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Abstract: Solving combinatorial problems on complex networks represents a primary issue which,
on a large scale, requires the use of heuristics and approximate algorithms. Recently, neural methods
have been proposed in this context to find feasible solutions for relevant computational problems
over graphs. However, such methods have some drawbacks: (1) they use the same neural architecture
for different combinatorial problems without introducing customizations that reflects the specificity
of each problem; (2) they only use a nodes local information to compute the solution; (3) they do not
take advantage of common heuristics or exact algorithms. Following this interest, in this research we
address these three main points by designing a customized attention-based mechanism that uses both
local and global information from the adjacency matrix to find approximate solutions for the Minimum
Vertex Cover Problem. We evaluate our proposal with respect to a fast two-factor approximation
algorithm and a widely adopted state-of-the-art heuristic both on synthetically generated instances
and on benchmark graphs with different scales. Experimental results demonstrate that, on the one
hand, the proposed methodology is able to outperform both the two-factor approximation algorithm
and the heuristic on the test datasets, scaling even better than the heuristic with harder instances and,
on the other hand, is able to provide a representation of the nodes which reflects the combinatorial
structure of the problem.

Keywords: combinatorial optimization problems; minimum vertex cover; deep learning; attention;
memory networks; representation learning

1. Overview

Combinatorial issues that deal with network optimization problems have motivated
several branches of computational science, also thanks to the huge real-world contexts
in which they find application (e.g., bioinformatics [1], sensor networks [2], biology [3],
information retrieval [4] and, more recently, natural language processing [5]). Most of
these problems are intractable (NP-hard). Minimum Vertex Cover (MVC) or its weighted
version (MWVC) [6–8], Maximum Clique (MC) [9,10] or Traveling Salesman (TS) [11,12] are
notable examples of NP-hard problems [13] over graphs for which various approximation
algorithms or heuristics solvers have been proposed as effective alternatives to exact
exponential methods [14,15].

In recent years, the use of Deep-Learning (DL) approaches has been proposed for
solving NP-hard problems over graphs in a purely data-driven fashion. Among these,
the most notable are Pointer Networks [16] and Neural Networks with Dynamic External
Memory [17].These approaches are classical end-to-end learning frameworks based on the
usage of neural networks extended with recent DL mechanisms such as neural attention or
external memory. Nevertheless, the general DL architectures and the strictly data-driven
learning approaches proposed in these pioneering works have been criticized for being too
generic and for not considering the peculiarity of different graph problems [18], thus not
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providing theoretical guarantees. More effective research investigation directions are based
on using Reinforcement Learning (RL) [18–22] or Graph Neural Networks (GNNs) [23,24]
not in an end-to-end fashion, but with a two-stage approach: a first stage in which they learn
a representation of the graph (with DL techniques like GNNs, in a representation learning
fashion), and a second stage in which this representation is used to build the solution to
the combinatorial optimization problem using an autoregressive machine-learning-based
procedure (e.g., with RL), or using greedy algorithms or local search. It has been shown that
representation learning-based approaches are better in building solutions to combinatorial
optimization over graphs with respect to end-to-end approaches, but the majority of the
proposed research shares some drawbacks [25,26]:

1. In many graph-based combinatorial optimization problems, the global information
of the graph is needed for solving the problem; however, existing graph learning
models, especially GNN, only aggregate local information from neighbors. Roughly
speaking, this is because GNNs are based on the neural message-passing framework,
i.e., to build node representations, they follow an iterative schema of updating node
representations based on the aggregation from nearby nodes. The role of the aggre-
gation function is to aggregate information from its neighborhood and pass on the
information to the next layer. More global information can be obtained by adding
more message-passing layers; however, this can cause over-smoothing, a non-trivial
phenomenon according to which, after several iterations of GNN message passing,
the representations for all the nodes in the graph can become very similar to one
another. Therefore, neural message-passing iterations are generally kept low, thus not
effectively encoding global information of graphs.

2. General DL architectures are used to solve different types of combinatorial optimiza-
tion problems (MVC, TS, MC); however, each problem has its own characteristics
and constraints. Encoding inductive bias into DL architectures to better capture the
characteristics of the combinatorial optimization problem is often missing.

3. Many approaches do not integrate or take into account traditional heuristics even
though identifying the operations of traditional heuristics of a combinatorial opti-
mization problem and integrating such operations appropriately into the learning
procedure or in the methodology can benefit the learning-based methods.

In this paper, we focus on the MVC problem, a traditional NP-hard optimization
problem of finding the minimum sized subset N′ ⊆ N of nodes of an undirected graph
G = (N, E) such that every edge in G has at least one endpoint in N′. The interest in the
MVC problem is motivated by its many real-world applications and by its recent extension
to the less explored context of temporal networks [27]. Theoretical analyses indicate that the
MVC problem is NP-hard and the associated decision problem is NP-complete [13]. More-
over, it is NP-hard to approximate MVC within any factor smaller than

√
2− ε for any ε > 0

assuming P ̸= NP [28] and within constant factor smaller than two assuming the Unique
Game Conjecture [29], although an approximation ratio of 2− o(1) has been proposed [30].
Despite this, MVC has several simple 2-factor approximations: e.g., in [31], where the
authors propose a local-ratio algorithm for computing an approximate vertex cover; the
algorithm greedily reduces the costs over edges, iteratively building a cover. The worst-case
runtime of this implementation is O(n log m), where n is the number of nodes and m the
number of edges in the graph. An implementation of such an algorithm is available in [32].
If, on the one hand, 2-factor approximations are very useful for their low complexity, on
the other hand, they produce results that are quite far from the optimum. Various exact
algorithms or heuristic algorithms have been proposed to overcome this problem. Exact
methods, which mainly include Integer Linear Programming (ILP) [33], branch-and-bound
algorithms [34–37], and fixed-parameter tractable algorithms [38] guarantee the optimal-
ity of their solutions, but may fail to give a solution within reasonable time for large or
medium-size instances. Heuristic algorithms, like NuMVC [39] and FastVC [40], which are
mainly based on local search, cannot guarantee the optimality of their solutions, but they
can find satisfactory near-optimal solutions for large and hard instances within reasonable
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time. These heuristic-based approaches have become state-of-the-art for many real-world
use cases, and they have also inspired heuristic-based algorithms for the weighted version
of the problem [41,42]. More recently, as for other combinatorial optimization problems
over graphs, the research trend for MVC has moved towards the adoption of DL techniques
with RL as in [21] or GNN as in [23]. However, these solutions suffer from the main
drawbacks of other DL-based approaches for combinatorial optimization over graphs, i.e.,
they build graph representations considering only local information, they adopt general DL
techniques without customizing them according to the nature of the specific combinatorial
problem, and they do not take advantage of the state-of-the-art heuristics for such problem
by integrating them into the learning methodology.

