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Abstract: This paper reviews the application of artificial neural network (ANN) models to time series
prediction tasks. We begin by briefly introducing some basic concepts and terms related to time series
analysis, and by outlining some of the most popular ANN architectures considered in the literature
for time series forecasting purposes: feedforward neural networks, radial basis function networks,
recurrent neural networks, and self-organizing maps. We analyze the strengths and weaknesses of
these architectures in the context of time series modeling. We then summarize some recent time
series ANN modeling applications found in the literature, focusing mainly on the previously outlined
architectures. In our opinion, these summarized techniques constitute a representative sample of the
research and development efforts made in this field. We aim to provide the general reader with a
good perspective on how ANNs have been employed for time series modeling and forecasting tasks.
Finally, we comment on possible new research directions in this area.

Keywords: time series forecasting; artificial neural network architectures; machine learning;
dynamical systems; time series statistical modeling techniques

1. Introduction

Predictions can have great importance on various topics, like birthrates, unemploy-
ment rates, school enrollments, the number of detected influenza cases, rainfall, individual
blood pressure, etc. For example, predictions can guide people, organizations, and govern-
ments to choose the best options or strategies to achieve their goals or solve their problems.
Another example of the application of predictions can be found in the consumption of
electrical energy to guarantee the optimal operating conditions of an energy network that
supplies electrical energy to its customers [1–5]. A time series is a set of records about a
phenomenon that is ordered equidistantly with respect to time; this is also called a forecast.
Time series are used in a wide variety of areas, including science, technology, economics,
health, the environment, etc. [6]. Initially, statistical models were used to forecast the
future values of the time series. These models are based on historical values of the time
series to extract information about patterns (trend, seasonality, cycle, etc.) that allow the
extrapolation of the behavior of the time series [1].

We can identify in the literature two main classes of methodologies for time series analysis:

• Parametric statistical models. Among the traditional parametric modeling tech-
niques, we have the autoregressive integrated moving average (ARIMA) linear mod-
els [7]. The 1970s and 1980s were dominated by linear regression models [8].

• Nonparametric statistical models. Some of these techniques include the following:
self-exciting threshold autoregressive (SETAR) models [9], which are a nonlinear
extension to the parametric autoregressive linear models; autoregressive conditional
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heteroskedasticity (ARCH) models [10], which assume that the variance of the current
error term or innovation depends on the sizes of previous error terms; and bilinear
models [11], which are similar to ARIMA models, but include nonlinear interactions
between AR and MA terms.

The main difference between both classes is that the parametric model has a fixed
number of parameters, while the nonparametric model increases the number of parameters
with the amount of training data [12].

Although nonlinear parametric models represent an advance over linear approaches,
they are still limited because an explicit relational function must be hypothesized for
the available time series data. In general, fitting a nonlinear parametric model to a time
series is a complex task since there is a wide possible set of nonlinear patterns. However,
technological advancements have allowed researchers to consider more flexible modeling
techniques, such as support vector machines (SVMs) adapted to regression [13], artificial
neural networks (ANNs), and wavelet methods [14].

McCulloch and Pitts [15] and Rosenblatt [16] established the mathematical and con-
ceptual foundations of ANNs, but these nonparametric models really took off in the late
1980s, when computers were powerful enough to allow people to program simulations of
very complex situations observed in real life, generated by simple and easy-to-understand
stochastic algorithms that nevertheless demanded intensive computing power. ANNs
belong to this class of simulations since they are capable of modeling brain activity in
classification and pattern recognition problems. It was demonstrated that ANNs are a good
alternative to time series forecasting. In 1987, Lapedes and Farber [17] reported the first
approach to modeling nonlinear time series with an ANN. ANNs are an attractive and
promising alternative for several reasons:

• ANNs are data-driven methods. They use historical data to build a system that can
give the desired result [18].

• ANNs are flexible and self-adaptive. It is not necessary to make many prior assump-
tions about the data generation process for the problem under study [18].

• ANNs are able to generalize (robustly). They can accurately infer the invisible part of
a population even if there is noise in the sample data [19].

• ANNs can approximate any continuous linear or nonlinear function with the desired
accuracy [20].

The aim of this review is to provide the general reader with a good perspective
on how ANNs have been employed to model and forecast time series data. Through
this exposition, we explore the reasons why ANNs have not been widely adopted by
the statistical community as standard time series analysis tools. Time series modeling,
specifically in the field of macroeconomics, is limited almost exclusively to methodologies
and techniques typical of the linear model paradigm, ignoring completely machine learning
and artificial neural network techniques, which have effectively produced time series
forecasts that are more accurate in comparison to what linear modeling has to offer. This
paper (a) introduces ANNs to readers familiar with traditional time series techniques
who want to explore more flexible and accurate modeling alternatives, and (b) illustrates
recent techniques involving several ANN architectures chiefly employed with the goal of
improving time series prediction accuracy.

The rest of this document is organized as follows: Section 2 introduces basic time series
analysis concepts. In Section 3, we outline some of the most popular ANN architectures
considered in the state-of-the-art for time series forecasting; we also analyze the strengths
and weaknesses of these architectures in the context of time series modeling. In Section 4,
we provide a brief survey on relevant time series ANN modeling techniques, discussing
and summarizing recent research and implementations. Section 5 provides a discussion on
the application of ANN in time series forecasting. Finally, in Section 6, we discuss possible
new research directions in the application of ANN for time series forecasting.
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2. Basic Principles and Concepts in Time Series Analysis

In this section, we define, more or less formally, what a time series is (Section 2.1);
then, we discuss how a time series forecast can be analyzed as a functional approximation
problem (Section 2.2). This approach will enable us to construct mathematical models
aimed at predicting future time series values. We close this section by briefly describing
what an ARIMA model is, how ARIMA models are employed for time series predictions,
and why they are popular among statisticians and practitioners (Section 2.3).

2.1. What Is a Time Series?

A time series can be represented as a sequence of scalar (or vector) values y1, y2, . . ., yn
corresponding to contiguous, equally spaced points in time labeled t = 1, 2, . . . , n (e.g., we
could measure one yt value each second, or each hour, or each week, or each month, etc.,
depending on the nature of the process, on the available technology to measure and store data,
and on how we plan to use the collected data); this labeling convention does not depend on
the frequency at which yt values are sampled from a real-world process.

Nowadays, time series have an impact in various fields. For example, they occur daily
in economics, where currency quotes are recorded in time periods of minutes, hours, or days.
Governments publish unemployment, inflation, or investment figures monthly. Educational
institutions maintain annual records of school enrolment, dropout rates, or graduation
rates [21]. Recently, international health organizations published the number of people
who were infected by or deceased due to the COVID-19 pandemic daily. Several industries
record the number of failures that occur per shift in production lines to determine the
quality of their processes.

Time series forecasting involves several problems that complicate the task of gen-
erating an accurate prediction; for example, missing values, noise, capture errors, etc.
Therefore, the challenge is to isolate useful information from the time series, eliminating
the aforementioned problems to achieve a forecast [22].

2.2. Time Series Modeling

As mentioned above, time series analysis focuses on modeling a phenomenon y from
time t backwards {yt, yt−1, yt−2, ldots}, with the objective of forecasting the following
values of y up to a prediction horizon s. For predicting yt+s, one can assume a functional
model f based on the historical records yt, yt−1, yt−2, . . ., yt−d+1:

yt+s = f (yt, yt−1, yt−2, . . . , yt−d+1) (1)

Equation (1) is a function approximation problem, and it can be solved by applying
the following steps (see [23]):

1. Functional model f : Suppose a function f that represents the dependence of yt related
to yt−1, yt−2, . . . , yt−d+1;

2. Training phase: For each past value ytk , train f using as inputs the values ytk−1,ytk−2
and . . .,ytk−d+1, and as target ytk ;

3. Predict value ŷt+1: Apply the trained functional model f to predict yt+1 from yt, yt−1,
yt−2, . . ., yt−d+1.

The training phase step should be repeated until all predictions ŷtk+1 are close enough
to their corresponding target values ytk+1. If the functional model f is properly trained, it
will produce accurate forecasts, ŷt+1 ≈ yt+1. The above steps can be applied to forecast any
horizon s, replacing ytk with ytk+s as the target. The three-step procedure presented above
is known as an autoregressive (AR) model.
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2.3. ARIMA Time Series Modeling

In 1970, Box and Jenkins [7] popularized the autoregressive integrated moving average
(ARIMA) model, which is based on the general autoregressive integrated moving average
(ARMA) model described by Whittle [24].

yt =
p

∑
i=1

ϕiyt−i +
q

∑
j=1

θjwt−j + wt (2)

In Equation (2), the first term represents the autoregressive (AR) part, and the second
term represents the moving average (MA) part. The wk terms represent white noise.
Typically, wk are assumed to be random variables that come from a normal distribution
N(0, σ2

w). The parameters ϕi and θj are estimated from the historical values of the time
series. We can estimate wt at time tk as ŵtk = ytk − ŷtk .

The ARIMA model is an improvement on the ARMA model for dealing with non-
stationary time series with trends. The SARIMA model is an extension of the ARIMA
model for dealing with data with seasonal patterns; for more information, please consult
Shumway and Stoffer [21].

Models from the ARIMA family suppose that the time series is generated from linear,
time-invariant processes; this assumption is not valid for many situations. Neverthe-
less, up to now, the ARIMA model and its variants have continued to be very popular;
for instance, they are used by most official statistical agencies around the world as an
essential part of their modeling strategy when working with macroeconomic or ecolog-
ical/environmental temporal data. The popularity of ARIMA modeling stems from the
following facts:

1. Linear modeling is always at the forefront of the literature;
2. Linear models are easy to learn and implement;
3. Interpretation of results coming from linear models relies on well-defined, well-

developed, standardized, mechanized procedures with solid theoretical foundations
(e.g., there are established procedures that help us build confidence intervals asso-
ciated with point forecasts, founded on statistical and probabilistic theory centered
around the normal distribution).

On the other hand, when phenomena require the investigation of alternative nonlinear
time series models, it is useful to consider the following comment by George E. P. Box:

Since all models are wrong, the scientist cannot obtain a “correct” one by excessive
elaboration; on the contrary, following William of Occam, he should seek an economical
description of natural phenomena. Just as the ability to devise simple but evocative models
is the signature of the great scientist, so over-elaboration and over-parametrization is often
the mark of mediocrity.

(Box [25], 1976)

Occam’s razor (a principle also known as parsimony) is often used to avoid the
danger of overfitting the training data, that is, to choose a model that perfectly fits the
time series data but is very complex and hence often does not generalize well. Time series
analysis sometimes follows this principle in that many ARIMA or SARIMA models perform
increasingly worse as the number of historical values used to forecast yt+1 increases [26].

3. Popular ANN Architectures Employed for Time Series Forecasting Purposes

As mentioned previously in Section 1, artificial neural networks (ANNs) belong to the
class of nonlinear, nonparametric models; they can be applied to several pattern recognition,
classification, and regression problems. An ANN is a set of mathematical functions inspired
by the flow of electrical and chemical information within real biological neural networks.
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Biological neural networks are made up of special cells called neurons. Each neuron within
the biological network is connected to other neurons through dendrites and axons (neurons
transmit electrical impulses through their axons to the dendrites of other neurons; the
connections between axons and dendrites are called synapses). An ANN consists of a set
of interconnected artificial neurons. Figure 1 shows a graphical representation of a set of
neurons interconnected by arrows, which helps us see how information is processed within
an ANN.

Figure 1. Single hidden layer feedforward neural network.

In this section, we are going to briefly describe the basic aspects of some popular ANN
architectures commonly employed for time series forecasting: feedforward neural networks
(FFNNs), radial basis function networks (RBFNs), recurrent neural networks (RNNs), and self-
organizing maps (SOMs). As we advance in our discussion of FFNNs, occasionally we will
encounter some specific concepts needed to transform an FFNN into a time series forecasting
model; most of these additional concepts are also applicable to the remaining ANN architectures
considered in this section. Comments in Sections 3.2, 3.4, and 3.5 are based on material found
in an online course prepared by Bullinaria [27]. In turn, this online material is based on the
following textbooks: Beale and Jackson [28], Bishop [29], Callan [30], Fausett [31], Gurney [32],
Ham and Kostanic [33], Haykin [34], and Hertz [35].

3.1. Feedforward Neural Networks
3.1.1. Basic Model

Also known in the state of the art by the name of multilayer perceptron (MLP),
a feedforward neural network (FFNN), is an ANN architecture where information flows in
one direction only, from one layer to the next. Typically, an FFNN is composed of an input
layer, one or more hidden layers, and an output layer. In each hidden layer and the output
layer, there are neurons (nodes) that are usually connected to all the neurons in the next
layer. Figure 1 shows a single FFNN hidden layer with inputs x1, x2, . . . , xd and output ŷ.

In the structure shown in Figure 1, information is transmitted from left to right; the
inputs x1, x2, . . ., xd are transformed into the output ŷ. In the context of time series
modeling, focusing on the AR model, FFNN inputs x1, x2, . . ., xd correspond to time series
values yt, yt−1, yt−2, . . ., yt−d+1, while FFNN output ŷ typically corresponds to a prediction
value ŷt+1, which attempts to approximate future time series value yt+1 (see Section 2.2).

Each arrow in the FFNN structure in Figure 1 represents a weight w for the input
value x that enters on the left of the arrow, and exits on the right side with the value w · x.
The input layer is formed by the independent variables x1, x2, . . ., xd and a constant value
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known as the intercept. For each neuron, all its inputs are summed, and then this sum Σ is
transformed by applying a nonlinear activation function σ. One of the most-used activation

functions in ANNs is the logistic (sigmoid) function σ(s) =
1

1 + e−s . The hyperbolic

tangent is another frequently used activation function σ(s) =
e2s − 1
e2s + 1

. The functionality of

each neuron in the hidden layer h (h = 1, 2, . . . , q) is described by

σ

(
d

∑
i=0

wi,h · xi

)
, (3)

where each wi,h represents the weight that corresponds to the arrow that connects the input
node xi with the neuron h. In Figure 1, the output layer contains only one neuron; this is
the number of output units needed if we are interested in predicting a single scalar time
series value, but we can employ more output units if we need multiple prediction horizons
(scalar or vector). Neurons in an output layer have identical functionality to those in hidden
layers, although output neurons sometimes employ the identity function I(z) = z as an
activation function (especially for time series forecasting tasks). It is also possible, however,
to use as an activation function for output units the same sigmoidal activation functions
employed by hidden units (i.e., logistic or hyperbolic tangent). It is even possible to employ
different activation functions for units in the same layer. The output layer functionality for
our FFNN, depicted in Figure 1, assuming an identity activation function, is described by

ŷ = w0,1 +
q

∑
h=1

wh,1 · σ
(

d

∑
i=0

wi,h · xi

)
, (4)

3.1.2. FFNN Training

In summary, the ANN has a set of parameters that must be set to determine how the
input data are processed and the output generated: weights and biases. The weights are
related to the control of the connection between two neurons. The weight value determines
the magnitude and direction of the impact of a given input on the output. Biases can be
defined as the constant that is added to the product of features and weights. It helps models
change the activation function to the positive or negative side [36].

