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Abstract: In this study, we created an accurate model for a homogenous smart structure. After
modeling multiplicative uncertainty, an ideal robust controller was designed using µ‑synthesis and
a reduced‑order H‑infinity Feedback Optimal Output (Hifoo) controller, leading to the creation of
an improved uncertain plant. A powerful controller was built using a larger plant that included the
nominal model and corresponding uncertainty. The designed controllers demonstrated robust and
nominal performance when handling agitated plants. A comparison of the results was conducted.
As an example of a general smart structure, the vibration of a collocated piezoelectric actuator and
sensor was controlled using two different approaches with strong controller designs. This study
presents a comprehensive simulation of the oscillation suppression problem for smart beams. They
provide an analytical demonstration of how uncertainty is introduced into the model. The desired
outcomes were achieved by utilizing Simulink and MATLAB (v. 8.0) programming tools.

Keywords: µ‑analysis; µ‑synthesis; reduced‑order control; disturbance rejection; smart structure

1. Introduction
Many researchers [1–3] have investigated smart structures and the suppression of os‑

cillations caused by external disturbances. The field of smart structures has significantly
developed in recent years [4–7]. Damping oscillations require the use of smart materials
and the application of controls [8–12]. Advanced verification techniques must be used
to account for modeling uncertainties and imperfections. Such techniques can include µ‑
analysis, µ‑synthesis, and robust control. In this study, we used the above types of controls
and applied them to smart piezoelectric structures. H‑infinity feedback optimal output (Hi‑
foo) control in smart piezoelectric structures involves designing controllers that minimize
the impact of disturbances anduncertainties on the output performance of the system. This
is particularly important in applications where precise control of the deformation or vibra‑
tion of the structure is required. Modeling with Hifoo assumes infinite control knowledge.
Hinfinite control is a common approach for vibration control [13–16]. Hifoo is related to H‑
infinity control, which aims to minimize the effects of disturbances and uncertainties in a
system. Hifoo is specifically focused on finding optimal controllers to achieve the best pos‑
sible output performance. The key benefits of applying µ‑analysis control to smart piezo‑
electric structures include improved robustness against external disturbances, increased
stability, and enhanced tracking of the desired responses. These controllers are designed
to optimize the trade‑off between performance and robustness, making them suitable for
applications in which maintaining a specific structural response is critical.

A combination of µ‑analysis and Hifoo [4–6,17] reduced control theory was utilized
to study the design of piezoelectric active control for both normal and damaged smart
buildings. The outcomes validated the efficacy of the proposed model and procedures
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and the control behavior of the beam aligned with expectations. Following a thorough
study, we assessed the robustness and performance of the system.

By adding uncertainty, we were able to maintain the framework within specified un‑
certainty bounds [7,18–20]. In a research paper that explored the benefits of robust con‑
trol in smart structures, refs. [19–24] underscored the utilization of Hifoo control [4–6,17]
in both the state space and frequency domains. The advantages of this work are as fol‑
lows: the introduction of control for oscillation suppression and the modeling of intelli‑
gent structures bring about alterations in both the frequency and time‑space domains, as
well as the inclusion of uncertainties in the mathematical model of the construction, and
an introduction to µ‑synthesis and reduced‑order control in intelligent structures [25,26].
The development of control strategies for intelligent piezoelectric structures involves sev‑
eral challenging issues. Researchers have investigated the application of piezoelectric ma‑
terials in systems with distributed parameters with the aim of facilitating efficient and
cost‑effective active control. Dynamic systems can be actively controlled using distributed
sensors and actuators composed of adaptable piezoelectric materials. The main considera‑
tions that structural control engineers need to keep in mind while creating reliable control
techniques for assessing resilience, optimal placement, and structural modeling in the face
of uncertainty are covered in this essay [27–30]. Because the controller provided is of or‑
der 56, sophisticated control techniques may be applied to simpler models, and we use the
optimizationmethodHifoo to reduce the order of the controller. All simulationswere com‑
pleted using sophisticated programming methods in the Matlab software platform (v. 8.0,
Mathworks, Natick,MA,USA). A crucial engineering problem is the vibration suppression
that occurs under dynamic and unexpected loads. Vibrations are significant in engineering
systems because of their association with material deterioration, which can result in major
and component failures.

The µ‑synthesis process aims to optimize the controller to meet these specifications
while accounting for uncertainties. Applying µ‑synthesis in the design of controllers for
smart structures helps to address the challenges associated with real‑world variability and
disturbances, making the structures more reliable and adaptive to changing conditions.
Moreover, we specify the desired performance criteria for a smart structure, such as con‑
cerning response time and vibration suppression. This approach is particularly relevant
in applications such as adaptive building structures, aerospace systems, and other fields
where the performance of structures is critical.

