challenging for humans, if not nearly impossible [35]. Hence, the
prevalent use of machine learning proves invaluable in extracting meaningful insights
from such extensive datasets. Machine learning algorithms are very beneficial for remote
healthcare monitoring [36,37]. Specifically, patients can receive remote monitoring and
consultations, reducing the need for frequent hospital visits and improving access to care,
particularly in remote areas [38]. Machine learning algorithms can integrate and analyze
a vast amount of patient data from various sources, including medical records and notes,
genetic information, and diagnostic tests, to identify subtle patterns, to detect early warning
signs and risk factors associated with cardiovascular disease [32,39–41]. This would help in
providing a comprehensive view of a patient’s health and enabling a better understanding
of cardiovascular disease risk factors and finding subtle patterns. Examining diverse patient
data can flag individuals at risk before symptoms appear, enabling timely intervention and
reducing healthcare resource burdens. Machine learning algorithms can analyze medical
images and extract the relevant features from medical images, such as X-ray, angiograms
and magnetic resonance imaging (MRI), echocardiograms, computed tomography (CT)
scans, and clinical records, to identify subtle signs of cardiovascular disease [42–47].

In the literature, there is a predominant focus on supervised machine learning for
cardiovascular disease prediction, due to the availability of labeled datasets, leading us to
discuss the supervised approach exclusively. Supervised learning involves an algorithm
learning from labeled data, allowing it to predict outcomes for new, unlabeled cases, by
generalizing knowledge from the provided available data [48]. In particular, the supervised
learning algorithm learns to map input data to a specific output, or target variable, based
on a labeled dataset. In supervised learning, the algorithm aims to generalize patterns
from the training data in order to perform predictions or classifications of new data. As
described in [49], supervised machine learning entails having a predefined output attribute
and utilizing input attributes. Supervised algorithms initially perform analytical tasks
using training data and then build functions to map new instances of the attribute [50].

Classification and regression algorithms are two categories of supervised machine
learning algorithms according to [51,52]. Labeled data, or what is known as training
set [53], is crucial in supervised learning because it provides the algorithm with the ground
truth information that is needed to learn and make predictions. Labeled data consists
of input features (independent variables) [54,55] and their corresponding correct target
values (dependent variable) or labels [56]. The algorithm uses these labeled examples
to identify patterns, associations, and relationships within the data, allowing it to learn
how to make predictions on new, unlabeled data. The supervised learning algorithm
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uses the features to make predictions or classifications about the target variable based on
patterns learned from the labeled examples in the dataset [57]. This allows for the creation
of predictive models that can help in identifying individuals at risk of cardiovascular
disease based on their characteristics. Appendix A provides the attributes of three common
datasets for cardiovascular disease prediction, which are the Cardiovascular, Cleveland,
and Framingham datasets.

Machine learning classification algorithms have the potential to identify patients at risk
of cardiovascular disease based on their medical data records, allowing for early medication
and treatment. Classification algorithms can categorize patients into risk groups, enabling
healthcare providers to prioritize patients at higher risk. Classification algorithms can
assist in triaging patients, ensuring that those with the most urgent cardiac issues receive
immediate treatments. Therefore, machine learning classification algorithms are essential
for cardiovascular disease management, helping efficiently in early disease detection, risk
assessment, personalized treatment, and more accurate diagnostics.

In summary, machine learning is invaluable in healthcare, especially in the prediction
and management of cardiovascular disease. It empowers healthcare providers with the
tools to make more informed decisions, enhances patient outcomes, and advances the
efficiency of the healthcare system.

2.2. Significance of Feature Selection in Cardiovascular Disease Prediction and Related
State-of-the-Art Research

In healthcare systems, features are considered as input variables that describe the
characteristics of patients [58]. Each individual (patient) in the dataset is represented by
a set of feature values [29,59]. In particular, healthcare datasets may contain irrelevant
features that may introduce noise into the model, hence leading to decreased prediction
accuracy [60]. Hence, feature selection approaches aim to reduce the input variables by
removing redundant or irrelevant features and selecting the most informative and relevant
features [61]. To this end, feature selection can be used to improve prediction accuracy
and efficiency in healthcare systems [57]. It is crucial in the development of accurate
and interpretable predictive models for cardiovascular disease [17]. Additionally, feature
selection enhances the classification accuracy and minimizes the model execution time [62].
However, feature selection requires a precise selection of relevant variables from a large set
of possible features [63,64].

Furthermore, feature selection techniques can reduce the dimensionality of the datasets
which can be achieved by ignoring the noisy features, and hence, the predictive models
can be more accurate. Principal component analysis (PCA) is one of the dimensionality
reduction methods that can be used to minimize the number of features while retaining most
of the variance [65,66]. For example, dimensionality reduction using the PCA technique has
been applied in [67–69] for cardiovascular disease detection. Other techniques such as firefly
algorithm [70] and minimum redundancy maximum relevance [71] have also been applied
for dimensionality reduction in cardiovascular disease prediction. Applying such efficient
dimensionality reduction techniques can improve model efficiency and interpretability.
Therefore feature engineering with dimensionality reduction has the ability to improve
the data selection, hence improving prediction accuracy [72]. Furthermore, a model with
too many features relative to the number of instances in the dataset is at risk of overfitting,
where it fits the noise rather than the underlying patterns [73]. Feature selection can
mitigate this overfitting risk by simplifying the model and reducing its complexity. Feature
selection methods are categorized into filter and wrapper methods [74]. The wrapper
methods choose an optimal subset of features by incorporating the classifier, whereas the
filter methods select features independently of the classifier.

The most common feature selection methods are univariate, weighted least square,
rough sets, fast correlation-based filter (FCBF), and sequential forward selection [5,75–79].
The work in [62] has proposed three feature selection algorithms, which are Relief, minimal-
redundancy-maximal-relevance (mRMR), and least absolute shrinkage and selection opera-
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tor (LASSO) to identify the most crucial and strongly correlated features that significantly
impact the prediction of cardiovascular disease. Univariate and Relief feature selection
methods were proposed in [5], where the univariate method utilizes a statistical approach
to select a subset of features that has the strongest relationship with a class label. In contrast,
the Relief technique gives each feature in the dataset a weight, and these weights are
modified over time. In [80], a new approach known as a hybrid random forest with a linear
model (HRFLM) is introduced. This method focuses on identifying important features
using machine learning techniques, hence, leading to improved accuracy in cardiovascular
disease prediction. The prediction model incorporates various feature combinations and
employs several established classification methods. As a result, the proposed approach
enhances the performance of cardiovascular disease prediction.

Recently, evolutionary methods have emerged as a significant class of techniques that
can be utilized efficiently for feature selection and prediction of cardiovascular diseases.
For example, the work in [81] focused on involving the identification and selection of
crucial features, along with the exploration of machine learning techniques, to augment
the predictive capacity of classification models for accurately predicting cardiovascular
disease. To this end, a hybrid ensemble model using genetic algorithm (GA) and linear
discriminant analysis (LDA) was proposed to improve the prediction accuracy. The work
in [82] proposed a combination of convolutional neural network (CNN) and jellyfish search
optimizer (jSO) approach for the prediction of cardiovascular diseases. In particular, the
jSO optimization algorithm is exploited to tune the CNN hyperparameters and improve
the accuracy. The work in [83] introduced a new model named hyOPTXg, which was
designed for predicting cardiovascular disease through an optimized XGBoost classifier.
Consequently, fine-tuned hyperparameters of XGBoost and conducted model training using
the optimized parameters were proposed to achieve a superior performance enhancement
in cardiovascular disease prediction. The work in [84] provided a comparative investigation
that integrates machine learning algorithms with meta-heuristic algorithms for feature
selection, aiming to enhance the classification capabilities of machine learning algorithms
by identifying features that significantly influence accuracy. The findings affirm that
the amalgamation of machine learning and meta-heuristic algorithms leads to superior
classification accuracy with a reduced number of features. Hybrid methodologies that
integrate hyper-parameter optimization algorithms with two highly effective classification
techniques namely: Support Vector Machines (SVMs) and Long Short-Term Memory
(LSTM) neural networks have been proposed in [85] to further improve the accuracy of
cardiovascular disease diagnosing. The results were achieved based on the Cleveland
dataset and its extension Statlog. The work in [86] proposed a multiobjective approach with
a fuzzy system for the classification of cardiovascular risk. The proposed approach involved
addressing computational elements such as configuring the fuzzy system, optimizing the
process, selecting an appropriate solution from the optimal Pareto front, and ensuring the
interpretability of the fuzzy logic system post-optimization.