FFNNs are trained, or “taught”, with the help of supervised machine learning algo-
rithms. Backpropagation (BP) is probably the most popular machine learning algorithm
employed to train FFNN models. Next, we describe briefly how BP works. The idea is to
adjust all weights and biases in the FFNN model so that, in principle, they minimize some
fitting criterion E; for example, the mean squared error:

E =
1
n

n

∑
p=1

(
y(p) − ŷ(p)

)2
, (5)

where n is the number of example input patterns available for training our model, y(p) is the
target (desired value) for the pth example input pattern, and ŷ(p) is the FFNN output also
for the pth example input pattern, p = 1, 2, . . . , n. FFNN weights are adjusted according to

the backpropagation rule: ∆w = −η
∂E(W⃗)

∂w
, where meta-parameter η is a small positive

number called “learning rate”, W⃗ is a vector containing all FFNN weights, and w is a
single FFNN weight (i.e., w can be any single component of W⃗). Basically, the BP algorithm
consists of the following steps:

1. Initialize W⃗ randomly;
2. Repeat (a) and (b) until E(W⃗) is below a given threshold T or a pre-established

maximum number of iterations M has been reached:
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(a) W⃗old ← W⃗;

(b) Update all network weights: w← w +

[
−η

∂E(W⃗old)

∂w

]
;

3. Return W⃗.

From this algorithm outline, we see that BP starts from a random point W⃗0 in search
space W and looks for the global minimum of the error surface E(W⃗), say W⃗∗, by taking
small steps, each towards a direction opposite to the derivative (gradient) of the multivariate
error function E, evaluated at the current location in the search space W where BP has
advanced so far. If E(W⃗) is smooth enough, BP will descend monotonically when moving
from one step to the next; this is why BP is said to be a stochastic gradient descent procedure.

In summary, the goal of BP is to iteratively adjust W⃗, applying the gradient descent
technique, so that the output of the FFNN is close enough to the target values in the training
data [29]. For convex error surfaces, BP would do a nice job; unfortunately, E(W⃗) often
contains local minima, and in such situations, BP can easily become stuck into one of
those minima. A heuristic approach to facing this issue is to run BP several times, keeping
all FFNN settings fixed (e.g., set of training data, number of inputs d, number of hidden
neurons q, and BP meta-parameters).

Another important issue we face when training FFNNs with BP is that of overfitting.
This condition occurs when a model adapts too well to the local stochastic structure of
(noisy) training examples but produces poor predictions for inputs not in the training
examples. If we strictly aim for E(W⃗) global minimum, then we focus only on interpolating
exactly all training data examples. In most situations, however, we would like to use our
FFNN model for predicting, as accurately as possible, y values corresponding to unseen
(although fairly similar to training examples) inputs x1, x2, . . . , xd, i.e., we would like our
FFNN model to have small prediction error (prediction error can be measured much like
training error E using, for example, the mean squared error once the unseen future values
become available). Note that the true prediction error cannot be measured simultaneously
with the training error during the BP process, but we can estimate the former if we reserve
some training examples as if they were future inputs (see Section 3.1.5).

From all of this, we conclude that reaching E(W⃗) global minimum, in fact, should not
be our main objective when training an FFNN for prediction purposes; we should instead
employ heuristic techniques in order to improve the prediction (generalization) ability of
our FFNN model. A simple heuristic approach is to use early stopping, so that BP becomes
close, but not too close, to the global minimum E(W⃗). Another possibility is to employ
regularization. In this technique, we would incorporate, for instance, the term W⃗T · W⃗ to
our error function E(W⃗) and run BP as usual. This would force BP to produce a smoother,
non-oscillating output ŷ, thereby reducing the risk of over-fitting. Regularization penalizes
FFNN models with large weights w and establishes a balance between bias and variance
for the output ŷ.

3.1.3. Time Series Training Examples for FFNNs

The above description of FFNN training is very general, and thus, many questions
arise. Specifically, when we attempt to teach an FFNN how to forecast future time series
values, we face an obvious question: how do we arrange our available time series values
into a set of training examples so that we are able to use BP or some other supervised
machine learning algorithm? Suppose that we have N time series values y1, y2, . . . , yN at
our disposal to train our FFNN model and we want to produce one-step-ahead forecasts.
According to the autoregressive approach, the inputs to the FFNN model are the time series
values yt, yt−1, . . . , yt−d+1, while the time series value yt+1 is the target value. From our
available time series data, we see that t can take values d, d + 1, . . . , N − 1. Thus, a very
simple way to build a training dataset for FFNN models intended to produce one-step-
ahead univariate time series forecasts consists of rearranging available time series values
y1, y2, . . . , yN in a rectangular array (see Table 1), where we fixed the number of inputs
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in our FFNN model to d = 12, so the first twelve columns contain values for predictor
variables yt−11, yt−10, . . . , yt and the right column contains values for the (target) response
variable yt+1. Each row in Table 1 represents an example of training that can be applied in
conjunction with a supervised machine learning algorithm, such as BP.

Table 1. Training dataset for one-step-ahead FFNN time series models.

Example yt−11 yt−10 · · · yt yt+1

1 y1 y2 · · · y12 y13
2 y2 y3 · · · y13 y14
3 y3 y4 · · · y15 y16
...

...
... · · · ...

...
N − 12 yN−12 yN−11 · · · yN−1 yN

3.1.4. FFNN Time Series Predictions

Now, suppose we want to predict still unavailable time series values yN+1, yN+2, . . .,
yN+k using an FFNN model trained with the examples in Table 1 and designed to produce
one-step-ahead forecasts. How do we achieve this task? To generate predicted values
ŷN+1, ŷN+2, . . . , ŷN+k, first, we estimate ŷN+1 using values yN−11, yN−10, . . . , yN as inputs
to our FFNN model. Next, we predict ŷN+2 using the values yN−10, yN−9, . . . , yN , ŷN+1 as
inputs. Note that the most recently calculated model forecast is used as one of the inputs.
To predict ŷN+3, the two most recently calculated forecasts are used as two of the model
inputs. This iterative process continues until the forecast value ŷN+k is obtained.

3.1.5. Cross-Validation

Cross-validation (CV) is a statistical technique for estimating the prediction (or fore-
casting) accuracy of any model using only available training examples. CV can be helpful
when deciding which model to select from a list of properly trained models; we would
of course select the model that exhibits the smallest prediction error, as estimated by the
CV procedure. CV can also serve as a training framework for ANNs; in fact, CV is of-
ten regarded as an integral part of the FFNN model construction process. In general,
when training FFNNs for prediction purposes, CV is employed to fine-tune FFNN meta-
parameters (such as d, the number of input nodes, and q, the number of hidden units),
aiming at reducing over-fitting risk and at the same time improving generalization ability
(i.e., prediction accuracy). The idea here is to regard a combination of meta-parameters,
say (d = 12, q = 3), as a unique FFNN model. Following this idea, we would apply
CV, for example, to each element in the combination set {(d, q)|d = 3, 6, 12; q = 2, 3, 4, 5},
generating an estimated CV prediction error for each one of the 12 possible combinations.
We would finally keep the combination (i.e., FFNN model) that generates the smallest CV
prediction error. So, how does CV work? Typically, we randomly split our set of available
training examples into two complementary sets: one set, containing approximately 80%
of all training examples, is used exclusively for training the considered model, while the
other set, containing the remaining 20% of all training examples, is used exclusively for
measuring prediction accuracy by comparing target values and their corresponding model
outputs via an error function similar to that employed in BP to quantify training error,
e.g., mean squared error. The former of these two complementary sets is obviously called
the training set and the latter is called the validation set. The 80% and 20% sizes are just a
rule of thumb, and other sizes for these two sets could be chosen. So, we use the training
set to obtain a fully trained FFNN model via BP, for example, and then feed to this trained
FFNN model the input values contained in the examples from the validation set, thus
obtaining outputs that are compared against their corresponding target values from the
validation set, producing a prediction error measure, PEM. This is the basic CV iteration.
We repeat many times the basic CV iteration (random generation computation) in order
to generate many PEM measures, and finally, we average all generated PEMs. This final
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average would be the estimated prediction error produced by the CV procedure. As we
can see, this is a procedure that makes intensive use of available computational resources
but produces robust results. We can combine CV with regularization for even better results.
For more information about CV, early stopping, regularization, and other techniques to
improve FFNN performance, see Bishop [29].

It is important to keep in mind that to obtain valid results from the CV procedure, we
must make sure that our training data examples are independent and come from the same
population. Unfortunately, the condition of independence does not hold with time series
data, as chronologically ordered observations are almost always serially correlated in time
(one exception is white noise). To our knowledge, there is not currently a standard way
of performing CV for time series data, but two useful CV procedures that deal with the
issue of serial dependence in temporal data can be found in Arlot, Celisse, et al. [37,38].
Essentially, the modified CV procedure proposed by Arlot, Celisse, et al. [37] chooses
the training and validation sets in such a way that the effects of serial correlation are
minimized, while [38] proposes a procedure called forward validation, which exclusively
uses the most recent training examples as validation data. CV error produced by the
forward validation procedure would be a good approximation to unknown prediction error
since the short-term future behavior of a time series tends to be similar to that of its most
recently recorded observations.

3.1.6. FFNN Ensembles for Time Series Forecasting

FFNN models can be trained with stochastic optimization algorithms like BP, PSO,
GA, etc. Because of this, FFNN models for time series prediction produce forecasts ŷt that
depend on the result of the optimization that is being carried out. That is, the optimization
process conditions the random variable ŷt. The above is true even when the optimization
process always has the same initial conditions (the same training dataset and the same
initial parameters). This stochastic prediction property of FFNN models, combined with
their conceptual simplicity and their ease of training and implementation (relative to other
ANN architectures), allows us to easily construct, from a fixed set of training examples, n
independent FFNN models, collectively known as an FFNN ensemble. This FFNN ensem-
ble model constructed produces, for a fixed time point t, a set of individual predictions
{ŷs,t|s = 1, . . . , n} in response to a single input pattern. Such individual predictions can
then be combined in some way, e.g., by averaging, to produce an aggregate prediction that
is hopefully more robust, stable, and accurate when compared against their individual
counterparts. This basic averaging technique is similar to that found in Makridakis and
Winkler [39]. It is important to emphasize here that prediction errors from individual
ensemble components need to be independent, i.e., non-correlated or at least only weakly
correlated, in order to guarantee a decreasing total ensemble error with an increasing num-
ber of ensemble members. FFNN ensemble models in particular fulfill this precondition,
given the stochastic nature of their individual outputs. Additionally, all individual pre-
dictions could be used to estimate prediction intervals since the distribution of individual
forecasts already contains valuable information about the model uncertainty and robust-
ness. Barrow and Crone [40] average the individual predictions from several FFNN models
that are generated during a cross-validation process, thus constructing an FFNN ensemble
model aimed at producing robust time series forecasts. They compare their proposed
strategy (called “crogging”) against conventional FFNN ensembles and individual FFNN
models. They conclude that their crogging strategy produces the most accurate forecasts.
From this, it could be argued that FFNN ensembles whose individual components are
trained with different sets of training examples (all coming from the same population) have
superior performance with respect to conventional FFNN ensembles whose individual
components are all trained with a single fixed set of training examples. Another recent
work related to ANN ensembles consists of a comparative study by Lahmiri [41] in which
four types of ANN ensembles are compared when using them for predicting stock market
returns. The compared ensembles are as follows: an FFNN ensemble, an RNN ensemble,
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an RBFN ensemble, and a NARX ensemble. The results in this particular study confirm
that any ensemble of ANNs performs better than single ANNs. It was also found in this
case that the RBFN ensemble produced the best performance. Finally, also note that the
Bayesian learning framework involves the construction of FFNN ensembles (also known as
committees in the literature).

3.2. Radial Basis Function Networks

Radial basis function networks (RBFNs) are based on function approximation theory.
RBFNs were first formulated by Broomhead and Lowe [42]. We outlined in Section 3.1 how
FFNNs with sigmoid activation functions (one hidden layer) can approximate functions.
RBFNs are slightly different from FFNNs, but they are also capable of universal approxi-
mation [43]. In principle, FFNNs arise from the need to classify data points (clustering),
while RBFNs rely on the idea of interpolating data points (similarity analysis). An RBFN
has a three-layer structure, similar to the structure of an FFNN. The difference lies in the
implementation of a Gaussian function instead of a sigmoid activation function in the
hidden layer of the RBFN for every neuron. These Gaussian functions are also called
radial basis functions, because their output value depends only on the distance between the
function’s argument and a fixed center.

In order to understand the training process of an RBFN, let us recap the concept of
exact interpolation, mentioned earlier in Section 3.1.2. Given a multidimensional space D,
the exact interpolation of a set of N data points requires that the dimensional input vectors
x⃗(p) = ⟨x(p)

1 , . . . , x(p)
D ⟩will be mapped to the corresponding target output t(p) ∀p = 1, . . . , N.

The objective is to propose a function f (x) such that f (⃗x(p)) = t(p). The naïve radial basis
function method uses a set of basis functions N of the form ϕ(∥⃗x− x⃗(p)∥), where ϕ(·) is a
nonlinear function. A linear combination of the basis functions f (⃗x) = ∑N

p=1 wpϕ(∥⃗x− x⃗(p)∥)
can be obtained as a result of the mapping, for which it is required to find the “weights” wp
such that the function passes through the data points. The most famous and recommended
basis function is the Gaussian function:

ϕ(r) = exp
(
− r2

2σ2

)
(6)

with width parameter σ > 0. Figure 2 shows an RBFN under this naïve approach. Please
observe that, in this architecture, the N input patterns {x⃗(p), p = 1, . . . , N} determine the
input to the hidden layer weights directly.

Figure 2. Radial basis function network under the naïve radial basis function approach.
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There are problems with the exact interpolation (naïve radial basis function) approach.
First, when the data are noisy, it is not desirable for the network outputs to pass through
all data points because the resulting function could be highly oscillatory and would not
provide adequate generalization. Second, if the training dataset is very large, the RBFN
will not be computationally efficient to evaluate if we employ one basis function for every
training data point.