2. Methodology
µ‑Analysis and µ‑Synthesis

µ‑Analysis is a method used to analyze the robustness of a control system. It quanti‑
fies the extent to which the performance of the system can be degraded in the presence of
uncertainties or variations in the plant (the system being controlled). This involves consid‑
ering uncertainties in the system parameters, dynamics, and disturbances. These uncer‑
tainties are typically represented by transfer functions of varying magnitudes and phases.
µ‑Synthesis is an extension of µ‑analysis, which incorporates a synthesis or design com‑
ponent. This is a systematic method for designing controllers that can handle identified
uncertainties and variations, ensuring robust stability and performance. The µ‑synthesis
approach involves finding a controller that minimizes the µ‑value (uncertainty measure)
while satisfying certain performance and stability specifications.

Every approach to the analysis problem discussed includes implements to assess each
controller’s performance and facilitate comparisons between controllers. However, a con‑
troller that attains a particular performance level in relation to the structured single value
µ can be synthesized. The (D, G‑K) iteration procedure was used to perform this synthe‑
sis [29,31,32]. During this procedure, the task of locating a µ‑optimal controller K satisfying
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µ(Fu(F(jω), K(jω))≤ β for all ω has been altered for the challenge of determining the trans‑
fer function matrices D(ω) ∈ D and G(ω) ∈ G. Thus,

supσ

[(
D(ω)(Fu(F(jω),K(jω)D−1

γ − jG(ω)

)
(I + G2(ω))

− 1
2

]
≤ 1, ∀ω (1)

Unfortunately, this approach does not ensure the discovery of local maxima. Never‑
theless, when dealing with intricate perturbations, there is an alternative method called
D‑K iteration (also executable in MATLAB) [29,33]. This technique integrates µ‑synthesis
and µ‑analysis and frequently provides satisfactory results. It begins with an initial esti‑
mation of µ, as stated in connection with the scaled singular value:

µ(N) ≤ min
D∈D

σ(DND−1) (2)

The vision is centered on identifying the controller thatminimizes the peak value of its
upper bound across different frequencies. In other words, the K‑Steps in µ‑Synthesis are:

Uncertainty Modeling: Identify and model uncertainties in the system. This may in‑
clude parametric uncertainties, unmodelled dynamics, and external disturbances.

µ‑Analysis: Perform µ‑analysis to quantify the robustness of the system in the pres‑
ence of uncertainties. This step helps to identify the critical frequencies and magnitudes
wherein robustness is the most challenging.

Robustness: µ‑synthesis provides a systematic approach for designing controllers that
are robust against uncertainties, ensuring stable and satisfactory performance over a range
of operating conditions. The resulting controllers often have a structured form, which
makes them more interpretable and easier to implement.

min
K

(min
D∈D

∥∥∥DN(K)D−1
∥∥∥

∞

)
(3)

By alternately minimizing the
∥∥∥DN(K)D−1

∥∥∥
∞
with respect to either K or D (while

keeping the other constant) [27,29]:
In the K‑step, synthesize an H∞ controller for the scaled problem, minimizing

∥〖DN(K)D〗−1 ∥∞ with a fixed D(s).
In the D‑step, we determineD(jω) at each frequency to minimize σ(DND−1(jω)) with

the fixed transfer function N.
Themagnitude of each element ofD(jω) is adjusted to fit a stable andminimum‑phase

transfer function D(s) and then returns to the first step.

3. Results
3.1. Application in Smart Structures

This section examines an eight‑element cantilever smart structure (Figure 1a), inwhich
four pairs of piezoelectric patches at the top and bottom surfaces of each beam element are
symmetrically bonded. The measurements of several sections of this building are shown
below, and Table 1 lists the beam specifications.

Table 1. Parameters of the smart structure.

Parameters Values

L, for beam length: 1.20 m

W, for beam width: 0.08 m

h, for beam thickness: 0.02 m

ρ, for beam density: 1800 kg/m3

E, for Young’s modulus of the beam: 1.5 × 1011 N/m2
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Table 1. Cont.

Parameters Values

bs, ba, for Pzt thickness: 0.002 m

d31 the Piezoelectric constant 280 × 10−12 m/V

Figure 1. Cont.
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Figure 1. (a) Modeling of intelligent structure. (b) The block diagram in Matlab Simulink for the
smart beam disturbance rejection. (c) The robust control design diagram of µ‑synthesis.

