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Abstract: In the ever-evolving landscape of tomographic imaging algorithms, this literature review
explores a diverse array of themes shaping the field’s progress. It encompasses foundational princi-
ples, special innovative approaches, tomographic implementation algorithms, and applications of
tomography in medicine, natural sciences, remote sensing, and seismology. This choice is to show off
the diversity of tomographic applications and simultaneously the new trends in tomography in recent
years. Accordingly, the evaluation of backprojection methods for breast tomographic reconstruction
is highlighted. After that, multi-slice fusion takes center stage, promising real-time insights into
dynamic processes and advanced diagnosis. Computational efficiency, especially in methods for
accelerating tomographic reconstruction algorithms on commodity PC graphics hardware, is also
presented. In geophysics, a deep learning-based approach to ground-penetrating radar (GPR) data
inversion propels us into the future of geological and environmental sciences. We venture into Earth
sciences with global seismic tomography: the inverse problem and beyond, understanding the Earth’s
subsurface through advanced inverse problem solutions and pushing boundaries. Lastly, optical
coherence tomography is reviewed in basic applications for revealing tiny biological tissue structures.
This review presents the main categories of applications of tomography, providing a deep insight
into the methods and algorithms that have been developed so far so that the reader who wants to
deal with the subject is fully informed.

Keywords: tomographic reconstruction algorithms; multi-slice fusion; inverse problems; reconstruc-
tion acceleration; GPR tomography; seismic tomography; optical coherence tomography

1. Introduction

The material in this review has been classified into four general categories regarding
the research in tomography, in related inverse problems, as well as its applications in
various fields. The relative categories addressed herein are the following: tomographic
reconstruction techniques, principles, and new approaches, special topics in tomography,
tomographic implementation algorithms, and tomography in natural sciences. The more
recent and updated literature is extensively investigated in the following four subsections.
In the next sections, selected representative applications are briefly presented.

1.1. Tomographic Reconstruction Techniques, Principles, and New Approaches

In the realm of tomographic reconstruction, the journey begins with a fundamental
categorization of algorithms, as detailed by Gordon and Herman [1]. This classification
neatly segments the methods for reconstructing objects from their projections into four
distinct categories. These categories include the summation technique, the Fourier trans-
form utilization, solving integral equations analytically, and employing series expansion
methodologies. This initial categorization not only provides a structured approach to the
field but also offers a basis for understanding the diversity of techniques at play.

As we delve into this domain, according to Colsher [2], a pivotal study is provided
where four key algorithms are adapted to directly reconstruct three-dimensional objects
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from projections. This transformative step showcases the practical application of these
methods. Among the selected algorithms, the Algebraic Reconstruction Technique, the
Simultaneous Iterative Reconstruction Technique, and the Iterative Least Squares Tech-
nique are featured. This comprehensive approach exemplifies the potential for substantial
streamlining of calculations and introduces the concept of tomographic projections. Diving
further into the fine distinction of tomography reconstruction, Clackdoyle and Defrise [3]
distinguish between the 2D and 3D reconstruction problems. To comprehend the founda-
tions of computed tomography image reconstruction, Hornegger, Maier, and Kowarschik
provide essential insights in their work [4]. These foundational principles are paramount
for understanding the core concepts and techniques applied in the field. In the realm of
classical tomography, the 2D problem is prevalent, but as we move into 3D, considerations
expand to density functions and lines with arbitrary orientations in space. Building upon
this knowledge, the research conducted by Khan, Yasin et al. [5] offers an overview of
cutting-edge 3D modeling algorithms developed over the past four decades. This rich
resource equips researchers and practitioners with the latest advancements in tomographic
reconstruction techniques. This differentiation is crucial, as it influences the choice of
reconstruction methods in various applications.

Of particular significance is the enhanced temporal resolution for cardiac imaging
and the ability to acquire dual-energy information by operating the two tubes at varying
voltages. The synergy of technological innovation and practical application is exemplified
by Goshtasby and Turner [6]. This reference introduces an automated technique capable
of converting a series of tomographic image slices into an isotropic volume dataset. By
establishing correspondence between points in consecutive slices and employing linear in-
terpolation, this method offers a substantial enhancement in data accessibility. As reported
by Fessler [7], the research delves into algorithms tailored for reconstructing attenuation
images from transmission scans characterized by a low count of photons per beam. In
situations where the average number of photons per beam is modest enough to warrant
caution when employing traditional filtered backprojection imaging techniques, these
algorithms offer a critical solution. The ongoing evolution underscores the dynamic nature
of tomographic image reconstruction. As reported by Yu and Fessler [8], their research
indicates a critical advancement by integrating nonlocal boundary information into the reg-
ularization approach. This incorporation stems from the insights drawn from the reference
and demonstrates the growing importance of statistical methods in tomographic image
reconstruction. Beyond mere system modeling, these methods offer statistical models
and adherence to physical constraints that surpass the traditional filtered backprojection
method. Addressing specific challenges, Chandra et al. [9] introduce a swift and precise
approach to tackle circular artifacts that often stem from missing segments of the Discrete
Fourier Theorem. This method refines the precision and efficiency of image reconstruction,
contributing to the overall quality of results. This approach is rooted in the precise partition-
ing of the Discrete Fourier Theorem space under the projective Discrete Radon Transform,
as denoted in the Discrete Fourier Theorem. To further augment image quality and move
beyond the confines of conventional backprojection methods, Zhou, Lu et al. [10] precede
two innovative backprojection variants: the α-trimmed backprojection and the principal
component analysis-based backprojection. These variants offer the promise of superior
image quality, which is a critical factor in numerous tomographic applications. As we
advance in our exploration, Chetihand Messali [11] adopts a comprehensive methodology
by implementing both the Algebraic Reconstruction Technique and Filter Backprojection
methods. The study then rigorously compares the ensuing experimental results using per-
formance metrics across various test cases. Such comparisons are instrumental in assisting
researchers in selecting the most suitable method for their specific scenarios.

