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Abstract: One of the fundamental challenges in analyzing wind turbine performance is the occurrence
of torque creep under load and without load. This phenomenon significantly impacts the proper
functioning of torque transducers, thus necessitating the utilization of appropriate measurement
data analysis algorithms. In this regard, employing the least squares method appears to be a suitable
approach. Linear regression can be employed to investigate the creep trend itself, while visualizing
the creep in the form of a non-linear curve using a third-degree polynomial can provide further
insights. Additionally, calculating deviations between the measurement data and the regression
curves proves beneficial in accurately assessing the data.

Keywords: data analysis algorithms; creep study; torque transducer; least squares method; regression;
measurement uncertainty

1. Introduction

Wind energy has increased in popularity as a clean and sustainable source of electricity
in recent years [1–3]. It is even more pronounced with the retreat from fossil fuels that
is being amplified by ecological policies and strategies [4]. As new policies encourage
the diversification of energy sources, this requires the development of new technologies
and the intensification of research to improve existing ones. Energy acquired from wind
has become a popular area of research, and wind turbines are a key element in power
generation. It has become larger, more efficient, and more cost-effective, making wind
power an increasingly important option for meeting energy needs [5,6].

Torque transducers are vital components in wind energy applications, facilitating the
precise measurement and control of rotational forces within wind turbines. Sensitivity,
range, accuracy, reliability, durability, and response time stand as key parameters for
effective transducer selection. To assess the suitability of a torque transducer for dynamic
or high-precision tasks, such as in the wind energy sector, its creep behavior must be
known. This information can be used to optimize wind turbine performance by adjusting
its operation based on changing wind conditions. Creep behavior refers to the gradual
change in a material’s deformation over time when subjected to a constant load. For
torque transducers, creep can affect their accuracy and performance. For this reason, the
calibration of torque transducers corresponding to creep measurements must be carried
out [7–10]. Studies have shown that the largest indications of the force transducer [11]
and the torque transducer [12] in the first seconds of testing are most likely due to the
mechanical properties of the materials from which the transducer is built.

Due to the elastic effect of the force transducer components (elastic material and strain
gauges), there are slight changes in the output signal with constant force caused by creep.
This effect is essential not only in long measurements, where the low creep value is very
important, but also in short-term measurements. Creep error may be affected by, among
others, the design of the force transducer and the elements of which it is built, the used force
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transducer electric cable, the measuring meter, the measurement axis, and the construction
of the reference station itself.

Algorithms have emerged as powerful tools for analyzing and interpreting data ob-
tained from torque transducers in wind energy applications. These algorithms enable the
identification and quantification of creep, a phenomenon that can significantly impact
the accuracy and reliability of torque measurements. By employing advanced algorithms,
researchers can analyze the data collected from torque transducers to detect and correct
for creep effects. These algorithms enable the estimation of true torque values by compen-
sating for the creep-induced errors, thus enhancing the accuracy and reliability of torque
measurements. One notable algorithm employed in creep study analysis is the Kalman
filter. The Kalman filter, a recursive estimator, is widely employed in creep study analysis
and has been successfully applied to analyze and compensate for creep effects in torque
measurements from transducers used in wind energy applications [13]. Another algorithm
that has shown promise in creep study analysis is the artificial neural network (ANN).
ANNs are computational models that mimic biological neural networks and can accurately
estimate true torque values in wind turbines by learning and recognizing complex patterns
in the data and separating creep-induced errors [14–16].

Through the utilization of AI algorithms, researchers can create advanced models to
analyze and forecast the effects of creep behavior on torque measurements, enhancing cali-
bration and compensation techniques for improved accuracy and reliability in transducers
employed in wind energy applications.

This work focuses on torque transducer creep testing. An approximation polynomial
fit–straight line algorithm fits a set of points that are determined at regular intervals to a
third-degree polynomial. Fit parameters and an averaged uncertainty corridor have been
established.

2. Creep Study
2.1. Parameters Influencing Torque Transducer Creep

Various parameters, including temperature, applied load, calibration frequency, and
environmental factors, influence the creep behavior of torque transducers [17–20].

• Temperature: Temperature variations significantly impact the performance and accu-
racy of torque transducers. High temperatures can lead to thermal expansion, causing
materials to deform and introducing measurement errors. On the other hand, low tem-
peratures can affect the viscosity of lubricants used within the transducers, resulting
in changes in frictional forces and subsequently affecting their creep behavior.

• Applied Load: The magnitude and duration of the applied load directly influence
the creep characteristics of torque transducers. High loads can cause deformation
within the transducer’s sensing elements and alter their elastic properties, leading
to an increased likelihood of creep. Moreover, long durations of sustained load can
induce plastic deformation in the transducer, resulting in permanent changes in its
calibration and accuracy.

• Calibration Frequency: Regular calibration is essential for maintaining the accuracy of
torque transducers. The frequency at which these instruments are calibrated affects
their creep behavior. Infrequent calibrations may lead to drift or systematic errors
over time, impacting the reliability of torque measurements. Therefore, regular and
timely calibration routines are necessary to ensure the optimal performance of torque
transducers in wind energy applications.

• Environmental Factors: Environmental conditions, such as humidity and dust expo-
sure, can influence the creep behavior of torque transducers. Moisture absorption may
affect the transducer materials’ mechanical properties, leading to changes in creep
rates. Additionally, dust or contaminants can accumulate on transducer surfaces,
altering their friction characteristics and introducing measurement errors. There-
fore, protection measures to mitigate these environmental factors are essential for
maintaining accurate torque measurements.