Smart structures often involve the integration of sensors, actuators, and control sys‑
tems to adapt to changing environmental conditions. The dynamical equation for smart
structures can be complex and depend on the specific configuration and components used.
In the next section, we examine the performance of an eight‑element cantilever smart struc‑
ture featuring four pairs of piezoelectric patches symmetrically affixed to both the top and
bottom surfaces of each beam element. The section that follows lists the dimensions of
each part of the intelligent structure. The following equations clarify the dynamic charac‑
terization of the system:

M
..
q(t) +D

.
q +Kq(t) = f m(t) + f e(t) (4)

These equations capture the essence of how smart structures incorporate active and
robust controls to adapt to dynamic loads or changing conditions. The challenge lies in
designing effective control algorithms and systems that respond optimally to the state of
the structure and external forces.

Where K represents the global stiffness matrix, fm is the global external loading vec‑
tor, and fe is the global control force vector produced by the electromechanical coupling
effect, which is often determined by a feedback control system that uses sensor informa‑
tion to adjust the behavior of the structure in real‑time. The overall goal is to optimize
the performance or response of the structure under varying conditions. M represents the
global mass matrix; D represents the viscous damping matrix. The mass M and stiffness
K matrices were derived by assembling the local mass and stiffness matrices. The analy‑
sis was performed using Euler Bernoulli’s theory, and we had two degrees of freedom at
each node: vertical displacement and rotation. Damping D is a small percentage (0.0005)
of the mass and stiffness matrices. The rotations ψi and vertical displacementwi constitute
independent variable q(t), i.e.,

q(t) =


w1
ψ1
...

wn
ψn

 (5)

where n denotes the number of finite elements used in the analysis. Vectors w and fmwere
positive upward.
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To convert to a state‑space control representation, allow (in the usual manner):

x(t) =
[

q(t)
.
q(t)

]
(6)

In addition, fe(t) can be defined as Bu(t) by expressing it as F∗eu, where F∗e (of size
2n × n) stands for the piezoelectric force for a unit established on the associated actua‑
tor [34–36], and u represents the voltages on the actuators [34–36]. Finally, d(t) = fm(t)
denotes the disturbance vector. Then,

.
x(t) =

[
02n×2n I2n×2n
−M−1K −M−1K

]
x(t) +

[
02n×n

M−1F∗
e

]
u(t) +

[
02n×2n
M−1

]
d(t)

= Ax(t) + Bu(t) + Gd(t)

= Ax(t) +
[
B G

][u(t)
d(t)

]
= Ax(t) + B

∼
u(t)

(7)

In this form, d is a 2n× 1 vector (where n is the number of nodes), and u is, at most, an
n× 1 vector (but it may be smaller). The units used were Newton (N), seconds (s), radians
(rad), and meters (m). With a more detailed investigation of the stability in the frequency
domain, our approach preserves the stability in the time domain [27].

y(t) = [x1(t) x3(t) … xn−1(t)]T = Cx(t) (8)

This state‑space representation captures the first‑order dynamics of the smart struc‑
ture, where the state vector x(t) includes both displacement and velocity. Let us now use
the following approach to the uncertainty in the M and K matrices:

K = K0
(
I+ kpI2n×2nδK

)
M = M0

(
I+mpI2n×2nδK

) (9)

Furthermore, since D = 0.0005 (K + M), a suitable form for D is as follows:

D = 0.0005
[
K0

(
I+ kpI2n×2nδK

)
+M0

(
I+mpI2n×2nδM

)]
=

D0 + 0.0005
[
K0kpI2n×2nδK +M0mpI2n×2nδM

] (10)

However, given that, in general:

D = αK + βM

The structural damping matrix D can be examined as a linear combination of mass
and stiffness (Rayleigh damping). In this context, the values for α and βwere determined
based on the first and second normal modes of vibration, with both α and β set at 0.0005.
D can be expressed in a manner similar to K and M, as follows:

D = D0 (I + dpI2n×2nδD) (11)

In the pertinent matrices, we incorporate uncertainty in the form of proportional de‑
viation. Given the precision with which the length can be measured, this formulation of
uncertainty aligns well with our context. It is more probable that uncertainty originates
from factors other than the primary matrices. In this context, we assume that

∥∆∥∞
def
=

∥∥∥∥[In×nδK 0n×n
0n×n In×nδM

]∥∥∥∥
∞
< 1 (12)
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Hence, mp and kp are used to scale the value of the proportion, and the nominal values
are represented by the zero subscript.