3.3. How Do We Improve Radial Basis Function Networks?

The RBFN can be improved by the following strategies when applying exact
interpolation [42]:

1. The number of basis functions M must be much smaller than the number of data
points N, (M < N);

2. Determine the centers of the basic functions using a training algorithm; they should
not be defined as training data input vectors;

3. The basis functions should have a different width parameter σ, which could be solved
by a training algorithm;

4. To compensate for the difference between the mean value of all basis functions and
the corresponding mean value of the targets, bias parameters can be used in the linear
sum of activations in the output layer.

Notwithstanding the above, proposing the ideal value for M is an open problem.
By applying the cross-validation technique discussed in Section 3.1.5, a feasible value M
could be obtained by comparing results for a range of different values.

So, how do we find the parameters of an RBFN? The input to hidden “weights” (i.e.,
radial basis function parameters {µij, σj} for i = 1, . . . , D; j = 1, . . . , M) can be trained using
unsupervised learning techniques, such as fixed training data points selected at random
and k-means clustering of training data. Supervised learning techniques can also be used,
albeit with a higher computational cost. Then, the input-to-hidden “weights” are preserved
at a constant while the hidden-to-output “weights” are learned. These weights can be easily
found by solving a system of linear equations because this second training stage has only
one layer of weights {wjk}, k = 1, . . . , O and O linear output activation functions. For more
information on RBFN training, please refer to Bishop [29] and Haykin [34].

RBFNs, applied to time series prediction tasks, require inputs of the same form as those
used by FFNNs; for instance, we would rearrange our time series data as shown in Table 1
in order to teach an RBFN how to predict one-step-ahead scalar time series values. Recent
research on RBFN modeling applied to time series prediction can be found, for instance,
in the work of Chang [44], where RBFN models are used to produce short-term forecasts
for wind power generation. Other recent examples include the following: in Sermpinis,
Theofilatos, Karathanasopoulos, Georgopoulos, and Dunis [45], RBFN-PSO hybrid models
are employed for financial time series prediction; Yin, Zou, and Xu [46] use RBFN models
to predict tidal waves on Canada’s west coast; Niu and Wang [47] employ gradient-descent-
trained RBFNs for financial time series forecasting; Mai, Chung, Wu, and Huang [48] use
RBFNs to forecast electric load in office buildings; and Zhu, Cao, and Zhu [49] employ
RBFNs to predict traffic flow at some street intersections.

3.4. Recurrent Neural Networks

The main characteristic of a recurrent neural network (RNN) is that it has at least one
feedback connection, where the output of the previous step is fed as input to the current
step. This recurrent connection system makes RNNs ideal for sequential or time series data,
“remembering” past information. Another distinctive feature of an RNN is that each layer
shares the same weight parameter. RNNs are not easy to train, but very accurate forecasts
for time series can be obtained when trained correctly. There are several RNN architectures;
however, they all have the following characteristics in common:

1. RNNs contain a subsystem similar to a static FFNN;
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2. RNNs can take advantage of the nonlinear mapping abilities of an FFNN, with an
added memory capacity for past information.

RNN’s learning can be performed by using the gradient descent method, similar to
how it is used in the BP algorithm. Specifically, RNNs can be trained by using an algorithm
called backpropagation through time (BPTT). BPTT trains the network by computing errors
from the output layer to the input layer, but unlike BP, it adds errors at each time step
because it shares parameters at each layer.

A basic RNN architecture, called the Elman network [50], has the inputs of the next
time step together with its hidden unit activations that feed back on the network. Figure 3a
shows the Elman network architecture. It is observed that it is necessary to discretize the
time and update the activations step by step. In real neurons, this could correspond to the
time scale on which they operate, and for artificial neurons, it could be any time step size
related to the prediction to be made. In particular, for time series modeling applications,
it seems like a natural choice to make the time-step size in an RNN equal to the time
separation between any two consecutive time series values. A delay unit is introduced,
which simply delays the signal/activation until the next time step. This delay unit can be
regarded as a short-term memory unit. Suppose the vectors x⃗(t) and y⃗(t) are the inputs and
outputs, W⃗IH , W⃗HH , and W⃗HO are the three connection weight matrices, and f and g are the
output and hidden unit activation functions of an Elman network; then, the operation of
the said RNN can be described as a dynamic system characterized by the pair of nonlinear
matrix equations:

h⃗(t) = f
(

W⃗IH x⃗(t) + W⃗HH h⃗(t− 1)
)

State transition

y⃗(t) = g
(

W⃗HO⃗h(t)
)

Output equation
(7)

Figure 3. Two simple types of recurrent neural networks. Each rectangle contains input units, artificial
neurons or delay/memory units; their outputs being indicated by vector quantities x⃗(t), y⃗(t), h⃗(t),
etc. A solid arrow connecting two rectangles represents the full set of connection weights among all
involved units, which are encoded as matrices W⃗IH and W⃗HO. Dashed arrows represent one-to-one
connections between involved units; this means I⃗d (identity matrix) and W⃗HH are diagonal matrices.

In a dynamical system, its state can be represented as a set of values that recapitulates
all the information from the past about the system. The hidden unit activations h⃗(t) define
the state of the dynamical system. Elman networks are useful in modeling chaotic time
series, which are more closely related to chaos theory and dynamical systems. For further
information on chaotic time series, see Sprott [51]. Some recent applications of Elman
networks in time series forecasting can be found in Ardalani-Farsa and Zolfaghari [52],
Chandra and Zhang [53], and Zhao, Zhu, Wang, and Liu [54].
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Another simple recurrent neural network architecture, similar to an Elman network, is
the Jordan network [55]. In this type of recurrent network, it is the output of the network
itself that feeds back into the network along with the inputs of the next time step (see
Figure 3b). Jordan networks show dynamical properties and are useful for modeling
chaotic time series and nonlinear auto regressive moving average (NARMA) processes.
Some examples of models based on the Jordan neural network architecture and applied to
time series forecasting can be found in Tabuse, Kinouchi, and Hagiwara [56], Song [57] and
Song [58].

Another variant of RNN, called nonlinear autoregressive modeling with exogenous inputs
(NARX), has feedback connections that enclose several layers of the network, which can be
used by including present and lagged values of k exogenous variables x(1), x(2), . . ., x(k).
The full performance of the NARX neural network is obtained using its memory capacity [59].

There are two different architectures of NARX neural network model:

• Open-loop. Also known as the series-parallel architecture, in this NARX variant,
the present and past values of xt and the true past values of the time series yt are used
to predict the future value of the time series yt+1.

• Close-loop. Also known as the parallel architecture, in this NARX variant, the present
and past values of xt and the past predicted values of the time series ŷt are used to
predict the future value of the time series yt+1.

3.5. Self-Organizing Maps

Self-organizing maps (SOMs) learn to form their classifications of the training data
without external help. To achieve this, in SOMs, it is assumed that membership in each
class is determined by input patterns that share similar characteristics and that the network
will be able to identify such features in a wide range of input patterns. A particular class
of unsupervised systems is based on competitive learning, where output neurons must
compete with each other to activate, but under the condition that only one is activated
at a time, called a winner-takes-all neuron. To apply this competition, negative feedback
pathways must be used, which are lateral inhibitory connections between neurons. As a
result, neurons must organize themselves.

The main objective of an SOM is to convert, in a topologically ordered manner, an in-
coming multidimensional signal into a discrete one- or two-dimensional map. This is like a
nonlinear generalization of principal component analysis (PCA).

3.5.1. Essential Characteristics and Training of an SOM

An SOM is organized as follows: we have points x⃗ in the input space that are mapped
to points I(x⃗) in the output space. There is a set of points x⃗ living in the input space, and we
suppose that there is a function to assign x⃗ to points I(x⃗) in the output space. In turn, there
is another function to assign to each point I in the output space a corresponding point w⃗(I)
in the input space (see Figure 4).

Figure 4. Organization of an SOM.
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Kohonen networks [60] are a particular and important kind of SOM. The proposed
network has a feedforward structure with a single computational layer, where the neurons
are arranged in rows and columns. Nodes in the input layer connect to each of the neurons
in the computational layer (see Figure 5).

Figure 5. Kohonen network.

dj(x⃗) =
D

∑
i=1

(xi − wji)
2 (8)

The self-organization process consists of the following components:

1. Initialization. At first, the connection weights are set to small random values.
2. Competition. For a D dimensionality input space , x⃗ = ⟨x1, . . . , xD⟩ represents the

input patterns and w⃗j = ⟨wj1, . . . , wjD⟩ represents the connection weights between
the input units xi and the neuron j in the computational layer; j = 1, . . . , N, where N
is the total number of neurons. The difference x⃗ between w⃗j for each neuron can be
calculated as the Euclidean distance squared, which will represent the discriminant
function d(x⃗).
The neuron with the lowest discriminant function d(x⃗) is declared the winner-takes-all
neuron. Competition between neurons allows mapping the continuous input space to
the discrete output space.

3. Cooperation. In neurobiological studies, it was observed that, within a set of excited
neurons, there can be lateral interaction. When a neuron is activated, the neurons
in its surroundings tend to become more excited than those further away. A sim-
ilar topological neighborhood that decays with distance exists for neurons in an
SOM. Let Sij be the lateral distance between any pair of neurons i and j, then
Tj,I(x⃗) = exp(−S2

j,I( vecx)/2σ2) defines our topological neighborhood, where I(x⃗) is
the index of the winner-takes-all neuron. A special quality of the SOM is that the
size of the neighborhood σ should decrease over time. An exponential reduction is a
commonly used time dependence: σ(t) = σ0 exp(−t/τσ).

4. Adaptation. SOM has an adaptive (learning) process through which the feature map
between inputs and outputs is formed through the self-organization of the latter. Due
to the topographic neighborhood, when the weights of the winner-takes-all neuron
are updated, the weights of its neighbors are also updated, although to a lesser extent.
To update the weight, we define ∆wji = η(t) · Tj,I(x⃗)(t) · (xi − wji), in which we have
a time-dependent learning rate t η(t) = η0exp(−t/τη). These updates are applied to
all training patterns x⃗ for various periods. The goal of each learning weight update is
to move the weight vectors w⃗j of the winner-takes-all neuron and its neighbors closer
to the input vector x⃗.

When the SOM training algorithm has converged, important statistical properties
of the feature map are displayed. As shown in Figure 4, the set of weight vectors {w⃗j}
in the output space integrates the feature map Φ, which provides an approximation to
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the input space. Derived from the above, Φ represents the statistical variations in the
input distribution: the largest domains of the output space are allocated to sample training
vectors x⃗ with high probability of occurrence, which are drawn from the regions in the input
space; the opposite is the case for training vectors with low probability. In other words,
a properly trained self-organizing map is able to choose the best features to approximate the
underlying distribution of the input space. For further details on SOM statistical properties,
please refer to Haykin [34].

3.5.2. Application of Self-Organizing Maps to Time Series Forecasting

If SOMs are mainly employed to solve unsupervised classification problems, how can
they be applied to time series forecasting tasks, which in essence are, as we saw in Section 2.2,
function approximation (regression) problems? A simple approach to the univariate time
series case is as follows: as training examples for our SOM model, we can use vectors of
the form x⃗ = ⟨yt+1, yt, yt−1, . . . , yt−d+1⟩, where the first component corresponds to the one-
step-ahead target output in our basic FFNN model discussed in Section 3.1. The rest of
the components in x⃗ correspond to the autoregressive inputs also employed by our FFNN
model. Thus, any single row in Table 1, which corresponds to a training example for FFNN
models, also serves as a training example for SOM models. The computational layer in our
SOM model for univariate time series consists of a one-dimensional lattice of neurons. When
forecasting, our SOM model utilizes all of the components from input vector x⃗, except for
the first, in a competition process among all neurons in the computational layer, just as
described in Section 3.5.1. The winning neuron I(⃗x) determines our one-step-ahead forecast
value ŷt+1 by simply extracting the first component from weight vector w⃗I(⃗x) associated to
winning neuron I(⃗x), i.e., ŷt+1 = wI(⃗x),1. Thus, the number of neurons in the computational
layer determines how many possible discrete values can assume our one-step-ahead forecast
value ŷt+1. One disadvantage to this simple approach is the large prediction error due to the
step-like output of our SOM model trying to approximate a “smooth” time series. SOMs
may require too many neurons if we want to reduce their associated prediction error. This
alternative, however, would be accompanied by a prohibitively high computational cost.
A more sensible solution to this problem would be using RBFNs in conjunction with SOMs:
first, we train a univariate time series SOM model just as described above; then, the resulting
SOM weights {w⃗j}, which define mapping Φ, are used to directly build an RBFN with N
Gaussian basis functions and one output unit. SOM weights wj,1 would be used as RBFN
hidden-to-output weights, while the remaining components in vector w⃗j would play the role
of the RBF center for the jth hidden unit. No further RBFN training is required, although we
still need to determine the σj parameters for each radial basis function in the network; refer
to Section 3.2 for more details on RBFNs. Thus, a reduction in prediction error is achieved,
at least in places where there are not extreme values in the time series. In these particular
locations where extreme values occur, prediction errors are still high for both SOM and
SOM–RBFN models. For more details, see Barreto [61], where a comprehensive survey on
SOMs applied to time series prediction can also be found. Relatively recent work on model
refinements based on the classical SOM and applied to time series prediction can be found in
Burguillo [62] and Valero, Aparicio, Senabre, Ortiz, Sancho, and Gabaldon [63]. In Section 4.4,
we summarize the work of Simon, Lendasse, Cottrell, Fort, Verleysen, et al. [64], where a
double SOM model is proposed to generate long-term time series trend predictions.

3.5.3. Comparison between FFNN and SOM Models Applied to Time Series Prediction

An SOM-based model adapted to time series prediction basically performs local
function approximation, i.e., acts on localized regions of the input space. On the other
hand, FFNNs are global models, making use of highly distributed representations of the
input space. This contrast between global and local models implies that FFNN weights are
difficult to interpret in the context of time series modeling. Essentially, FFNNs are black
boxes that produce forecasts in response to certain stimuli. The components of a weight
vector associated to each neuron in an SOM model fitted to a univariate time series can
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have a clearer meaning to the user, given the local nature of the model. Specifically, they can
be viewed as the mean values for lagged versions of response variable y when we expect a
one-step-ahead future value close to the first component on such a weight vector [61].