Leveraging multiobjective optimization and Pareto dominance allows the acquisition
of a set of optimal solutions that embody the most effective equilibrium between two
optimization objectives. The work in [87] focused on creating and automating a disease
prediction model to facilitate early detection of cardiovascular disease and its associated
risk factors. To this end, feature selection was executed using non-linear Particle Swarm
Optimization (NL-PSO). Subsequently, classification was carried out using the Improved
Deep Evolutionary model with Feed Forward Neural Networks (IDEBDFN). The algo-
rithm’s learning nature was leveraged to assess the characteristics of the hidden layers,
ensuring optimal results. The findings illustrate that the proposed model exhibits superior
predictive accuracy. The work in [88] introduced an alternative training technique for a mul-
tilayer perceptron (MLP) that incorporates a particle swarm optimization (PSO) algorithm
for cardiovascular disease detection. The results demonstrated that the proposed hybrid
MLP-PSO classifier empowers practitioners to diagnose cardiovascular disease earlier, with
enhanced accuracy and efficacy. An approach involving a radial basis function neural
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network (RBFNN) was proposed in [89], which was coupled with a robust hybrid particle
swarm optimization (HPSO). The HPSO incorporated a spiral-shaped mechanism (HPSO-
SSM) to enhance the PSO algorithm performance by addressing constraints such as slow
convergence and the local minimum challenge. The work in [90] proposed evolutionary
algorithms based on Genetic Algorithm (GA) and PSO for the feature selection to further
improve the accuracy of machine learning algorithms. The results demonstrated that the
feature selection based on GA achieved the best prediction accuracy. Several research
papers have also found that genetic algorithm (GA) is a highly effective method for feature
selection, see e.g., [91–95].

Overall, as the development of machine learning continues to shape the future of
healthcare, the feature selection approach remains an essential component to improve
cardiovascular disease prediction.

3. Machine Learning Models for Cardiovascular Disease Prediction and Related
State-of-the-Art Research

This section provides an exploration of machine learning models designed for the
prediction of cardiovascular diseases, accompanied by an in-depth discussion of the state-
of-the-art research. In particular, this section comprehensively addresses the advancements,
methodologies, and key findings related to cardiovascular disease prediction using machine
learning models.

Advanced machine learning models are used to analyze heterogeneous data that
come from various sources [96]. The choice of machine learning model can significantly
impact the quality and trustworthiness of cardiovascular disease prediction [31]. With the
abundance of medical data and the ever-increasing computational capabilities, machine
learning models have become indispensable [97]. Predictive analytics models are used
to stratify patients into different risk categories, enabling targeted interventions. These
models can help in identifying individuals at high risk of cardiovascular disease and
enable personalized treatment plans. Machine learning models are being integrated into
clinical workflows to provide real-time decision support to healthcare professionals [31]. In
this subsection, we will explore a range of machine-learning models that are commonly
employed for cardiovascular disease prediction.

The common machine learning models are Logistic Regression [98], Decision
Trees [99–101], Random Forests [102], support vector machines (SVM) [103,104], K-Nearest
Neighbors (KNN), Adaptive Boosting, commonly referred to as AdaBoost [105,106], Naïve
Bayes [107,108], and Conventional Neural Network (CNN) or what know as deep learn-
ing [13]. Table 2 provides a summary of the machine learning models in the prediction of
cardiovascular diseases along with the strengths and weaknesses points.

To this end, several research works have been done so far to investigate the appli-
cation of machine learning models in cardiovascular disease prediction. For example,
the work in [109] constructed a cardiovascular disease classification system using a Lo-
gistic Regression classifier machine learning techniques, which achieves an accuracy of
77%. Cleveland dataset is employed, along with global evolutionary and feature selection
methods. The work in [110] designed a diagnostic system for cardiovascular disease classi-
fication, utilizing multi-layer perception and SVM algorithms, achieving an accuracy rate
of 80.41%.

The work [111] introduced a model to determine the most effective machine learning
algorithm for early-stage prediction of cardiovascular disease, ensuring high accuracy.
The results showed that the best accuracy for cardiovascular disease classification has
been achieved using a random forest algorithm with a rate of 95.4%. The work in [112]
developed a cardiovascular disease classification system by integrating a neural network
with Fuzzy logic, resulting in an accuracy of 87.4%. The work in [113] introduced an ANN
ensemble-based diagnostic system for cardiovascular disease, coupled with the statistical
measurement system Enterprise Miner. Their system yielded an accuracy of 89.01%, a
sensitivity of 80.09%, and a specificity of 95.91%. The work in [114] developed a machine
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learning-based cardiovascular disease diagnosis system, incorporating the ANN algorithm
and a feature selection algorithm, achieving commendable performance. The work in [115]
proposed an expert medical diagnosis system for cardiovascular disease identification,
using predictive machine learning models like Naïve Bayes, Decision Tree, and ANN. These
models attained an accuracy of 86.12%, 88.12%, and 80.4%, respectively.

Table 2. A summary of machine learning models in prediction of cardiovascular disease.

Machine Learning Model Strengths Weaknesses

Logistic Regression (LR): A statistical
model that assesses the probability of an
individual having a cardiovascular
disease based on various input features,
such as age, cholesterol levels, and
blood pressure.

1. Simplicity and interpretability in
disease diagnostics.
2. Computationally efficient for
large datasets.
3. Less prone to overfitting, making it
robust when working with
moderate-sized datasets.

1. Assumes linear input–outcome
relationship.
2. Less flexible in complex
medical scenarios.
3. Potential lower predictive accuracy
with intricate data patterns.
4. Struggles with non-linear relationships
without feature engineering
or transformation.

Decision Trees (DT): Applicable for both
classification and regression problems. It
generates a tree-like structure of decision
rules by recursively splitting the data
according to input attributes. Helps to
determine the most important elements
or symptoms of cardiovascular disease.

1. Easy to interpret and hence can explain
the decision-making process easily.
2. Handles non-linear relationships in
medical data with both categorical and
numerical features and identifies key
factors for cardiovascular disease.
3. Low computational costs
during prediction.

1. Prone to overfitting, impacting
generalization.
2. May not capture complex relationships
as well as other models.
3. Less stable, with small data changes
leading to different tree structures.

Random Forest (RF): An ensemble
learning method that combines multiple
decision trees to make predictions. It is
less prone to overfitting compared to
individual decision trees, resulting in the
improved generalization of new data. It
provides higher predictive accuracy due
to the combination of multiple trees and
the reduction of bias and variance.

1. Mitigates decision tree overfitting by
averaging predictions.
2. It offers robustness, high accuracy, and
handling of non-linearity.
3. Provides accurate and robust results,
even in the presence of noisy or
complex data.
4. Robust, with effective handling of
high-dimensional data. Less sensitive to
noisy data.

1. Computationally intensive, may need
more resources.
2. Larger model sizes can be limited in
resource-constrained environments.
3. Requires proper hyperparameter
tuning for optimization.

Support Vector Machines (SVMs):
A powerful algorithm that can be used
for both classification and regression
tasks. It obtains the optimal hyperplane,
which seeks the best separation of the
data points into different classes.
Proficiency in managing
high-dimensional data; hence, it is
suitable for datasets with many features.