As we delve into the field of computed tomography, Somigliana, Zonca et al. [12] focus
on the correlation between the thickness of acquired computed tomography slices and the
accuracy of three-dimensional volume reconstruction. This correlation is pivotal for radia-
tion therapy planning and disease diagnosis. On the theoretical front, Gourion and Noll [13]
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explore the theoretical framework of emission-computed tomography. The article delves
into novel numerical approaches based on regularization methods. Understanding the the-
oretical underpinnings of the image reconstruction process is instrumental in advancing the
field. In a noteworthy departure from conventional approaches, Petersilka, Bruderet al. [14]
point out a pioneering system concept and design for a computed tomography scanner.
This innovative design, featuring two X-ray tubes and two detectors, holds the potential to
surmount the limitations of traditional multi-detector row computed tomography. In the
pursuit of innovation, Saha, Tahtali et al. [15] center on an innovative computed tomogra-
phy acquisition method. This method enables simultaneous projection captures, potentially
offering exceptionally rapid scans and reductions in radiation doses. This innovation
exemplifies the ongoing efforts to optimize technology in the field. Continuing the pursuit
of efficiency, Miqueles, Koshev et al. [16] introduce a novel rapid backprojection operator
for processing tomographic data. This algorithm offers a cost-effective solution and is
compared against other swift transformation techniques using extensive real and simulated
datasets. Peering into the future, as outlined by Willemink and Noël [17], forthcoming
advances are anticipated in both hardware and software. Innovations like photon-counting
computed tomography and the integration of artificial intelligence are poised to reshape
the field. Returning to the practical realm, Wang, Ye et al. [18] emphasize the real-world
impact of tomographic reconstruction, particularly in the realm of medical imaging. This
reference provides a broader context, shedding light on representative outcomes and the
pressing concerns that demand attention in the field.

Beyond algorithmic aspects, the technological side of tomographic imaging is illumi-
nated by Jung [19]. This article presents an assessment of the fundamental physical princi-
ples and technical facets of the computed tomography scanner. It encompasses noteworthy
advancements in computed tomography technology, positioning the field at the forefront of
diagnostic and research applications. In the paper authored by Withers, Bouman et al. [20],
the authors delve into the fundamental tenets of computed tomography, offering insights
into the methodologies for acquiring computed tomography scans. These methods employ
X-ray tubes and synchrotron sources, as well as various feasible contrast modes. Such a
thorough understanding of the technology underpinning tomographic imaging is vital for
researchers and clinicians alike. Understanding the impact of acquisition parameters on
reconstruction quality is essential. The significance of post-processing techniques comes to
the forefront in work by Seletci and Duliu [21]. As outlined by Mia, Förster et al. [22], the
research introduces the concept of equally inclined tomography, an advanced method for
reconstructing three-dimensional objects from multiple two-dimensional projections. This
innovative approach supersedes traditional tomography, which relies on equally angled
two-dimensional projections. The result is a significant enhancement in three-dimensional
reconstruction quality.

Meanwhile, Whiteled, Luk et al. [23] take a pioneering step in the realm of neural
network design for positron emission tomography. The direct PET neural network is
proficient in reconstructing multi-domain image volumes from sinograms, underlining
the growing role of artificial intelligence in the field. As reported by Lee, Choi et al. [24],
the research sets the stage for a deep learning revolution in tomographic imaging. The
primary objective of the study is to attain high-quality three-dimensional reconstructed
images in the context of sparse sampling conditions. Deep learning methods promise to
revolutionize accuracy and efficiency in the field. In a fusion of innovation and network
architecture, Zhou, Kevin Zhou et al. [25] introduce a cascaded residual dense spatial-
channel attention network. This network aims to reconstruct tomographic images from
a limited number of projection views, amplifying the power of deep learning and data
fidelity layers. For scenarios with limited data, Luther and Seung [26] present a direct
approach for limited-angle tomographic reconstruction, employing convolutional networks.
The network training process involves minimizing the mean squared error between the
network-generated reconstructions and a ground truth three-dimensional volume. This
reference underscores the importance of employing software tools like Adobe Photoshop,
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ImageJ, Corel PHOTO-PAINT, and Origin to enhance the quality of images for quantitative
analysis. Such post-processing techniques are instrumental in distinguishing between
various diseases and disorders. These guide us from fundamental principles to cutting-edge
innovations, all emphasizing the real-world impact in medical, industrial, and scientific
applications. All these underscore the dynamic evolution of the field as it adapts to
emerging technologies, harnesses the power of artificial intelligence, and continually strives
for higher quality and efficiency. In this ever-advancing discipline, these references serve as
beacons, illuminating the path for researchers and practitioners, ensuring that they remain
at the forefront of tomographic imaging, and delivering high-quality solutions for an array
of applications.

1.2. Special Topics in Tomography

In this subsection, we embark on the particulars of advanced imaging techniques. This
comprehensive recall provides explanations on pivotal areas within the field of tomography,
uncovering the latest innovations and theoretical considerations. From multi-slice com-
puted tomography to Super-Resolution Reconstruction in magnetic resonance imaging, we
delve into cutting-edge technology and novel algorithms. As we navigate this field, we also
examine the creation of detailed 3D phantoms for various imaging applications, ultimately
emphasizing the relevance of these ‘Special Topics in Tomography’ across the spectrum of
medical and scientific research. In the domain of medical imaging, this review explores
several key references that collectively highlight significant challenges, advancements, and
interconnected issues in the field.

The introduction of multi-slice CT scanners, as detailed by Hu [27], represents a
significant leap forward in the world of CT technology. These advanced scanners enable
high-resolution imaging of extensive longitudinal volumes while introducing unique
challenges. As observed by Dawson and Lees [28], multi-slice systems are placed in the
broader context of CT technology, dropping light on their origins and enduring relevance.
These collectively address challenges and innovations in CT scanning, offering insights into
the technology’s evolution. As reported by Majee, Balke et al. [29], a pioneering algorithm
known as “multi-slice fusion” is introduced. This approach combines various denoising
techniques within low-dimensional spaces and finds applications in 4D cone beam X-ray
CT reconstruction.

Singh, Kalra et al. [30] conducted a comparative analysis of image quality in abdominal
CT images, considering different X-ray tube current–time products and reconstruction tech-
niques. Therefore, collectively, there is a need for improved MRI reconstruction techniques
and image quality. As examined by Aibinu, Salami et al. [31], the tutorial places significant
emphasis on three key aspects related to the utilization of Inverse Fast Fourier Transfor-
mation in Magnetic Resonance Image reconstruction. Furthermore, it delivers a succinct
introduction to the fundamentals of Magnetic Resonance Image physics, the instrumental
perspective of Magnetic Resonance Image systems, K-space signal processing, and the
procedures involved in Inverse Direct Fourier Transformation and Inverse Fast Fourier
Transformation for one-dimensional (1D) and two-dimensional (2D) data. Super-resolution
imaging in MRI is explored in [32,33]. The authors Plenge, Poot et al. [32] introduce an
innovative method for Super-Resolution Reconstruction in MRI, leveraging deep learning
techniques, specifically a three-dimensional convolutional neural network. This technique
harnesses high-resolution content in 2D slices to reconstruct high-resolution 3D images.
The field of magnetic resonance imaging (MRI) reconstruction sees noteworthy advance-
ments as well. Zhang, Shinomiya, and Yoshida [33] advocate the use of two-dimensional
super-resolution technology to enhance the resolution of MRI, further enhancing the quality
of MRI images.