In this research, we propose a custom DL-based approach to solve the MVC problem
by addressing these three main challenges: (1) build a suitable graph representation at the
node level using both global and local information; (2) customize a common DL approach
based on attention to reflect the combinatorial structure of MVC problems; (3) integrate the
DL methodology with state-of-the-art heuristics to take advantage of them. The proposed
approach, which we named Attention with Complement Information (ACI), is based on an
encoder–decoder architecture that adopts the attention mechanism and a memory network
to build node representation exploiting both the adjacency matrix and its complement. In
this way, (1) an MVC-biased representation of the graph is built considering both local and
global information, and (2) we adapt a common DL approach to the MVC problem. We also
propose to use the representation obtained within a state-of-the-art heuristic to produce a
final covering set, thus (3) taking advantage of it, also from a theoretical perspective.

Our experimental results suggest that the proposed methodology can learn suitable
node representation for combinatorial problems. Indeed, on the one hand, we tested our
models against a fast 2-factor approximation algorithm and a widely adopted state-of-
the-art heuristic, showing that, on average, the methodology is able to outperform both
the 2-factor approximation algorithm and the heuristic in finding a vertex cover of the
smallest possible size, scaling well also with larger instances, from the other, we explore the
representation capabilities of our approach with visual artifacts, providing evidence of the
fact that the methodology is able to represent nodes reflecting the combinatorial structure
of the problem.

The remainder of the paper is organized as follows: in Section 2, we provide the
basic concepts from graph theory to understand the MVC problem, with a focus also on
the attention mechanism and memory networks that have been adopted in the proposed
solution. In Section 3, we provide the details of our methodology, and in Section 4, our
experimental results are discussed together with training and test datasets, selected network
hyperparameters, and evaluation metrics. Moreover, a discussion on the expressive power
of the proposed methodology with respect to representation learning is reported; finally,
Section 5 suggests some hints on future research directions.

2. Basic Concepts and Problem Definition

In this section, we first introduce basic concepts about graphs and the MVC problem;
then, we introduce the basics of the DL techniques adopted in this research.

Definition 1 (Graph). A Graph is a pair G = (N, E), where N is the set of nodes and E is the set
of edges, such that each element of E is a pair of element of N.

An edge that links two nodes u ∈ N and v ∈ N can be denoted as (u, v) ∈ E. Moreover,
if E is not a symmetric relation, the graph is said to be undirected, and if edges are not
weighted, the graph is said to be unweighted. Since we focus on these kinds of graphs, in
the following, we will generally refer to graphs as unweighted, undirected graphs.

At the node level, graphs can be represented by features that describe structural graph
information. Node degree, i.e., the quantity of direct neighbors of a node (or the number
of incident edges), is one of the most commonly used since it can naturally indicate the
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importance of a node within the graph. As for node-level description, graph-level features
can be used. Among the most commonly used, density conceptually provides an idea of
how much connected a graph is and is measured by the ratio between edges and nodes
within a graph, D = |E|

|N| . Another relevant concept is clique, i.e., a set of vertices, all pairs of
which are adjacent.

Definition 2 (Minimum Vertex Cover). Given an unweighted undirected graph G = (N, E), a
vertex cover N′ is a subset of N : (u, v) ∈ E⇒ u ∈ N′ ∨ v ∈ N′. A minimum vertex cover is a
vertex cover of the smallest possible size.

This problem can be formulated as the following integer linear program:

minimize ∑
v∈N

xv

subject to xu + xv ≥ 1 ∀(u, v) ∈ E
xv ∈ {0, 1} ∀v ∈ N

(1)

where the objective function consists of minimizing the number of nodes belonging to the
covering set, such that every edge of the graph is covered (xu + xv ≥ 1 ∀(u, v) ∈ E) and
every vertex is either in the vertex cover or not (xv ∈ {0, 1}).

With the above definitions we can state our objective as follows: Given an unweighted
undirected graph G = (N, E), with N nodes and E edges and a minimum vertex cover N′

of G, we want to find a parametric function which is able to map the input graph G to the
set of covering nodes N′, f (G; θ) = N′.

The MVC problem does not have a unique optimal solution. The solution, i.e., the
minimum covering set, mainly depends on the order according to which edges or nodes
are scanned to determine whether they should be part of it.

As an example, a very simple approximated approach to solving the problem consists
of starting from the set E of all edges, where edges are arbitrarily ordered (suppose,
without loss of generality, that they are named with capital letters, and they are ordered
lexicographically). The approach consists of iteratively scanning this set so that at each
iteration, edge (u, v) is picked, and nodes u and v are added to the final covering set N′.
Then, all the other edges in E, which are either incident to u or v are removed. This is
carried out until E is empty. N′ represents the final solution. Figure 1 shows an example of
this. By applying the described approach to the left-side graph, assuming that edges are
ordered lexicographically since edge A = (1, 4) is the first scanned, the results would be
N′ = (1, 4). By changing the name of the edges (right-side graph) and applying the same
procedure using the lexicographical order, the first scanned edge would be A′ = (1, 3).
Thus, the final result would be N′ = (1, 3).

Figure 1. Example of distinct optimal solutions for the same graph. Covering nodes are colored blue.
On the left-hand graph, the optimal solution is composed of nodes 1 and 4; on the right-hand of
nodes 1 and 3. The difference in the result is determined by the different way edges are ordered and
picked to compute the final solution.
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In general, iterative algorithms (either approximated or exact) do not pick edges or
nodes completely at random, but they order them according to some heuristic or criterion
as in [37,39,40]. However, it is clear that, according to these approaches, the order according
to which edges are picked from the initial set highly influences the final result since the fact
that a node is already part of the final solution has an impact on the fact that another node
should be part of it. In our example in Figure 1, the fact that node 3 is already part of the
solution implies that node 4 should not be part of it and vice versa. Informally, this means
that, given an ordered sequence of nodes, the probability that a node is part of the final
solution depends on the probability that the previous nodes in the sequence are already
part of the solution.