1. Handles non-linear relationships
with kernels.
2. Versatile and effective in complex
pattern capture.
3. Find complex decision boundaries in
high dimensions.
4. Works well with clear class
separation margins.

1. Computationally expensive, complex
in high dimensions.
2. Sensitive to kernel choice.
3. Time-consuming training on
large datasets.
4. Essential hyperparameter tuning for
optimal performance.
5. May lack interpretability compared to
logistic regression or decision trees.

K-Nearest Neighbors (KNN): A simple
algorithm that finds the k-nearest data
points in the training dataset, such as the
Euclidean distance. It predicts the class of
the new data point by taking a majority
vote from the KNN. Effective when
similar patients with similar feature
profiles are likely to have similar
cardiovascular disease outcomes.

1. Non-parametric algorithm, adapts well
to diverse and non-linear patterns of
data distributions.
2. Simple to understand and implement.
3. Works well with small datasets,
making it applicable in
different scenarios.
4. Less sensitive to outliers and noisy
data points.

1. Computationally expensive for
large datasets.
2. Sensitive to the choice of k.
3. May struggle with imbalanced
datasets.
4. Critical to properly select k for best
predictive performance.
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Table 2. Cont.

Machine Learning Models Strengths Weaknesses

AdaBoost: Combines several weak
classifiers into a unified and robust
classifier. Its mechanism involves
assigning higher weights to samples that
pose greater classification challenges
while assigning lower weights to
well-categorized samples. It finds
application in both categorization and
regression analysis.

1. High accuracy and performance
in classification.
2. Versatile with different data types and
base classifiers, making it versatile in
different machine learning scenarios.
3. Effectively handles noisy data
and outliers.
4. Assign higher weights to misclassified
instances, allowing it to focus on
correcting mistakes.

1. Handles noisy data but sensitive to
outliers or mislabeled instances.
2. Computationally intensive with a large
number of weak learners, which may
affect training time and resource
requirements.
3. Struggles with complex relationships
or dependencies in datasets, as it relies on
relatively simple weak learners.

Naïve Bayes: A probabilistic model that
works based on the Bayes theorem.
Given the class title, it assumes that
features are conditionally independent. It
calculates the probability that a patient
has cardiovascular disease given their
feature values, such as age, cholesterol,
and blood pressure.

1. Computationally efficient with
high-dimensional data.
2. Performs well with small to
moderately-sized datasets.
3. Its probabilistic nature allows for the
simple interpretation of results.
4. Handles a large number of
features efficiently.

1. Assumes feature independence,
limiting accuracy in capturing complex
dependencies among features.
2. May not capture intricate relationships
between features, which can affect
predictive accuracy.

Deep Learning: It employs various
evaluation criteria, including accuracy
and specificity, to guide feature extraction
inversely. Involves the use of artificial
neural networks with multiple hidden
layers to learn complex representations
from data. Can identify intricate patterns
that may be challenging for human
interpretation, leading to more accurate
diagnosis of diseases.

1. Automatically discovers relevant
features for data, reducing the
requirement for manual
feature engineering.
2. Effectively handles missing data,
providing accurate predictions even
when some data are unavailable.
3. Achieves high predictive performance
when trained on large and
diverse datasets.
4. Handles diverse data types including
images, text, and numerical data.

1. Complex and computationally
intensive.
2. Requires substantial computational
resources for training and inference.
3. Relies on large amounts of labeled data
for effective training.
4. Challenging to interpret, limiting
utility in medical diagnostics, where
interpretability is essential.

The work in [116] developed a three-phase technique based on ANN for cardiovas-
cular disease prediction in angina, achieving an accuracy of 88.89%. The work in [117]
designed an integrated medical decision support system for cardiovascular disease diagno-
sis, incorporating ANN and Fuzzy AHP. The proposed method achieved an accuracy of
91.10%. The work in [118] presented a cardiovascular disease classification system employ-
ing relief and rough set techniques, which achieved a classification accuracy of 92.32%. In
another study [103], a cardiovascular disease identification method using feature selection
and classification algorithms was proposed. To this end, the Sequential Backward Selection
Algorithm (SBS FS) was utilized for feature selection and tested the KNN classifier on
both full and selected feature sets, obtaining high accuracy. The work in [80] designed
a cardiovascular disease prediction method using hybrid machine learning techniques
and introduced a novel feature selection method for effective machine learning classifier
training and testing, achieving a classification accuracy of 88.07%. The work in [119] devel-
oped cardiovascular disease identification techniques employing an improved SVM-based
duality optimization technique. While the aforementioned techniques have employed
various methods to detect cardiovascular disease at early stages, they exhibit limitations in
terms of prediction accuracy and computational time.

In [120], the researchers developed a classifier utilizing a blend of diverse support
vector machines (SVMs) to classify ECG signals, focusing on the extraction of features
from intervals between consecutive beats. Additionally, they tackled the challenge of
highly imbalanced data by employing both over and under-sampling techniques on the
Arrhythmia dataset. The work in [121] proposed a classifier that is capable of identifying
17 distinct types of Arrhythmia, which employs a CNN model specifically designed for
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long-duration ECG signals in the Arrhythmia dataset. The work in [122] utilized an
adaptive implementation of CNNs to classify the Arrhythmia dataset, resulting in a rapid
and precise patient-specific ECG classification and monitoring system. The work in [123]
proposed a random forest and CNN algorithms for cardiovascular disease prediction. To
this end, several imbalance techniques have been discussed. In [124], prediction models for
coronary cardiovascular disease (CHD), which is known as cardiovascular disease have
been proposed. To this end, various supervised machine learning algorithms, including
Gaussian Naïve Bayes, Bernoulli Naïve Bayes, and Random Forest, are employed in
cardiovascular disease prediction. The results demonstrated that the Gaussian Naïve Bayes,
Bernoulli Naïve Bayes, and Random Forest algorithms achieved accuracy rates of 85%, 85%,
and 75%, respectively.

The work in [125] proposed an ensemble model adopted to enhance predictive ac-
curacy by combining the strengths of multiple classifiers. To this end, ensemble learning
is employed, amalgamating five classifier models—SVM, ANN, Naïve Bayes, regression
analysis, and random forest—to predict and diagnose cardiovascular disease. The work
in [126] aimed to explore the utilization of machine learning in predicting cardiovascular
attacks based on historical health records of patients. The study concentrated on the appli-
cation of the random forest and CNN for prediction purposes. The results suggested that
random forest exhibited superior performance compared to other classifiers, particularly
in terms of classification accuracy. In [127], an SVM based on a decision tree system has
been proposed for cardiovascular disease prediction. The results demonstrated that the
proposed approach acquired knowledge of decision boundaries with various orientations,
thereby demonstrating greater flexibility in learning diverse datasets.

In [128] a back-propagation neural network and Logistic Regression algorithms have
been proposed for cardiovascular disease prediction. The results showed that the back-
propagation neural network and Logistic Regression algorithms achieved an accuracy of
85.074% and 92.58%, respectively. The work in [129] encompasses two domains: signal
processing and statistical learning. Leveraging signal processing techniques, authors have
successfully segmented and represented each heartbeat through a vector of distinctive
characteristics. Then, a cardiac electrocardiogram signal (ECG) is used, which is collected
by sensors and proposed an SVM and Cuckoo search-optimized neural network algorithms
for automatic cardiovascular disease detection. The work in [130] developed a smart
scoring system and investigated the use of SVM for cardiac arrest prediction. The results
showed that the intelligent scoring system has proven its capability to produce risk scores
that are comprehensible to humans and has exhibited efficacy as a robust predictor of
cardiac arrest occurring within a 72-hour timeframe. The work in [131] proposed a CNN
with a depth of 9 layers to autonomously recognize five distinct categories of heartbeats,
which are ventricular ectopic, supraventricular ectopic, unknown beats, non-ectopic, and
fusion, within ECG signals. The results demonstrated that after training the CNN with
augmented data, it achieved an accuracy of 94.03% and 93.47% in classifying heartbeats
diagnostically in both original and noise-free ECGs, respectively.