The development of detailed phantoms is also a crucial aspect of medical imaging
research. As outlined by Hoffman, Cutler et al., the study in [34] describes the creation of a
three-dimensional brain phantom for simulating studies related to cerebral blood flow and
metabolism in positron emission tomography. Additionally, Collins, Zijdenbos et al. [35]
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outline the construction of a digital volumetric phantom of the human brain, offering
valuable tools for simulating head tomographic images. Glick and Ikejimba [36] provide an
overview of research efforts aimed at developing digital and physical breast phantoms to
advance breast imaging studies. All of these collectively address the need for realistic phan-
toms for various imaging modalities. The study of Klingenbeck-Regn, Schaller et al. [37]
delves into the theoretical aspects of multi-slice scanners, with a focus on detector design
and strategies for spiral interpolation. Moreover, it validates these theoretical constructs
through phantom measurements. The authors Aibinu, Salami et al. emphasize Inverse Fast
Fourier Transformation in MRI, highlighting the significance of K-space signal processing.
Michael O’ Connor, Das et al. [38] focus on the creation of high-resolution models for
simulating three-dimensional breast imaging techniques, addressing the need for realistic
breast tissue simulations.

In conclusion, the central issues explored across these references include enhancing
image resolution, improving image quality, and providing tools for realistic simulations
and studies. Together, these references form integral pieces of the puzzle, addressing
interconnected issues across various imaging modalities in the field of medical imaging.

1.3. Tomographic Implementation Algorithms

In this subsection, we focus on the topics of image quality improvement and artifact
reduction, elucidating techniques and strategies to increase the accuracy and fidelity of
tomographic images. Dobbins and Godfrey [39] take us into the realm of tomosynthesis
reconstruction algorithms. The discussion of residual blur minimization expands the dia-
logue that was initiated, emphasizing the practical challenge of improving image quality
and accuracy, especially in 3D reconstruction. Goosens, Labate et al. [40] further investigate
the challenge of region-of-interest computed tomography in the presence of measurement
noise. They introduce a relaxation of data fidelity and consistency requirements, highlight-
ing the complex nature of handling real-world imperfections in imaging processes. Su,
Deng et al. [41] lead us to improve image quality and reduce artifacts through the deep
learning process in breast tomosynthesis, illustrating the impact of state-of-the-art technol-
ogy. This is in line with the theme of advancing tomographic reconstruction using modern
computational techniques. Additionally, Quillent, Bismuth et al. [42] add deep learning
to the discussion for mitigating sparse-view and limited-angle artifacts in digital breast
tomosynthesis, highlighting the role of artificial intelligence in improving tomographic
image quality. The pioneering approach presented by Lyu, Wu et al. [43] concerning metal
artifact reduction emphasizes the critical practical aspect of image artifact reduction, further
linking to the general issue of image quality improvement.

Referring to the optimization process, Abreu, Tyndall, and Ludlow [44] investigate
the effect of projection geometry on caries detection. This is crucial as it addresses the real
issue of optimizing image acquisition for specific diagnostic purposes, highlighting the
importance of tailored imaging strategies. The authors Pekel, Lavilla et al. [45] lead us
into the field of optimizing X-ray CT trajectories. Customizing imaging paths for specific
samples addresses the practical challenge of efficient data acquisition and high-quality
image production, coordinating the need for precision in tomographic imaging. Moving
on to more widespread and synchronous processes, Jin, McCann et al. [46] bridge the gap
between iterative methods and deep learning, highlighting the potential of convolutional
neural networks in dealing with ill-posed inverse problems. The regression approach
discussed by Hou, Alansary et al. [47] demonstrated the integration of deep learning
techniques with 3D spatial mapping, contributing to the multidimensional understanding
of tomographic images. Finally, Morani and Unay [48] incorporate the current trend of
image preprocessing and hyperparameter tuning using convolutional neural networks.

The use of floating-point GPUs for image reconstruction by Fang and Mueller [49]
links technology to efficiency, demonstrating the importance of hardware developments in
the field of tomography just as Wang, Zhang et al. [50] shed light on software solutions to
streamline image reconstruction, highlighting the need for user-friendly tools that simplify
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the often-complex rebuilding process. The focus is shifting toward a hybrid gradient de-
scent approach for region-of-interest CT. This methodology bridges the theoretical concepts,
as reported by Pham, Yuan et al. [51], with practical applications, aiming to improve the
accuracy and efficiency of tomographic reconstruction in specific regions of interest. Lyons,
Raj, and Cheney [52] introduce innovative methodologies for linear inverse problems in
tomography. These methods resonate with the need to develop robust algorithms for accu-
rate image reconstruction, a common thread among the discussed references. In the realm
of electrical impedance tomography, Goharian, Soleimani, and Moran [53] tackle the intri-
cacies of image reconstruction, bringing forth the importance of regularization methods in
dealing with ill-posed problems. The concept of Radon Transformation and its application
in Electrical Impedance Topographic Images, as introduced by Hossain, Ambia et al. [54],
contributes to our understanding of the theoretical principles underpinning tomographic
imaging. With the introduction of innovative techniques to create volumetric models from
fire images, as denoted by Ihrke and Magnor [55], we touch upon a unique aspect of
tomography, highlighting its diverse applications.

As we delve into optical tomography, highlighted by Arridge [56], we gain insights
into both forward and inverse problems. This comprehensive review classifies algorithms
and sets the stage for future research directions, strengthening the foundation of optical
tomography. The Fourier reconstruction method detailed by Zhang T., Zhang L. et al. [57],
specifically tailored for symmetric geometry computed tomography, adds a layer of techni-
cal sophistication to our discussion, emphasizing the importance of innovative reconstruc-
tion techniques.

In conclusion, the broader picture that emerges is a dynamic field that adapts to
emerging technologies and continually strives for higher quality and more efficient solu-
tions. The integration of deep learning techniques underscores the growing role of artificial
intelligence in reshaping the landscape of tomography. These references, when woven
together, form a comprehensive narrative depicting the multifaceted nature of tomography.

1.4. Tomographic Imaging: From SAR, Geology, to Medical Advances

In this comprehensive subsection, we are exploring advanced tomographic imag-
ing techniques in various disciplines. The study presented by the authors Reigber and
Moreira [58] leads us to the sphere of radar tomography (SAR), an innovative achievement
that utilizes phase differences for the assessment of soil topography. It addresses a crucial
issue, enhancing our ability to solve complex cases of stay-in SAR images, especially in
multi-line imaging geometries. Fornaro and Serafino [59] expand the understanding of SAR
spacecraft, underlining its ability to distinguish the mechanisms of thoughts within pixels.
This progress in SAR space tomography is aligned with the need for improved clarity and
image accuracy. The acquisition of images based on the circular track, as analyzed by Oriot
and Cantalloube [60], opens the capabilities of optimizing image processing at various
azimile angles. This approach is particularly beneficial in studies such as building mining,
highlighting the practical advantages of SAR data processing.