Algorithms 2024, 17, 77 3 of 19

Understanding the key parameters influencing torque transducer creep is essential for
ensuring accurate and reliable measurements in wind energy applications.

2.2. Experimental Conditions

The torque standard machine (TSM) at the Central Office of Measures (GUM) in
Poland is a reference machine which uses a DC motor to apply torque and a calibrated
reference torque transducer to measure torque (see Figure 1). This TSM is able to generate
clockwise and anti-clockwise torque in a range from 10 N·m up to 5 kN·m with an expanded
relative uncertainty 0.04% (k = 2). As a reference transducer, the HBK transducer (Hottinger
Bruel and Kjear) working in the range from 200 N·m to 5000 N·m (type TB2/3000 N m;
#181030110) was used in GUM’s TSM. The amplifier used was a MGCplus/ML38B/DMP41
(with a 0.5 Hz Bessel filter), characterized by the best accuracy class and a resolution of
1 ppm in the measuring interval ±2.5 mV/V. The creep tests were conducted at ambient
temperatures for the 2 kN·m torque transducer in clockwise and anti-clockwise directions
following the ISO 376:2011 standard.
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Figure 1. (a) Two torque transducers installation: the reference torque standard machine (I) up to
5 kN·m at GUM with an expanded relative uncertainty 0.04%; (b) special (2 kN·m) torque transducer
(II) installed in TSM between two adapters, reference torque transducer (III).

This HBK 2 kN·m multicomponent torque transducer (type MPZ1512005b, serial no.
#210940007), intended to measure torque in both clockwise and anti-clockwise directions,
is presented in Figure 2. What is important about this torque transducer is not only its
mechanical resemblance to the 5 MN·m torque transducer but also its additional bridges to
measure axial force Fz and bending moments Mx and My.

The creep study was conducted for eight measurement points ranging from 200 N·m
to 2000 N·m. A measured signal was observed in each point by 33 s from the 20th second
after loading. Additionally, at each measurement point, the signal behavior was tested
without loading in the same time interval, starting at the 70th second. The torque transducer
indication is given in electrical units (mV/V). A total of 16 readings represent the creep at
each measurement point (Figure 3 and Table 1). The dependence of the measured points of
the electrical signal yi at intervals ti both for the statically determined torque of force and
its lack-zero forcing of the torque, in general, is not reproducible and depends on many
reasons related to the torque standard machine and environmental conditions. It is seen
as a stochastic process. From the point of view of determining the characteristics of the
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transducer, the most important are the average values in the time-determined signal (the
value of the measurand) and the average value of signal uncertainty (the minimum width
of the coverage interval in which the true value of the signal is included).
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Figure 2. The HBK special torque transducer with a lifting capacity 2 kN·m and a sensitivity 1.0 mV/V,
designed to measure clockwise and anti-clockwise torque.

Table 1. Measured signal values from the transmitter for two measurement levels.

High Level of Torque Low Level of Torque

Time t (s) Signal y (mV/V) Time t (s) Signal y (mV/V)

20 1.045500 70 0.000445
25 1.046769 75 0.000409
27 1.046910 77 0.000393
29 1.046901 79 0.000333
31 1.046923 81 0.000208
33 1.046842 83 0.000230
35 1.046813 85 0.000202
37 1.046813 87 0.000184
39 1.046604 89 0.000176
41 1.046791 91 0.000190
43 1.046897 93 0.000186
45 1.046798 95 0.000172
47 1.046705 97 0.000158
49 1.046722 99 0.000161
51 1.046618 101 0.000158
53 1.046679 103 0.000139
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Figure 3. The measurement of torque at selective points in time from a level of 2000 N·m to zero:
dependence on the time of the measurement cycle; the left side with the series of sixteen points of
signal (upper part) for 2000 N·m of torque (and the right side with the series of sixteen points of
signal for zero torque (lower part). The blue dots represent the measured data.

Therefore, the creep analysis is based on the least squares method with the use of
polynomial and linear regression, whereby, in general, the nonlinear function is adjusted to
the individual measuring points.

For this purpose, both a linear function with two parameters, which represent the
direction of the creep at each measurement point, and a third-degree polynomial function
with three and four parameters were used. Third-degree polynomial functions, thanks to
having saddle points, take into account the nonlinear effects of the time dependence of the
signal. For measurement points under load, in most cases it is an increasing trend, but for
measurement points without load, no clear trend can be distinguished. Further analysis
of the line of best fit in the figure indicates that the scatter of the data about the line is not
random but exhibits a definite trend.

In order to adjust the parameters of a given nonlinear function, the measured values
of the points and their estimated uncertainties are necessary. The combined standard un-
certainty associated with a single measuring point is determined using eight contributions
by the equation:

u2
TSM =

8

∑
i=1

u2
i (1)

where:
u1—standard uncertainty of calibration results of reference transducers when cubic

fitting functions are used;
u2—standard uncertainty due to short-term creep of reference transducers;
u3—standard uncertainty associated with the long-term drift of reference transducers;
u4—standard uncertainty due to misalignment of the device under calibration;
u5—standard uncertainty associated with the resolution and stability of the indicating

device (amplifier);
u6—standard uncertainty associated with using reference transducers in partial ranges;
u7—standard uncertainty due to stability of torque transmission on shafts;
u8—standard uncertainty due to the influence of the variation in temperature on

reference transducers.
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In addition, a single measurement point at a given moment of time in general is
determined by a total of 13 uncorrelated corrections, 8 of which are directly related to the
standard measurement uncertainty of the torque generation.