Thus, given a sequence of nodes, {x1, . . . , xn}, we want to model the probability of the
event “xi is part of the covering set” for each i ∈ n, assuming that this event is conditioned
to each event “xj is part of the covering set” for each j < i ∈ n. Supposing that each event
can be described as a random variable xi, what we want to model, according to probability
theory, is the joint probability distribution of all the random variables p(x1, . . . , xn) =
p(x1 ∩ . . . ∩ xn), which according to the chain rule, can be modeled as p(x1 ∩ . . . ∩ xn) =
p(x1)p(x2|x1)p(x3|x2 ∩ x1) . . . p(xn|x1 ∩ x2 ∩ . . . ∩ xn−1). Moreover, we can consider that
the probability distribution of the covering nodes can be represented as a sequence of nodes
ordered according to their probability of belonging to the covering set. Let us call this
sequence CP . The probability of belonging to the covering set is, of course, determined by
the representation of nodes itself. Let us call it P . Indeed, we assume that each node xi,
with index i, can be represented as a vector Pi according to a parametric function that maps
each input node to a latent representation g(xi; θ) = Pi. According to this, the previous
conditioned probability distribution is evaluated on a sequence of nodes conditioned by
their representation P .

We can now formally define the problem that we want to solve.

Problem 1 (Minimum Vertex Cover Biased Nodes Embedding). Given a graph G = (N, E),
with |N| = n and a training pair (P , CP ), where P = (P1, . . . , Pn) is a sequence of node embed-
dings, representing the latent representation of nodes, and CP = (C1, . . . , Cm(P)) is a sequence of
m(P) nodes, we want to model the conditional probability p(CP |P ; θ) using a parametric model to
estimate the terms of the probability chain rule

p(CP |P ; θ) =
m(P)

∏
i=1

pθ(Ci|C1, . . . , Ci−1,P ; θ) (2)

learning the parameter of the model by maximizing the conditional probabilities for the training set

θ∗ = argmaxθ ∑
P ,CP

log p(CP |P ; θ) (3)

In this way, we reduce the MVC problem to a binary classification problem, i.e., given
a graph as input, we want to assign to each node of the graph a probability term such that
the node is assigned to the covering set if and only if the value of the probability term is
higher than a given threshold value (e.g., 0.5).

2.1. Attention

The attention mechanism was introduced by Bahadanau et al. [43] to improve the
performance of encoder–decoder models for machine translation. Encoder–decoder models
work on an input sequence by first building a compact and meaningful representation in
a latent space and then using that representation to construct the target output sequence.
Before the introduction of attention, such models worked focusing on the entire input
sequence, giving equal importance to all its parts. In general, given an input sequence
x = {x1, x2, . . . , xT}, the role of the encoder is to generate an embedded representation ht
for each xt of the sequence. Given this representation, the role of the decoder is to produce
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the target output st by focusing on ht and on the previous output st−1 of the decoder by
applying a function a(.) like a feed-forward neural network, st = a(ht, st−1).

In general, we can think of feed-forward neural networks as stacked parameterized
linear models to which a non-linear activation function is applied. Thus, given an input
x ∈ RN and a single parameterized linear model h ∈ RD, also known as hidden layer, the
output o ∈ RM of a feed-forward neural network is:

h = g(Wx + b)

o = f (Vh + c)
(4)

where W ∈ RN×D and V ∈ RD×M are learnable weight matrices for input-to-hidden
and hidden-to-output connections, respectively, b ∈ RD and c ∈ RM are learnable bias
parameters, g is a non-linear activation function, like tangent-hyperbolic function used to
add non-linearity, and f is a function, like a SoftMax function for classification problem,
used to convert the output of the feed-forward neural network to a conditional probability
distribution over the input. In the following, we will refer to the hidden-layer transforma-
tion h = g(Wx + b) also as dense layer, and we will mainly use as activation function the
ReLU activation function [44].

In the case of the original encoder–decoder model, this function directly uses ht as it
comes out from the encoder without weighing it with respect to a score value that represents
the relevance of that part of the input within the sequence. To assign weights to take care
of differences within the input sequence, Bahadanau suggests computing a context vector to
be fed to the decoder at each timestamp. Equation (5) shows the procedure to compute this
context vector ct.

et,i = a(st−1, hi)

αt,i = so f tmax(et,i)

ct =
T

∑
i=1

αt,ihi

(5)

First, it is necessary to calculate an alignment scores et,i, computed applying a function
a(.), like a feed-forward neural network, to each encoded hidden state hi and to the previous
decoder output st−1, so that the more relevant input of the sequence is in producing the
current output (i.e., the more an input is aligned to an output), the higher its value is. The
context vector ct is then computed by a weighted sum of all T encoder hidden states, where
the weights αt,i are obtained by applying a SoftMax normalization to the alignment score. In
this way, instead of passing directly the hidden state hi together with the previous decoder
output state st−1 to the decoder to compute the output, the decoder is fed with a vector
that represents the input but which is scaled according to its importance (expressed by αt,i)
in the input sequence to determine the output.

This mechanism has been reformulated into a general form that applies to any
sequence-to-sequence task [45], making use of three main components, namely queries, keys
and values, such that query corresponds to the previous decoder output st−1, while values
and keys to the encoded inputs hi. The idea is that of trying to identify, given the previous
output state st−1 (the query), which encoded inputs hi (the keys) are the best to produce the
new output state and, once identified, to compute the relative weights (alignment scores)
using the previous output state st−1 (the query) and the encoded inputs hi (the values, cor-
responding to the identified key). According to this framework, the attention function can
be described as mapping a query and a set of key-value pairs to an output. The output (the
context vector), ct = ∑T

i=1 αq,ki
vki

, is computed as a weighted sum of the values vki
, where

the weights, αq,ki
= so f tmax(eq,ki

), assigned to each value is computed by the alignment
score of the query with the corresponding key, eq,ki

= q · ki. The attention function can,
thus, be computed on a set of queries, keys, and values simultaneously, packed together
into matrices Q, K and V. The matrix of outputs is computed as
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Attention(Q, K, V) = so f tmax(
QKT
√

dk
)V (6)

where dk is the dimension of queries and keys. This model can also be enhanced with
positional encoding, i.e., information about the relative or absolute position of the tokens
in the sequence, to let the attention scores also focus on the order of the elements in
the sequence.