The work in [132] introduced an innovative method for heartbeat recognition, employ-
ing a principal component analysis network for feature extraction from noisy ECG signals.
To this end, an SVM algorithm is proposed. The work in [133] proposed KNN and decision
tree algorithms for cardiovascular disease diagnosis. The work in [134] proposed a Logistic
Regression technique for predicting cardiovascular disease within a cardiovascular dataset
by employing dimensionality reduction, aiming to enhance the accuracy of the prediction.
To this end, a feature scaling approach is to make the essential features fit with Logistic Re-
gression to analyze the performance. In [65], the ANN algorithm and PCA-based technique
are explored to improve the accuracy of cardiovascular disease prediction. The results
showed that the accuracy has been improved achieving 97.7%. In [135], the prediction of
cardiovascular disease through data mining methods is examined. A thorough evaluation
of various techniques has been conducted, including the KNN algorithm, decision tree
algorithm, neural network classifications, and Bayesian classification algorithms. Addition-
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ally, the utility of GA for feature selection is investigated to identify crucial cardiovascular
disease-related features. The experiments revealed that the decision tree model achieved a
high level of accuracy. The work in [136] utilized an unsupervised clustering method to
assess cardiac involvement in systemic sclerosis, revealing unknown connections between
samples for cardiovascular disease prediction. The work recommended employing big data
methods such as HDFS and SVM for optimal attribute detection. The study also explored
various data mining algorithms for cardiovascular disease detection, suggesting storing
extensive data across nodes with HDFS and implementing the prediction algorithm using
SVM across multiple nodes simultaneously.

In [137], the application of a backpropagation neural network for predicting cardio-
vascular disease is explored. The study involved the use of a deep-learning model in
disease prediction. The work employed a neural network for both learning and predic-
tion, utilizing the Cleveland dataset. To enable a real-time diagnosis approach, the work
in [40] proposed an integration of a deep learning algorithm into the 6G-enabled Internet
of Medical Things (IoMT) to facilitate online sharing of medical records and monitoring
results. The work in [138] investigated the prediction of cardiovascular disease using
various machine-learning techniques. The study involved the application of classification
and regression models, specifically the Decision tree, KNN algorithm, SVM, and linear
regression. Experimental results demonstrated that the KNN algorithm achieved the high-
est level of accuracy in cardiovascular disease prediction. In [139], five different machine
learning algorithms for cardiovascular disease prediction have been employed, which
are Logistic Regression, KNN, SVM, Decision tree, and Random Forest. To this end, a
new hyperparameter tuning model has been proposed and compared with conventional
approaches. The experimental results demonstrated that the proposed prediction approach
achieved high accuracy in making predictions related to cardiovascular disease for the
considered scenario. The work in [140] investigated cardiovascular disease prediction using
four different datasets: Cleveland, StatLog, Hungarian, and Z-Alizadeh Sani. To this end, a
two-tier ensemble PSObased feature selection was proposed.

In [141] two supervised machine learning algorithms, which are KNN and Random
Forest, were exploited to predict cardiovascular disease prediction. Besides, KNN, decision
trees, and random forests were investigated in [142]. A new approach was proposed
in [143] to predict cardiovascular disease, utilizing a hybrid technique that combines a
decision tree and an artificial neural network. To this end, a data mining-based approach
in [144] was employed to explore, analyze, and extract data from various fields, unveiling
meaningful information. In other words, raw data is transformed into valuable and
useful information. An approach based on Naïve Bayes and decision tree algorithms
have been implemented in [145] to predict cardiovascular disease, aiming for a concise
diagnosis and analysis using a minimal set of attributes. Researchers frequently employ
diverse feature selection techniques in conjunction with machine learning models for
cardiovascular disease diagnosis. For example, in [95], the combination of SVM and an
AI method was utilized to identify crucial features in classifying cardiovascular disease.
The genetic algorithm serves as the feature selection technique, complementing the SVM,
which functions as the classification algorithm. A cardiovascular disease diagnosis system
was proposed in [146] using a fusion of rough sets-based attribute reduction and fuzzy
logic. The work in [147] introduced an approach based on the ensemble Quine McCluskey
Binary Classifier (QMBC) to identify patients with cardiovascular disease.

A new hybrid machine learning model technique based on the combination of Random
Forest and Decision Tree techniques has been proposed in [148]. The results revealed an
accurate prediction rate for cardiovascular disease using the hybrid model. In addition,
a technique named (CardioHelp) has been introduced in [149], which employs a deep
learning CNN approach to estimate the likelihood of cardiovascular disease in a patient.
The experimental results demonstrated that the proposed method achieved an accuracy of
97%, which outperforms the existing approaches. Various machine learning algorithms are
employed to build predictive models for cardiovascular disease prediction. Some popular
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algorithms used for this purpose are discussed above. Each one of these algorithms has
its unique characteristics, strengths, and weaknesses, making them suitable for different
scenarios. Each one of these models leverages distinct algorithms and methodologies,
offering unique advantages and insights. From the simplicity of Logistic Regression to the
intricacy of deep neural networks, these models have been pivotal in advancing our ability
to assess and mitigate the risk of cardiovascular disease [150].

Noting that the choice of algorithm depends on various factors, such as the size of
the dataset, the quality of the dataset, and the need for interpretability. Machine learning
models, including neural networks, hold the promise of accurately diagnosing coronary
cardiovascular disease [151]. Some algorithms, like Decision Trees and Random Forests,
are favored when interpretability is crucial. SVMs and KNN can be effective when dealing
with complex, high-dimensional data. Logistic Regression and Naïve Bayes are simple
and suitable for binary classification tasks. It is also worth noting that ensemble methods,
like Random Forests, are often preferred in cardiovascular disease prediction to combine
the strengths of multiple algorithms and improve overall model performance. The choice
of algorithm should be made based on a thorough understanding of the data and the
specific goals of the cardiovascular disease prediction task. Recent results developed
by [12], indicated that deep learning algorithm surpasses the capabilities of traditional
machine learning methods, especially when it comes to handling large datasets, enabling
the simultaneous training of substantial amounts of data for high prediction accuracy. The
deep learning method consistently delivers accuracy levels of 85%. Moreover, combining
various techniques within a single model is expected to yield promising forecasting results.
For instance, machine learning models employing supplementary techniques like feature
selection can achieve a maximum accuracy of 97% as stated in [12].

Table A4 provides comparisons between different algorithms with different datasets
that are used for cardiovascular disease prediction. The comparison is carried out in terms
of accuracy, precision, recall, and F1-score.

4. Data Collection and Preprocessing

This section initiates with a discussion about data collection in healthcare systems.
Then, an explanation of data preprocessing techniques is provided.

4.1. Data Collection

Data collection in healthcare systems refers to the process of gathering and recording
information about patients, medical conditions, treatments, and various healthcare-related
factors. Typically, providing up-to-date information regarding the patient’s condition can
be very helpful to medical professionals. The availability of such information allows a
reliable cardiovascular disease prediction to be achieved. The primary purpose of data
collection in healthcare systems is to collect and maintain patient information to monitor
health status, provide treatment, and make informed clinical decisions. In particular, this
data is essential for managing patient care, enabling timely decisions using the patterns
that exist in the data, healthcare administration, developing strategies for health promotion
and disease prevention, and decision-making within the healthcare system [37].