As we deepen our searches, the authors Zhu and Bamler [61] focus on the concept of
TomoSAR, pushing the limits of 3D imaging. They introduce us to the lifting diaphragm,
a new concept that enhances our ability to rebuild reflective functions along the lifting
direction. This echoes with the subject of advanced imaging techniques. Sportouche, Tupin,
and Denise [62] suggest a complete semi-automatic processing chain for the reconstruction
of 3D urban buildings, incorporating high-resolution SAR optic pairs. This seamless
integration faces the practical challenge of rebuilding urban buildings and presents the
need for a fusion cross-section. The spectral analysis approach described by Zhu and
Bamler [63] treats the reversal of SAR as a spectral problem, emphasizing the role of hyper-
analysis in the monitoring of urban infrastructure. The ability to distinguish multiple
sources of scattering is vital to urban studies, contributing to continuing research in the
field. In addition, Zhu and Ge [64] emphasize the importance of the integration of SAR data
with visual images because it is an example of the power of the combination of different
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imaging to create 3D information. This approach opens the doors to more complete and
accurate 3D rebuilding.

Synthetic aperture radar data are integrated with optical imagery to generate 3D
information using stereogrammetric methods, as described by Bagheri, Schmitt et al. [65].
The exploration of Polarimetric tomography SAR (Pol-Tomosar) performed by Budillon,
Johnsoy, and Schirinzi [66] demonstrates its potential in urban applications by resolving
multiple scatterers within the same analysis cell. This innovative technique immediately
faces the need for increased accuracy in complex urban environments. Continuing the
review in the field of synthetic radar, authors Ren, Zhang et al. [67] introduce the concept
of Aetomo-Net, a visual network that uses multidimensional features for SAR tomography.
This neuronal network highlights the growing role of artificial intelligence in the recon-
struction of the tomographic image. By completing the search in this field, the discussion
of the performance by Devaney [68] expands our exploration beyond SAR, offering infor-
mation on seismic exploration applications. It highlights the interdisciplinary nature of
tomographic imaging, providing valuable information on seismic studies.

As we continue with an overview of the world's seismic tomography, Trampert [69]
emphasizes the importance of quantitative interpretations in promoting the understanding
of geodynamics. He emphasizes the transition from qualitative to quantitative approaches,
reflecting the evolution in the field of tomography. Rector and Washbourne [70] introduced
us to the utilization of cross-well seismic data, emphasizing the importance of the Fourier
projection slice theorem and its role in characterizing the resolution and uniqueness of tomo-
grams. This aligns with the theme of the theoretical foundations of tomographic imaging.
Akin and Kovscek [71] discuss the critical role of X-ray computed tomography in the imag-
ing of porosity, permeability, and fluid phase distribution in porous media. The importance
of spatial resolution and adaptability in various flow conditions, connecting with the need
for versatile imaging tools, is emphasized. The use of multistatic ground-penetrating radar
signals, as analyzed by Worthmann, Chambers et al. [72], introduces a novel approach to
tomographic imaging, particularly in the context of intensity distributions. This innovative
approach highlights the need for adaptive imaging solutions.

Subsequently, in the field of interdisciplinary and theoretical tomography, as men-
tioned by Patella [73], a new interpretation of self-confident data highlights the need for
innovative approaches to the interpretation of tomographic data. This is in line with the
primary issue of pushing the boundaries of traditional imaging techniques. The intro-
duction of 3DInvNet by Dai, Lee et al. [74] addresses the challenges of non-linearity and
computational cost in 3D reconstruction algorithms. This innovative scheme demonstrates
the evolving landscape of tomographic imaging techniques. Delving into the field of medi-
cal tomography, Concharsky and Romanov [75] present efficient methods for ultrasound
tomography with attenuation. This expands the horizons of tomographic imaging into the
realm of medical diagnostics, emphasizing the role of sound wave attenuation in imaging.
The application of ultrasound computed tomography in breast tissue imaging, as discussed
by Martiatu, Boehm, and Fichner [76], highlights the potential for quantitative 3D imaging.
The introduction of finite-frequency travel-time tomography underscores the need for
precision in medical tomographic applications. The exploration of non-interference three-
dimensional refractive index tomography by Hauer, Haberfehlner et al. [77] highlights
the application of tomographic imaging in the life science field. This approach focuses on
simplicity and robust imaging performance, emphasizing the need for adaptability.

The innovative deep prior diffraction tomography method introduced by Zhou and
Horstmeyer [78] offers a high-resolution reconstruction of refractive indices within dense
biological samples. It demonstrates the potential of unconventional imaging methods in
life sciences. Webber [79] presents a fast method for reconstructing electron density in X-ray
scanning applications. This approach aligns with the theme of efficient imaging solutions,
particularly in scenarios dominated by Compton scattering. Finally, as highlighted by
Yang, Zhang et al. [80], a multi-slice neural network with an optical structure presents the
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fusion of advanced technology with optical science. This innovative approach highlights
the synergy between different disciplines.

Optical Coherence Tomography is a cutting-edge technology used for non-invasive
cross-sectional imaging within biological systems. This method utilizes low-coherence
interferometry to create a two-dimensional image that reveals the way light scatters from
internal tissue microstructures, much like how ultrasound pulse-echo imaging works.
Optical Coherence Tomography provides incredibly precise longitudinal and lateral spatial
resolutions, down to just a few micrometers, and has the capability to detect extremely
faint reflected signals, as minute as approximately one-tenth of a billionth of the incoming
optical power [81–84].

In conclusion, whether in the domain of SAR, seismic exploration, medical diagnostics,
or life sciences, these references underscore the dynamic nature of tomography and its
ever-evolving role in diverse applications. The integration of advanced algorithms, artificial
intelligence, and innovative methodologies reflects the continuous pursuit of higher image
quality, precision, and efficiency.