(It is urged that, for matrix An×m, the norm is determined via ∥A∥ ∞ = max
1≤j≤m

∑n
j=1

∣∣aij∣∣.)
Taking these specifications into consideration, Equation (4) changes to,

MO
(
I+ mp I2n×2nδM

..
q(t)

)
+ Ko

(
I + kp I2n×2nδKq(t)

)
+

[
D + 0.0005

[
Kokp I2×2δK + MOmp I2×2δM

] .
q(t)+

fm(t) + fe(t)

⇒ MO
..
q(t) + DO

.
q(t) + KOq(t) = −

[
MOmp I2n×2nδM

..
q(t) + 0.0005

[
Kokp I2×2δK + MOmp I2×2δM

] .
q(t)+

KOkp I2n×2nδKq(t)
]
+ fm(t) + fe(t)

⇒ MO
..
q(t) + DO

.
q(t) + KOq(t) =

∼
Dqu(t) + fm(t) + fe(t)

(13)

where:

qu(t) =

 ..
q(t)
.
q(t)
q(t)


∼
D = −

[
M0mp K0kp

][I2n×2nδM 02n×2n
02n×2n I2n×2nδK

][
I2n×2n 0.0005I2n×2n 02n×2n
02n×2n 0.0005I2n×2n I2n×2n

]
=

= G1 · ∆ · G2

(14)

Equation (7), when expressed in state‑space form, generates

.
x(t) =

[
02n×2n I2n×2n
−M−1K −M−1D

]
x(t) +

[
02n×n

M−1 f ∗e

]
u(t) +

[
02n×2n
M−1

]
d(t) +

 02n×6n
M−1G1 · ∆ · G2

qu(t)

= Ax(t) + Bu(t) + Gd(t) + GuG2qu(t)

(15)

In thismethod, we considered the uncertainty of the originalmatrices as an additional
uncertainty parameter. Incorporating uncertainty into the equation for a smart structure
involves modeling the uncertainty in the parameters of the system. In our paper, we in‑
troduce uncertainty in the matrices of smart structures and robust control theory, such as
µ‑analysis and Hifoo control.

3.2. Robust Synthesis: µ‑Controller
µ‑Analysis, also known as mu‑analysis, is a technique commonly used in control sys‑

tem design to analyze and address uncertainties in dynamic systems. This is particularly
useful for understanding how uncertainties affect the robustness and stability of control
systems. We applied µ‑analysis to our smart structures. In µ‑analysis, the goal is to assess
the system performance in the presence of uncertainty by defining a performance metric
denoted by µ. The uncertainty is bounded by identical constraints with a constant mp and
kp [29,37–39]. All the results were obtained using MATLAB Simulink (Figure 1b); more‑
over, in all simulations, noise as a percentage ± 2% of the disturbance was obtained. The
results are for the displacements and rotations of the smart beam nodes. In Figure 1b, a
block diagram for smart beam disturbance rejection in MATLAB Simulink is presented. In
the first result, a concentrated load of 10 N was applied to the edge of the support. Subse‑
quently, a sinusoidal load with an oscillation part of 10 N and a period of 1 s was applied.
Therefore, for the first mechanical load, we have 10 N at the edge of the cantilever, while,
for the second mechanical load, we have a sinusoidal load in the 10 N range with a period
of 1 s.

This study uses advanced control techniques and finite element modeling with ap‑
plications to smart materials. For this reason, because modeling requires many computa‑
tional requirements, experimental results will be the subject of future research.
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mp = 0, kp = ±0.9: This relates to a deviation of approximately 90% from the nominal
value of stiffness matrix K (Equations (9) and (10)).

As previously stated, the following commands were required to conduct this process
in the MATLAB software platform (Mathworks, Natick, MA, USA) and are presented in
Appendix A of the manuscript. This command generates a robust controller on the order
of 56. This is a large value because of the operation of this algorithm. Despite being men‑
tioned in the literature, this point has not been given enough emphasis, which is undoubt‑
edly an oversight. To the best of our knowledge, lowering the order cannot be performed
quickly without employing a laborious manual process. Figure 1c shows the µ‑synthesis
robust control design framework.

The white matrix for noise, control, error, and disturbance is for the control (u):

Wu =


7.856×10−6s+0.005556

s+100 0 0 0
0 7.856×10−6s+0.005556

s+100 0 0
0 0 7.856×10−6s+0.005556

s+100 0
0 0 0 5.556×10−6s+0.005556

s+100

 (16)

For error e:

We=


22,723
s+31.42 0 0 0

0 22,723
s+31.42 0 0

0 0 22,723
s+31.42 0

0 0 0 22,723
s+31.42

 (17)

For disturbances d:

Wd=



20 0 0 0 0 0 0 0
0 20 0 0 0 0 0 0
0 0 20 0 0 0 0 0
0 0 0 20 0 0 0 0
0 0 0 0 20 0 0 0
0 0 0 0 0 20 0 0
0 0 0 0 0 0 20 0
0 0 0 0 0 0 0 20


(18)

For noise n:

Wn=


10−5 0 0 0

0 10−6 0 0
0 0 10−6 0
0 0 0 10−5

 (19)

In the µ‑synthesis robust control design diagram, the primary focus is on enhancing
the robustness of the system to uncertainties. The process involves evaluating the perfor‑
mancemetric µ by analyzing the closed‑loop transfer function, considering both the system
transfer function T(s) and uncertainty transfer function ∆(s). The goal is to optimize the
controller parameters to maximize µ, ensuring improved stability and performance in the
presence of uncertainties.