3.5.4. SOM Models Combined with Autoregressive Models

Another possible approach involving the application of SOM models to time series
prediction tasks is a direct extension of the procedure described in Section 3.5.2. We can
build a hybrid two-stage predictor based on SOM and autoregressive (AR) models. In the
first stage, we train an SOM model so as to produce discrete one-step-ahead time series
forecasts.This SOM model is then employed to split the available set of training examples
into N clusters, one for each SOM neuron, by simply presenting training example x⃗ to
trained SOM and assigning a cluster label to x⃗ based on the winning neuron. In the second
stage, a local linear AR model is fitted to each cluster defined in the first stage. Now,
this fully trained hybrid model can be employed to produce a one-step-ahead forecast
for any future input x⃗ f : first, we determine to which cluster x⃗ f belongs, by using our
trained first-stage SOM model; then, we use the corresponding AR model to produce the
desired forecast. This basic approach is similar in spirit to local function linearization (it
seems like a sensible strategy to assume that, locally, a real continuous function can be
reasonably approximated by a simpler linear function) and can be extended in many ways;
for instance, FFNN (or RBFN, or even RNN) ensembles could replace local AR models in
the second stage. Although, this would result in a more complex model, requiring extensive
computational resources for its construction. AR parameters can be quickly computed,
although statistical training on the modeler’s side is required (specifically, the modeler
must be familiarized with the Box–Jenkins statistical technique). This SOM–AR approach
will work well if each data cluster contains enough consecutive time series observations
to adequately train an AR model; otherwise, an ANN alternative for the second stage
would be preferable. If all goes well, two-stage SOM–AR models will enable users to make
plausible statistical inferences about the relative importance of lagged time series values at
a local level. Confidence intervals can additionally be computed for each one-step-ahead
forecast produced by the SOM–AR model, giving a statistical quantification of forecast
uncertainty. Yadav and Srinivasan [65] propose a specific SOM–AR model implementation
for predicting electricity demand in Britain and Wales, while Dablemont, Simon, Lendasse,
Ruttiens, Blayo, and Verleysen [66] combine an SOM clustering model with local RBFNs
to forecast financial data; Cherif, Cardot, and Boné [67] propose an SOM–RNN model to
forecast chaotic time series, and Nourani, Baghanam, Adamowski, and Gebremichael [68]
propose a sophisticated SOM–FFNN model to forecast rainfall on multi-step-ahead time
scales using precipitation satellite data.

3.6. BP Problems in the Context of Time Series Modeling

We have seen in Section 3.1.2 that BP training presents several challenges that must be
overcome: over-fitting, convergence to a local minimum, and convergence problems slow
convergence speed (η must be small to improve BP convergence properties at the expense
of BP processing speed).

3.6.1. Vanishing and Exploding Gradient Problems

One of the main problems encountered when training recurrent neural networks or
deep neural networks (FFNNs with many hidden layers) with BP is the vanishing gradient
problem. When the gradients become very small relative to the parameters, it can cause
the weights in the initial layers not to change noticeably; this is known as the vanishing
gradient problem [69]. This problem is commonly attributed to the architecture of the
neural network, certain activation functions (sigmoid or hyperbolic tangent), and small
initial values of the weights. The exploding gradient problem appears when the weights
are greater than 1 and the gradient continues to increase, causing the gradient descent to
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diverge. Unlike the vanishing gradient problem, the exploding gradient problem is directly
related to the weights in the neural network [69].

For instance, a generic recurrent network has hidden states h1, h2, . . . , inputs u1, u2, . . . ,
and outputs x1, x2, . . . . Let it be parametrized by θ, so that the system evolves as

(ht, xt) = F(ht−1, ut, θ) (9)

Often, the output xt is a function of ht, as some xt = G(ht). The vanishing gradient
problem already presents itself clearly when xt = ht, so we simplify our notation to the
special case with

xt = F(xt−1, ut, θ) (10)

Now, take its differential:

dxt = ∇θ F(xt−1, ut, θ)dθ +∇xF(xt−1, ut, θ)dxt−1

dxt−k = ∇θ F(xt−k−1, ut−k, θ)dθ +∇xF(xt−k−1, ut−k, θ)dxt−k−1

dxt = (∇θ F(xt−1, ut, θ) +∇xF(xt−1, ut, θ)∇θ F(xt−2, ut−1, θ) + · · · )dθ

(11)

Training the network requires us to define a loss function to be minimized. Let it be
L(xT , u1, ..., uT), then minimizing it by gradient descent gives

dL = ∇xL(xT , u1, ..., uT)(∇θ F(xt−1, ut, θ) +∇xF(xt−1, ut, θ)∇θ F(xt−2, ut−1, θ) + · · · )dθ (12)

∆θ = −η · [∇xL(xT)(∇θ F(xt−1, ut, θ) +∇xF(xt−1, ut, θ)∇θ F(xt−2, ut−1, θ) + · · · )]T (13)

where η is the learning rate. The vanishing/exploding gradient problem appears because
there are repeated multiplications of the form

∇xF(xt−1, ut, θ)∇xF(xt−2, ut−1, θ)∇xF(xt−3, ut−2, θ) · · · (14)

Specifically, the vanishing gradient problem arises when the neural network adds
multiple layers with activation functions whose gradients approach zero. Since each layer
contributes to the product of the activation functions and the layer weights, if the number
of layers increases, the product quickly turns small [70].

The explosive gradient problem arises when the network weights are multiplied by
the activation functions, and as a result, we have a product with values greater than one,
causing the values of the gradients to be large [70].

3.6.2. Alternatives to the BP Problems

Attempts have been made to overcome these issues in the context of time series
forecasting. See, for example, Hu, Wu, Chen, and Dou [71] and Nunnari [72]. Below is a
brief outline of the main alternatives.

Batch normalization. Ioffe and Szegedy [73] described an internal covariate shift as the
effect of inputs with a corresponding distribution in each layer of a neural network, which
is caused by the randomness that exists in the initialization of parameters and in the input
data during the training process. They proposed to address the problem by normalizing
the layer inputs, recentering and rescaling them, and applying the normalization to each
training mini-batch. Batch normalization relaxes the care of parameter initialization, allows
the application of much higher learning rates, and, in certain cases, eliminates the need for
dropout to mitigate overfitting. Although batch normalization has been proposed to handle
gradient explosion or vanishing problems, recently, Yang, Pennington, Rao, Sohl-Dickstein,
and Schoenholz [74] showed that, at the initialization time, a deep batch norm network
suffers from gradient explosion.

Gradient clipping. In 2013, Pascanu, Mikolov, and Bengio [70] assumed that a cliff-
like structure appears on the error surface when gradients explode, and as a solution,
they proposed clipping the norm of the exploded gradients. Furthermore, to solve the
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vanishing gradient problem, they use a regularization term to force the Jacobian matrices to
preserve the norm only in relevant directions, keeping the error signal alive while it travels
backwards in time.

Backpropagation through time (BPTT). This famous technique was proposed by
Werbos [75] in 1990. If the computational graph of an RNN is expanded (unrolled RNN),
it is basically an FFNN with the innovative characteristic that, throughout the unrolled
RNN, the same parameters are repeated and these appear in each period. Then, the chain
rule can be applied to propagate the gradients backward through the unrolled RNN, as
would be performed in any FFNN. It should be considered that, in this unrolled RNN,
for each parameter, the gradient with respect to itself must be added at all places where the
parameter occurs. In summary, BPTT can be explained as using BP to RNN on sequential
data, e.g., a time series [75].

The BPTT algorithm can be described as follows:

• Introduce a time-step sequence of input and output pairs to the network.
• Unroll the network.
• For each time step, calculate and accumulate errors.
• Roll-up the network.
• Update weights.
• Repeat.

Long short-term memory (LSTM). In 1997, Hochreiter and Schmidhuber [76] intro-
duced an RNN along with an appropriate gradient-based learning algorithm. Its goal is
to introduce a short-term memory for RNN that can last for thousands of time steps, that
is, a “long short-term memory”. The main feature of LSTM is its memory cell made up of
three “gates”: the input gate, output gate, and forget gate [77]. The flow of information is
regulated by gates inside and outside the cell. First, the forget gate assigns a previous state
a value between 0 and 1, compared to a current input. Then, it chooses what information
to keep from a previous state. A value of 0 means deleting the information, and a value
of 1 means keeping it. By applying the same system as the forget gate, the gateway deter-
mines the new information that will be stored in the current state. Finally, the output gate
controls which pieces of information in the current state are generated by considering the
previous and current states and assigning a value from 0 to 1 to the information. The LSTM
network maintains useful long-term dependencies, generating relevant information about
the current state.

The goal of LSTM is to create an additional module in an ANN that can learn when to
forget irrelevant information and when to remember relevant information [77]. Calin [78]
shows that RNNs using LSTM diminish the vanishing gradient problem but do not solve
the exploding gradient problem.

Reducing complexity. The vanishing gradient problem can be mitigated by reducing
the complexity of the ANN. By reducing the number of layers and/or the number of neu-
rons in each layer, a reduction in the complexity of the network can be achieved, affecting
the tunability of the model. Therefore, finding a balance between model complexity and
gradient flow is critical to creating successful ANNs in deep learning.

Evolutionary algorithms. Alternatively, it is also possible to employ evolutionary
algorithms instead of BP for ANN training purposes [79]. For instance, Jha, Thulasiraman,
and Thulasiram [80] and Adhikari, Agrawal, and Kant [81] employ particle swarm opti-
mization (PSO) to train ANN models applied to time series modeling; Awan, Aslam, Khan,
and Saeed [82] compare short-term forecast performances for FFNN models trained with
genetic algorithm (GA), artificial bee colony (ABC), and PSO by using electric load data;
Giovanis [83] combines FFNN and GA for predicting economic time series data.

Statistical techniques ANNs can also be trained using probabilistic techniques such as
the Bayesian learning framework. This training technique offers some relevant advantages:
no over-fitting occurs, it provides automatic regularization, and forecast uncertainty can be
estimated [29]. Some recent applications using this approach in the context of time series
forecasting can be found, for example, in Skabar [84], Blonbou [85], van Hinsbergen, Hegyi,
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van Lint, and van Zuylen [86], and Kocadağlı and Aşıkgil [87]. Another possible alternative
is to train an ANN with BP or some other optimization technique and then build a hybrid
ANN–ARIMA model; see, for example, Zhang [88], Guo and Deng [89], Otok, Lusia, Faulina,
Kuswanto, et al. [90], and Viviani, Di Persio, and Ehrhardt [91].

4. Brief Literature Survey on ANNs Applied to Time Series Modeling

In this section, we discuss, analyze, and summarize a small sample of recently pub-
lished research articles. In our opinion, these articles are representative of the state of the art
and provide useful information that can be used as a starting point for future research. The
choice of articles surveyed in this section is based mainly on the architectures outlined pre-
viously in Section 3. In Section 4.1, we study some time series forecasting techniques [92,93],
which combine feedforward neural network models with particle swarm optimization.
The basic idea here is to show how to combine these techniques to produce new hybrid
models and how to design experiments in which we compare several time series prediction
models. Section 4.2 explores the work of Crone, Guajardo, and Weber [94] on how to assess
the ability of support vector regression and feedforward neural network models to predict
basic trends and seasonal patterns found in economic time series of monthly frequency.
Section 4.3 highlights useful hints suggested by Moody [95] on how to construct ANN mod-
els for predicting short-term behavior in macroeconomic indicators. Section 4.4 summarizes
the work found in Simon, Lendasse, Cottrell, Fort, Verleysen, et al. [64], which instructs on
how to build a model based on a double application of the self-organizing map to predict
medium- to long-term time series trends, focusing on the empirical distribution of several
forecasts’ paths produced by the same double SOM model. Sections 4.5 and 4.6 summarize
the works of Zimmermann, Tietz, and Grothmann [96] and Lukoševičius [97], respectively.
Both works contain valuable hints and techniques to build recurrent neural network models
aimed at predicting temporal data, possibly coming from an underlying dynamical system.
Zimmermann, Tietz, and Grothmann [96] focus on a more traditional approach, using
back propagation through time as a training algorithm but employing a novel graphical
notation to represent recurrent neural network architectures. Lukoševičius [97] focuses on
the echo state network approach, which relies more on numerical linear algebra for training
purposes. In Sections 4.2–4.6, we replicated, from the respective surveyed articles, impor-
tant comments that correspond to theoretical concepts, hints, and relevant bibliographic
references, as we believe this is the best way to convey and emphasize them. Our intention
is to construct useful, short, and clear summaries that will hopefully save some time for
readers interested in gaining a full understanding of similar articles to the ones we are
surveying here.

4.1. Combining Feedforward Neural Networks and Particle Swarm Optimization for Time
Series Forecasting

As we mentioned already briefly in Section 3.6, it is possible to train ANN models via
evolutionary algorithms. The objective of evolutionary algorithms is to discover global
solutions that are optimal and low cost. Evolutionary algorithms are usually based on
various agents, such as chromosomes, particles, bees, ants, etc., searching iteratively to
discover the global optimum or the local optimum (population-based algorithms) [36].
In 1975, Holland [98] introduced the genetic algorithm (GA), which is considered the
first evolutionary algorithm. As with any evolutionary algorithm, the GA is based on
a metaphor from the theory of evolution. In the field of evolutionary computing, good
solutions to a problem can be seen as individuals well-adapted to their environment.
Although the GA has had many applications, it has been surpassed by other evolutionary
algorithms, such as the PSO algorithm [99].

Today, due to its simplicity and ability to be used in a wide range of applications,
the PSO algorithm has become one of the most well-known swarm intelligence algo-
rithms [100]. Eberhart and Kennedy performed the first experiment using PSO to train
ANN weights instead of using the more traditional backpropagation algorithm [101]. Sev-
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eral approaches have been proposed to apply PSO in ANN, such as the works published by
Eberhart and Shi [102], Eberhart and Shi [103], and Yu, Wang, and Xi [104]. In this section,
we explore in a little more detail some possible ways we can pair an ANN model with
the PSO algorithm to produce time series forecasts, but first, we will briefly describe how
PSO works.

In the words of its creators...

PSO is an optimization algorithm inspired by the motion of a bird flock; any member of
the flock is called a “particle”.

(Kennedy and Eberhart [101] , 1995)

In the PSO algorithm, a particle moves through a real-valued dimensionality search
space D, guided by three attributes at each time (iteration) t: position x⃗t, velocity v⃗t, and mem-
ory P⃗Best. In the beginning, the position of the particle is generated by a random variable with
a uniform distribution, delimited in each dimension by the search space x⃗0 = U(lower, upper);
thereby, its best visited position is set as equal to its initial position P⃗Best = x⃗0, with an initial
velocity v⃗0 = 0. After the first iteration, the attribute P⃗Best remembers the best position visited
by the particle based on an objective function f ; the other two attributes, v⃗t and x⃗t, are updated
according to Equations (15) and (16), respectively.

The best of all the best particle positions P⃗Best is called the global best G⃗Best. In each
iteration of the algorithm, the swarm is inspected to update the best member. Whenever
a member is found to improve the objective function of the current leader, that member
becomes the new global best [105].