In the rest of the sections, this review briefly presents representative tomographic
reconstruction methods. These methods cover most of the disciplines in which current
reconstruction approaches have been applied. Analytically, the rest of the sections are
presented as shown in Figure 1.
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2. Evaluation of Backprojection Methods

It is universally accepted that mammography is the most efficacious tool for the early
detection of breast cancer. With traditional mammography, the object is projected onto the
detector or film to generate the 2D projection image of the breast. Superimposed objects
on the projection images, caused by overlapped anatomical structures, bring limitations
to mammography [85,86], such as 20% false-negative rates and high recall rates, which
may result in unnecessary anxiety to the patients and increase medical costs. Compared to
standard mammography, the digital breast tomosynthesis (DBT) technique may overcome
the limitations by removing the ambiguities of overlapped tissues and providing 3D
localization. Since 3D slice images of the breast can be partially reconstructed based on a
few limited-angle projection images, DBT has the potential to help decrease recall rates,
improve the accuracy of breast cancer detection, and, therefore, reduce the number of
women who die from such cancer [86]. In the process of tomosynthesis, sequences of
limited-angle 2D projection images are acquired first and then reconstructed into slice
images of the breast. A few image reconstruction algorithms have been investigated by
various research groups, including the backprojection (BP) reconstruction algorithm [87],
filtered backprojection (FBP) algorithm [88], matrix inversion tomosynthesis (MITS) [89],
maximum likelihood expectation maximization (MLEM) [90,91], simultaneous algebraic
reconstruction techniques (SART) [92,93], etc.
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The work in [8] focuses on the investigation of BP algorithms. Two BP variants,
including α-trimmed BP and principal component analysis-based (PCA) BP, were proposed.
Their performance in improving the conspicuity of lesions and suppressing noise was
studied by computer simulations and phantom experiments. The shift-and-add (SAA)
tomosynthesis reconstruction algorithm [87] reconstructs the plane at the specified height
by lining up each projection image according to its relative shift amount. Objects at different
locations above the detector will be projected onto the detector in positions depending on
the relative locations of the objects. In order to reconstruct 3D slices of the breast, each
projection image should be shifted by an amount appropriate for the plane of reconstruction.
The shift amount can be calculated based on projected positions from the central points of
each reconstruction plane. The shifted planes are added together to emphasize structures
in the in-focus plane and blur out structures in other planes. Figure 2 shows a parallel
tomosynthesis imaging geometry. The reconstructed plane S can be derived by taking the
average of all the projection images that have undergone the necessary shifts [39,87].
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Figure 2. Parallel X-ray breast tomosynthesis imaging geometry.

The SAA algorithm facilitates the acquisition of 3D reconstructed slices. To enhance
the reconstruction of a single pixel on a specific plane located at a certain height above the
detector, it is imperative to calculate the shift amounts along both the x and y directions
for each pixel on the reconstruction plane. This technique is commonly referred to as
point-by-point backprojection [87]. Point-by-point backprojection involves the computation
of shift values for every individual pixel position within each reconstructed plane, taking
into account the 2D projection of the reconstructed objects within those planes. Figure 3
illustrates this process. The pixels resulting from the backprojection process provide
estimations of the object’s internal structure. In the conventional BP algorithm, the final
pixel value at point A is calculated as the mean of the backprojected pixels derived from all
N projection images (where N denotes the number of projection images). To leverage the
statistical properties inherent in these N values and thereby enhance image quality, two
distinct variants have been introduced.
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Figure 3. Projection geometry. The X-ray source projects the point A onto B (detector plane).
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The α-trimmed BP technique involves the removal of extreme values within the back-
projected pixels. This process entails sorting all pixel values present in the backprojection
images, eliminating the lowest α/2 values and the highest α/2 values, and then computing
the mean value.

The principal component analysis method is a sophisticated multivariate analysis
technique rooted in the concept of eigenvectors. It offers a valuable orthogonal linear
transformation that shifts from an initial n-dimensional coordinate system to a novel m-
dimensional coordinate system (where m < n). In the implementation of PCA-based
backprojection, a pivotal step involves computing the first principal eigenvectors. These
eigenvectors are derived from a matrix comprised of N backprojected pixel values. They
serve as the foundational components used to generate the reconstructed image.

In the following, the SAA tomosynthesis reconstruction algorithm is explained, and
two variants of the BP technique are provided for enhancing the reconstruction of 3D slices.
A summary of the key steps follows:

Step 1. SAA Tomosynthesis Reconstruction:

The SAA algorithm reconstructs a plane (Figure 2) at a specified height by aligning
each projection image based on its relative shift amount.

The shift amount, shi f ti(S), is calculated using the relationship shi f ti(S) = shi f t(O) =
H

SID−H ·(Rx −Ox), where H is the height, SID is the source-to-image distance, Rx is the
pixel position on the detector, and Ox is the central point of the reconstruction plane.

The reconstructed plane S is obtained by averaging all projection images that have
undergone the necessary shifts.

Step 2. Point-by-Point Backprojection:

To enhance the reconstruction of a single pixel on a specific plane, point-by-point
backprojection is employed.

The shift amounts along both the x and y directions (Figure 3) for each pixel on
the reconstruction plane are calculated using the mathematical relationship described by
equations Bx = Rx +

Rz
Rz−Az

·(Ax − Rx) and By = Ry +
Rz

Rz−Az
·
(

Ay − Ry
)
.

Backprojection provides estimations of the object’s internal structure.

Step 3. Backprojection Variants. α-Trimmed BP Technique:

The technique involves removing extreme values within the backprojected pixels by
sorting and eliminating the lowest and highest d/2 values.

The final pixel value is calculated as the mean of the remaining values (s =
1

N−d ∑N−d/2
i=d/2+1 I(Bi)).

Parameter d controls the degree of trimming, ranging from 0 to N − 1.
PCA-based BP utilizes PCA, a multivariate analysis technique, to transform the co-

ordinate system for enhanced reconstruction. It involves computing the first principal
eigenvectors from a matrix of backprojected pixel values.

In summary, the 3D reconstructed images produced through the examined reconstruc-
tion techniques, including conventional BP, α-trimmed BP, and PCA-based BP, effectively
unveiled masses and micro-calcifications. Among these methods, α-trimmed BP show-
cased superior noise reduction capabilities and proficiently addressed out-of-plane artifacts,
thereby enhancing the visibility of in-plane objects. Additionally, it commendably pre-
served the contours of objects situated near the boundaries. When integrated with FBP as
the backprojection step, α-trimmed BP demonstrated the potential to enhance the overall
image quality of the reconstructed slices.

3. Multi-Slice Fusion in CT Reconstruction

The complexity of reconstruction problems has evolved beyond the conventional 2D
and 3D spatial representations to tackle more intricate 4D and even 5D challenges involv-
ing the dimensions of space and time, as well as specific aspects like heart or respiratory
phases [94–100]. This heightened dimensionality in reconstruction offers valuable oppor-
tunities to enhance the quality of reconstruction by capitalizing on the inherent patterns
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within this multidimensional space. In particular, for time-sensitive imaging applications,
we can harness the regularity within the images to reconstruct each frame using fewer
data points, thus elevating temporal resolution. Take, for example, the domain of 4D
CT imaging, where notable contributions from references [95,101,102] have significantly
enhanced temporal resolution by leveraging the inherent spatiotemporal regularities of
the objects being imaged. These approaches rely on model-based iterative reconstruction
(MBIR) techniques [103,104], which enforce regularity in the 4D data by incorporating
straightforward spatiotemporal prior models. Furthermore, there has been a proposition
to employ deep learning-based post-processing methods for 4D reconstruction, aiming to
further enhance the quality of the reconstructed images [105].