The measurement points in a successive moments of time do not indicate the same
value of the signal from the transducer. The final values of the signal after the equilib-
rium state has been established do not represent the measured value either. It is a time
relationship y = f (t) that reflects a measurement that is entirely a stochastic process, and
therefore the use of standard methods will be insufficient to determine the average value of
the measured level. For example, to determine the uncertainty value of the time-dependent
signal measurement, the deviation is often called Allan’s deviation, or square root of Allan’s
variance, which is not used in stationary systems where the time dependence is no longer
important. In this case, the assumption about the stationarity of the signal measurement
process is doomed to be unreliable.

In order to determine the characteristics of the torque converter, it is necessary to
determine the average signal level y from the transducer measured at preset intervals. This
signal is subject to so-called creep, changing its value at each sampled moment of time.
In Figure 4a, a sample relationship of the signal as a function of time is presented, y(t),
including the expanded uncertainty of the coverage corridor, which is also a function of
time in general, U(t). However, in order to determine the characteristics, it is necessary to
determine the average value of the signal y and the constant width of the signal uncertainty
corridor U, which do not change at any given torque measurement points (Figure 4b).
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of force: (a) a truly continuous variable dependence of the measured signal as a function of time
along with a time-varying uncertainty corridor; (b) an equivalent model of the averaged value of the
measured signal with a constant uncertainty corridor width.

3. Least Square Method

The basic tool used to fit a nonlinear relationship to measurement points is the least
squares method. In the general approach, it is the WTLS (weighted total least square)
method [21–27] that takes into account all the generally differing uncertainties of the
coordinates of the points and the various correlations between the coordinates of the
measurement points. So, the problem is to determine the global minimum of the criteria
function [28,29]:

ϕty = [∆t, ∆Y]U−1
[

∆t
∆Y

]
→ min (2)
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of residua vector time and signal and covariance matrix U with dependence of nonlinear
function y = f (t) with respect to which the time deviations of the signal from the converter
are calculated.

4. The Proposed Model

The linear or nonlinear functions of time are described by the polynomial expansion
of a Taylor series y = f (t, c) = c0 + c1t + c2t2 + . . . + cmtm and the match parameter vector
c = [c0, c1, c2, . . ., cm]T. This means that in order to determine the fit vector, the following
are generally required: m-nonlinear equations [30–37]. This expansion also represents the
application of many complex elementary functions describing a given physical process.
In our case, it is a process stretched over time of “creeping” a physical quantity to be
measured, in this case the moment of force, resulting, inter alia, from the inertia of the
processes occurring during the measurement on the measuring standard.

The basic tool used to fit a nonlinear relationship to measurement points is the least
squares method. In the general approach, it is the WTLS method that takes into account
all the generally different uncertainties of the coordinates of the points and the various
correlations between the coordinates of the measurement points.

The parameters of this schematic view are determined from the vector equation for
the least squares method, taking into account not only the coordinates of the measured
measurement points but also the uncertainty of the signal and time, as well as all possible
correlations between them related to environmental conditions and the properties of the
measuring system.

The general optimization condition boils down to maximizing the greatest likelihood
function, which means minimizing the dimensionless criterion function with the most
general equation for the least squares method (WTLS):

ϕty(∆t, ∆Y) = [∆t, ∆Y]UTS
−1

[
∆t
∆Y

]
= [∆t, ∆Y]

[
Ut UtY
UT

tY UY

]−1[
∆t
∆Y

]
→ min (3)

where Ut, UY, UtY are covariance matrixes that are single parts of the covariance matrix

UTS =

[
Ut UtY
UT

tY UY

]
appropriate for the time variable t and the measured signal y in n-points

taking into account autocorrelations and a covariance matrix taking into account the effects
of cross correlation between time and signal coordinates, while ∆t, ∆Y denote vectors con-
taining deviation values for time ∆t1, . . ., ∆tn and for the signal ∆y1 = f (t1 + ∆t1, c) − f (t1, c),
. . ., ∆yn = f (tn + ∆tn, c) − f (tn, c) at subsequent measuring points t1,. . ., tn. In the special
case of no correlation, the dependence of the minimum criterion function (3) means a
minimum of:

ϕty(∆t, ∆Y) =
n

∑
i=1

∆ti
2

u2(ti)
+

∆yi
2

u2(yi)
→ min (4)

where u2(ti) and u2(yi) are variances (squared uncertainties) for time deviations ∆ti and
for signal deviations ∆yi. The most commonly used method of least squares is the OLSs
(ordinary least squares) or special case of TLSs (total least squares for identical values of
uncertainties of time and signal) without taking into account the uncertainty of the abscissa
variable in this case of time u(t) = 0, assuming that all signal uncertainties are the same
u2(yi) = const.

In a specific case, i.e., where u2(ti) → 0 and values ti are measured exactly, condition
(4) reduces to the form of:

ϕy(∆Y) =
n

∑
i=1

∆yi
2

u2(yi)
→ min (5)

As long as condition (5) leads to analytical solutions for any nonlinear function rep-
resented in the Taylor series (also for constant uncertainties (5)), using the determinant
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method, finding the minimization condition included in Equation (4) or the most general
Equation (3) requires the use of numerical methods.

However, there is an approximate method, which will be presented in the following
section, based on the algorithm for numerical straight line fitting solutions. This algorithm
will make it possible to fit a nonlinear function given in the form of two polynomial functions
of tertiary degree in the form described by y = a3t3 + a2t2 + a1t + a0 and y = b2t3 + b1t + b0, and
a linear function y = at + b constituting a trend line for the above relationships. Parameters
ak (k = 0, 1, 2, 3), bl (l = 0, 1, 2), and a and b will be determined by the proposed method
using an appropriate numerical algorithm.