The objective of the PSO algorithm is to minimize function f : RD → R; i.e., find
a⃗ ∈ RD such that f (⃗a) ≤ f (x⃗) for all x⃗ in the search space.

In PSO, variation (diversity) comes from two sources. The first is the difference between
the current position of particle xt and its memory PBest. The second is the current position
of particle xt and the global best GBest (see Equation (15)).

vt+1 = ω×vt + c1 ×U(0, 1)× (PBest − xt)

+ c2 ×U(0, 1)× (GBest − xt) (15)

xt+1 = xt + vt+1 (16)

Equation (15) reflects the three main elements of the PSO algorithm: the inertia path,
local interaction, and neighborhood influence [106]. The inertial path is the previous velocity
ω ∗ vt, where ω is the inertial weight. The local interaction is called the cognitive component
c1 ∗U(0, 1) ∗ (PBest − xt), with c1 as the cognitive coefficient. The last term is called the
social component and represents the neighborhood influence c2 ∗U(0, 1) ∗ (GBest− xt), where
c2 is the social coefficient. U(0, 1) is a random variable with a uniform distribution [105].
In [107], Clerc and Kennedy proposed a set of standard parameter values for PSO stability
and convergence: ω = 0.7298, c1 = 1.49618, and c2 = 1.49618. A leader can be global to the
entire swarm or local to a certain neighborhood of a swarm. In the latter case, there will
be as many local leaders as there are neighborhoods, resulting in more attractors scattered
throughout the search space. The use of multiple neighborhoods is useful to combat the
premature convergence problem of the PSO algorithm [105].

4.1.1. Particle Swarm Optimization for Artificial Neural Networks

In Algorithm 1, the basic PSO algorithm proposed by Kennedy and Eberhart [101]
is presented.
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Algorithm 1 Basic particle swarm optimization (PSO) algorithm

for each particle i = 1, 2, ..., N in the swarm do
initialize particle’s position: x⃗i ← uniform random vector in RD

initialize particle’s best-known position: P⃗Best,i ← x⃗i
if f (P⃗Best,i) < f (G⃗Best) then

update swarm’s best-known position: G⃗Best ← P⃗Best,i
end if
initialize particle’s velocity: v⃗i ← uniform random vector in RD

end for
repeat

for each particle i = 1, 2, ..., N in the swarm do
for each dimension d = 1, 2, ..., D do

pick random numbers rp, rg ∼ U(0, 1)
update particle’s velocity: vi, d← ωvi,d + c1rp(P⃗Best,i,d − xi,d) + c2rg(G⃗Best,d − xi,d)

end for
update particle’s position : x⃗i ← x⃗i + v⃗i
if f (x⃗i) < f (P⃗Best,i) then

update particle’s best-known position: P⃗Best,i ← x⃗i
if f (P⃗Best,i) < f (G⃗Best) then

update swarm’s best-known position: G⃗Best ← P⃗Best,i
end if

end if
end for

until a termination criterion is met
Now, G⃗Best holds the best found solution

The basic PSO algorithm shown in Algorithm 1 can be applied to ANNs as a multilayer
perceptron, where each particle’s position x⃗i represents the set of weights and biases of
the ANN for the current iteration. Each particle moves in the weighting space trying to
minimize the learning error during the training phase, and also maintains the historically
best position p⃗i in memory along its exploration path. When the particle changes position,
it is analogous to updating the weights of the ANN controller to reduce the tracking
error [108]. The termination criterion can be defined as the scope of a predefined MSE value
condition [109]. Finally, the best position reached by the swarm g⃗ can be expressed as the
optimal solution for the ANN.

Now let us take a look at some FFNN–PSO time series models proposed in the
literature. Adhikari, Agrawal, and Kant [81] assess the effectiveness of FFNN and Elman
networks when trained with the PSO algorithm for the prediction of univariate seasonal
time series. In this context, a PSO particle moves in the search space {W⃗} defined by
the weights of the ANN model to be trained, while the PSO cost function is the same
cost function employed in backpropagation; thus, we could say that a PSO particle is
structurally identical to an ANN.

de M. Neto, Petry, Aranildo, and Ferreira [92] take a slightly different approach:
they propose a basic PSO optimizer in which each particle is a single hidden layer FFNN
designed to produce one-step-ahead forecasts for univariate time series, plus some extra
meta-parameters. The search space for their proposed hybrid system consists of the
following discrete and continuous variables:

• Relevant time lags for autoregressive inputs (the total number of relevant time lags
defines the FFNN’s input dimension d);

• Number q of hidden units in the FFNN;
• Training algorithm employed: 1. Levenberg–Marquardt [110], 2. RPROP [111],

3. scaled conjugate gradient [112], or 4. one-step secant [113], all refinements of
the basic BP algorithm;

• Variant of FFNN architecture employed: 1. An FFNN architecture identical to the
one outlined in Section 3.1, with a linear output unit, 2. an FFNN with structural
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modifications proposed by Leung, Lam, Ling, and Tam [114], or 3. the same FFNN
architecture as in 1, but with a sigmoidal output unit;

• Initial FFNN weights and meta-parameter configuration.

PSO individuals in this combined method are evaluated by a proposed fitness function,
which is directly proportional to a metric measuring the degree of synchronization between
time series movements in forecasts and corresponding time series movements in validation
data. The proposed fitness function is also inversely proportional to the sum of several
regression error metrics, among them, mean squared error (MSE) and Theil’s U statistic.

We now summarize, in the next few lines, the experiments conducted by de M. Neto,
Petry, Aranildo, and Ferreira [92], their observations, and their conclusions. All investigated
time series were normalized to lie within the interval [0,1] and were divided into three
sets: the training set with 50% of the data, the validation set with 25% of the data, and
the test set with 25% of the data. Ten particles were used in the PSO algorithm, with 1000
iterations. The standard PSO optimization routine was employed to find the minimum in
the parameter space; in this way, an optimal FFNN model is found for each time series.
This optimal FFNN was then compared (via the same regression error metrics employed
in the proposed fitness function) against a random walk model and a standalone FFNN
model trained with the Levenberg–Marquardt algorithm.

Benchmarking data used in the experiments consist of two natural phenomena time
series (daily starshine measures and yearly sunspot measures) and four financial time
series of daily frequency (Dow Jones Industrial Average Index (DJIA), National Association
of Securities Dealers Automated Quotation Index (NASDAQ), Petrobras Stock Values, and
Dollar-Real Exchange Rate). From these experiments, it was observed that the proposed
model behaved better than the random walk model, the heads or tails experiment, and the
standalone FFNN model for the two time series of natural phenomena that were analyzed.
Nevertheless, for the four financial time series that were forecast, the proposed model
displayed behavior similar to both a random walk model and a heads or tails experiment
and behaved slightly better than the standalone FFNN model. It was also observed by
the authors that predictions for all analyzed financial series are dislocated one-step-ahead
with respect to the original values, noting that this observed behavior is consistent with the
work of Sitte and Sitte [115] and de Araujo, Madeiro, de Sousa, Pessoa, and Ferreira [116],
which have shown that the forecast of financial time series denotes a distinctive one-step
shift concerning the original data.

Finally, de M. Neto, Petry, Aranildo, and Ferreira [92] claim that this behavior can be
corrected by a phase prediction adjustment, and conclude that their proposed method is a
valid option for predicting financial time series values, obtaining satisfactory forecasting
results with an admissible computational cost.

Now let us take a look at a similar but more refined approach. Simplified swarm
optimization (SSO) [117] is a refinement of PSO, which, of course, can also be employed
for adjusting ANN weights. SSO is a swarm intelligence method that also belongs to the
evolutionary computation methods. SSO’s updating mechanism for particle position is
much simpler than that of PSO.

In turn, parameter-free improved simplified swarm optimization [93], or ISSO for
short, is a refinement of SSO; ISSO treats SSO’s tunable meta-parameters as variables in the
search space where particles move. The idea here is to reduce human intervention during
the optimization process, i.e., minimize the need for manual tuning of meta-parameters.
In Yeh [93], ISSO is employed for adjusting ANN weights. ISSO uses three different
position updating mechanisms: one for updating ANN weights, a second one for updating
SSO meta-parameters, and a third one for updating the whole position of a particle if
its associated fitness value shows no improvement after several iterations in the process.
Yeh [93] conducted a couple of experiments to compare ISSO against five other ANN
training methods: BP, GA [118], basic PSO, a PSO variant called cooperative random
learning PSO [119], and regular SSO.
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• Experiment number 1 tests all six training algorithms on a special ANN architecture
called single multiplicative neuron (SMN), which is similar to an FFNN but consists of
an input layer and an output layer with a single processing unit (this single neuron
has a logistic activation function but multiplies its inputs instead of adding them;
additionally, there is a bias for each input node, in contrast to FFNNs, which contain
just one bias in the input layer).

• Experiment number 2 also tests all six training algorithms, but this time on a regular
FFNN with one to six hidden neurons.

Time series employed in this experiment were as follows: Mackey–Glass chaotic
time series [120], Box–Jenkins gas furnace [121], EEG data [122], laser-generated data, and
computer-generated data [123]. All time series values were transformed to be in the interval
[0.1, 0.9] in order to avoid saturation of neural activations and improve convergence of
training algorithms. In both experiments, each model was trained 50 times for each time
series; 30 particles/chromosomes were employed in each training session. The training
algorithms were allowed to run for 1000 generations. The measures used to compare the
results were the mean square error (MSE), standard deviation of MSE test errors, and CPU
processing time. According to the author, the results from both experiments showed that
ISSO outperformed the other five training algorithms, with the exception of BP, which
performed better in experiment 1 when forecasting the laser-generated data. Additionally,
the FFNN models produced forecasts that were more accurate than the ones generated by
the SMN model.

4.1.2. Particle Swarm Optimization Convergence

To prevent the basic gradient descent method (applied in BP) from being caught at the
local minimum, we can apply PSO to ANN to optimize the values of the weights’ and biases’
parameters. Although the PSO algorithm has been shown to perform well, researchers have
not adequately explained how it works. In 2003, Gudise and Venayagamoorthy [124] made a
comparison of the BP and PSO algorithms, analyzing the computational requirements when
used in ANN training. They concluded that when the PSO algorithm is used, the FFNN
weights converge faster, outperforming the BP algorithm. Liu, Ding, Li, and Yang [125] used a
BP–ANN based on the PSO algorithm (PSO–BP). They demonstrated that their proposed PSO–
BP algorithm outperforms a BP trained based on the Levenberg–Marquardt (LM) algorithm
for training ANNs. Ince, Kiranyaz, and Gabbouj [126] proposed to find not only the weights
of an FFNN but also the optimal architecture of the network, applying the MD–PSO algorithm:
a modified version of the PSO. Their approach was to find the optimal number of dimensions
for the search space simultaneously searching for the optimal solution in that proposed
search space. The MD–PSO algorithm chose the global optimal solution among the optimal
solutions found for each dimension. Several works have proposed variants of PSO against
BP to optimize ANN [127–130]. However, like other evolutionary algorithms, PSO has some
disadvantages, such as an imbalance between exploration and exploitation, sensitivity to
parameters, and premature convergence [36]. These problems have been mostly solved by
including new parameters, modifying the algorithm with additional operators, or creating
hybrid versions with other algorithms [131]. Since its original version in 1995, the PSO
algorithm has been expanded to solve a variety of different problems [100]. Multimodal,
constrained, and multiobjective optimization problems are some of the most prominent
applications that have been addressed with the PSO algorithm [132].

But the question is, why does PSO outperform BP? The study of PSO to optimize
ANN has had very good results, but there is no in-depth research on theoretical aspects.
Nevertheless, there are works that have tried to explain the PSO convergence. In 2002, Clerc and
Kennedy [107] analyzed the full stochastic system of a deterministic version of PSO to supply
knowledge about its search mechanism. They proposed reducing the particle velocity formula
(Equation (15)) by redefining it as follows:

vt+1 = ω ∗ vt + ϕ ∗ (P− xt) (17)
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where P = c1∗U(0,1)∗PBest+c2∗U(0,1)∗GBest
c1∗U(0,1)+c2∗U(0,1) and ϕ = c1 ∗ U(0, 1) + c2 ∗ U(0, 1). This is alge-

braically identical to the standard two-term form [133]. The analysis begins by removing
all coverings from a particle, for example, a population of a one-dimensional deterministic
particle, with a constant P and a constant ϕ. Kennedy [133] observed that the value of the
parameter ϕ controls the trajectory of the particle and recognized that the explosion of the
system depended on randomness. In [134], the authors analyzed the same system and
concluded that the particle trajectories follow periodic sinusoidal waves. In their work,
Clerc and Kennedy [107] analyzed the movement in discrete time of the PSO, advancing
to its visualization in continuous time. These analyses lead to a proposal of controlling
the convergence tendencies of the system through a set of coefficients, resulting in a gener-
alized model of the algorithm. When they re-introduced randomness into the PSO with
constriction coefficients, the deleterious effects of randomness were seen to be controlled.
As a result of this study, the velocity equation changes to

vt+1 = χ ∗ {vt + c1 ∗U(0, 1) ∗ (PBest − xt) + c2 ∗U(0, 1) ∗ (GBest − xt)} (18)

where χ is the constriction coefficient calculated as

χ =
2 ∗ κ

|2− ϕ−
√

ϕ2 − 4ϕ|
(19)

with ϕ ≥ 4 and 0 ≤ κ ≤ 1. The constant κ controls the rate of convergence. For κ ≈ 0, faster
convergence to a stable point is achieved, and for κ ≈ 1, slow convergence to a stable point
is obtained [107].

In 2010, van den Bergh and Engelbrecht [135] formally demonstrated that the original
PSO is not a local or global optimizer. They identified an imperfection in PSO and addressed
it in their approach called guaranteed convergence PSO (GCPSO). The goal of the GCPSO
is to update only the speed of the best particle in the swarm (τ) to

vτ,t+1 = −xτ,t + GBest + ω ∗ vτ,t + ρt ∗ (1− 2 ∗ γt) (20)

Substituting Equation (20) into Equation (16), we obtain

xτ,t+1 = GBest + ω ∗ vτ,t + ρt ∗ (1− 2 ∗ γt) (21)

Equation (21) has three terms: the first term introduces a direct relationship with the
current global best position, the second term conveys the inertia of the global best particle,
and the third term shows a point of a uniform distribution in a hypercube with side lengths
2 ∗ ρ; ρ is strictly greater than zero. The authors indicate that their proposal ensures that the
best global particle never stops moving completely. van den Bergh and Engelbrecht [135]
showed that the GCPSO is a local optimizer.