The first mechanical load in each of the simulations that came after the disturbance
was 10 N at the free end; K(s) is the controller, ∆ is the uncertainty plan (Equation (12)), B
(Figure 1a) is the smart structure, and x and y are from Equations (7) and (15).

Figure 2 shows the µ‑values of the computed controller’s µ‑values. The majority of
the frequencies indicate that the controller is reliable [8–12]. A higher µ‑value indicates
better system performance and robustness. One way to create a µ‑controller is to use the
D‑K iteration process. As previously mentioned, this is an approximation process that
provides boundaries for the µ‑value.
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Figure 2. The µ‑controller’s boundaries for mp = 0 and kp = ±0.9.

Figure 3 illustrates a comparison of µ‑controller performance at the free end, which
serves as an indicator of the overall effectiveness. It is clear that the µ‑controller surpasses
the others in performance, albeit at the expense of an increased control effort. In Figure 3,
the upper part shows the displacement of the free end of the beam. The blue line repre‑
sents the displacement for the open‑loop configuration of the beam, which means without
control; the red line represents the displacement with the controller with µ‑analysis. The
results were very good when vibration suppression was achieved. In Figure 3 (bottom
window), we consider the control voltages for the free end of the beam with a maximum
voltage of 50 Volt. Figure 4 (left window) confirms this result. This might be the result of
numerical issues with the µ‑controller computation caused by the poor condition number
of the plant. Another possible reason could be the high order of the µ‑controller. Fur‑
ther research is required in either event. A higher µ value indicates a better robustness
against uncertainties. The control system design using µ‑analysis involves optimizing the
controller to maximize µ and ensure robust stability and performance in the presence of
uncertainties.

Applying µ‑analysis to smart structures involves considering uncertainties in the struc‑
tural parameters and control elements and designing controllers that maximize µ to en‑
hance robustness.

Figure 4 illustrates the displacement of the beam’s free end; the red line represents
the displacement for the open loop of the beam, which means without control; the black
line represents the displacement for the controller with µ‑analysis. The results were very
good when vibration suppression was achieved. In the bottom‑left window, we take the
control voltages for the free end of the beam with a maximum voltage of 15 Volt (Figure 4
bottom‑left). The previous results are with Ko = 1.9 K: when Ko = 0.1 K (this translates to a
±90% deviation from the nominal value of the stiffness matrix K), the control voltages are
50 Volt (right down), and the displacement for the free end of the beam with and without
control is shown in Figure 4 (upper‑right window).

Moreover,mp =±0.9 andkp = 0,which corresponds to a±90%variation from thenominal.



Algorithms 2024, 17, 73 10 of 20

Figure 3. Comparing the free‑end data for the µ‑controller (mp = 0, kp =±0.9) in the nominal system.

Figure 4. Using mp = 0, kp = ±0.9, and control and displacement for the µ‑controller at the free end.

The displacement responses of this controller for the first mechanical input are shown
in Figure 5. We take the results for the four nodes of the beam, and the results with the
blue line are for the open loop, i.e., without control. The results with the green line are for
µ‑analysis, and the results with the µ‑analysis are much better as we successfully rejected
the oscillations. The previous results were in the state‑space and frequency domains. The
boundaries of the µ values are shown in Figure 6. As can be seen, the system continues to
function robustly and steadily because the upper limits of both values remain below 1 for
all relevant frequencies. This finding is confirmed in Figure 7, where the applied voltage
and free‑endmovement are displayed at themaximumdegree of uncertainty. The nominal
controller performed better than the open‑loop response for the identical system value of
the stiffness matrix M.
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Figure 5. Displacement response, µ‑controller for kp = 0, mp = ±0.9, and 10 N at the free end.

Figure 6. Limits of the µ‑controller for mp = ±0.9 and kp = 0.
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Figure 7. Control anddisplacement at the free end for the µ‑controllerwith extreme valuesmp = ±0.9
and kp = 0.