5. Analytical Solutions

For the weighted least squares method (WLS), the optimization equation for mini-
mizing squared distances in the direction of OY for the set of n-measurement points with
coordinates (ti, yi) and leads as a result of zeroing the first partial derivatives after the slope
parameter a and intercept b for a straight line and parameters ai and bi for tertiary curves
for analytical solutions has the form below.

5.1. For Linear Curve (y = ax + b)

a =
SSty − StSy

SStt − (S t)
2 , (6a)

b =
SyStt − StSty

SStt − (S t)
2 , (6b)

where auxiliary parameters S, St, Stt, Sy, Sty are defined by:

S =
n

∑
i=1

1
u2(yi)

, (7a)

St =
n

∑
i=1

ti
u2(yi)

, (7b)

Stt =
n

∑
i=1

t2
i

u2(yi)
, (7c)

Sy =
n

∑
i=1

yi,

u2(yi)
, (7d)

Sty =
n

∑
i=1

tiyi
u2(yi)

. (7e)

5.2. For Polynomial of Third Order (y = b2t3 + b1t + b0)—Type I

First derivatives for the parameters bj, where j = 0, 1, 3

n

∑
i=1

(
yi − b3t3

i − b1ti − b0

) tj
i

u2(yi)
= 0 (8)

a system of three linear equations solvable by the determinant method is obtained:b3
b1
b0

 =

R6
t R4

t R3
t

R4
t

R3
t

R2
t R1

t
R1

t R0
t

−1R3
ty

R1
ty

R0
ty

 (9)
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where notation used:

Rj
t =

n

∑
i=1

tj
i

u2(yi)
, (10a)

Rj
ty =

n

∑
i=1

yit
j
i

u2(yi)
, j = 0, 1, 3. (10b)

5.3. For Polynomial of Third Order (y = a3t3 + a2t2 + a1t + a0)—Type II

First derivatives for the parameters aj, where j = 0, 1, 2, 3

n

∑
i=1

(
yi − a3t3

i − a2t2
i − a1ti − a0

) tj
i

u2(yi)
= 0, (11)

a system of four linear equations solvable by the determinant method is obtained:
a3
a2
a1
a0

 =


S6

t S5
t

S5
t S4

t

S4
t S3

t
S3

t S2
t

S4
t S3

t
S3

t S2
t

S2
t S1

t
S1

t S0
t


−1 

S3
ty

S2
ty

S1
ty

S0
ty

 (12)

and below notation is used:

Sj
t =

n

∑
i=1

tj
i

u2(yi)
, (13a)

Sj
ty =

n

∑
i=1

yit
j
i

u2(yi)
, j = 0, 1, 3. (13b)

The last function, type II, describes more complicated relationships for a given set of
measurement points than type I, although type I and type II are equivalent if you make a
corresponding shift on the timeline.

6. Approximate WTLS Solutions for Nonlinear Functions

It turns out that in the case of the occurrence of generally different uncertainties for
the time variable ti and the measured signal yi and correlations described by the covariance
matrix, UTS nonlinear relationship y = f (t) can be represented in the form of a linear
relationship y = θ1ξ(t, β) + θ0, where the function ξ(t, β) is a transforming function, and
θ1, θ0 and, in general, the vector β are the parameters of the fitting function, which result
from the fitting of the function and the minimization of the criterion function, which
approximately transforms to the form [29]:

ϕty(∆t, ∆Y) = [∆t, ∆Y]LL−1
[

Ut UtY
UT

tY UY

]−1

L−1L
[

∆t
∆Y

]
≈ [∆ξ, ∆Y]

[
Uξ UξY

UT
ξY UY

]−1[
∆ξ
∆Y

]
= ϕξy(∆ξ, ∆Y, β) (14)

and diagonal matrix L size of 2n × 2n shall be determined by the first n elements as
derivatives of functions ξ ′(ti, β) at subsequent measurement points, and the following n,
an identical diagonal value, is equal to a value of one. The laws of error and uncertainty
propagation have been used by multiplying the first derivative of the transforming function,
respectively, by error of time and uncertainty of time:

∆ξ ≈ ξ ′(t, β)∆t, (15a)

u(ξ) ≈
∣∣ξ ′(t, β)

∣∣u(t) (15b)
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It follows that dependencies ϕξy(θ1) and ϕξy(θ0) for the selected parameter vector
β = [β1, β2] are quasi-square and described by [22]:

ϕξy(θ1) = θ1
2
(

Ptt −
P2

t
P

)
+ 2

(
PtPy

P
− Pty

)
θ1 + Pyy −

P2
y

S
(16)

where
P = 1TU−1

Yeff1, (17a)

Pt = ξTU−1
Yeff1 = 1

T
U−1

Yeffξ, (17b)

Py = YTU−1
Yeff1 = 1TU−1

YeffY, (17c)

Ptt = ξTU−1
Yeffξ, (17d)

Pty = ξTU−1
YeffY = YTU−1

Yeffξ, (17e)

Pyy = YTU−1
YeffY (17f)

and effective inverse covariance matrix is given by:

U−1
Yeff = U22 −

(
UT

12 + θ1U22

)
V−1(U12 + θ1U22) (18)

and V = U11 + θ1
(
UT

12 + U12
)
+ θ1

2U22 and matrixes U11, U12, U22 are the correspond-

ing parts of the inverse covariance matrix U−1
TS =

[
Uξ UξY
UT

ξY UY

]−1

=
[

U11 U12
UT

12 U22

]
and are

functions of only one parameter θ1 or θ0 = (P y − θ1Pt

)
/P, and these functions have quasi

vertices [28]. By determining for a series of points within the accepted test interval θ1L < θ1H
for selected values of vector parameters β values of the local minimum and then looking
for the value of the vector β (the easiest one-dimensional vector), it is possible to minimize
the criterion function by obtaining a global minimum at the points: θ1min, βmin.