In 2012, Kan and Jihong [136] demonstrated the existence and uniqueness of the
convergence position in PSO, using the theorem of Banach space and the contraction
mapping principle. They gave the parameter condition that influences the stability of
PSO and showed that, if the parameter satisfies this condition, the probability that the
particle swarm optimization converges to the best position is one. In 2018, Qian and Li [137]
proposed an improved PSO (IPSO) algorithm according to the following strategy. They
introduced a Gaussian perturbation in the PBest position to guarantee that IPSO converges
to the ϵ-optimum solution with probability one for any ϵ. Also in 2018, Xu and Yu [138]
defined the swarm state sequence and examined its Markov properties according to the
theory of PSO. Subsequently, from the evolutionary sequence of the particle swarm with the
best fitness value, the authors derived a supermartingale. Based on this result, the authors
applied the supermartingale convergence theorem to analyze the convergence of the PSO.
The results show that PSO reaches the global optimum in probability. Recently, Huang, Qiu,
and Riedl [139] established PSO convergence to a global minimizer based on continuous-
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time modeling for a non-convex and non-smooth objective function of particle dynamics
through a system of stochastic differential equations.

In summary, there are several works that prove the convergence of PSO. However,
it may be interesting to carry out a study of the convergence properties of PSO to opti-
mize ANNs.

4.2. A Study on the Ability of Support Vector Regression and Feedforward Neural Networks to
Forecast Basic Time Series Patterns

According to Crone, Guajardo, and Weber [94], “Support Vector Regression (SVR)
and Feed Forward Neural Networks (FFNNs) have found increasing consideration in
forecasting theory, leading to successful applications in time series forecasting for various
domains, often outperforming conventional statistical approaches of ARIMA -or exponen-
tial smoothing- methods. Despite their theoretical and practical capabilities, FFNN and SVR
models are not established forecasting methods. Substantial theoretical criticism on FFNNs
has raised skepticism regarding their ability to forecast even simple time series patterns
of seasonality or trends without prior data preprocessing [140]”. In their study, Crone,
Guajardo, and Weber [94] propose an empirical comparison between three different models:

1. FFNNs;
2. SVR models using a radial basis function (RBF) kernel;
3. SVR models using a linear function kernel.

This study reflects, for the considered models, their ability to learn and forecast
fundamental time series patterns relevant to empirical forecasting tasks. Next, SVR models
are briefly described (description based on text in Crone, Guajardo, and Weber [94]).

Support vector regression. For their experiment, Crone, Guajardo, and Weber [94]
employed the common support vector regression (SVR) algorithm described in [141],
which applies an ϵ-insensitive loss function for predictive regression problems. Let
{(x⃗1, y1), . . . , (x⃗n, yn)}, where x⃗i ∈ Rd and yi ∈ R are the training data points available to
build a regression model. A transformation function Φ on the initial input space is applied
to map the original data points to a higher dimensional feature space F. A linear model is
constructed in F in correspondence with the nonlinear model of the original space:

Φ : Rd → F, w⃗ ∈ F f (x⃗) = ⟨w⃗, Φ(x⃗)⟩+ b (22)

⟨w⃗, Φ(x⃗)⟩ is the inner product between w⃗ and Φ(x⃗). The insensitive loss function ϵ
allows you to fit a function that is as flat as possible and has a maximum deviation ϵ for the
current training data. This means that we are looking for a small weight vector w⃗. To solve
this problem, the authors introduce slack variables ξi, ξ∗i to allow error levels higher than ϵ,
obtaining the following:

min
1
2
∥w⃗∥2 + C

n

∑
i=1

(ξi + ξ∗i )

s.t. yi − ⟨w⃗, Φ(x⃗i)⟩ − b ≤ ϵ + ξi

⟨w⃗, Φ(x⃗i)⟩+ b− yi ≤ ϵ + ξ∗i
ξi, ξ∗i ≥ 0, i = 1, 2, . . . , n

(23)

The construction of the objective function considers two key aspects: the precision in
the training set and the generalization capacity, which lead to the principle of minimization
of structural risk. The balance between generalization ability and accuracy is measured by
C in the training data, and the degree of error tolerance is defined by ϵ. It is convenient
to represent the problem in its dual form for its resolution, so a Lagrange function is
constructed, from which it can be shown that once the saddle point conditions are applied,
the following solution is reached:

w⃗ =
n

∑
i=1

(αi − α∗i )Φ(x⃗i) f (x⃗) =
n

∑
i=1

(αi − α∗i )K(x⃗i, x⃗) + b (24)
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Here, αi and α∗i are the dual variables, and the expression K(⃗xi, x⃗) represents the inner
product between Φ(⃗xi) and Φ(⃗x), which is known as the kernel function. It is possible to
achieve a solution to the original regression problem, starting from the existence of the kernel
function, leaving aside the transformation Φ(⃗x) applied to the data. For more information
on SVR models, please consult Drucker, Burges, Kaufman, Smola, and Vapnik [13].

Experiments and results. Crone, Guajardo, and Weber [94] employed a set of five
artificial time series in their experiments (see Figure 6):

1. Stationarytime series (constant level);
2. Stationary time series with additive seasonality;
3. Linear trend;
4. Linear trend with additive seasonality;
5. Linear trend with multiplicative seasonality.

These artificial data emulate the behavior of monthly retail sales and are taken from
Pegel and Gardner’s original classification. All artificial series contain additive Gaussian
white noise, with σ2 = 25. Each time series consists of 228 observations. A lag structure of
13 previous observations was established to produce one-step-ahead forecasts (this number
of lags should be adequate to capture seasonal patterns present in monthly time series).
Thus, 215 examples are available to construct FFNN and SVR models. From these available
examples, the first 119 were reserved for model training, the next 48 for model validation,
and the last 48 for model testing.

Figure 6. Some basic time series patterns according to Pegel and Gardner’s classification. All of
these patterns (except for the no trend + multiplicative seasonality) were generated artificially in the
experiment of Crone, Guajardo, and Weber [94].

All models were constructed by using training and validation data only, retaining all
information in the test suite to ensure valid predicted event testing. To avoid saturation
effects, a linear scale in an interval [−0.5, 0.5] was applied in the data transformation, using
minimum and maximum values only from the training and validation data. In order to
evaluate model performance, mean squared error (MSE), mean absolute error (MAE), and
root mean squared error (RMSE) metrics were employed to measure test errors. MAE
was employed to fine-tune model meta-parameters (C and ϵ for SVR–linear; C, ϵ, and σ
for SVR–RBF; number of hidden nodes and type of activation function for FFNN hidden
nodes; available options were sigmoid or hyperbolic tangent). After the construction
of all models and test error measuring, Crone, Guajardo, and Weber [94] arrived at the
following conclusions:
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• The performance of FFNNs and SVRs with linear kernel is similar; they both robustly
forecast time series patterns without preprocessing;

• Considering the results obtained in the three error measures of MAE, MSE, and RMSE,
the FFNNs outperform the SVR models in the time series forecast of the different
patterns tested;

• The results obtained indicate that FFNNs seem to be able to extrapolate seasonal
trends and patterns accurately and without preprocessing.

4.3. Forecasting the Economy with Artificial Neural Networks

It is of great interest to economists to forecast the “business cycle”. It affects the eco-
nomic system of any country due to its fluctuations that impact macroeconomic indicators,
such as interest rates, housing demand, occupancy rate, demand for manufactured goods,
etc. The economic cycle also affects relevant sociopolitical factors, such as the result of a
country’s presidential elections. Economists use the Gross Domestic Product (GDP) and
the Index of Industrial Production (IIP) to track the business cycle [95]. In this contribu-
tion, Moody [95] stresses the reasons why macroeconomic modeling and forecasting are
challenging tasks:

• Macroeconomics is a non-experimental science. It is a complicated task to observe
the behavior of an economy as a whole, and the possibility of carrying out controlled
experiments is very remote;

• Lack of a priori models. It is not possible to carry out controlled studies on the effects
of the influence that qualitative (non-quantifiable) variables have on economic activity,
due to the complexities of the economic system;

• Noise present in data. This is due to two main causes: the way in which information
is collected and the number of unobserved (non-measurable) variables in economics.
The presence of noise in short time series makes it difficult to control the variance of
the model, requiring highly complex models to predict this type of phenomena;

• Nonlinearity. Due to high levels of noise and limited data, neural network models do
not capture the nonlinear characteristics of macroeconomic series.

In our view, the perceived difficulty in modeling macroeconomic data’s nonlinear
features is one of the main reasons why many practitioners still use traditional statistical
linear techniques to model macroeconomic data (for instance, several official statistics
agencies around the world rely on X13ARIMA-SEATS [142] to generate ARIMA-based
forecasts for macroeconomic time series). On the other hand, there is a growing group
of researchers who feel that it is worth continuing with investigations of efficient ANN
models that take into account nonlinear features of macroeconomic data since ANNs are
capable of achieving universal function approximation. For example, Kiani [143] applied
nonlinear regime change models and artificial neural networks to anticipate the impact of
monetary policy shocks on GDP.

Neural Network Challenges in Economy

Moody [95] categorizes several heuristics for ANN model selection and construction,
aimed at minimizing expected prediction error. Considered categories are the following:

Meta-parameter selection. Adjusting the regularization parameter can compensate for
bias and variance in the forecast, while varying the number of input nodes can compensate
for noise and non-stationarity [144].

Input variable selection and pruning. The appropriate selection of input variables is
essential for the solution of any prediction problem. The set of variables selected must
be representative and provide the greatest possible information with the least amount of
them [145–147].

Model selection and pruning. Selecting the right size and appropriate network archi-
tecture is a key element in controlling the balance between bias and variance. The above
involves eliminating unnecessary weights or nodes, choosing the number of hidden units,
selecting a connectivity structure, etc. [148–151].
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Better regularizers. Regularization of ANNs reduces model variance and minimizes
prediction risk, improving model generalization [152,153].

Committee forecasts. Several economic researchers have made forecasts using a fore-
casting committee. The approach consists of averaging (weighted or unweighted) the
predictions of an ensemble of models [144].

Model interpretation and visualization. In general, great importance is placed on obtain-
ing accurate forecasts, leaving aside the understanding of the factors that influence these
forecasts. Sensitivity analysis (SBP) [147] and visualization tools [154] can help achieve a
better interpretation of the variables that affect the model obtained by ANNs.

Moody [95] explains in detail some of the techniques cited above and illustrates their
use with an empirical example, in which IIP monthly values are predicted (12-month pre-
diction horizon) via an FFNN model with three sigmoidal units, a single linear output unit,
and a large number of input nodes. Initially, 48 macroeconomic and financial time series
variables are considered potential explanatory variables. Use of sensitivity-based pruning
(SBP), guided by estimations of prediction errors provided by nonlinear cross-validation
(NCV), finally leaves 13 explanatory variables that optimize prediction performance at the
same time, with respect to the initial 48-variable FFNN model.

ANN modeling hints proposed by Moody [95] include the following:

• After selecting the number of hidden units, input removal and weight elimination can
be carried out in parallel or sequentially;

• In order to avoid an exhaustive search over the exponentially large space of architec-
tures obtained by considering all possible combinations of inputs, we can employ a
directed search strategy using the sensitivity-based input pruning (SBP) algorithm;

• We can employ some of the following optimization criteria in order to select competing
models: maximum a posteriori probability (MAP), minimum Bayesian information
criterion (BIC), minimum description length (MDL), and estimation (from the training
data) of generalization ability, also called prediction risk;

• It is easier to over-fit a model to a small training set, so care must be taken to select a
model that is not too large;

• The sensitivity analysis provides a global understanding about which inputs are impor-
tant for predicting quantities of interest, such as the business cycle. Further information
can be gained, however, by examining the evolution of sensitivities over time;

• Given the difficulty of macroeconomic forecasting, no single technique for reducing
prediction risk is sufficient to obtain optimal performance. Rather, a combination of
techniques is required.

4.4. Double SOM for Long-Term Time Series Prediction

In Section 3.5.2, we outlined how to use the basic self-organizing map (SOM) to fore-
cast observations from univariate time series and how to combine an SOM model with a
radial basis function network (RBFN) in order to improve forecast accuracy. Additionally,
in Section 3.5.4, we outlined a methodology that combines SOM models with local autoregres-
sive models, once again seeking to improve SOM’s output accuracy. Simon, Lendasse, Cottrell,
Fort, Verleysen, et al. [64] concentrate mainly on forecasting long-term but not-so-accurate
time series trends rather than dealing with the more traditional problem of finding accurate
short-term time series predictions. Simon, Lendasse, Cottrell, Fort, Verleysen, et al. [64] de-
scribe a technique based on a double application of the SOM model and sketch a proof of its
stability. They work in the context of global NAR-like models, i.e., nonlinear autoregressive
prediction models, without moving average terms (they mention the possibility of adding
exogenous variables to their model). Their goal is to build a global model to be used in long-
term predictions, with the view of obtaining future trends and their means and confidence
intervals. In some forecasting problems, it is interesting to predict several values of the series
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in one bloc, rather than a single ŷt+1 scalar value. In such a case, the prediction problem,
from a nonlinear autoregressive approach, has the form

⟨ŷt+k, ŷt+k−1, . . . , ŷt+1⟩ = f (yt, yt−1, . . . , yt−p+1) (25)

Size p of the regressor vector is not necessarily equal to the forecasting horizon k.
However, in many cases, p will be a multiple of k. A key concept, called series of deformations,
is defined by Simon, Lendasse, Cottrell, Fort, Verleysen, et al. [64] as

dt = yt+k − yt. (26)

Simon, Lendasse, Cottrell, Fort, Verleysen, et al. [64] also define a regressor vector in
the deformation space as

Dt = ⟨dt, dt−1, . . . , dt−p+1⟩. (27)

Regressors Yt = ⟨yt, yt−1, . . . , yt−p+1⟩ are arranged into classes, using a one-dimensional
Kohonen map; this map performs local averages, which helps to reduce over-fitting. A one-
dimensional Kohonen map with nr centroids (or codevectors) Ai is thus organized in the space
of regressors; each regressor Yt is associated with a centroid Ai(t) according to the nearest
neighbor rule.

A Kohonen map in the deformation space is also formed: a one-dimensional Kohonen
map with nd centroids Bj is thus organized in the space of deformations; each deformation
Dt is associated with a centroid Bj(t) according to the nearest neighbor rule. After both Ko-
honen (SOM) maps for the regressor and deformation spaces are formed, Simon, Lendasse,
Cottrell, Fort, Verleysen, et al. [64] proceed next to the construction of a transition table,
whose entries are defined by

Ti,j = P(Bj|Ai). (28)

Ti,j is the empirical probability that deformation Dt is associated with centroid Bj
when the corresponding regressor Yt is associated with centroid Ai. All terms on each
row i of the table sum to 1; row i, regarded as a vector µi, represents the empirical law of
deformations conditional to class i.