Data collection in healthcare can involve various sources, including electronic health
records (EHRs), ECG, IoT devices that can be kept in a body, time-series data, clinical
assessments, medical records, wearable devices, patient-reported data, and medical imag-
ing. EHRs in particular contain a wealth of patient information, including demographics,
medical history, vital signs, and diagnostic tests [152]. EHRs are a primary source of health-
care data for cardiovascular disease prediction. Wearable devices like smartwatches and
fitness trackers can collect real-time data on heart rate, activity levels, and sleep patterns.
These devices are used to collect data and monitor and predict cardiovascular disease risk.
Medical imaging, including echocardiograms, MRIs, and CT scans, provides detailed infor-
mation about cardiac structure and function. Note that integrating data from such various
sources allows for more comprehensive patient profiling and accurate predictions [153].
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The data produced by the sensors exhibit the traits of significant volume, speed, and di-
versity, typical of big data [154]. Collecting patient-reported data, such as symptoms and
lifestyle factors, can engage patients in their care and help healthcare professionals better
understand individual health needs. The collected data can be structured (e.g., numerical
measurements and categorical information) or unstructured (e.g., clinical notes and medical
images) [32]. This data can be analyzed to identify trends, assess outcomes, and develop
new medical insights.

Data collection is often necessary to comply with healthcare regulations and quality
reporting requirements. Hence, accurate and secure data handling is critical for regulatory
compliance. Healthcare data can also have missing values, errors, and inconsistencies.
Therefore, ensuring data quality is critical for accurate modeling. Current works in health-
care systems [155–157] predict data uniformly, so neglecting urgency. This indeed would
cause delays in treating severe patient conditions. Besides, managing, storing, and process-
ing this data in real time can be a significant challenge. To this end, in [158] medical decision
assistance is defined as furnishing clinicians with intelligently filtered computer-generated
clinical knowledge and patient-related information to improve patient care. Various clinical
databases are commonly used for cardiovascular disease prediction. These databases in-
clude Cleveland cardiovascular disease dataset obtained from the University of California
Irvine (UCI) [159], the Framingham cardiovascular disease prediction dataset [160], Car-
diovascular Disease dataset [161], Physikalisch Technische Bundesanstalt (PTB) diagnostic
ECG dataset [162], and the stroke prediction dataset [163]. Researchers often use these
databases for cardiovascular disease research.

Overall, data collection in healthcare systems can vary widely. There are some technical
challenges related to healthcare data collection such as data privacy, reliability, and security.
In particular, healthcare data is highly sensitive, and patient privacy is a paramount concern.
Complying with regulations like the Health Insurance Portability and Accountability Act
(HIPAA) and General Data Protection Regulation (GDPR) is crucial to protecting patient
information [164–167]. Therefore, data collected should be accurate, secure, and privacy-
compliant, as it plays an essential role in patient care and healthcare management.

4.2. Data Preprocessing Techniques

In healthcare systems, managing extensive databases becomes challenging, and hence,
data preprocessing techniques become necessary. Data preprocessing may involve data
creating, transforming, data cleaning, and data reading to improve model performance.
Data preprocessing may also involve image normalization, noise reduction, data splitting,
and standardizing image sizes to ensure consistency. Data preprocessing is essential for
the best representation of data in machine learning [168]. To ensure effective training
models, techniques such as handling missing values, standard scaling (Standscale (SS)),
MaxAbs, quantile transformer, normalization known as (zero-mean normalization), robust
scaler, and min-max (MinMax) scaling can be employed on the dataset [30,62,169]. Other
techniques such as replacing missing values with estimates, cleaning data, removing
rows or columns with too many missing values, and predictive modeling can also be
used for data preprocessing [170]. The work in [171] has excluded independent variables
(symptoms), which may have minimal or no impact on the target variable (disease), to
simplify the analysis. In general, the numerical features of the dataset are normalized.
This prevents certain features from dominating the modeling process. Missing values are
addressed by simply removing the corresponding rows from the dataset.

In addition, data augmentation can involve techniques like rotation, scaling, and
flipping to increase the training data and reduce the risk of overfitting [172]. Oversam-
pling techniques like Synthetic Minority Over-sampling Technique (SMOTE), random
oversampling (ROS), and adaptive synthetic sampling (ADASYN) can be used to ad-
dress the imbalanced data for efficient cardiovascular disease prediction [173–175]. Data
augmentation can also include creating composite features, data normalization, one-hot
encoding categorical variables, and extracting relevant information from unstructured
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data [30]. Split the dataset into training, validation, and test sets to evaluate model per-
formance. Further discussion about data preprocessing for cardiovascular disease can be
found in [168]. Figure 2 shows the structure of the data preprocessing and machine learning
model applications in cardiovascular disease prediction.

Data preprocessing
Collect data from 

patients
Apply machine 

learning algorithms

Evaluation machine 
learning models

Performance evaluation 

Disease predication

2- Data cleaning

· Missing values.
· Duplicating values.
· Null values.
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· Importing required 
library.

· Read CSV file.
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Machine learning models 

· Logistic regression

· Decision trees

· Random forests

· Support vector machines  (SVMs)

· K-Nearest neighbors (KNN)

· AdaBoost

· Naive Bayes

· Neural networks and deep learning

Figure 2. Structure of the data preprocessing and machine learning model applications.

5. Evaluation Metrics and Cross-Validation for Cardiovascular Disease Prediction

This section outlines the commonly used evaluation metrics for predicting cardio-
vascular diseases and provides the mathematical formulations for each of these metrics.
Furthermore, this section provides a brief discussion about model validation and cross-
validation and sheds light on the significance of interpretability and explainability for
machine learning in the healthcare system.

5.1. Evaluation Metrics

When assessing the performance of cardiovascular disease prediction models, it is
essential to use a range of evaluation metrics that provide a comprehensive view of their
effectiveness. Specifically, assessing the performance of machine learning models in cardio-
vascular disease prediction is crucial for determining their effectiveness in clinical applica-
tions. Various evaluation metrics have been used to measure the model’s performance and
to evaluate the effectiveness of classifiers [176]. These metrics are computed using the con-
fusion matrix. The common evaluation metrics used to assess the performance of machine
learning models in cardiovascular disease prediction, including accuracy, recall (sensitiv-
ity), specificity, precision, F1-score, Matthews correlation coefficient (MCC), the area under
the curve (AUC) and receiver operating characteristic (ROC) curve [29,62,176–180]. In
cardiovascular disease prediction, evaluation criteria are crucial [17]. Table 3 describes the
key of each of the evaluation metrics as well as provides the mathematical formulation of
each of the evaluation metrics, which can be used to evaluate the effectiveness of machine
learning algorithms for cardiovascular disease.

The abbreviations that are commonly used in cardiovascular disease prediction are
given as follows. TP (True Positive): When the predicted output is identified as true pos-
itive (TP), it indicates that the subject with cardiovascular disease is correctly classified,
confirming the presence of cardiovascular disease. TN (True Negative): In the case of a
predicted output classified as true negative (TN), it signifies the accurate classification of a
healthy subject, correctly identifying them as not having cardiovascular disease. FP (False
Positive): If the predicted output is false positive (FP), it implies the misclassification of
a healthy subject, incorrectly indicating that they have cardiovascular disease. FN (False
Negative): When the predicted output is false negative (FN), it indicates the misclassifica-
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tion of a subject with cardiovascular disease as healthy, incorrectly suggesting the absence
of cardiovascular disease.

Table 3. Evaluation metrics that are utilized to investigate the effectiveness of machine learning
algorithms in cardiovascular disease prediction.

Evaluation Metric Mathematical Equation Description

Accuracy ACC = TP+TN
TP+TN+FP+FN

Accuracy is a basic evaluation metric and represents the
proportion of correct predictions out of the total
predictions. While accuracy is a useful metric, it may not
be sufficient for imbalanced datasets, where one class (e.g.,
healthy patients) dominates the other (e.g., patients with
cardiovascular disease).

Recall (Sensitivity) Sensitivity = TP
TP+FN

Sensitivity measures the model’s ability to correctly
identify positive cases (individuals with cardiovascular
disease). High sensitivity is crucial in healthcare to
minimize false negatives, ensuring that individuals with
cardiovascular disease are not missed.