Algorithm Schema for the Method WTLS

The algorithm is implemented in four steps:

(1) For a given fitting function, e.g., y = a3t3 + a2t2 + a1t + a0, we create a function ξ(t, β),
in this case, ξ(t, [β1, β2]) = t3 + β1t2 + β2t, where β1 = a2/a3 and β2 = a1/a3 by setting
initial values β1 and β2, which we calculate numerically with fixed steps hβ1 i hβ2 so
that these values are in the ranges of β1L ≤ β1 ≤ β1H and β2L ≤ β2 ≤ β2H;

(2) Then, on the basis of the given covariance matrix UTS, we determine the matrix prod-
uct L UTSL, where n first diagonal elements of a matrix L are defined by
ξ ′(ti, β) = 3ti

2 + 2β1ti + β2;
(3) At the end, we designate a series of points θ1j and specify the values of the θ1 with

a step hθ1 from the selected range θ1L ≤ θ1j ≤ θ1H (j = 1, . . ., M) = [(θ1H − θ1L)/hθ1]
and calculate characteristics ϕξy(θ1) and the resulting characteristics of the ϕξy(θ0),
whereby the points θ1j should be selected in such a way that they make visible a
quasi-minimum (quasi vertex);

(4) Repeat the above points one by one, first adjusting the β1, and next β2 or vice versa,
until the global minimum of the criterion function is obtained ϕyξ min for fitting
parameters a3 = θ1min, a2 = θ1min β1min, a1 = θ1min β2min and a0 = θ0min.

In the case of a simplified third-degree fitting function y = b3t3 + b1t + b0 function
ξ(t, β1) = t3 + β1t and then the values of the adjusted parameters due to the presence of
only one parameter β1 shall be, respectively, calculated from b3 = θ1min, b1 = θ1min β1min
and b0 = θ0min. Exemplary characteristics ϕξ y(θ1) and ϕξy(θ0) are below in Figure 5.
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Figure 5. The quasi-parabolic characteristics: (a) ϕξy(θ1) and (b) ϕξy(θ0) for global minimum (the red
dashed line)—example for third degree polynomial y = 1.79 × 10−7t3 − 2.23 × 10−5t2 + 8.89 × 10−4t
+ 1.035436 with the value of the criterion function ϕξy ≈ 26.13.

7. Straight Line Fit Results (Trend Line)

A straight line adjustment y = ax + b is implemented, taking into account only constant
uncertainty values. In the first approach in Equation (5), signal uncertainty constants have
been assumed to be u(yi) = 0.0001 mV/V, and analytical solutions have been used (6, 7). In
the second approach, an approximate solution for Equation (4) has been used with constant
uncertainties u(ti) = 0.3 s, u(yi) = 0.0001 mV/V using the algorithm of method WTLS for
straight line, which is described in Section 5.1.

The following time dependencies were obtained for matching using the same method
as OLSs—the first case:

• For adjustments of the low level of signal: y = −9.0 × 10−6 t + 0.001024 with the value
of the criterion function ϕytmin = 3.36;

• For adjustments high level of signal: y = 1.006 27 × 10−5 t + 1.046325 with the value of
the criterion function ϕytmin = 141.78.

For the second more general case of fit with constant uncertainties u(ti) = 0.3 s and
u(yi) = 0.0001 mV/V, method WTLS for straight line has been applied. Almost identical
solutions were obtained, as in the first case:

• For adjustments of the low level of signal, diagram of a straight line in Figure 6a:
y = −8.09 × 10−6 t + 0.001016with the value of the criterion function ϕytmin = 3.36;

• For adjustments of the low level of signal, diagram of a straight line in Figure 6b:
y = 1.0062 × 10−5 t + 1.046325 with the value of the criterion function ϕytmin = 141.66.
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Figure 6. Adjust straight lines (purple) to the measurement points (blue): (a) low level and (b) high level.
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8. Third-Degree Curve Adjustments by y = b2t3 + b1t + b0

Third-degree curve adjustments y = b2t3 + b1t + b0 have been implemented, taking
into account only constant uncertainty values. In the first approach, condition (5) assumes
the signal uncertainty constants u(yi) = 0.0001 mV/V, and analytical solutions have been
used (9, 10). In the second approach, an approximate solution was used for Equation (4) for
uncertainty constants u(ti) = 0.3 s and u(yi) = 0.0001 mV/V (algorithm in 5.1).

In the first case, with constant signal uncertainty, the following relationships have
been obtained:

• For adjustments of the low level of signal y = 1.53 × 10−9 t3 − 4.32 × 10−5 t + 0.003 05
with the value of the criterion function ϕtymin ≈ 1.37;

• For adjustments of the high level of signal y = −2.1 × 10−8 t3 + 1.01 × 10−4 t + 1.044234
with the value of the criterion function ϕtymin ≈ 88.32.

In the second case, with constant uncertainty of signal and time, the following rela-
tionships have been obtained:

• For adjustments of the low level of signal y = −5.02 × 10−10 t3 + 2.54 × 10−6 t + 3.633
× 10−4 with the value of the criterion function ϕξymin ≈ 4.9;

• For adjustments of the high level of signal y = −2.9 × 10−8 t3 + 1.4 × 10−4 t + 1.0433
with the value of the criterion function ϕξymin ≈ 75.7.