The modeling of past behavior of the time series is derived from the organization of
one-dimensional SOMs in regressor space and warp space constituted by the evaluation of
the transition table. To forecast a time series, we can follow these steps:

• Build regressor Yt at time t;
• Identify centroid Ai(t) corresponding to regressor Yt;
• Draw randomly a deformation Dj, according to the empirical law µi of probabilities Ti,j;
• Yt and Dj are summed to form vector ⟨yt+k, yt+k−1, . . . , yt+k−p+1⟩;
• The part ⟨yt+k, yt+k−1, . . . , yt+1⟩ extracted from the left side of the vector computed in

the previous step constitutes the prediction.

Like other forecasting models we have reviewed in this article, it is possible to recur-
sively include the calculated predictions in the model to make long-term predictions.

Simon, Lendasse, Cottrell, Fort, Verleysen, et al. [64] assert that their proposed method
produces predictions that always remain in a limited domain and therefore cannot diverge;
they sketch a proof of their method’s stability. They first show that a Markov chain
adequately describes the series generated by the model. Then, they prove that this Markov
chain is stable. Note that when k > 1, injecting predictions into the model means adding
k forecasted values to obtain another set of k new predictions. The final objective of the
method proposed by Simon, Lendasse, Cottrell, Fort, Verleysen, et al. [64] is to identify
trends. Due to the random choice of Dj, different forecast curves can be obtained by
repeating the entire procedure of the proposed algorithm. These repetitions can be seen
as instances of possible forecasts of the different curves obtained, and their trends, means,
standard deviations, etc., as global characteristics of the forecasted time series.
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Simon, Lendasse, Cottrell, Fort, Verleysen, et al. [64] illustrate their method using two
time series: the Santa Fe A series (a laser series), and the hourly electrical load in Poland
from 1989 to 1996. In both cases, Simon, Lendasse, Cottrell, Fort, Verleysen, et al. [64] em-
ploy cross-validation for choosing an optimal number of nodes in SOM models, and per-
form Monte-Carlo simulations in order to obtain global measures (mean, 95% confidence
intervals) from computed long-term forecasts. They also include graphics of the experi-
mental results (codevectors, transition tables, graphics of global measures, comparisons
between true values and forecasts, etc.). No attempt is made to quantify forecast errors;
rather, the objective consists of showing that true test values are within the limits defined
by all random predictions constructed by the proposed model.

4.5. Time Series Forecasting with Recurrent Neural Networks

Zimmermann, Tietz, and Grothmann [96] propose a series of architectural modifica-
tions aimed at improving the performance of recurrent neural networks (RNNs) applied
to time series forecasting tasks. Given the universal approximation properties of RNNs,
they can be used to forecast time series in the form of nonlinear state space models [155].
Zimmermann, Tietz, and Grothmann [96] rely on this general framework in order to in-
crementally build their models. They start out with a given RNN architecture, and then
propose a refined version, seeking to correct empirically observed deficiencies found in the
initial model. The RNN architectures discussed in their work are listed next:

1. Basic time-delay RNNs in state space formulation, which model open dynamical systems
(i.e., partly autonomous and partly externally driven dynamical systems);

2. Error-correction neural networks (ECNNs), which refine the basic RNN model by
adding an error-correction term in order to handle missing information from unknown
external drivers of open dynamical systems;

3. Historically consistent neural networks (HCNNs), which refine ECNNs by internally
modeling external drivers, thus transforming ECNNs (and basic RNNs) into closed
dynamical systems;

4. Causal-retro-causal neural networks (CRCNNs), which refine HCNNs by incorporat-
ing into their usual information flow from past into future (causal flow) the effects of
rational decision-making and planning via an information flow from future into past
(retro–causal flow).

Each model in this listing is useful in its own right for particular real-world appli-
cations. Zimmermann, Tietz, and Grothmann [96] provide useful hints that facilitate the
construction and training of these models. They also point out real-world scenarios where
these models are employed; for instance, they mention that ECNNs have been employed
successfully to forecast the demand for finished products and raw materials within the
context of supply chain management. These architectures and their related algorithms have
been implemented in a software system developed by Siemens Corporate Technology called
simulation environment for neural networks (SENN). In the remainder of this subsection,
we summarize the main points presented in Zimmermann, Tietz, and Grothmann [96].

1. Basic RNN. Zimmermann, Tietz, and Grothmann [96] show that an open dynamical
system can be used to create a vector time series y⃗τ , which can be described in discrete time
τ using an output equation and a state transition [34]:

s⃗τ+1 = f (⃗sτ , u⃗τ) State transition

y⃗τ = g(⃗sτ) Output equation
(29)

s⃗τ is the current hidden system state, s⃗τ+1 is the upcoming system state, and u⃗τ

represents external factors. This is called an open dynamical system. The data-driven
system identification is based on the selected parameterized functions f () and g(). Pa-
rameters in f () and g() are chosen such that an appropriate error function, such as
1
T ∑T

τ=1 ∥y⃗τ − y⃗d
τ∥2, is minimized (⃗yd

τ are the target observations). Typically, without loss
of generality, f (⃗sτ , u⃗τ) = tanh( A⃗⃗sτ + B⃗u⃗τ) and g(⃗sτ) = C⃗⃗sτ ; the hyperbolic tangent is the
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activation function in the network’s hidden layer, while the output function is specified
as a linear function; A⃗ (autonomous dynamics or memory), B⃗ (external factors), and C⃗ are
weight matrices that model the open dynamical system.

The technique of finite unfolding in time [156] is employed in order to solve the
selection of appropriate matrices A⃗, B⃗, and C⃗ that minimize the error function. The idea
behind this is that if the matrices A⃗, B⃗, and C⃗ are identical at the individual time steps, then
any RNN can be reformulated to form an equivalent FFNN. An advantage of this technique
is the moderate number of shared weights, which reduces the risk of overfitting [157].
To perform the training, error backpropagation through time (EBTT) is applied along with
a stochastic learning rule; see Rumelhart, Hinton, and Williams [156] and Werbos [158].

Overshooting. We can point out that a disadvantage of RNNs is that they tend to focus
only on the most recent external inputs. Overshooting extends the autonomous system
dynamics (coded matrix A⃗) into the future [157]; thus, consistent multi-step forecasts can be
computed. For the RNN, an input preprocessing u⃗τ = x⃗τ − x⃗τ−1 is typically employed as
the transformation for the raw data x⃗; this eliminates biases in the input or target variables
of the RNN.

2. Error-correction neural networks (ECNNs). In RNNs, modeling can be altered
by unknown external influences or shocks, representing a weakness in the network [159].
The error-correcting neural network (ECNN) addresses this weakness by introducing an
additional term in the state transition:

s⃗τ+1 = tanh( A⃗⃗sτ + B⃗u⃗τ + D⃗ tanh(⃗yτ − y⃗d
τ)) State transition

y⃗τ = C⃗⃗sτ Output equation
(30)

The system identification task is once again solved by finite unfolding in time [34].
ECNNs are an appropriate framework for low-dimensional dynamical systems with less
than five target variables Zimmermann et al. [96].

3. Historically consistent neural networks (HCNNs) are a model class adequate for
modeling large dynamical systems in which various (nonlinear) dynamics interact with
one another, but only a small subset of variables can be observed. HCNNs are useful for
modeling many real-world economic applications. A HCNN model is characterized by

s⃗τ+1 = A⃗ tanh(⃗sτ) State transition

y⃗τ = [ I⃗d, 0⃗]⃗sτ Output equation
(31)

In the HCNN, the joint dynamic of the observable variables is highlighted by the
sequence of states s⃗τ . The observables (i = 1, . . . , N) are organized in the first N state
neurons s⃗τ and followed by hidden variables as later neurons. The observables are read by
the connector [ I⃗d, 0⃗], which is a fixed array. A bias vector can describe the initial state s⃗0.
The bias s⃗0 and matrix A⃗ contain the only free parameters.

The HCNN states s⃗τ are hidden layers with tanh squashing. The output layers y⃗τ

provide the predictions. Since the HCNN model has no inputs, it has to be unfolded along
the complete data history. This is different to small RNNs, where training data patterns are
constructed in the form of sliding windows. From a single training data pattern, the HCNN
can learn large dynamics. In this way, the HCNN model provides a means of overcoming
an intrinsic problem in RNNs (and ECNNs): the external inputs u⃗τ , which are used when
training RNNs and ECNNs, are missing from the one-step-ahead node to the prediction
horizon node. This implies that the open system modeled by the RNN (ECNN) outputs
dynamical forecasts y⃗τ while its corresponding inputs remain static, which is clearly an
inconsistency within the model framework. By implementing a model in which inputs
and forecasts are encoded together into the hidden network states (thereby closing the
dynamical system), HCNNs correct this inherent asymmetry found in RNNs and ECNNs.

Sparsity and dimensionality vs. connectivity and memory. It is clear that dynam-
ical systems must have high dimensions. Zimmermann, Tietz, and Grothmann [96] use
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dim(⃗s) = 300 in their commodity price models, and they recommend this value as a top
limit for dimensionality. There is a risk in iterating a high-dimensional state transition
matrix A⃗ because operations on matrix vectors can produce large numbers that will be
distributed recursively in the network, generating an arithmetic explosion. A sparse ma-
trix A⃗ can be used to avoid this problem. Zimmermann, Grothmann, Schäfer, Tietz, and
Georg [160] have observed that connectivity and memory length are directly related to
dimensionality and sparsity. The number of non-zero elements in each row of matrix A⃗ is
defined as connectivity. When a state vector contains all the necessary information from
the past, it is said to have reached a Markovian state. The number of steps to collect that
amount of information is defined as memory length. Using these relationships and their
experience with previous experiments, Zimmermann, Tietz, and Grothmann [96] observe
that the EBTT algorithm works stably with a connectivity that is equal to or smaller than 50
and a sparsity of 17%. This means that only 17% of the weights in matrix A⃗ can be different
from zero, and their locations inside of A⃗ are randomly chosen. EBTT training fine tunes A⃗
non-zero weights.

4. Causal-retro-causal neural networks (CRCNNs) introduce the impacts of rational
decision-making and planning in dynamic systems modeling. The CRCNN aims to improve
the performance of the HCNN by enriching the causal information flow that is directed
from the past to the future, introducing a retro–causal information flow, directed from
the future to the past. These models can be employed as the basis for commodity price
forecasting tasks. CRCNNs also improve the modeling of deterministic chaotic systems.
The following set of equations describes the CRCNN model, and Figure 7 shows the
corresponding CRCNN model:

s⃗τ = A⃗ tanh(⃗sτ−1) Causal state transition

s⃗′τ = A⃗′ tanh(⃗s′τ+1) Retro-causal state transition

y⃗τ = [ I⃗d, 0⃗]⃗sτ + [ I⃗d, 0⃗]⃗s′τ Output equation

(32)

Figure 7. Causal-retro-causal historically consistent neural network (CRCNN).

Architectural teacher forcing (ATF) for CRCNNs. CRCNNs are hard to train because
they inherit all the characteristics from HCNNs. This implies that CRCNNs are also
unfolded across the entire dataset, so the system has only one opportunity to learn from the
whole history of the data. ATF makes the best possible use of the training data, accelerating
and stabilizing the EBTT training process for the CRCNN. ATF replaces the outputs y⃗τ ,
up to time step τ = t, by the desired targets y⃗d

τ , and forces them into the causal network
state s⃗τ and retro-causal network state s⃗′τ .

Stabilizing information flows in dynamical systems. This is analogous to handling
the uncertainty of the initial state for a basic RNN model with overshooting. The stability
of the CRCNN model is further improved by applying noise in the causal as well as in the
retro-causal branch of the network. The noise is injected into the same nodes that receive
the biases (see Figure 7).

Uncertainty and risk. Traditional risk management applies diffusion models to
interpret risk distributions. The risk can be explained as a random walk, in which, using the
observed past error of the underlying model, the diffusion process is calibrated [161]. If the
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system identification calculation is performed using an HCNN or a CRCNN repeatedly,
then solutions will be produced with a prediction error of zero in the past but that differ
from each other in the future. If the arithmetic average of the individual ensemble members
of the set is taken as the expected value, we will obtain a simplified prediction. Consider the
bandwidth of the ensemble in addition to the expected value of Zimmermann, Tietz, and
Grothmann [96]. The ensemble average can be taken as the best forecast, assuming that all
future trajectories have the same probability and the genuine development of the dynamics
is unknown, where the ensemble bandwidth describes the market risk. For any forecast
date, all individual forecasts for the ensemble infer the probability distribution over many
possible market prices at a single point in time, similar to an empirical density function.

4.6. Applying Echo State Networks to Time Series Forecasting

Training recurrent neural networks (RNNs) is a difficult task; however, they integrate
a large dynamic memory and highly flexible computational capabilities, making them a
very powerful tool. Error backpropagation (BP) is the standard method to train networks,
especially feedforward neural networks (FFNNs), and it has also been extended to RNNs.
This extension, however, has not been straightforward: RNNs are dynamical systems,
and training them with BP sometimes leads to bifurcations, so chaos (non-convergence)
occurs. Echo state networks (ESNs) are an alternative approach for training RNNs, as
proposed by Jaeger [162]. In the classical ESN approach, an RNN structure is called a
reservoir, so ESN methodology is often known in the literature as reservoir computing
(RC), which is, at the moment, a prolific research area in RNNs [163]. In Lukoševičius [97],
practical techniques and recommendations for successfully applying ESNs are presented,
with emphasis on the time series forecasting problem. Lukoševičius [97] points out that
ESNs are conceptually simple and easy to implement, but experience and insight are a
must for training them successfully. In the remainder of this subsection, we summarize the
main points addressed in this important contribution made by Lukoševičius [97].