Recent developments have demonstrated the significant potential of previous plug-
and-play (PnP) programs, as documented in references [106–109], to significantly improve
the quality of reconstructions. This is achieved by allowing state-of-the-art denoising
techniques to be incorporated as model priors within model-based iterative reconstruction
(MBIR). Consequently, PnP methods promise a remarkable improvement in reconstruction
quality in the context of 4D CT imaging challenges. However, there is a notable limitation
when it comes to applying state-of-the-art denoisers such as deep convolutional neural net-
works (CNN) and BM4D, as they are primarily designed for 2D and occasionally 3D images.
Extending these techniques to higher dimensions, as discussed in references [100,110,111],
presents significant computational and memory challenges. Specifically, adapting CNNs
to 4D requires computationally intensive 4D convolutions applied to 5D feature tensor
structures. Additionally, training PnP launchers with 4D CNNs requires access to 4D
ground truth data, which can be difficult or even impossible to obtain.

The novel 4D X-ray CT reconstruction algorithm introduced in [29] leverages multi-
ple low-dimensional CNN denoisers to generate a highly efficient 4D prior model. The
methodology, known as “multipartite fusion”, seamlessly integrates these different low-
dimensional priors using a multi-agent equilibrium consensus (MACE) technique [112]. A
visual representation of the basic idea behind this approach is provided in Figure 4. A tech-
nique called “multi-slice fusion” is used, which combines three discrete CNN denominators,
each specifically trained to remove additive white Gaussian noise from lower-dimensional
slices (hyperplanes) of the 4D object. When the multi-agent equilibrium consensus (MACE)
process merges these jammers, it does so while simultaneously enforcing the constraints
imposed by each jammer. As a result, the reconstructed images are forced to exhibit
smoothness in all four dimensions. This approach, known as multipart fusion, produces
excellent quality reconstructions and remains practical for training and computation even
when dealing with high-dimensional reconstruction tasks. The solution for MACE can be
computed using a variety of algorithms, as documented in references [106,107,113,114]. To
implement multipart fusion, distributed heterogeneous clusters are used, where different
agent updates are distributed to various cluster nodes. In particular, the computationally
intensive cone beam inversion processes are distributed across multiple CPU nodes, while
the CNN denoising calculations are simultaneously distributed across multiple GPU nodes.
Experimental results demonstrate that multi-slice fusion is highly effective in significantly
reducing artifacts and improving resolution compared to alternative reconstruction methods.

In the realm of 4D X-ray CT imaging, a dynamic object undergoes rotation, and
multiple 2D projections (radiographs) of this object are captured at various angles. The
core challenge lies in reconstructing the 4D array of X-ray attenuation coefficients using
these measurements, where the four dimensions are allocated as follows: three for spatial
dimensions and the fourth for time. It is defined that Nt is the number of time points,
the number of measurements at each time point is denoted by Mn, and each time point
of the 4D volume Ns is the number of voxels. For each time point n within the range
{1, . . . , Nt}, defined yn ∈ RMn encapsulates the sinogram measurements taken at time
n, and xn ∈ RNs serves as the vector representation of the 3D volume containing X-ray
attenuation coefficients for that time point.
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Figure 4. This visual representation showcases the proposed innovative multi-slice fusion approach.
Each CNN denoiser is designed to function within the temporal dimension and two spatial dimen-
sions. These CNN denoisers are seamlessly integrated with the measurement model to generate a 4D
reconstruction that is inherently regularized.

Combining all measurements yields a comprehensive measurement vector y =[
yT

1 , . . . , y T
Nt

]T
∈ RM. Here, M represents the total number of measurements, which

can be expressed as M = ∑Nt
n=1 Mn. Similarly, the 3D volumes at each time point can be

stacked to form a vectorized 4D volume, denoted as x =
[

xT
1 , . . . , xT

Nt

]T
∈ RN , where

N = NtNs represents the total number of voxels within the 4D volume. Recovering the 4D
volume of attenuation coefficients x from the series of sinogram measurements y is actually
the 4D reconstruction problem.

The provided text describes a 4D reconstruction problem in the context of 4D X-ray
CT imaging, where a dynamic object undergoes rotation, and multiple 2D projections are
captured at various angles. The goal is to reconstruct the 4D array of X-ray attenuation
coefficients using these measurements. The reconstruction is formulated using a Maximum
A Posteriori (MAP) approach, incorporating data fidelity and a 4D regularizer.

Here is an outline of the algorithm steps mentioned in the text:

Step 1. Formulate the reconstruction problem using the MAP approach:

x∗ = arg min
x
{l(x) + βh(x)}

Step 2. Express the data fidelity term l(x) as the sum of squared differences between
sinogram measurements and the forward model:

l(x) =
1
2

Nt

∑
n=1
‖yn − Anxn‖2

Λn

Step 3. Define the weight matrix Λn = diag{c exp{−yn}} to address non-uniform noise
variance by approximating it through a Gaussian approximation [95,115] of the un-
derlying Poisson noise.

Step 4. Formulate each Hk(x) : RN → RN as the MAP estimation for a Gaussian denois-
ing problem, where hk(x), k = 1, . . . , K represents a prior model, and σ is the noise
standard deviation.

Hk(x) = arg min
z∈RN
{ 1

2σ2 ‖x− z‖2
2 + hk(z)}
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Step 5. Modify the optimization problem to incorporate K different regularizers, resulting
in a consensus equilibrium formulation.

x∗ = arg min
x
{l(x) +

β

K

K

∑
k=1

hk(x)}

Step 6. Define proximal maps L(x) = arg min
z∈RN

{
l(z) + 1

2σ2 ‖x− z‖2
2

}
: RN → RN and

Hk(x) : RN → RN for each term in the optimization problem. Create a stacked
operator F(W ) that maps from R(K+1)N to R(K+1)N , where W ∈ R(K+1)N represents
the stacked representative variable:

F(W) =


L(W0)

H1(W1)
...

HK(WK)


Step 7. Formulate the consensus equilibrium equation F(W∗) = G(W∗), where G is an

averaging operator.
Step 8. Derive the fixed-point relationship (2G− I)(2F− I)W∗ = W∗ for the consensus

equilibrium solution W∗, which stands as a fixed point within the mapping denoted
as T = (2G− I)(2F− I).

Step 9. Implement an iterative fixed-point algorithm (e.g., Mann iteration) to compute the
equilibrium solution.

Step 10. Use a modified update operator
∼
L(W0, X0) that involves iterative coordinate de-

scent (ICD) for computational efficiency.

∼
F(W; X) =


∼
L(W0; X0)
H1(W1)

...
HK(WK)


We have to comment that the algorithm involves mathematical concepts and notations

related to optimization, proximal maps, consensus equilibrium, and iterative fixed-point
methods. Implementation of these steps requires a suitable understanding of numerical
optimization and relevant mathematical frameworks.