Specificity Speci f icity = TN
TN+FP

Specificity measures the model’s ability to correctly
identify negative cases (individuals without
cardiovascular disease). High specificity is vital to
minimize false positives, reducing unnecessary
interventions for individuals without
cardiovascular disease.

Precision Precision = TP
TP+FP

Precision is the proportion of true positive predictions out
of all positive predictions. It measures the model’s
accuracy when it predicts positive cases. Higher precision
indicates a lower rate of false positives. Precision is
important when minimizing false positives is crucial, as in
medical diagnosis, where a false positive can lead to
unnecessary treatments or anxiety.

F1-score F1-score = 2TP
2TP+FP+FN

The F1-score is the harmonic mean of the precision and
recall (sensitivity). It provides a balanced measure that
considers both false positives and false negatives. It is
beneficial when there is an imbalance between the positive
and negative classes.

Matthews correlation
coefficient (MCC) MCC = (TPTN−FPFN)√

((TP+FP)(TP+FN)(TN+FP)(TN+FN))

Denotes the predictive capacity of a classifier, expressed
through values ranging from −1 and +1. For example, an
MCC classifier value of +1 signifies ideal predictions,
while −1 indicates entirely inaccurate predictions. A
value close to 0 suggests that the classifier is making
predictions randomly.

Area under the
curve (AUC) AUC = 1

2 (
FP

(FP+TN)
+ TN

TN+FP )

The AUC represents the region beneath the receiver
operating characteristic (ROC) curve, a graphical
depiction of the true positive rate against the false positive
rate. A higher AUC value corresponds to superior model
performance, with an ideal model approaching an AUC
close to 1.

Different medical conditions and scenarios require different trade-offs between sensi-
tivity and specificity. For example, in a cardiac emergency setting, high sensitivity may be
more important to detect as many cases as possible. In contrast, in routine screenings, a
balance between sensitivity and specificity may be more appropriate. Imbalanced datasets
could also pose a technical challenge to the prediction model. Imbalanced datasets are
common in healthcare applications, including cardiovascular disease prediction. Hence, it
is also important to address the challenges of imbalanced datasets to ensure that cardio-
vascular disease prediction models are both accurate and clinically relevant. Specifically,
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addressing the imbalance datasets is essential to prevent models from becoming overly
biased toward the majority class [123]. In such datasets, one class (e.g., patients with cardio-
vascular disease) is significantly smaller than the other (e.g., healthy patients). This can lead
to challenges, such as biased models, misleading accuracy, focus on specific metrics, and
resampling techniques. For example, models trained on imbalanced data may exhibit a bias
toward the majority class, leading to poor performance in detecting the minority class [123].
Accuracy can be misleading in imbalanced datasets, as a model that predicts all instances
as the majority class can still achieve high accuracy. In imbalanced datasets, metrics like
precision, recall, and F1-score become more important as they provide insights into the
model’s performance on the minority class. Techniques like oversampling (increasing the
size of the minority class) or undersampling (reducing the size of the majority class) can
be used to address the imbalance issue. Therefore, assessing machine learning models for
cardiovascular disease prediction requires a combination of general and specific evalua-
tion metrics, considering the trade-off between sensitivity and specificity. Balancing the
trade-off between minimizing false positives and false negatives is particularly significant
in healthcare applications. By adjusting the classification threshold, one can balance sensi-
tivity and specificity according to the specific requirements of the application. In addition,
ensemble techniques like bagging and boosting can help to improve the performance of
models on imbalanced data by combining multiple models to make predictions.

5.2. Model Validation and Cross-Validation

Model validation and cross-validation are crucial for ensuring the robustness of car-
diovascular disease prediction models [17,181–184]. It could help in assessing how well
a model generalizes to new. Cross-validation techniques, such as k-fold cross-validation,
split the dataset into multiple subsets, training the model on different portions and testing
it on others [185,186]. This would help in identifying the potential overfitting and provide a
more reliable estimate of a model’s performance, ensuring it can make accurate predictions
for diverse patient diseases.

5.3. Model Interpretability and Explainability

There is an essential need for making machine learning models more interpretable and
transparent, especially in the healthcare system. In particular, one of the main challenges
in machine learning methods is dealing with complex models that are often considered
black boxes [172,187]. While machine learning methods have demonstrated exceptional
predictive power, understanding their decision-making processes can be a very challenging
issue [188,189]. This is a major concern in healthcare systems, where decisions need to be
justified and trusted. In other words, it is important to understand why a machine-learning
model makes certain predictions. Therefore, model interpretability and explainability
become particularly essential in healthcare, especially for cardiovascular disease predic-
tion. Specifically, In healthcare systems, the significance lies not only in the quantitative
algorithmic performance but also in the essential features that the algorithm employs
for disease detection [187]. Hence, incorporating interpretability and explainability for
machine learning models enhances the practical application of such models in real-world
scenarios [190]. Understanding which features had the most influence on a prediction is a
fundamental form of interpretability.

Techniques like feature importance scores can help in identifying the most significant
predictors in cardiovascular disease prediction [191]. Considering simpler and more
interpretable models like Decision Trees or Logistic Regression, especially when clinical
decision-making requires transparency. Employ local interpretable models like Local
Interpretable Model-Agnostic Explanations (LIME) or SHapley Additive exPlanations
(SHAP), which is a game theoretic approach, to explain individual predictions [192–198].
These models provide explanations and visualizations for specific instances, which can
be valuable in healthcare decision-making since they also help healthcare professionals to
understand model outputs [199,200]. Applying such models can involve creating rule-based
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systems that align with medical expertise and regulations, ensuring that model predictions
are consistent with established healthcare standards. If a model produces predictions that
contradict established clinical knowledge, it should raise a red flag and prompt further
investigation. Models may drift or degrade over time, and ongoing vigilance, especially in
real-time systems, is essential to ensure they remain trustworthy [201].

In a nutshell, interpretability, and explainability are crucial for ensuring trust and ac-
countability in clinical decision-support systems. Ensuring that models can be understood
and trusted is vital for making responsible and effective clinical decisions [202].

6. Recent Trends in Machine Learning for Cardiovascular Disease Prediction and
Future Works

This section provides a list of some open problems and suggestions regarding the
application of machine learning in cardiovascular disease prediction and highlights some
further suggestions that can be considered for future work.

• Delays in diagnosing cardiac disease continue to have a major impact on the treatment
of patients [123]. More efficient classification and early prediction of cardiovascular
disease methods are required.

• Deep learning techniques have gained prominence in medical image analysis and ECG
data interpretation due to their significant role in providing more accurate diagnosis
and prediction of diseases [31]. However, the adoption of such techniques in clinical
practice comes with some challenges. These challenges include data privacy, the
need for large and diverse datasets, regulatory compliance, model robustness, and
generalization issues [203]. Therefore, future research should address these challenges.
Furthermore, the interpretability of deep learning models remains an ongoing research
topic, as understanding the inner workings of complex neural networks is crucial for
clinical acceptance.

• Explainable AI (XAI) is essential in cardiovascular disease prediction, attracting sig-
nificant research attention [204]. XAI techniques empower clinicians by elucidating
the importance of each feature in predictions, enabling informed decision-making
and building trust [187]. Collaboration between healthcare providers and AI-driven
systems can be facilitated through XAI, translating complex model outputs into action-
able insights and enhancing clinicians’ diagnostic and treatment capabilities. Further
research studies in this essential direction are needed.

• The transformative impact of IoT technology on healthcare is evident, enabling remote
patient monitoring and facilitating telemedicine through wireless sensors [205–207].
The integration of machine learning models with wearable devices, IoT sensors, and
mobile health applications for continuous cardiovascular disease monitoring repre-
sents a compelling research avenue [32,208]. Exploring the efficiency of remote medi-
cal applications by employing machine learning algorithms is crucial for enhancing
data analysis, increasing reliability, and achieving fast and accurate decision-making.
Further research in this domain is essential for advancing healthcare systems.