The basic ESN model. ESNs are used to supervise temporal machine learning
tasks where, for a given training input signal u(n) ∈ RNu , a desired target output sig-
nal ytarget(n) ∈ RNy is known. The discrete time is n = 1, . . . , T and the number of data
points in the training dataset is T. The task is to learn a model with output y(n) ∈ RNy ,
where y(n) matches ytarget(n) as best as possible, minimizing an error measure E(y, ytarget)
and, importantly, generalizing well to unseen data. The error measure E is typically a
mean-squared error (MSE). The update equations are

x̃(n) = tanh
(

Win[1; u(n)] + Wx(n− 1)
)

(33)

and
x(n) = (1− α)x(n− 1) + αx̃(n), (34)

where x(n) ∈ RNx is a vector of reservoir neuron activations and x̃(n) ∈ RNx is its update,
all at time step n, tanh(·) is applied element-wise, [·; ·] stands for a vertical vector (or
matrix) concatenation, Win ∈ RNx×(1+Nu) and W ∈ RNx×Nx are the input and recurrent
weight matrices, respectively, and α ∈ (0, 1] is the leaking rate. It is important to mention
here one fundamental difference between regular RNNs and ESNs: while ESN’s input
and recurrent weight matrices Win and W remain fixed once initialized, the weights in
RNN’s state transition matrices are updated after each iteration during the learning process.
A graphical representation of an ESN is depicted in Figure 8.
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Figure 8. An echo state network (ESN) in schematized form. u(n) is the training input signal, 1 is
a constant input signal (intercept), Win contains input weights while W contains recurrent weights
(both Win and W in the reservoir remain fixed after initialization), x(n) contains neuronal activations
and is the reservoir’s output. Wout are trainable output weights, and y(n) is the ESN’s output signal.
Wout weights minimize error E(y, ytarget) after linear training.

The linear readout layer is defined as

y(n) = Wout[1; u(n); x(n)] (35)

where y(n) ∈ RNy is the network output, and Wout ∈ RNy×(1+Nu+Nx) is the output weight
matrix. The RC algorithm introduced with ESNs by Jaeger [162] consists of the follow-
ing steps:

1. Generate a random reservoir RNN (Win, W, α);
2. Run the reservoir using the training input u(n) and collect the corresponding reservoir

activation states x(n);
3. Compute the linear readout weights Wout from the reservoir, minimizing the MSE

between y(n) and ytarget(n);
4. Use the trained network on new input data u(n) to compute y(n) by using the trained

output weights Wout.

Producing a reservoir. At the same time, the reservoir acts as a nonlinear expansion
and as a memory of input u(n). The reservoir can be described as a nonlinear, high-
dimensional expansion x(n) of the input signal u(n). For classification tasks, input data
u(n) that are not linearly separable in the original space RNu often become so in the
expanded space RNx of x(n), where they are separated by Wout.

Reservoir’s global parameters. Given the RNN models (33) and (34), the reservoir is
defined by the tuple (Win, W, α). The input and recurrent connection matrices Win and W
are generated randomly. The leaking rate α of the reservoir nodes in (34) can be regarded
as the speed of the reservoir update dynamics discretized in time.

Setup for parameter selection. Learning the results is fast in ESNs. This should be
leveraged to evaluate how well a reservoir is generated by a particular set of parameters.
To evaluate a reservoir, we train the output (35) and measure its error by applying cross-
validation or training error. Randomly generated buckets, even with the same parameters,
vary slightly in their performance. Keep the random seed fixed and averaged over multiple
reservoir samples to eliminate random fluctuations in performance.

ESN ensemble. Training many small ESNs in parallel and averaging their outputs,
in some cases, has drastically improved the performance of the basic ESN approach [164,165].

Removing initial transient. Usually x(n) data from the beginning of a long training
sequence are discarded (i.e., not used for learning Wout) since they are contaminated by
initial transients. The initial transient is a result of an arbitrary setting of x(0), which is
typically x(0) = 0. An unnatural initial state is introduced that is not normally visited once
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the network has been “prepared” for the task. The number of time steps to discard depends
on the network memory, which in turn depends on the reservoir parameters, and are
normally at the order of tens or hundreds. From this, we see that regular RNNs (discussed
in Section 4.5) and ESNs have differing approaches when dealing with the uncertainty of
the initial state in the dynamical system they are trying to identify: RNNs inject noise into
the initial state in order to identify a stable dynamical system, while ESNs discard a few
initial transient states, relying on their echo state property to achieve stability.

5. Discussion

Statistical techniques, like linear regression, ARIMA, ARCH, and NARX modeling,
have been traditionally employed in time series forecasting [166]. Strong assumptions on
data are necessary for the construction of such models (e.g., data are generated by linear,
time invariant processes, possibly with added Gaussian noise). These assumptions do not
hold in many practical situations, and by using these traditional statistical techniques on
time series from which we actually know very little about their true data-generating process,
we incur the risk of generating inaccurate forecasts. Comparatively, ANN models offer a
more flexible modeling strategy, with fewer assumptions on data-generating mechanisms,
and produce accurate forecasts.

Generally speaking, the aim of time series forecasting is to predict future values with
accuracy and simplicity. However, a large fraction of the ANN architectures reviewed in
this article are more complex than others. But this fact seems to contradict the principle of
Occam’s razor, which maintains that the simplest solution is usually the best. In machine
learning literature, Occam’s razor is used for two different principles [167]:

1. First razor: Starting from the fact that simplicity is desirable in itself, the simpler
model should be preferred between two models with the same generalization error.

2. Second razor: Starting from the fact that you are likely to have a smaller generalization
error in the simpler model, it should be preferred between two models with the same
error in the training set.

Domingos [167] argued that, in the first razor, simplicity is only a proxy for compre-
hensibility. Nevertheless, his paper shows that, contrary to the second razor’s claim, greater
simplicity does not necessarily lead to greater accuracy. If we accept the fact that the most
accurate models will not always be simple or easily understandable, we should allow an explicit
trade-off between the two [167].

Occam’s razor is largely controversial. However, a simple and easy-to-understand
method is needed to calculate point forecasts from machine learning time series models
based on proven techniques.

6. Conclusions

Artificial neural networks (ANNs) have been (and still are) promising modeling tech-
niques with an ever-increasing number of real-world applications. A very wide variety of
ANN methods and algorithms are available; in fact, several tens of thousands of articles
containing the keywords “time series” and “neural networks” can be found online. In this
survey, we covered only a small and (hopefully) not-so-biased sample containing the most
representative and popular ANN architectures employed for time series prediction tasks
(for a small summary of surveyed studies, see Table 2). All the prototypical ANN architec-
tures reviewed here constitute powerful, appealing machine learning techniques founded
on sound mathematical and statistical principles. This is the reason why these methods
work so well in many fields of study, including time series modeling and forecasting.

An interesting discussion that attempts to further explain from a theoretical perspective
the success and power of ANNs (using concepts from probability and physics) can be found
in Lin and Tegmark [168].
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Table 2. A small sample of ANN applications to time series forecasting tasks.

Study Main Model Employed Time Series Forecasting
Application

Adhikari et al. [81] FFNN–PSO, Elman RNN–PSO Macroeconomic variables

Alba-Cuéllar et al. [6] FFNN–PSO
ensemble-bootstrap Monthly transportation data

Barrow and Crone [40] FFNN ensembles Transportation data
Blonbou [85] Bayesian NN Wind-generated power

Busseti et al. [169] Deep RNN Load forecasting
Chandra and Zhang [53] Elman RNN Chaotic time series

Chatzis and Demiris [170] Bayesian ESN Chaotic time series
Crone et al. [94] FFNN, SVR Monthly retail sales

Dablemont et al. [66] Double SOM–RBFN German DAX30 index

Giovanis [83] FFNN–GA Macroeconomic and
financial data

Guo and Deng [89] Hybrid FFNN–BP–ARIMA Traffic flow

Jaeger and Haas [164] ESN Wireless
communication signals

Jha et al. [80] FFNN–PSO Financial data

Kocadağlı and Aşıkgil [87] Bayesian FFNN–GA Weekly sales of a
finance magazine

Lahmiri [41] RBFN ensemble NASDAQ returns

Leung et al. [114] FFNN-improved GA Natural phenomena
(sunspots)

Maciel and Ballini [19] FFNN Stock market
index forecasting

Mai et al. [48] RBFN Electric load
de M. Neto et al. [92] FFNN–PSO Financial data
Niu and Wang [47] Improved RBFN Financial data

Nourani et al. [68] SOM–Wavelet
Transform–FFNN Satellite rainfall runoff data

Otok et al. [90] Ensemble ARIMA–FFNN Monthly rainfall in Indonesia
Sermpinis et al. [45] RBFN–PSO Global financial data
Shi and Han [171] SVR–ESN hybrid China Yellow River runoff

Simon et al. [64] Double SOM Polish electrical load
time series

Skabar [84] Bayesian FFNN Australian Financial Index

Song [57] Jordan RNN Natural phenomena
and sunspots

Valero et al. [63] SOM, FFNN Load demand in Spain
electrical system

van Hinsbergen et al. [86] Bayesian ANN Urban travel time

Yadav and Srinivasan [65] SOM–AR Electricity demand in Britain
and Wales

Yeh [93] FFNN–ISSO Natural phenomena and
simulated data

Yin et al. [46] RBFN Tidal level at Canada’s
west coast

Zhang [88] Hybrid ARIMA–FFNN Natural phenomena and
financial data

Zhao et al. [54] Elman RNN–Kalman filter By-product gas flow in the
steel industry

Zimmermann et al. [96] ECNN Demand of products and
raw materials

Feedforward-type ANN architectures (FFNNs, RBFNs, SOMs, SVRs, etc.) are by far
the most popular among all ANN architectures employed for time series prediction tasks
because of their relative simplicity, universal functional approximation properties, and
stability. ANN training with alternative machine learning evolutionary algorithms (PSO,
GA, ABC, etc.) and combined with ensemble modeling offers an attractive framework for
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producing accurate time series forecasts with associated uncertainty measures. Recurrent
neural networks (RNNs) are hard to implement, but they are worth taking a look at,
especially when we want to model long past time series behavior or when a time series
behaves more like a chaotic dynamical system and less like a nonlinear autoregressive
signal. RNN’s standard training algorithm (namely, error backpropagation through time)
requires intensive computing resources and has to be handled carefully in order to achieve
convergence and stability. On the other hand, the echo state network (ESN) approach
to time series RNN modeling offers a faster way to identify stable dynamical systems
since fast and economical linear regression aimed at selecting appropriate nonlinear neural
activations is at the core of ESN training.

Especially in the early days (late 1980s and early 1990s), properly fitting a suitable
ANN architecture to a given time series dataset in order to produce accurate forecasts was
more of an art than a science. The building process of a time series ANN model relied
heavily on trial and error and was very sensitive to the practitioner’s previous knowledge
and experience with the data at hand. These limitations, together with seemingly conflicting
empirical evidence regarding the forecasting power of ANNs, gave rise to doubts and
skepticism about ANN’s overall ability to predict future time series values. In our opinion,
the works surveyed in Section 4 define well-structured time series ANN modeling strategies
that successfully address the aforementioned issues; however, work still needs to be done.
Time series ANN modeling is not as well-established as traditional time series analysis due
to the following:

1. ANN modeling is still a fast-evolving field of study;
2. Further work still needs to be done in order to employ ANNs as useful tools for

understanding and interpreting relationships among time series variables involved in
the forecasting task at hand (opening the black box);

3. Although ensemble modeling and methods similar to the double SOM technique
discussed in Section 4.4 provide solutions for quantifying the uncertainty of time
series forecasts generated by ANN models, we think that work still needs to be done
in order to construct statistically valid prediction intervals associated with time series
point forecasts from ANN models.

On the other hand, traditional statistical linear regression models are simple to under-
stand, easy to implement and interpret, and are always at the forefront of the time series
modeling literature. Unfortunately, linear modeling offers only an incomplete framework
since nonlinear features in temporal data play an important role in many time series fore-
casting tasks. Parametric nonlinear modeling is a difficult and cumbersome activity since
many arbitrary initial assumptions have to be made about the true form of the unknown
underlying data-generating process. Linear models are often used indiscriminately by
many practitioners, even if the predictions turn out to be unsatisfactory, which is often the
case given time series nonlinear characteristics for many real-world problems. People’s
predisposition and willingness to ignore the limitations of traditional linear models is also
an obstacle to the adoption of ANN techniques applied to time series forecasting tasks. Lin-
ear models, when used appropriately, are very effective tools. In fact, combining nonlinear
methods based on ANNs with traditional linear models is a powerful and effective strategy.
ESNs represent a prime example: linearly trained weights allow the ESN to select nonlin-
ear neural activations from its reservoir. SOM models potentially offer a solution to the
black-box problem associated with neural network models since their local approximation
properties can be combined with linear time series modeling techniques, allowing users
to study and interpret existing relationships among the response variable and some of its
time-lagged values. An approach of our own to the problem of building statistically valid
prediction intervals for time series point predictions generated by ANN models is outlined
next: The basic idea is that, if a time series model has good generalization properties, then
its forecasts will be close to actual future observations, and therefore the linear correlation
coefficient between forecasts and true future observations (once they become available)
will be close to one. Under these circumstances, it makes sense to build a simple linear re-
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gression model (called an auxiliary linear model) using validation data (i.e., the most recent
observations in the training set) as the response variable Yt and corresponding predictions
from a fully trained ANN model (called the main ANN model) as the independent variable
Xt. Under favorable circumstances, the auxiliary linear model, after being built, would
have a statistically insignificant intercept coefficient β0 close to zero and a statistically
significant slope coefficient β1 close to one. The residuals from the auxiliary linear model
would contain valuable information about the distribution of prediction errors associated
with point forecasts generated by the main ANN model. Finally, we would employ our
auxiliary linear model to compute standard errors associated with point forecasts generated
by the main ANN model. These standard errors would be the basis for building prediction
bands with a user-defined confidence level. In an upcoming paper, we will discuss our
idea in more detail, putting to the test the associated hypotheses outlined here.

The recent big data phenomenon is now motivating researchers to take a closer look at
machine learning techniques, specifically ANNs, which are well suited to huge time series
datasets. Terabytes of satellite imaging data pour in constantly and incessantly. Such huge
volumes of data would be impossible to analyze by traditional means. Machine learning
techniques, including ANNs, become an essential tool in these situations since ANNs are
good at identifying recurring patterns occurring in large volumes of data. The joint use
of ANN and linear models applied to very large datasets with temporal structure could
be a good opportunity for unifying traditional statistics and machine learning. Efforts
should be made to standardize notation and techniques from both disciplines, so machine
learning can be regarded by scientists and practitioners as an integral and important part
of statistics.
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Abbreviations
The following abbreviations are used in this manuscript:

ABC Artificial bee colony
ANN Artificial Neural Network
ARCH Autoregressive conditional heteroskedasticity
ARIMA Autoregressive integrated moving average
BP Backpropagation
BPTT Backpropagation through time
CV Cross-validation
FFNN Feedforward neural networks
GA Genetic algorithm
MLP Multilayer perceptron
NARX Nonlinear autoregressive with exogenous inputs
PEM Prediction error measure
PCA Principal component analysis
PSO Particle swarm optimization
RBFN Radial basis function network
RNN Recurrent neural network
SOM Self-organizing map
SVM Support vector machines
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