The above relationships for the adjustment of the measurement points for the lower
level are illustrated (Figure 7).
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Figure 7. Fitted tertiary curves y = b2 t3 + b1t + b0 to measurement points (blue dots): solid line
(purple) condition (4); dashed red line condition (5): (a) low level and (b) high level.

9. Third-Degree Curve Adjustments by y = a3t3 + a2t2 + a1t + a0

Third-degree curve adjustments given by dependence y = a3t3 + a2t2 + a1t + a0 have
been implemented, taking into account only constant uncertainty values. In the first
approach, in Equation (5), the signal uncertainty constants have been assumed to be
u(yi) = 0.0001 mV/V, and analytical solutions have been used (12, 13). In the second ap-
proach, an approximate solution to Equation (4) has been applied for uncertainty constants
u(ti) = 0.3 s and u(yi) = 0.0001 mV/V using the algorithm in 5.1.

In the first case, with constant signal uncertainty, the following relationships have
been obtained:

• For adjustments of the low level of signal y = 2.6 × 10−10 t3 + 4.67 × 10−7t2 − 8.45 ×
10−5t + 0.004193 with the value of the criterion function ϕtymin = 1.37;

• For adjustments of the high level of signal y = 2.12 × 10−7t3 − 2.58 × 10−5 t2 + 1.01 ×
10−3t + 1.034075 with the value of the criterion function ϕtymin = 29.55.

In the second case, with constant uncertainty of signal and time, the following rela-
tionships have been obtained:
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• For adjustments of the low level of signal y = −9.22 × 10−10 t3 + 5.20 × 10−7 t2 − 7.88
× 10−5t + 0.003742 with the value of the criterion function ϕξymin = 1.55;

• For adjustments of the high level of signal y = 1.79 × 10−7 t3 − 2.23 × 10−5 t2 + 8.89 ×
10−4 t + 1.035436 with the value of the criterion function ϕξymin ≈ 26.13.

The relationships in both the first case (the dashed curves of the third degree) and in
the second case (the purple continuous curve) are illustrated (Figure 8).
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10. Signal Average Estimators of Low and High Level

On the basis of the measurement points for the upper and lower levels, as well as
the adjusted linear relationship described by the polynomial function of the third degree,
a set of estimators was prepared for the measurement of the average value of the torque
(presented in Table 2).

Table 2. Signal average estimators.

Name Symbol Formula

Arithmetic mean y 1
n

n
∑

i=1
yi

Median yM
yj=n/2+yj=n/2+1

2
Middle of spread yR

ymin+ymax
2

Weighted average yW
n
∑

i=1
tiyi/

n
∑

i=1
ti

Means from integration over time < y >t 1
tn−t1

tn∫
t1

f (t)dt

Mean over time integration 1 < y >tp1 a t1+tn
2 + b

Mean over time integration 2 < y >tp2 t1+tn
2

(
b3
2
(
t2
1 + t2

n
)
+ b1

)
+ b0

Mean over time integration 3 < y >tp3

t1+tn
2

( a3
2
(
t2
1 + t2

n
)
+ a1

)
+

a2
3
(
t2
1 + t1t2 + t2

n
)
+ a0

Table 2 shows the estimators of average values determined for both levels of the
measured low and high signals.

From the above tables, it can be seen that from Table 3 (a) that the median resistant
to outliers and the weighted average emphasizing the final, practically established values
of the sampled signal under equilibrium conditions (mean 1.0465 mV/V) are the most
similar to each other. The center of the span and the arithmetic mean stand out significantly
from this level. On the other hand, Table 3 (b) shows that the mean of the integration of
the most fitted third-degree curve (tp3), taking into account the uncertainty of time and
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signal, differs by less than 0.000 08 mV/V. Similarly close to this solution is the polynomial
curve (tp2) below 0.000 01 mV/V. On the other hand, the fit of the trend line (tp1) gives the
differences between the estimated means above 0.0001 mV/V.

Table 3. Values of the mean signal level and difference estimators.

(a)

Level/Level Difference y yM yR yW

Level 0 kN·m (mV/V) 0.000234 0.000188 0.000292 0.000225
Level 2000 N·m (mV/V) 1.046705 1.046708 1.046090 1.046729

Level 2000–Level 0
(mV/V) 1.046471 1.046520 1.045798 1.046504

(b)

Level/Level Difference
< y >tp1 < y >tp2 < y >tp3

u(yi) = 0.0001 u(ti) = 0.3
u(yi) = 0.0001 u(yi) = 0.0001 u(ti) = 0.3

u(yi) = 0.0001 u(yi) = 0.0001 u(ti) = 0.3
u(yi) = 0.0001

Level 0 kN·m (mV/V) 0.000246 0.000316 0.000343 0.000246 0.000594 0.000246
Level 2000 N·m (mV/V) 1.047195 1.046692 1.046693 1.046700 1.046688 1.046690

Level 2000–Level 0
(mV/V) 1.046949 1.046376 1.046350 1.046454 1.046094 1.046444

11. Signal Variance Value Estimators

In order to determine the coverage interval and, above all, the standard uncertainty,
the following definitions of variance were used.