2.2. Memory Networks

Despite feed-forward neural networks, recurrent neural networks (RNNs) [46] are
used to model sequential data and to tackle time dimension. RNNs process one element
of the input sequence at a time, and they model short-term dependencies by building
their output, taking into account both the input at a given timestamp and the network
output at the previous timestamp. Thus, RNNs model short-term dependencies using
backward connections from a hidden layer of the network to the previous one, i.e., the
state of a hidden layer ht (with h ∈ RD) depends both on the input xt (with x ∈ RN) at
a given timestamp t and on the previous hidden state of the network ht−1. A non-linear
transformation of this contributes to defining the final output of an RNN as described in
Equation (4):

ht = g(Wht−1 + Uxt + b)

ot = f (Vht + c)
(7)

where W ∈ RD×D, U ∈ RN×D and V ∈ RD×M are learnable weight matrices for hidden-
to-hidden, input-to-hidden and hidden-to-output connections, respectively, b ∈ RD and
c ∈ RM are learnable bias parameters, g and f functions as in the feed-forward neural network.

Long short-term memory (LSTM [47]) networks have been proposed to extend to
longer time periods, the possibility to take into account time dependencies. In a current
LSTM, “past relevant inputs” are stored in a cell memory vector, which is determined by

ct = ft ∗ ct−1 + it ∗ c̃t

c̃t = g(Wht−1 + Uxt + b)

ht = ot ∗ g(ct)

(8)

where input gate it, forget gate ft and output gate ot are functions with values in range [0, 1],
that, respectively, determine the quantity of input, past information and current hidden
state to be stored into the cell memory, and thus to be used to produce the output.

∗ denotes element-wise multiplication, ct−1 is the previous cell value, while c̃t is the
candidate value for current cell memory, and ht is the final hidden state.

In LSTM, the forget gate ft plays a crucial role in enabling the network to capture
long-term dependencies. If ft → 1, previous memory values will be preserved; thus, even
distant inputs can take part in output computation. On the other hand, if ft → 0, the
connection with previous cell values is lost. Thus, the model tends to forget long-term
events and to remember only short-term ones.

Given an input sequence x = {x1, x2, . . . , xT}, it has been shown [48] that LSTM can be
used to model the conditional probability p(xt|x0:t−1) as a function of the network output
ht as:

p(xt|x1:t−1) ≈
T

∏
t=1

p(xt|ht) (9)

3. Complement Information Based Attention Network

In this section, we describe our DL-based approach to solving MVC.
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3.1. Overall Architecture

Figure 2 depicts the overall architecture we propose to solve Problem 1. It is based on
an encoder component that exploits the attention mechanism as described in [45] and a
decoder component based on LSTM networks with a SoftMax activation layer.

Figure 2. Schema of the architecture implemented. The input of the architecture is the adjacency
matrix of the input graph. The output is the probability that each node belongs to the covering set.
The input first passes through an embedding step, which consists of a non-linear transformation of
the input plus the positional embedding. This is then passed to the encoder, which is composed of
the custom attention layer, which produces a context vector, and a dense layer, which produces a
non-linear transformation of such context vector with residual connections. Then, information is
given to the decoder, which is composed of an LSTM layer that computes the conditioned probability
distribution over nodes, and it is finally normalized by the SoftMax activation layer.

First, this methodology has been designed to cope with one of the main drawbacks of
DL-based approaches, i.e., the fact that they build graph representations only considering
local information. By exploiting an attention-based approach directly over the adjacency
matrix of the graph, which clearly contains both local and global information, the resulting
context vector provides an embedded representation of each node that reflects the combi-
natorial nature of the problem and that considers both node-level and graph-level features.

Considering also the issue according to which for combinatorial optimization over graphs,
generic DL-based approaches are adopted without taking into account the characteristics
of a specific problem, we also propose to customize this attention mechanism by following
the intuition that, when a covering set is built iteratively, a common approach also used by
the main heuristics in their initialization algorithms [39,40] is that of adding first nodes with
higher degree and with different connections (i.e., connected to different subsets of nodes).
Moreover, we considered that complementary to vertex covers are cliques (indeed, given a
graph G = (N, E) an MVC C in G is an MC N \ C in G). Thus, to compute the embedding
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of nodes, we consider not only the adjacency matrix itself but also the complement of the
adjacency matrix as input to the attention mechanism. The complement of the adjacency
matrix is used as the key to produce a better representation of the input.

With this customization of the more general attention mechanism, we can encode
inductive bias into the DL architecture, thus better capturing the characteristics of the
MVC problem. Roughly speaking, this representation is the most important part of the
architecture proposed since it embeds the necessary information to let the network compute
the conditional probability p(CP |P ; θ). Indeed, the context vector U produced is then
transformed using a dense layer. We also used residual connections [49] (as is usually done
in common DL architectures) among the attention and the dense layer to let information
flow through the network, enriching the representation produced. These steps allow the
production of a compact representation of the nodes in a latent space that can be processed
by the LSTM decoder that converts it to the conditional probability distribution over nodes.
The final SoftMax activation layer allows the obtaining of a score associated with each node.
This score represents the probability that a node is part of the covering set.

Finally, to grant that the output of the network is a cover, we design a simple algorithm
that iteratively adds each node to the covering set based on the score ordering provided by
the model. The algorithm is designed following the schema of the initialization algorithm
of some common heuristics, thus addressing also the third main drawback of the DL-based
approach for combinatorial optimization over graphs by integrating the operation of these
common heuristics into the classification procedure.

3.2. Attention with Complement Information

The implementation of the attention mechanism follows the schema represented in
Figure 3. To implement Equation (6) as described in [45], we directly use the adjacency
matrix A to compute Q and V by first learning H, as the sum of a non-linear transformation
of A (which produces an embedded representation of A) and the positional encoding of the
input nodes, and then by learning the weights of another linear transformation separately
for Q and V. To produce the K matrix, instead, we apply the same procedure to H′ obtained
from the complement of the adjacency matrix A = Jn,n − A, where Jn,n is a n× n matrix
with all entries equal to 1. The size of the matrices is kept unchanged so that each row
can be referenced to a representation of the node in that position. Equation (10) better
describes how matrices Q, K, and V are computed by integrating the complement of the
adjacency matrix.