• Machine learning can enhance risk assessment and treatment recommendations by an-
alyzing the historical data of patients [209,210]. As such, machine learning can identify
early warning signs of cardiovascular disease, enabling timely interventions [211,212].
Therefore, future works should focus on developing more accurate models to enhance
risk assessment and treatment recommendations.

• The Generative Adversarial Network (GAN) stands out as a widely embraced tech-
nique in the machine learning domain [73,213]. Leveraging this method enables the
creation of synthetic data closely resembling real data, making GAN a promising
solution for addressing challenges associated with data scarcity in cardiovascular
discussions. Hence, understanding the intricate connections between GAN and data
privacy could be explored in future studies. Besides, utilizing GAN to classify unbal-
anced signals in fetal cardiovascular rate data can be investigated in future [214].
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• Efforts are being made to improve interoperability and data sharing among healthcare
systems and institutions [215]. The ability to access and share medical data is crucial
for training efficient machine learning models. Research is ongoing to improve the
robustness and generalization of machine learning models in healthcare systems.
Future research could involve further investigation into interoperability and data
sharing among healthcare systems.

• Aggregating larger data at a central server confronts issues. To address these issues,
the idea of federated learning is introduced, where the focus is on sharing model
knowledge instead of sharing raw data [216]. Federated learning establishes a more
secure system by enabling model training on decentralized devices, preserving pri-
vacy, and minimizing the risk of centralized data breaches [217]. This approach results
in a robust system with enhanced security and data access controls that safeguard
privacy [218]. A suggested future work would involve the development and imple-
mentation of a standardized, interoperable, and secure federated learning framework
for data sharing. This framework would allow multiple healthcare institutions and
researchers to collaborate while preserving patient privacy [219].

• The management of vast historical data and the constant influx of streaming data in
healthcare services pose a formidable challenge for conventional database storage and
machine learning approaches. Addressing this challenge in real-time data processing
has led researchers to explore big data approaches [220–222]. Further research studies
in this direction are needed.

• Machine learning involves predictive models that analyze patient data for early detec-
tion. Future research should refine predictive models for early anomaly detection and
develop advanced algorithms for more accurate predictions. Efforts should be focused
on creating personalized care plans and improving machine learning integration into
telemedicine platforms for informed decisions during remote consultations.

• Future work should address the ethical concerns issue in healthcare systems. In
particular, Strategies to mitigate bias and enhance fairness in healthcare systems should
be developed. This includes the development of novel algorithms and methodologies
that prioritize equity and fairness.

• Achieving the best possible level of security and privacy protection is important,
which need to be considered in the future [223]. Data sharing and collaboration among
healthcare institutions are crucial for building large, diverse datasets. This collabora-
tion allows the development of more accurate and robust machine-learning models for
medical applications. However, ensuring data privacy, handling data heterogeneity,
and addressing issues like missing values and imbalanced datasets is crucial, and
should be investigated in the future. In addition, collecting and preprocessing health-
care data for cardiovascular disease prediction is still a challenging issue that needs to
be addressed.

• As contemporary technology continues to advance, the acquisition of high-resolution
and multidimensional data becomes increasingly feasible. In dealing with such high-
quality data, the conventional machine-learning approaches may exhibit some limi-
tations. Exploring the potential of employing a blend of multiple machine learning
models could prove to be a promising avenue for addressing the challenges posed by
high-dimensional data in future research.

• To advance the application of machine learning in healthcare systems, future work
should focus on establishing strong collaborative networks between data scientists,
clinicians, and domain experts [224]. This collaboration will ensure that machine
learning models are designed and tuned to enhance patient care and decision-making.

• Future research should emphasize the potential of machine learning to address cardio-
vascular disease on a global scale, with a specific focus on regions with limited access
to healthcare resources.
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• Future research should also aim to bridge healthcare disparities by providing ac-
cessible and effective cardiovascular disease prediction and management tools to
underserved populations.

• Artificial General Intelligence (AGI), or strong AI, mimics human intelligence by
learning, reasoning, generalizing, and exhibiting self-awareness [225,226]. AGI may
have a significant impact on cardiovascular disease, due to its adaptability in accom-
plishing diverse tasks, integrating medical knowledge, and personalizing treatment
planning [227]. AGI can achieve continuous learning and adaptability to ensure up-to-
date information for managing cardiovascular disease. Research efforts should aim to
enhance AGI cognitive abilities and reasoning.

7. Conclusions

Cardiovascular disease among other diseases stands as the primary contributor to
worldwide mortality. According to recent statistics, approximately 17.9 million individuals
lost their lives due to cardiovascular diseases, accounting for 32% of all fatalities on a global
scale. Strategies for prevention and early detection, coupled with advancements in medical
technology, including the utilization of advanced artificial intelligence techniques, play a
vital role in minimizing the influence of cardiovascular disease on public health systems.
Early identification and efficient management of cardiovascular disease can markedly
alleviate the strain on healthcare systems globally. To this end, machine learning techniques
can play an essential role in advancing cardiovascular disease prediction and patient care,
hence contributing significantly to the healthcare systems. Machine learning technology
offers several key advantages that improve the accuracy, reliability, and efficiency of cardio-
vascular disease detection and management. This paper provided a current perspective by
covering the latest trends and advancements in the role of machine learning for cardiovas-
cular disease prediction. In particular, this paper provided a comprehensive perspective on
the role of machine learning in predicting cardiovascular disease and its implications for
public health. This review paper covered a wide range of topics, spanning the assessment
of machine learning models, the importance of machine learning, the prevalence of cardio-
vascular disease and its various types, feature selection, data collection, and preprocessing.
Additionally, this paper explained the evaluation metrics used for predicting cardiovascular
disease and explored recent trends in this field. Based on the findings of this paper, we
emphasize that the multidimensional impact of machine learning, from early detection to
personalized treatment, predictive analytics, and real-time monitoring, has the potential to
reduce the burden of cardiovascular disease.
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Appendix A

This Appendix provides Tables showing the attributes of three common datasets for
cardiovascular disease prediction.
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Table A1. The attributes of the cardiovascular datasets used for cardiovascular disease prediction.

ID Attribute Type of Attribute Values

1 Id Discrete Unique identifier

2 Age Discrete Age of patient in days

3 Gender Discrete Female = 1, male = 2

4 Height Discrete In cm

5 Weight Continuous In kg

6 Ap hi Discrete Systolic blood pressure

7 Ap low Discrete Diastolic blood pressure

8 Cholesterol Discrete 1 = normal, 2 = above normal, 3 = well
above normal

9 Gluc Discrete 1 = normal, 2 = above normal, 3 = well
above normal

10 Smoke Binary Whether patient smokes or not (yes = 1, no = 0)

11 Alcohol Binary Whether patient drinks or not (yes = 1, no = 0)

12 Active Binary Physical activity (yes = 1, no = 0)

13 Cardio Binary Presence or absence of cardiovascular disease
(yes = 1, no = 0)

Table A2. The attributes of the Cleveland dataset for cardiovascular disease prediction.

ID Attribute Type of Attribute Values

1 Sex/gender Discrete Male = 1 or female = 0

2 Age Continuous Age of patient in years

3 Cp (chest pain) Discrete
1 = typical angina, 2 = atypical
angina, 3 = non-anginal pain,
4 = asymptomatic

4 RestBP (resting blood
pressure) Continuous 90–200

5 Chol (cholesterol level) Continuous 126–564

6 Fbs (fasting blood sugar) Discrete Fasting blood sugar > 120 mg/dL
1 = true, 0 = false

7 Restecg (resting
Electrocardiography results) Discrete

0 = normal, 1 = ST-T wave
abnormality, 2 = showing probable
or defined left ventricular
hypertrophy by Estes criteria

8 Thalach (maximum heart
rate achieved) Continuous 71–202

9 Exang (exercise-induced
angina) Discrete Yes = 1 or no = 0

10 Old peak ST (depression
level) Continuous 0 to 6.2

11 Slope (slope of the peak
exercise segment) Discrete 1 = upward sloping, 2 = flat,

3 = downward sloping

12 Ca (fluoroscopy value) Discrete 0 to 3

13 Thal (severity of chest pain
or trouble breathing) Discrete 3 = normal, 6 = fixed defect,

7 = reversible defect

14 Target Discrete Yes = 1 or no = 0
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Table A3. The attributes of the Framingham dataset for cardiovascular disease prediction.