4. Accelerating Popular Tomographic Reconstruction Algorithms on Commodity PC
Graphics Hardware

All algorithms designed for 3D computed tomography (CT) share a common challenge,
as highlighted by Fang and Mueller [49], primarily involving a series of backprojection
operations that significantly contribute to the computational burden. Moreover, iterative al-
gorithms introduce additional computational overhead through forward projections, which
pose similar computational demands. Therefore, to render these operations practical for
clinical applications, it is imperative to optimize the efficiency of both backprojections and
projections. Each projection and backprojection operation inherently possesses a complexity
that scales with the volume dataset’s size, often denoted as O

(
N3). In the context under

discussion, straightforward projection and backprojection in the spatial domain are consid-
ered. In such cases, the primary avenue for reducing the actual computational expense lies
in diminishing the constant factor, denoted as k, which relates complexity to computational
cost and is responsible for the k·N3 term. Typically, in iterative reconstruction, a widely
adopted strategy involves precomputing weight matrices, often referred to as look-up
tables. While this approach has demonstrated remarkable acceleration in two-dimensional
(2D) reconstruction scenarios, its applicability to 3D reconstruction is hindered by the
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substantial memory requirements involved. Consequently, for 3D reconstruction, various
commercial solutions have emerged, often built on custom hardware, to address these
challenges [49].

When considering an appropriate platform, it is important to recognize that the
projection and backprojection operations are fundamentally voxel and pixel-based tasks
with minimal dependencies. Typically, these operations are computed as array processes
within extended loops. An ideal platform for handling such calculations includes vector
processors or massively parallel architectures [116]. However, it is worth noting that vector
processors like the Cray supercomputer family tend to be expensive. A noteworthy recent
development in this domain is the emergence of mainstream computing platforms that
share many characteristics with vector processors, notably graphics processors (GPUs). By
framing the projection, backprojection, and all other CT computations as stream operations,
we can harness the capabilities of these affordable mainstream architectures to achieve
rapid CT imaging. In consequence, an outline emerges regarding the adaptation of the
most frequently utilized CT algorithms, encompassing filtered backprojection, algebraic
methods, and EM methods, to GPU architectures. This transition results in significantly
enhanced processing speed while upholding accuracy standards.

In a general context, it is evident that previous methods faced a common challenge
stemming from the limitations of the graphics hardware they utilized. These hardware
systems were confined to integer-arithmetic precision, typically at either 8-bit (PC) or 12-bit
(SGI) precision levels. This constraint had a notable impact on their overall accuracy and
computational performance. However, a significant stride forward has been achieved with
the advent of newer GPU generations. These advanced GPUs introduce a pivotal feature,
offering support for floating-point precision at two critical stages within the graphics
pipeline. This enhancement carries significant implications. It now allows for the complete
reconstruction process to be executed directly within the GPU, performing at the precision
levels typically associated with CPUs. Furthermore, the computational tasks handled by
the GPU facilitate effortless visualization of the generated data, thus enhancing the overall
utility of the technology.

Graphics elements are typically constructed using polygon meshes. To introduce finer
surface details, images or textures representing the desired intricacies are often applied or
mapped onto these polygons during the rendering phase. This method, known as texture
mapping, offers an efficient way to enhance surface detail without necessitating an increase
in the object’s polygon count. Importantly, graphics hardware is finely tuned for rapid
texture mapping, even when confronted with perspective distortion [117]. The graphics
pipeline comprises three fundamental stages, as depicted in Figure 5: the geometry processing
stage, the polygon rasterization stage, and the fragment processing stage.
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Figure 5. Pipeline for rendering graphics using hardware acceleration.

In [49], the work of Lewitt [118] was referenced, where a volume is represented
as an assemblage of point samples positioned at grid points. In this model, values at
positions between grid points are approximated by interpolation using a specific kernel
function. Linear functions are chosen for this purpose, a choice that has also gained
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extensive popularity in backprojectors and is amenable to efficient implementation in
graphics hardware.

The provided text discusses the utilization of GPUs for computations within various
common CT algorithms. It introduces a standardized notation and then delves into the
specifics of imaging modalities, such as transmission and emission X-rays. The text fur-
ther describes mathematical formulations for the CT process, including projection and
backprojection operations. Three reconstruction methods—the Feldkamp algorithm, SART
(Simultaneous Algebraic Reconstruction Technique), and OS-EM (Ordered Subsets Expec-
tation Maximization)—are explained using the established notation.

Here is a breakdown of the four main points:

Step 1. Notation and Imaging Modalities:

• A volumetric object is defined by its attenuation function µ(x, y, z).
• Two imaging modalities are considered: transmission X-ray (external source) and

emission X-ray (metabolic sources within the object).

• Mathematical formulations CQ
ϕ (u, v) = Q0·e−

∫ L
0 µ(t)dt and CE

ϕ(u, v) =∫ L
0 E(s)·e−

∫ s
0 µ(t)dtds for recording intensity values on a 2D detector for both

modalities are provided.

Step 2. Vector Processing for CT:

• Introduction of vector processing for CT using a standardized notation (CQ
i =

CQ
ϕ (u, v), CE

i = CE
ϕ(u, v), qi = ∑N3−1

j=0 µjwij, ei(s) = ∑N3−1
j=0 Ejwij(s), etc.).

• The shift from pixel-centric to voxel-centric representation for transmission X-ray.
• Formulation of voxel-centric representation for emission X-ray.

Step 3. Projection and Backprojection Operators:

• Introduction of projection (Pϕ) and backprojection (Bϕ) operators as matrices.
• Dynamic computation of elements using interpolators integrated into rasteriza-

tion hardware.

Step 4. Reconstruction Methods:

• Feldkamp algorithm

Depth correction factor (wij(d) = wij
a2(

a+
√

Y(vj)+Z(v j

)
cos(ϕ−ϕr)

)2 ) during

backprojection.
Grid update equation expressed in condensed notation.

• SART (Simultaneous Algebraic Reconstruction Technique) Grid update equation

for SART V = V +
Bϕ

(
λ

Iϕ−Pϕ(V)

Pϕ(W)

)
Bϕ(W)

involving a relaxation factor (λ).

• OS-EM (Ordered Subsets Expectation Maximization) Grid update equation for

OS-EM algorithm V = V
∑ϕ∈OS Bϕ(α)(W)∑ϕ∈OS Bϕ(α)

(
Iϕ

Pϕ(α)(V)

)
.

The text concludes by emphasizing the potential of technological advancements in
GPU capabilities for computed tomography. The provided information outlines the mathe-
matical formulations and algorithms used in CT reconstruction, showcasing the significance
of leveraging GPU capabilities for efficient computations in these processes.