H = ReLu(Wd A + bd) + (Wp A + bp)

H′ = ReLu(Wd′A + bd′) + (Wp′A + bp′)

V = Wv H + bv

Q = WqH + bq

K = Wk H′ + bk

(10)

In Equation (10), we can see that each transformation (linear or non-linear) has its own
matrix of weights and biases, defined by the subscripts, which, thus, is learned separately.

In this way, following the intuition described in Section 3.1, we expect that when

computing the alignment score eq,ki
= QKT√

dk
by applying the element-wise product, for each

pair of nodes i, j we compute a similarity score between node i and j which is much higher
the fewer number of nodes the neighborhood sets of i and j have in common. In this way,
the general DL mechanism is customized to reflect the behavior of common heuristics to
build the MVC.

Over the alignment score, a SoftMax function is computed to normalize it (αq,ki
=

so f tmax(eq,ki
)) and, finally, to produce a weighted representation, they are multiplied by

the V matrix as in Equation (6).
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Figure 3. Schema of the implemented attention mechanism. A is the adjacency matrix of a graph
and A its complement. The dense layer represents a non-linear transformation performed with the
ReLU activation function, the linear layer represents a linear transformation, while the positional
embedding is a non-linear transformation of the position of the node in the graph.

The output is a matrix of attention weights for each element of each feature vector (one
per node) of the input matrices H and H′. This matrix is composed of attention coefficients
that indicate which node must be assigned more energy for the final computation. Finally,
a context vector ui for each node i is produced by summing all the attention coefficients of
each node representation (ui = ∑i αq,ki

vki
).

Thus, given a n× n adjacency matrix A, where each row represents a node of the input

graph, the matrix of context vectors U = so f tmax(QKT√
dk
)V is a n×m matrix, where each

row represent an m-dimensional embedding ui, i ∈ (1, . . . , n) of the corresponding input
node, built considering not only its local features but also its importance with respect to the
other nodes in building the MVC.

This vector is then passed to a dense layer (Figure 2), composed of a stack of three
non-linear transformations as in Equation (4), with ReLu activation function that produces
as output an embedding Pi, i ∈ (1, . . . , n) of the corresponding input node.

3.3. LSTM Decoder

The embedding vector produced by the encoder side of the architecture in Figure 2 is
then used to produce the final probability distribution p(Ci|C1, . . . , Ci−1,P) as requested
by Problem 1. This is carried out by passing as input to the LSTM decoder the sequence
of embedding produced P = P1, . . . , Pn. As described in Section 3.3, The LSTM de-
coder can model the conditional probability distribution p(Pt|P1:t−1) as function of the
parameters learned during training. During inference, given a sequence P the learned
parameters θ∗ are used to select the sequence CP∗ with the highest probability, i.e., CP∗ =
argmaxθ p(CP |P ; θ).

To produce the final ordered scores, a SoftMax activation function is applied to the
output of the LSTM layer. The final SoftMax activation normalizes the output vector to be
an output distribution over the dictionary of inputs.

The entire network is trained to minimize the negative log-likelihood loss function
over the log-SoftMax activation function,
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l(θ) = −
n

∑
i=1

(yi log ŷθ,i + (1− yi) log(1− ŷθ,i)) (11)

where yi is the target value of the i-th node (i.e., 1 if node i belongs to the covering
set, 0 otherwise), and ŷθ,i is the computed probability that the i-th node belongs to the
covering set.

This loss function is used to ensure that estimated probabilities (assuming that the
network is properly trained) actually reflect real ones. Indeed, for each node of the sample
graph in input, there is a target value that is either 1 if the corresponding node is a covering
node or 0 otherwise. Thus, each predicted class probability is compared to the desired
output of 0 or 1. The calculated loss penalizes the probability based on how far it is from the
expected value. The penalty is logarithmic, yielding a large score for significant differences
close to 1 and a small score for minor differences close to 0.

3.4. Iterative Algorithm

Finally, to grant that the output of the network is a minimal cover, we adapt the
ConstructVC algorithm proposed in [40] to use the probability scores produced as outputs
by our ACI-based model in place of nodes’ degrees. In this way, we follow the suggestions
of common successful heuristics in our DL-based methodology. Indeed, the ConstructVC
algorithm is designed to build a minimal vertex cover given a graph iteratively. The
modified version of the algorithm we propose is detailed in Algorithm 1 and consists of an
extending phase and a shrinking phase. In the extending phase, we start with an empty
set C. The algorithm extends C by checking and covering an edge in each iteration: if the
considered edge is uncovered, the endpoint with the higher computed probability score
is added into C. In the shrinking phase, we first calculate the loss values of vertices in C
(where the loss is defined as the number of covered edges that would become uncovered
by removing a vertex v from C.); then, we scan the C set and if a vertex v ∈ C has a loss
value of 0, it is removed, and loss values of its neighbors are updated accordingly. Since
the algorithm proposed follows the structure of the one proposed in [40] and only changes
the probability according to which nodes are selected to be part of the final cover C, it can
be proved that the vertex set returned by the procedure is a minimal vertex cover.

Algorithm 1: Build Vertex Cover
Input: graph G = (N, E), probability score of each node
Output: vertex cover of G
C← ∅;
for e ∈ E do

if e is uncovered then
add the endpoint of e with higher probability score in C

end
end
loss(v)← for each v ∈ C
for e ∈ E do

if only one endpoint of e belongs to C then
for the endpoint v ∈ C, loss(v) + +

end
end
for v ∈ C do

if loss(v) = 0 then
C ← C \ {v}, update loss of vertices in N(v)

end
end
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4. Experimental Evaluation