The top left of Figure 7 shows the displacement of the beam’s free end; the red line
shows the displacement for the open loop of the beam, which means without control; and
the green line shows the displacementwith the controllerwith µ‑analysis. The resultswere
excellent, and vibration suppression was achieved. In the bottom‑left window of Figure 7,
we take the control voltages for the free end of the beamwith amaximumvoltage of 50Volt.
The previous results are for Mo = 1.9 K (this refers to a +90% variation from the nominal
value of the mass matrix M), and the control voltages are 35 Volt (Figure 7, bottom right).
The displacement at the beam’s free end both with and without control is shown in the
upper‑right window in Figure 7.

3.3. Reduced‑Order Control
Because the presented controller has good results but has a very high order (56), an

attempt was made to reduce the controller’s order using the Matlab package Hifoo (Math‑
works, Natick, MA, USA), where the controller’s order is 2. The controller orderwas prede‑
termined to be less than the plant order. Owing to the non‑convexity and non‑smoothness
of the objective function, this optimization issue is challenging. Using a hybrid method
based onmany techniques, Hifoo searches for fixed‑order controllers that achieve the min‑
imal closed‑loop H∞ norm in nonsmooth, nonconvex optimization [5,17,40].

The previous section addressed nonconvex and nonsmooth objective functions. More‑
over, it can often be a situation in which the objectives cannot be distinguished by the local
minimizers. The Hanso support package utilizes a hybrid algorithm to locally optimize
the functions of this type. It consists of the following phases: an initial quasi‑Newton al‑
gorithm (BFGS) phase that, unexpectedly, usually functions fairly effectively even in the
presence of non‑smoothness when applied using a suitable line search, and it frequently
proposes an efficient method to estimate a local minimizer, a local bundle phase that at‑
tempts to confirm locally and optimality for the best point identified using BFGS and, if
this malfunctions, a gradient sampling phase [40]. The use of gradients is required. The
gradients of every optimization objective function supported using Hifoo can be easily
computed using eigenvector or singular vector data that were previously acquired during
the objective function computation process. Hanso receives these gradients, which are cal‑
culated using the Hifoo algorithm. There has been no attempt to locate unusual places
when gradients are not present. The algorithms do not seem to be diverted by the areas of
discontinuity in the gradients at exceptional places, or, in other words, in cases where the
gradients cannot be found in these locations (which usually include optimizers). However,
some algorithms use these discontinuities [40].

Additionally, all simulations are performed in MATLAB Simulink (Mathworks, Nat‑
ick, MA, USA), including the block diagram in MATLAB Simulink (Mathworks, Natick,
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MA, USA), which is shown in Figure 8a. For all simulations, we discovered that noise, as
a percentage, is ±2% of the disturbance (Figure 8b). The results are for the displacements
and rotations of the smart beam nodes.

Figure 8. (a) The block diagram in Matlab Simulink for the smart beam disturbance rejection with
Hifoo controller and sinusoidal disturbance. (b) The block diagram inMatlab Simulink for the smart
beam with sinusoidal noise (percentage ± 2% of the disturbance).

3.4. Problem Formulation and Optimization
The equations of the state space of a generalized plant G provide more details on the

method with Hifoo.
.
x(t) = Ax(t) + B1w(t) + B2u(t),

z(t) = C1x(t) + D11w(t) + D12u(t),

y(t) = C2x(t) + D21w(t) + D22u(t)

(20)
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and state‑space realization of the controller K(s) is:
.
xK(t) = AKxK(t) + BKy(t),

u(t) = CKxK(t) + DKy(t)
(21)

the matrices in our problem with the cantilever smart structure are

AK=

[
840

208.0
−5044
−2500

]

BK=

[
412.8
−164.9

911.6 1716 2810
−637.2 −1348 −3207

]

CK=


1557
7013
627

144.3

−916.7
−592.3
−597.9
−82.59



DK=


96.8
23.5

12.12
8.204

6.8 487.9 468.3
87.69 186.5 303

44.12 93.39 354.3
12.53 86.92 883.51



(22)

where A ∈ Rn×n, D12 ∈ Rp1×m2, and D21 ∈ Rp2×m1 have additional matrices of equivalent
dimensions, and AK ∈ RnK×nK, with BK, CK, DK, AK, and the size of the generalized plant
matrices are comparable. This constant order of control makes it identifiable to the de‑
signer. The measured inputs (or sensor inputs), control inputs, external inputs (such as
disturbances and instructions), and controlled outputs are represented by the signals (z,
w, y, and u) in that order. The symbol represents the transfer function Tzw from the input
w to the output z (see [23] for further details). The optimal infinity controller design can
be represented by minimizing the closed‑loop H∞ characteristic function [41–44].