11.1. Arithmetic Mean Variance Estimator

This estimator is the equal square of the standard deviation of the experimental mean,
dedicated to the gaussian distributions [21,38]:

u2
EA(y) =

1
n(n − 1)

n

∑
i=1

(y i − y)2 (19)

11.2. Estimator of Variance for Middle of Spread

This estimator is equal to the square of uncertainty determined as the maximum error
estimated by the arithmetic mean from the difference between the maximum and minimum
of the y value (the maximum error for a rectangular distribution) [21,39]:

uR(y) =
ymax−ymin

2
√

3
(20)

11.3. Allan Variance Estimator

This estimator is equal to the square of the uncertainty determined by half of the sum
of the squares of the individual measurements (the means of the measurements) [40]:

u2
A(y) =

1
2(n − 1)

n−1

∑
i=1

(y i − yi+1)
2 (21)

11.4. Variance Estimator for Integral Mean

This estimator is equal to the square of uncertainty determined by the mean uncertainty
corridor around the line y = θ1ξ + θ0, where the variance for a line is given by σ2 = u2(θ1) ξ2
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+ 2ρθ1θ0 ξ u(θ0) u(θ1) + u2(θ0). This estimator, fitted to, in general, a nonlinear curve and
averaged over time is equal to:

< u2 >t=
1

tn − t1

∫ tn

t1

[u 2(θ1)ξ
2(t) + 2ρθ0θ1

ξ(t)u(θ1)u(θ0) + u2(θ0)
]

dt (22)

Case tp1. Straight line fit

For the equation of a line y = at + b, function ξ(t) = t and parameters θ1 = a, θ0 = b.
Then, the result from Formula (22) is as follows:

< u2
p1 >t= u2(θ1)(t

2
1 + t1tn + t2

n

)
/3 + ρθ0θ1

u(θ1)u(θ0)(tn + t1) + u2(θ0) (23)

Variance values u2(θ1) i u2(θ0) and covariance element ρθ1θ0 u(θ0)u(θ1) for variables
θ1 and θ0 are determined numerically from the law of uncertainty propagation using the
matrix L UTSL after adjusting the curve parameters and obtaining the global minimum of
the criterion function. After linearization of the model, the slope θ1 and intercept θ0 are
linearly dependent on the time and signal coordinates. It is necessary to determine the
matrix of the sensitivity coefficients by numerically differentiating the increments for both
parameters and calculating appropriate differential quotients with the use of appropriately
selected increments of time and signal coordinates. A bilaterally multiplied matched
covariance matrix by a sensitivity coefficient matrix (right-hand transposed) leads to the
determination of the variances and covariances contained in the formula (23).

Case tp2. Fitting a Third-Order Polynomial Curve

For a polynomial y = b2 t3 + b1 t + b0, the function in (22) is determined by the ξ(t) = t3 + β1t,
and parameter β1 = b1/b2, and the parameters of a straight line θ1 = b2, θ0 = b0.

The time-average value of the variance after integration is:

< u2
p2 >t= u2(θ1)

(
W7/7 + (2b1/b2)W5/5 + (b 1/b2)

2W3/3
)
+ρθ0θ1

u(θ1)u(θ0)(W4/2 + b 1W2/b2
)
+ u2(θ0) (24)

where this is denoted by

Wk =
(tn)

k − (t1)
k

tn − t1
=

k

∑
j=0

(t1)
j(tn)

k−j (25)

Case tp3. Fitting a Third-Order Polynomial Curve

For a polynomial y = a3t3 + a2t2 + a1t + ao, the function in (22) is ξ(t) = t3 + β1t2 +
β2t, β1 = a2

a3
, β2 = a1

a3
, and the parameters of the straight line θ1 = a3, θ0 = ao. The

time-averaged value of variance after integration (22) is:

< u2
p3 >t= u2(θ1) (W7/7 + a2W6/(3a3) + ((a2/a3)

2 + 2a1/a3)W5/5

+(a1a2/2)W4/(a3)
2 + (a1/a3)

2W3/3) + ρθ0θ1
u(θ1)u(θ0)(W4/2

+2a2W3/(3a3) + a1W2/a3) + u2(θ0)

(26)

In the first place, the values of the covariance matrix for the simple y = θ1ξ + θ0. These
values for the different fit curves are shown in Table 4.

On the basis of the elements of the covariance matrix, the estimators from Formula (22) for
simple Formula (23) and two polynomials fitted by the third degree—Formulas (24) and (25)—
for the low and high levels have been determined. All the proposed variance estimators in
the form of square roots as standard uncertainties have been determined and are compiled
in Table 5.
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Table 4. The uncertainties of the estimated parameters of the straight line y = θ1ξ + θ0.

Type of Function ξ(t) Torque u(θ1min) u(θ0min) ρθ0θ1

ξ(t) = t 0 1.4 × 10−5 mV/sV 0.0012 mV/V −1
ξ(t) = t 2000 3.5 × 10−5 mV/sV 0.0013 mV/V −1

ξ(t) = t3 + β1t2 0 1.3 × 10−10 mV/s3V 0.000 04 mV/V −0.8
ξ(t) = t3 + β1t2 2000 2.4 × 10−9 mV/s3V 0.000 28 mV/V −1

ξ(t) = t3 + β1t2 + β2t 0 2.5 × 10−10 mV/s3V 0.001 mV/V −1
ξ(t) = t3 + β1t2 + β2t 2000 1.7 × 10−8 mV/s3V 0.001 mV/V −1

Table 5. Estimator of standard deviation: the uncertainties of low and high levels.