To train the neural model proposed, we create a synthetic dataset composed of ran-
domly generated graphs. The final training dataset is composed of 3000 graphs for training
and 600 graphs for validation with a random number of nodes between 5 and 2000. Half of
the instances are relatively simple, with a random number of edges between the number of
nodes itself and 1.5 times the number of nodes, i.e., low-density instances, and half more
complex, with a random number of edges between 5 and 500 times the number of nodes,
i.e., high-density instances. Given the number of nodes and the number of edges (iteratively
extracted from a uniform distribution as described above), instances are built by choosing a
graph uniformly at random from the set of all graphs with the given number of nodes and
the given number of edges according to the method described in [50]. For each graph from
the simple instances, we compute the cover using a branch-and-bound algorithm [51] to
solve exactly the integer linear program formulated in Equation (1), setting as upper bound
the initial number of nodes (updated each time to the size of the best solution found), as
lower bound the dimension of the current vertex cover plus the dimension of the best vertex
cover found for the subproblem considered and starting search from the node with highest
degree in the subproblem considered. For each graph from the hard instances, instead,
we compute the cover using the FastVC algorithm [40] by setting a cutoff time of 10 s, a
maximum number of iterations of 30, and, since FastVC is non-deterministic, for each graph
we run the algorithm 5 times and use as ground truth the best solution found. We decided
to choose two distinct approaches to build the ground truth first because there is not a
publicly available dataset with exact solutions that could fit our case and then because the
ILP exact solver can only produce results for very low-density simple instances since the
computation time for hard instances is too high for development. Thus, we decided to use
simple cases with exact solutions and hard cases with approximate solutions, supposing
that if the model can generalize well, simple instances with exact solutions may also let the
model learn to produce better solutions for hard cases. We decided to use FastVC since it
has been proven in [40] that this is the best-performing heuristic with respect to the other
heuristics proposed, like NuMVC [39].

For the same reason, to test the methodology, we build 3 distinct datasets:

1. Dataset 1 composed of 22 synthetically generated low-density simple instances and
a ground truth computed with the ILP solver used to compare the results of our
methodology with respect to exact solutions;

2. Dataset 2 composed of 70 synthetically generated high-density hard instances and a
ground truth computed with a reference 2-factor approximation algorithm [31];

3. Dataset 3 composed of 27 publicly available instances (both low-density and high-
density instances) from the DIMACS benchmark graphs [52] and a ground truth
computed with the 2-factor approximation algorithm.

4.1. Hyperparameters and Training Results

As far as the common neural network’s hyperparameters are concerned, the network
has been trained for 100 epochs, with a batch size B = 64 and Adam [53] with initial
learning rate α = 10−4 as optimizer. Both the Input Embedding and the Positional Embedding
produce a node representation with an embedding dimension E = 32. In the encoder, after
the ACI layer, we stacked three dense layers that convert the dimension of the context
vector first to [B, N, E] (with N maximum number of nodes in the graphs, i.e., 2000), then
to [B, N, E ∗ 2] and finally produce and embedded vector of size [B, N, E]. In the decoder,
we used only one LSTM layer that converts the dimension of the embedded vector from
[B, N, E] to [B, N, E ∗ 2].

We trained the network on a MacBook Pro (2017) with 16 GB of RAM and a 3.1 GHz
Intel Core i7 quad-core CPU, and it takes 7 h and 32 m to complete the training.

To ensure that the neural model actually learns how to assign good probability esti-
mates, we measure the network with respect to the classification task for which it is trained.
As described in Section 3.3, we train the network minimizing the negative log-likelihood
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loss function over the log-SoftMax activation function, measuring the performance compar-
ing, for each node of the input graph, the predicted class probability (1, if the corresponding
node is a covering node, 0 otherwise) with the desired output. Thus, to be sure that
the model properly learns how to assign such estimates, we measure the model using
the common metrics for binary classification problems: Accuracy, Precision and Recall, by
considering a threshold value for the probability estimates of 0.5 (i.e., if the probability
estimate is higher than 0.5, the outcome of the model is 1. Otherwise it is 0). Accuracy
measures how often the model correctly predicts the outcome and is measured as the ratio
between the number of correct predictions (the sum of true positives and true negatives)
and the total number of predictions. Precision measures how often the model correctly
predicts the positive class and can be computed as the ratio between the number of correct
positive predictions (true positives) and the total number of instances the model predicted
as positive (the sum of true and false positives). Recall measures how often the model
correctly identifies positive instances from all the actual positive samples in the dataset
and can be computed as the ratio between the number of true positives and the number
of positive instances (the sum of true positives and false negatives). We measured these
three metrics over the two synthetically generated datasets, which, considered together, are
composed of a total of 92 graphs with 92,650 nodes. Therefore, these metrics are calculated
considering a support of 92,650 samples. Results are shown in Table 1. As we can see, the
results show a good percentage for all the metrics (always higher than 82%). This confirms
the fact that the probability estimates produced by the neural model actually reflect the real
ones. It is important to note, however, that such metrics are not suitable to evaluate the
entire methodology with respect to the MVC task for two main reasons: (1) the model is
trained to produce probability estimates in a data-driven fashion, thus without constraints
that force the final classification to be a minimal cover (this is achieved by the iterative
algorithm proposed described in the following); (2) the MVC problem does not have a
unique solution, thus even if the model were able to produce probability estimates that
result in a minimal cover, if the minimal cover estimated is not exactly the same as the one
given as ground truth to be compared against, it would result in poor performance metrics.
Therefore, to measure the entire methodology, we rely on a different metric (described in
the next paragraph) that takes these aspects into account.

Table 1. Neural model evaluation metrics (Accuracy, Precision, and Recall) computed over the
two synthetically generated datasets composed of a total of 92 graphs. Support represents the total
number of samples over which these metrics have been computed, i.e., the total number of nodes.

Dataset Support Accuracy Precision Recall

Dataset 1 + Dataset 2 92,650 82.61% 89.04% 84.41%

4.2. Percentage Improvement

To measure the performance of our model for each of the three datasets, since MVC
sets may not be unique, we compare the length of the covering sets produced by our
ACI-based methodology and by the FastVC heuristic with the length of the covering sets
produced by the baseline algorithm used to build the ground truth (ILP solver for the
first test set or the 2-factor approximation for the second and third test set), normalizing
the distance with respect to the biggest cover obtained by the baseline and the compared
method as in the following equation,

I =
|method_n| − |baseline_n|

max(|method_n|, |baseline_n|) × 100 (12)

where I is the percentage improvement, baseline_n is the size of the cover produced by the
corresponding baseline algorithm, and method_n is the size of the cover produced by the
compared methodology.
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To compare the results of our methodology with the state-of-the-art solutions FastVC
heuristic, we set a cutoff time of 10 s, and a maximum number of iterations of 30, and we
ran the algorithm 5 times and used the best solution found.