Inf ∥Tzw∥∞,

Kstabilizing

In accordance with this constraint, K(s) internally maintains the closed‑loop system.
In this study, we implemented the additional criterion that the controller must be

stable enough to reduce:

Inf ∥Tzw∥∞,

K stabilizing and K stable

To express the largest real component of the eigenvalues, or the spectral abscissa of
matrix X, we use (X). Therefore, if the ACL is a closed‑loop systemmatrix, both α(ACL) < 0
and α(AK) < 0 are required. The feasible set for AK, which is a set of stable matrices, has
a ragged border and is not convex. It has been the subject of much investigation (see, for
instance, [4–6]).

Similar to previous versions [6,40], Hifoo uses two processes: performance optimiza‑
tion and stability. Hifoo 2 continues to minimize max(α(ACL, ūα(AK)), a positive param‑
eter that will lead to the subsequent detainment of additional information, as the closed‑
loop system remains stable once it locates a controller K wherein this number is negative,
demonstrating that the controller is stabilized. An output indicating its inability to find a
compatible controller was returned using Hifoo.
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Regarding speed optimization,Hifoo 2 looks for a localminimizer in the following stages.

f(K) =

 ∞ if max(α(ACL), α(AK)) ≥ 0

max(∥Tzw∥∞∞,∈ ∥K∥∞) otherwise
(23)

where:
∥K∥∞ = supR∫=0

∥∥∥CK(sI−AK)
−1BK +DK

∥∥∥
2

In Figures 9 and 10, we can see the comparisonwith µ‑analysis and the reduced‑order
control (Hifoo control) for all the nodes of the smart structure. Figure 9 shows the rotations
for the four nodes of the structure, and Figure 10 shows the displacements. The results
without control for the open loop are indicated by the blue line, the results with reduced‑
order control Hifoo are indicated by the black line, and the results with µ‑analysis are indi‑
cated by the green line. The results are satisfactory, suppression of oscillations is achieved
for dynamic loading, and both models of the control have very good results; meanwhile,
the µ‑analysis achieves a control model with almost zero displacement and rotation. Dis‑
placement rejection in smart structures refers to the ability of a structure to minimize or
reject unwanted displacements in response to external forces or disturbances. This is a
crucial aspect in the control system design for smart structures, especially in applications
where precise positioning or stability is required. Displacement rejection was achieved
in our study in both the µ‑analysis and Hifoo control, employing a well‑designed robust
control system. Smart structures can actively counteract disturbances, maintain stability,
and achieve precise control over their displacement, making them suitable for applications
such as vibration suppression with robust criteria and structural positioning.

Figure 9. The four nodes of the beam rotations with and without µ‑analysis: rotation.
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Figure 10. The four nodes of the beam rotations with and without µ‑analysis: displacement.

4. Discussion
The integration of active control, such as µ‑analysis technologies, into smart structures

has been the subject of the present work [4,36,40]. When utilizing the Hifoo controller in
tandem with non‑parametric and non‑convex optimization methodologies, it ensures that
the control output does not surpass operational constraints despite the desirable charac‑
teristics of low steady‑state errors, rapid recovery, minimal maximum uplift, and reduced
vibration, as outlined in [34,35,45].

The steps were as follows: 1. Determining the damping and stiffness. Mass and ma‑
trices using the finite element method. 2. Introduction of electrical charge and mechanics
to the dynamic oscillation (Equation (3)). Application of control theory for modeling dis‑
placement results for finite element models with andwithout robust control. 4. Derivation
of stress results using piezoelectric patches as actuators. 5. Decreasing the controller rank
leads to a reduction in the computational requirements of the model. Remarkably, the con‑
troller demonstrated effective operation even with a significantly lower system degree.

Robust stabilization requires a self‑stabilizing controller, whereas simultaneous stabi‑
lization requires the identification of a single controller. There are particular cases of multi‑
objective robust control challenges for stabilizing multiple plants [46–49]. Many of the cur‑
rent techniques and heuristics employed to address these issues often result in excessively
high‑order controllers. The results show the significant benefits of the proposedmodel and
approach, and the control behavior of the beam aligns with our expectations. µ‑Analysis is
a technique used for analyzing and designing controllers for linear time‑invariant systems.
It dealswith the frequency domain and helps to assess the robustness and performance of a
control system. The goal is to find a controller that can handle uncertainties and variations
in the system while maintaining stability and desired performance.

By contrast, HIifoo control is a method used in control theory that involves the design
of controllers to achieve optimal performance in the presence of disturbances and uncer‑
tainties. Hifoo controllers are designed tominimize the impact of disturbances and uncertain‑
ties on the system output while meeting certain performance specification bounds [7,18,19,45].