Type of
Uncertainties

Estimated Value
for 0 kN·m

uL
(mV/V)

Estimated Value
for 2000 N·m

uH
(mV/V)

Estimated Value
for Difference√

u2
L + u2

H
(mV/V)

uEA(y) 2.5 × 10−5 8.4 × 10−5 8.8 × 10−5

uR(y) 2.89 × 10−5 3.41 × 10−5 4.45 × 10−5

uA(y) 2.8 × 10−5 2.42 ×10−4 2.4 × 10−4

up1 =
√
< u2

p1 >t 1.34 × 10−4 3.34 × 10−4 3.6 × 10−4

up2 =
√
< u2

p2 >t 3.3 × 10−5 4.5 × 10−4 4.5 × 10−4

up3 =
√
< u2

p3 >t 5.8 × 10−5 7.37 × 10−5 9.4 × 10−5

12. Discussion

As a result, the standard uncertainty estimators for the actual signal level correspond-
ing to the measured torque of 2 kN·m were numerically calculated. When constructing
estimators based on the fitted time signal function, the least squares method was employed
to minimize the criterion function with zero uncertainty in time measurement, ensuring
accurate time measurement. Additionally, when accounting for uncertainties in both vari-
ables (signal and time of measurement points), analytical formulas for the parameters of
the fitted curves were used in conjunction with the ordinary least squares (OLSs) method.
The fit model, considering the uncertainty of both variables, was quantitatively solved
using the weighted least squares (WLS) method, which minimized the criterion function.
The solutions obtained for both cases exhibited slight differences for the polynomial fit, as
illustrated in Figures 5 and 6.

In the WLS method, the averaging of the solution was achieved by incorporating
uncertainty, resulting in signal-level estimators for both the expected value and the stan-
dard uncertainty. Notably, higher values of uncertainty were observed for an incomplete
polynomial of third degree (type I, tp2) and for a straight line fit (tp1). Conversely, lower
uncertainty values were obtained for the middle of spread variance and experimental
deviation from average variance. The use of Allan variance in the estimation of quartz time
oscillator time showcased similar trends, with more than twice smaller values compared to
the Allan deviation for fitting the full parameters of a polynomial of the third degree (type
II, tp3). The smallest uncertainty values were attained for the experimental deviation of the
mean and the arithmetic mean of the most scattered points.

13. Conclusions

Algorithmic approaches for analyzing creep study in measuring torque transducer
were proposed. An algorithm of approximate polynomial fit–straight line, a polynomial of
the third degree to a series of points determined at intervals, is presented. Fit parameters
and an averaged corridor of uncertainty were determined.
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This article provides an analysis of the metrological properties of the creep process
during the calibration of the torque transducer. The relative electrical signal (given in
electrical units, mV/V) as a function of torque measured was monitored at intervals of
time. To fit the data, the weighted method of least squares with both a straight line and
a cubic spline curve was used to measure low and high levels of transducer in static
measurement. To find the estimated measurand value at 2 kN·m and 0 kN·m, a few
estimators of averages (arithmetical, middle spread, average of integral) have been applied,
as well as for estimators of deviation like experimental deviation, Allan’s spread, and the
integral average of coverage corridor. In the results, we chose the appropriate estimators
for the average of the signal and uncertainty, which are not typical statistical estimators.
Due to the mechanical similarity of the tested 2 kN·m torque transducer to the 5 MN·m
torque transducer, the proposed algorithms may be useful for optimizing the creep signal
and its uncertainty for mechanically similar transducers.

In conclusion, torque transducers are vital components in wind energy applications,
enabling the measurement of torque data critical for power optimization and turbine per-
formance analysis. Various parameters, including temperature, applied load, calibration
frequency, and environmental factors, influence the creep behavior of these transducers.
Understanding and considering these parameters allows for accurate and reliable measure-
ments, ensuring the efficient and safe operation of wind turbines.

By performing data-driven analyses, researchers can uncover correlations between
various environmental conditions, operational parameters, and creep behavior in torque
transducers. Determining the disparity in the magnitude of the upper and lower signals,
along with precisely estimating the associated uncertainty, plays a critical role in establish-
ing the accurate and typically linear attributes of the transducer, alongside its corridor of
uncertainty. This knowledge can help optimize the design and implementation of torque
transducers in wind energy systems. For instance, the analysis may reveal that specific
wind speeds or temperature ranges significantly influence creep, leading to adjustments in
the turbine’s operating parameters or torque transducer materials and designs.

Algorithms and AI methods, such as the Kalman filter and artificial neural networks,
offer powerful tools for analyzing and compensating for creep effects in torque mea-
surements of wind turbines, enabling the accurate estimation of true torque values and
facilitating proactive maintenance interventions and the early detection of potential failures.
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4. Gnatowska, R.; Moryń-Kucharczyk, E. Current status of wind energy policy in Poland. Renew. Energy 2019, 135, 232–237.
[CrossRef]

5. Yang, W.; Tavner, P.J.; Crabtree, C.J.; Wilkinson, M. Cost-effective condition monitoring for wind turbines. IEEE Trans. Ind.
Electron. 2009, 57, 263–271. [CrossRef]

6. Keysan, O.; Mueller, M. A modular and costeffective superconducting generator design for offshore wind turbines. Supercond. Sci.
Technol. 2015, 28, 034004. [CrossRef]

7. Bruge, A.; Konya, R. Investigation on transducers for transfer or reference in continuous torque calibration. In Proceedings of the
19th Conference on Force, Mass and Torque Measurement, Cairo, Egypt, 19–23 February 2005.

8. Bruge, A. Creep measurements in reference torque calibration machines. In Proceedings of the IMEKO 2010: TC3, TC5 and TC22
Conferences, Pattaya, Thailand, 22–25 November 2010.

9. Weidinger, P.; Foyer, G.; Ala-Hiiro, J.; Schlegel, C.; Kumme, R. Investigations towards extrapolation approaches for torque
transducer characteristics. J. Phys. Conf. Ser. 2018, 1065, 042057. [CrossRef]
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