Table 2 reports the comparison between the results of our methodology and the FastVC
heuristic for Dataset 1 and Dataset 2. In the first case, the average improvement represents
the average distance of the computed solution from the exact solution. In this case, our
methodology can outperform FastVC in better approximating the solution. Indeed, the
ACI-based method allows the obtaining of an average distance of −7.21% against the larger
distance of −10.61% of FastVC. In the second case, instead, both our methodology and
the FastVC heuristic can outperform the 2-factor approximation algorithm, our solution
by a percentage of 3.26% and the FastVC heuristic by a percentage of 2.70%. Thus, the
proposed methodology can also outperform the FastVC heuristic in this case. These results
confirm the fact that the neural model achieves the task of producing probability estimates
that actually reflect the combinatorial structure of the problem since, if used together with
the iterative algorithm as heuristic to compute a minimal vertex cover, on average, they
produce a better approximation than the 2-factor approximation algorithm and than the
FastVC heuristic. Another interesting consideration concerns computation time. Clearly,
the exact ILP solver is the slowest algorithm, even though instances are relatively small,
while the 2-factor approximation is by far the fastest. When it comes to our proposed
solution, by analyzing the results, we can see that the computation time is very similar both
with low-density instances and with high-density instances. It is important to consider that,
on average, 0.19 s are required by the neural model at inference time to produce the node
score probability. The rest is used to compute the covering set. The fact that the average
time does not increase too much from Dataset 1 with simpler instances to Dataset 2 with
harder instances means that our methodology, in general, scales well. As far as FastVC is
concerned, the average time considered is the required time to compute the cover, thus
the sum of the required times for each run of the algorithm (5 in total for each instance).
We can see that, in this case, with low-density instances, the algorithm is very fast. With
high-density instances, the required time is almost quadrupled. Of course, the average
time is still relatively small; however, this highlights the limits in the scalability of such
an algorithm.

Table 2. Average results of the ACI methods expressed in terms of average percentage improvement I
on the first two synthetically generated datasets. A negative value of I indicates that the cardinality of
the produced covering set is higher than the cardinality of the set produced by the baseline algorithm
and the opposite for a positive value.

Baseline Baseline
Average Time

ACI
Average I

ACI
Average Time

FastVC
Average I

FastVC
Average Time

ILP 3.12 s −7.21% 0.21 s −10.61% 0.13 s
2-factor approximation 0.03 s 3.26% 0.27 s 2.70% 0.48 s

The same considerations can be done by analyzing the results over Dataset 3, com-
posed of the publicly available DIMACS benchmark graphs [52]. The results are shown
in Table 3. On average (average results are highlighted in the last line), the ACI-based
approach produces a percentage improvement of 2.91% with respect to the 2-factor approx-
imation algorithm, while the FastVC heuristic (with the same configuration and number
of runs) obtains a percentage improvement of 1.43%. Thus, in this case, even though both
algorithms produce a better covering set with respect to the 2-factor approximation algo-
rithm, our proposed solution can also outperform the FastVC heuristic. Even considering
execution time, results over Dataset 3 are in line with results over Dataset 1 and 2. Indeed,
on average, the ACI-based method requires 0.25 s, while FastVC requires 0.33 s (against
the 0.02 s of the 2-factor approximation). It is important to notice that actually, on small
instances (e.g., johnson8-2-4), the time required by FastVC is very small compared with
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the ACI-based method; however, it increases a lot when considering harder instances (e.g.,
C2000-5, hamming10-2) differently from the ACI-based method where the increase in the
computation time is limited. This further confirms the fact that our approach scales better
than FastVC with harder instances.

Table 3. Comparison of the methodologies expressed in terms of size of the minimal cover obtained
and time required to compute it on the DIMACS benchmark graphs by each algorithm. Times
are expressed in seconds. The last line contains the average results for the time and the average
percentage improvement computed according to Equation (12).

Graph |N| |E| 2-Factor
Cover

2-Factor
Time

ACI
Cover

ACI
Time

FastVC
Cover

FastVC
Time

C2000-5 2000 999,836 1997 0.18 1989 0.6 1993 2.80

C250-9 250 27,984 248 0.00 246 0.22 24 0.20

C500-9 500 112,332 499 0.02 496 0.26 498 0.32

C125-9 125 6963 124 0.00 122 0.20 121 0.05

MANN-a27 378 70,551 375 0.01 375 0.24 376 0.22

MANN-a45 1035 533,115 1033 0.10 1032 0.44 1033 1.44

MANN-a9 45 918 43 0.00 43 0.20 43 0.03

brock800-1 800 207,505 798 0.04 794 0.29 793 0.55

c-fat200-1 200 1534 199 0.00 182 0.20 182 0.04

c-fat200-5 200 8473 199 0.00 197 0.20 197 0.06

gen400-p0-9-55 400 71,820 399 0.01 396 0.24 397 0.22

gen400-p0-9-65 400 71,820 399 0.01 396 0.24 396 0.23

hamming10-2 1024 518,656 1022 0.10 1022 0.43 1022 1.40

hamming8-4 256 20,864 248 0.00 240 0.21 248 0.10

hamming6-2 64 1824 62 0.00 62 0.20 62 0.04

hamming6-4 64 704 56 0.00 52 0.20 56 0.03

johnson8-2-4 28 210 25 0.00 21 0.20 25 0.03

johnson8-4-4 70 1855 67 0.00 65 0.20 65 0.04

keller4 171 9435 167 0.00 156 0.21 163 0.06

keller5 776 225,990 772 0.04 760 0.30 766 0.61

p-hat1500-1 1500 284,923 1497 0.06 1435 0.34 1432 0.81

p-hat700-2 700 121,728 698 0.02 656 0.26 658 0.35

p-hat700-3 700 183,010 699 0.03 693 0.29 694 0.54

p-hat300-3 300 33,390 299 0.01 293 0.22 294 0.13

san400-0-9-1 400 71,820 399 0.01 396 0.24 398 0.22

sanr200-0-9 200 17,863 199 0.00 197 0.21 196 0.09

sanr400-0-7 400 55,869 398 0.01 394 0.23 395 0.19

Average 0.02 I = 2.91% 0.25 I = 1.43% 0.33

It is important to note that our methodology only fits for graphs with no more than
2000 nodes. This is not a strong limit for many real-world applications like network design,
sensor network, resource allocation, or text tasks [2,4,5]. To test the methodology with
larger graphs, it would be necessary to retrain the neural model by modifying the maximum
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size of the graph to be expected as input. However, we did not explore this aspect of the
research further.