ID Attribute Type of Attribute Values

1 Sex Nominal Male = l or female = 0

2 Age Continuous Age of patient in the whole number

3 Education Continuous
Values = 1–4. Some High School = 1,
High School or GED = 2, Some College or
Vocational School = 3, College = 4

4 Current Smoker Nominal Yes = 1 or no = 0

5 Cigarettes per day Continuous Number of cigarettes smoked per day

6 BP Meds Nominal Yes = 1 or no = 0 was BP patient or not

7 Prevalent Stroke Nominal Yes = 1 or no = 0 was stroke patient or not

8 Prevalent Hyp Nominal Yes = 1 or no = 0, whether the patient was
hypertensive

9 Diabetes Nominal Yes = 1 or No = 0 was diabetes patient or not

10 Tot Chol Continuous Total cholesterol level

11 Sys BP Continuous Systolic blood pressure

12 Dia BP Continuous Diastolic blood Pressure

13 BMI Continuous Body mass index

14 Heart Rate Continuous Heart rate or pulse rate

15 Glucose Continuous Glucose level

16 Ten-Year CHD
(Target) Nominal Yes = 1 or no = 2, the 10-year risk of coronary

heart disease (CHD)

Appendix B

This Appendix provides a comparison between different algorithms with different
datasets that are used for cardiovascular disease prediction. Noting that the approbations
in the table are given as follows: Classification and regression tree algorithm (CART),
heart disease dataset (IEEE Dataport), Machine Learning based Cardiovascular Disease
Diagnosis (MaLCaDD), hybrid random forest with a linear model (HRFLM), accuracy
(ACC), precision (Pr), recall (Re), and F1-score (F1).

Table A4. Comparison of different algorithms with different datasets that are used for cardiovascular
disease prediction.

Paper Year Dataset Used Algorithms Used ACC% Pr% Re% F1%

[228] 2023 Cleveland LR, KNN, DT, XGB, SVM, RF 79.12% 79% 79% 79%

[228] 2023 Comprehensive
UCI datasets LR, KNN, DT, XGB, SVM, RF 99.03% 99% 99% 99%

[29] 2023 Cleveland Soft voting ensemble based on (RF,
KNN, LR, NB, GB, AB) 93.44% NP NP NP

[29] 2023 IEEE Dataport Soft voting ensemble based on (RF,
KNN, LR, NB, GB, AB) 95.00% NP NP NP

[229] 2023 IEEE Dataport CART 87.25% 88.24% 84.51% NP

[230] 2023 Cardiovascular
Disease dataset RF, DT, MLP, and XGB 87.28% 88.70% 84.85% 86.71%

[147] 2023 Cleveland
Quine McCluskey Binary Classifier
(QMBC) (LR, DT, RF, KNN, NB, SVM,
and MLP)

98.36% 100% 97.22% 98.59%
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Table A4. Cont.

Paper Year Dataset Used Algorithms Used ACC% Pr% Re% F1%

[147] 2023 Comprehensive
UCI datasets

Quine McCluskey Binary Classifier
(QMBC) (LR, DT, RF, KNN, NB, SVM,
and MLP)

98.31% 96.89% 100% 98.42%

[147] 2023 Cardiovascular
Disease dataset

Quine McCluskey Binary Classifier
(QMBC) (LR, DT, RF, KNN, NB, SVM,
and MLP)

99.95% 100% 99.91% 99.95%

[231] 2023 Cleveland Deep ANN, LSTM, CNN, and hybrid
CNN with LSTM 97.75% 98.57% 97.87% 97.18%

[231] 2023 IEEE Dataport Deep ANN, LSTM, CNN, and hybrid
CNN with LSTM 98.86% 99.13% 99.42% 90.83%

[232] 2022 Cleveland
Stochastic Gradient Descent
Classifiers, LR, SVM, NB, ConvSGLV,
and ensemble methods

93.00% NP NP NP

[233] 2022 IEEE Dataport NN, MLPNN, AB, SVM, LR,
ANN, RF 93.39% NP NP NP

[234] 2022 Cleveland NB, SVM, LR, DT, RF, and KNN 94.1% 97.1% 94.8% 90.8%

[235] 2022 Cleveland NB, DT, LR KNN, SVM, GB, and
RF algorithms 85.18% 0.83% 90% 86%

[236] 2022 Cleveland and
Statlog

NB with weighted approach, 2 SVMs
with XGBoost, an improved SVM
(ISVM) based on duality optimization
(DO) technique, and an XGBoost

95.9% 97.1% 94.67% 95.35%

[237] 2022
Heart disease
dataset (IEEE
Dataport)

Stacking-Based Ensemble Learning
(XGB, ETs, RF, GB) 92.34% 92.00% 93.49% 92.74%

[238] 2021
PhysioNet’s
arrhythmia
Dataset

SVM, KNN, RF, ETs, Bagging, DT, LR,
and Adaptive Boosting 99.8% 100% 100% 100%

[238] 2021 UCI’s Arrhythmia
Dataset

SVM, KNN, RF, ETs, Bagging, DT, LR,
and Adaptive Boosting 95.6% 93% 93% 93%

[239] 2021 Framingham MaLCaDD using ensemble algorithm
(10 fold) 99.1% NP NP NP

[239] 2021 Cardiovascular
Disease dataset

MaLCaDD using ensemble algorithm
(10 fold) 98.0% NP NP NP

[148] 2021 Cleveland RF, DT, and hybrid model between
RF and DT 88.7% NP NP NP

[240] 2021

Cleveland,
Hungary,
Switzerland, and
VA Long Beach
and Statlog

Hybrid classifiers like (DTBM),
(RFBM), (KNNBM), (ABBM), (GBBM) 99.05% 99% 98% 99%

[239] 2021 Cleveland MaLCaDD using ensemble algorithm
(10 fold) 95.5% NP NP NP

[142] 2021 Comprehensive
datasets (1025) LR, ABM1, MLP, KNN, DT, RF 100% 100% 100% 100%

[140] 2020 StatLog Two-tier ensemble PSO-based
feature selection 93.55% NP NP 91.67%

[140] 2020 Hungarian Two-tier ensemble PSO-based
feature selection 91.18% NP NP 90.91%
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Table A4. Cont.

Paper Year Dataset Used Algorithms Used ACC% Pr% Re% F1%

[140] 2020 Cleveland Two-tier ensemble PSO-based
feature selection 85.71% NP NP 86.49%

[140] 2020 Z-Alizadeh Sani Two-tier ensemble PSO-based
feature selection 98.13% NP NP 96.90%

[139] 2020 Cleveland LR, KNN, DT, SVM, RF 91.80% 93.55% 90.62% 92.06%

[57] 2020 Cardiovascular
Disease dataset DT, NB, LR, RF, SVM, and KNN 73% 75% 68% 73%

[141] 2020 Comprehensive
dataset (1025) RF, SVM, NB, and DT 99% 97.1% 99.7% 99.7%

[80] 2019 Cleveland HRFLM 88.4% 90.1% 92.8% 90%

[125] 2018 Cleveland and
Hungarian NB, ANN, SVM, RF, LR 98.13% 98.1% NP 98.1%

[3] 2017 Cleveland Multi-Layer Perceptron Neural
Network (hidden layer size = 8) 95.55% 95.45% NP 95.45%
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