In essence, µ‑analysis is a broader technique for system analysis and controller design,
while the Hifoo control is a specific approach within that broader framework, focused on
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achieving optimal performance in the presence of uncertainties. Control theory uses syn‑
thesis approaches to create controllers that provide guaranteed stability [48,49].

In the context of smart structures, µ‑synthesis is a valuable tool for designing robust
controllers that can effectively control the behavior of these structures, particularly when
faced with uncertainties, variations, or disturbances. Smart structures typically involve
the integration of sensors and actuators to respond actively to external stimuli and opti‑
mize their performance. In this context, µ‑synthesis can be applied in the context of smart
structures, which are often subjected to external disturbances such as wind, vibrations, or
other environmental factors. We use µ‑synthesis to design controllers that can reject these
disturbances and maintain the desired structural performance. A control designer can
use µ‑analysis approaches to formulate the control issue as a mathematical optimization
problem and then determine the controller that overcomes this optimization. One benefit
of reduced‑order approaches over conventional control methods is their ease of adapta‑
tion tomultivariate systemswith channel cross‑coupling. Themathematical sophistication
needed for effective application and the need for a reasonably precise model of the system
to be managed are two disadvantages of the Hifoo approach. Note that the resulting con‑
troller is only optimal in terms of the necessary cost function and may not always be the
best [48,49]. Hifoo approaches can be used to lessen the effect of a disturbance on a closed
loop; the impact is evaluated in terms of performance or stability, depending on how the
problem is formulated.

The experimental arrangement is part of our future plans, while the application of
these materials has been demonstrated in aeronautics, mainly in the wings of airplanes,
which can be considered cantilevers, as in the present model. The novelty of our study is
that we succeeded in suppressing the oscillations caused by wind loads with small volt‑
ages. This is very important, that is, oscillation damping is a key problem in the field of
mechanics. The major innovation of this study was the complete suppression of oscilla‑
tions using advanced control techniques. The implementation of control is very difficult
because modeling uncertainty is also introduced, that is, carrier imperfections and load‑
ing uncertainties.

5. Conclusions
The study presented herein advances the application of robust control to minimize

oscillations in intelligent structures. The primary breakthrough lies in achieving the com‑
plete suppression of oscillations through the utilization of a lower‑order controller. A rea‑
sonable repercussion of the proposed research achievements is the recognition of novel sci‑
entific problems that can provide a basis for investigations outside the scope of this work.
The results of this effort are as follows: The time‑space and frequency domains are acquired
by reducing the order of oscillation suppression, leveraging the measurement noise of the
beam state, introducing white noise input as a disturbance input, and interpreting it as a
fraction of the disturbances, along with implementing the measurement noise. Additional
impacts include the reduction in controller order, optimization of the µ‑controller in intelli‑
gent structures, and control of oscillation suppression through intelligent entity simulation.
Positive outcomes are derived from our use of µ‑control and lower‑order control to fully
reject disruptions. Several control strategies used in structures to reduce noise and vibra‑
tions are discussed in this study. Hifoo control is a specific method with micro‑analysis,
which is essentially a larger methodology for system analysis and controller design, with
the goal of achieving the best possible performance in the presence of uncertainty. The
benefit of µ‑synthesis is its robustness: µ‑synthesis provides a systematic approach for de‑
signing controllers that are robust against uncertainties, ensuring stable and satisfactory
performance over a range of operating conditions.
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Appendix A
MATLAB code:
% uncertainty analysis
  mpp = 0
  kpp = 0.9
  delta_m =0
  delta_k = 1
  percn = kpp*100
% % bw1 = ureal(‘bw1’, 1, ‘Percentage’, percn, ‘autosimplify’, ‘full’)
  bw1 = 1
  bw2 = ureal(‘bw2’, 1, ‘Percentage’, percn, ‘autosimplify’, ‘full’)
  ex_un = 1 + percn/100
  E1 = [zeros(nd, nd) eye(nd);
    eye(nd)   zeros(nd, nd);
     zeros(nd, 2*nd)];
  
  E2 = [ zeros(nd, 2*nd)
    zeros(nd, 2*nd)
     eye(nd) zeros(nd, nd)];
  
  delta_un = [eye(nd)*delta_m zeros(nd);
      zeros(nd)   eye(nd)*delta_k];
  
 Gbar = ‑[mm1*mpp kk1*kpp];
  
 Gbar0 = [zeros(nd, 2*nd);
     invM*Gbar];
 Gbar1 = [eye(nd) 0.0005*eye(nd) zeros(nd);
    zeros(nd) 0.0005*eye(nd) eye(nd)];
 Wm = Gbar0*delta_un*Gbar1;
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