4.3. Nodes Representation

Another important aspect of our approach concerns the capability of the network,
particularly of the ACI-based method, to produce a good representation of the nodes with
respect to the optimization target defined by the MVC problem. To understand whether the
network can perform a proper mapping of the embedded input nodes into a d-dimensional
space, we plot some points considering the representation of the nodes as obtained from
the output of the ACI layer of the network, namely the context vector U. Since the network
has been trained to produce an encoding embedding in a 32-dimensional space, we only
visualize a scatterplot of the nodes by taking two of the 32 components at a time. We only
visualize the results with respect to the first four components since the behavior is similar
for the others as well. In Figure 4, we can see the representation of the nodes of a graph
with 25 nodes and 50 edges. The orange points are the points associated with covering
nodes according to the exact solution, while the blue ones are those that do not correspond
to covering nodes. In general, we can see that the network is able to map the points in a
space where covering nodes and non-covering nodes belong to different regions (almost
linearly separable) and with a clear ordering.

Figure 4. Example of nodes representations of a graph G = (25, 50) as produced by the ACI layer
with respect to the first four components taken in pairs. In blue, we can see points that do not belong
to the covering set, while in orange, we can see the points that belong to the covering set according
to the results of the exact ILP solver. On the diagonal, we can see the distribution of such points
according to their class (0 or 1). We can see that, despite some overlapping, orange and blue points
present different distributions.

This representation is built considering node features so that similar nodes are closer
in this representation space. Figure 5 shows an example of this. In the picture, we can see
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the input graph (with 10 nodes and 15 edges), with covering nodes represented in red and
non-covering nodes represented in blue. Together with the graph, the representation of the
nodes (with respect to 2 random dimensions of the context vector) is visualized by tagging
each point with the corresponding index of the node and color. From the picture, we can
see that, as an example, nodes 1 and 2 are close to each other. Indeed, they both have a
degree equal to 5, and they are both connected to nodes 4, 9, and 0. Therefore, they are
very similar. Analogous reasoning can be done for node 3, which is very similar to 2 and 1,
and for nodes 8 and 5, which are very similar to each other. Moreover, if, on the one hand,
this representation is interesting and reasonable, the final probability estimates which are
built considering this representation, do not perfectly reflect this representation since, as
an example, considering the graph in Figure 5, nodes 9 and 8 have a higher probability
score with respect to node 0 (the final order with respect to the probability score is: 1, 3,
2, 9, 8, 0, 6, 4, 5, 7). This means that the decoder component of the network also plays a
very important role in producing the final result. Moreover, the order produced is quite far
from the order that we would obtain, considering only the degree. Thus, it is not surprising
that the result obtained using these probability estimates in the ConstructVC algorithm is
different from the result obtained using the degree (as for FastVC).

Figure 5. Example of a graph with 10 nodes and 15 edges and its representation considering 2 random
dimensions of the context vector. Covering nodes are shown in red, while non-covering nodes are in
blue. This representation shows how similar nodes are closer in the representation space.

The fact that our methodology outperforms the FastVC heuristic, instead, makes
clear that the implemented approach manages to reflect the combinatorial structure of
MVC problems and that the probability estimates produced by our neural model are a
better driver for building the MVC with respect to node degree. This is due to the fact
that, on the one hand, we build node representations considering both local and global
information by applying the attention mechanism directly to the adjacency matrix, and on
the other hand, it is due to the fact that the customization proposed, which reflects common
heuristics procedures to build the MVC, actually induces a good bias to represents nodes
with respect to the specific problem considered. Specifically, these results show that the
proposed customization of the attention mechanism manages the task of assigning a higher
score to nodes that should be part of the MVC set, making the iterative algorithm proposed
a good approach to build the final covering set.

5. Conclusions and Future Works

In this paper, we have presented an approach to solving MVC problems over graphs,
mainly using attention. In designing the approach, we tried to tackle three main issues
related to the DL-based approach for combinatorial optimization over graphs: (1) build
a suitable graph representation at node level using both global and local information;
(2) customize a common DL approach to reflect the combinatorial structure of the MVC
problem; (3) integrate the DL methodology with state-of-the-art heuristics to take advantage
of them.
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To cope with issues 1 and 2, we proposed a methodology that makes use of what we
called Attention with Complement Information, i.e., a mechanism of attention which first
of all is applied over graphs adjacency matrix to use both local and global information, and
then that takes as input not only the matrix itself but also the complement of the matrix,
following the intuition, commonly implied also by many state-of-the-art heuristics, that
in order to identify candidate nodes to a covering set, it could be useful to know their
interaction with other nodes and that the complement of such interaction may provide a
better scoring when two nodes have similar interactions. We then use the output of such
attention mechanism, properly transformed, as input to an LSTM-based decoder network
followed by a SoftMax activation layer to produce the final probability distribution.

We showed that our methodology can outperform not only a common 2-factor ap-
proximation algorithm for MVC but also a widely used state-of-the-art heuristic known
as FastVC both on low-density graphs and on higher-density graphs. Moreover, if our
approach is relatively slower with low-density graphs with respect to both the 2-factor
approximation algorithm and the FastVC heuristic, it scales much better than FastVC on
higher-density graphs. This represents a great advantage, also meaning that for MVC tasks
on graphs of comparable size to the ones used to train our neural model, our methodology
should be preferred to other state-of-the-art approaches.

Finally, we also proved that our attention mechanism with complement information
manages to draw a proper representation of the nodes according to the combinatorial
nature of the MVC problem. This is extremely important since it demonstrates that our
work manages to address the three main issues of the DL-based approach for combinatorial
optimization over graphs. As far as we know, this makes our proposal one of the firsts
to address these main challenges successfully. Nonetheless, another advantage of our
methodology is that we provide a new validated method to build node embeddings in a
meaningful way. The embeddings produced, indeed, could be used and tested also for
different task-related MVC problems. In this research, we have explained that there is a
strong similarity between the iterative algorithm proposed to build the final solution of
our method and the iterative algorithm used by FastVC to initialize its solution. However,
in FastVC, after initializing the solution, the authors propose to refine the solution by
changing the nodes in the covering set according to a cost-effective heuristic called Best
from Multiple Selections (BMS). Thus, a possible future direction of this work could be that
of understanding how, by applying the BMS heuristic, we could improve the results and in
which time.

We consider this work as a step towards a new family of solvers for NP-hard problems
that leverages and customize DL properly, and, in particular, we will try to extend the
results of such work also on the less explored context of temporal networks, where many
combinatorial NP-hard problems, like the minimum timeline cover [27,54], do not have an
approximate solution.
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