5. A Deep Learning-Based 3D Ground-Penetrating Radar Data Inversion

Ground-penetrating radar (GPR) has found extensive use in geophysical exploration
and civil engineering applications owing to its cost-effectiveness and non-destructive
properties. The reconstruction of 3D permittivity maps from GPR data is invaluable
for extracting crucial information about subsurface objects. These maps offer insights
into various aspects, including the shapes, sizes, positions, orientations, and permittivity
properties of these subsurface entities.
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Numerous conventional algorithms have been developed for reconstructing 3D sub-
surface images from GPR C-scans. These migration algorithms offer approximations of
object positions and shapes but do not provide detailed permittivity maps. The permittivity
data are vital for tasks such as object identification and health assessments. To address the
challenge of reconstructing subsurface permittivity maps, a full-wave inversion (FWI) algo-
rithm was introduced in [119–122]. This algorithm enables the reconstruction of subsurface
structure permittivity maps from GPR data through a nonlinear least-squared optimization
process. However, processing 3D GPR data with the 3D FWI method can be computa-
tionally intensive. To enhance efficiency, a modified total variation (MTV) regularization
scheme was introduced [123]. It is noteworthy that only two studies have applied 3D FWI
to reconstruct subsurface permittivity or conductivity distributions from GPR data. The
high computational complexity and limited applicability of FWI algorithms have posed
challenges in their use for reconstructing intricate 3D subsurface scenarios.

In recent times, the integration of deep learning methodologies has emerged as a
viable solution to tackle challenges in inverse scattering and electromagnetic (EM) imaging
domains [124–126]. These investigations encompass a spectrum of approaches, ranging
from entirely data-driven techniques to those that blend physics-based insights. They have
exemplified the remarkable effectiveness of deep learning in addressing a wide array of
EM inverse problems. The utility of deep learning-based methods has also extended to
GPR applications [127,128], with a particular emphasis on resolving GPR inverse problems,
including image classification, signature recognition, subsurface object detection, and the
restoration of object properties [129–133]. Within this context, Deep Neural Networks
(DNNs) have been harnessed to reconstruct 2D subsurface permittivity maps based on
GPR B-scans [134–137]. However, it is worth noting that the scope of these endeavors has
been confined to the restoration of 2D domain permittivity maps. Consequently, they offer
insights primarily at the sectional level of subsurface scenarios, leaving room for improve-
ment in capturing critical details such as object orientation and shape, especially when
dealing with intricate subsurface structures. Furthermore, it is crucial to recognize that the
use of full-wave simulations for 2D inversion may not faithfully replicate the intricacies of
EM phenomena in the actual 3D world. In the 2D modeling paradigm, assumptions are
made, including the invariance of scattering in one coordinate direction, the treatment of
line sources as infinitely long, and the limitation to linear polarization. These assumptions
deviate from the reality of complex 3D modeling scenarios, potentially yielding results
that diverge significantly from actual 3D modeling outcomes [122]. Therefore, it becomes
imperative to explore the potential of deep learning techniques in the reconstruction of
3D subsurface permittivity maps, transcending the limitations of 2D reconstruction and
offering a more accurate representation of real-world EM phenomena.

A significant obstacle in the reconstruction of subsurface permittivity maps is the
interference posed by various noise patterns. These include direct coupling, reflections
from the ground, and environmental noise, which can obscure object reflections in GPR
data. In the work by Dai, Lee et al. [74], a novel deep learning framework named 3DInvNet
was introduced to address this challenge by reconstructing subsurface 3D permittivity maps
from GPR C-scans, with a prior denoising step. The key contributions of this approach,
as distinguished from existing deep learning-based GPR detection and 2D reconstruction
methods, can be summarized as follows:

1. A dedicated 3D denoising network, referred to as the “Denoiser,” has been meticu-
lously crafted to combat noise interference within GPR C-scans, particularly in the
presence of complex and heterogeneous soil environments. This denoiser incorpo-
rates a compact 3D convolutional neural network (CNN) architecture, leveraging
residual learning principles and a feature attention mechanism to effectively distill
the reflection signatures of subsurface objects from noisy C-scans.

2. Following the denoising process, a 3D U-shaped encoder-decoder network, aptly
named the “Inverter,” is purposefully designed. Its primary function is to translate the
denoised C-scans, as predicted by the denoiser, into comprehensive subsurface 3D per-
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mittivity maps. To ensure robust feature extraction across a spectrum of objects with
diverse properties, the inverter incorporates multi-scale feature aggregation modules.

3. To achieve optimal performance, a meticulously devised three-step independent
learning strategy is employed, facilitating the pre-training and fine-tuning of both the
denoiser and inverter components.

DENOISING, Inverter, and Training

The above key contributions for GPR are provided in stages below. The denoiser has
three main stages:

1. Initial Feature Extraction:

• An initial feature extraction module is employed, consisting of a 3 × 3 × 3
convolutional layer with C1 channels and 1× 1× 1 strides. This module captures
the initial features (F0 = δ(K(y))) from the noisy input C-scans (y ∈ RD×H×W).

• The process involves a 3D convolutional layer K(·)) and a Rectified Linear Unit
(ReLU) activation function (·).

2. Feature Learning Modules:

• After initial feature extraction, m feature learning modules are applied, each
consisting of two residual blocks and one feature attention block.

• Residual blocks utilize identity mapping to address gradient explosion concerns.
• Residual learning is formulated for each block (F1 = δ(K(δ(K(F0))) + F0) and

F2 = δ(K(δ(K(F1))) + F1)) and then a feature attention block is introduced to
emphasize the significance of features.

• The attention mechanism involves global average pooling to compute channel-
wise statistics and a gating mechanism using fully connected layers and a Sig-
moid function.

• The attended feature map is generated through channel-wise multiplication and
added to the original feature map via a residual connection.

3. Reconstruction Module:

• A reconstruction module featuring a one-channel convolutional layer with resid-
ual learning is employed.

• This module reconstructs the denoised C-scan (yD = δ(y + K(F0 + FMm))) using
the learned feature representations.

In a similar way, the key points about the inverter architecture are as follows:

1. 3D U-Net Structure:

• The inverter follows the structure of the 3D U-Net architecture, comprising both
an encoder and a decoder with skip connections.

2. Multi-Scale Feature Aggregation (MSFA) Mechanism:

• MSFA is introduced within each encoding and decoding block to capture features
at various scales effectively.

• Each MSFA module includes three 3 × 3 × 3 convolutional layers with 1 × 1 × 1
strides.

• The increased number of convolutional layers deepens the network, enhancing
its nonlinear mapping capabilities and facilitating the extraction of larger-scale
features from object reflections.

3. Receptive Field (RF) Calculation:

• The RF size of the output feature map Fr f generated by the fth convolutional layer in

the MSFA module is calculated using the formula r f = r f−1 +
(

k f − 1
)
×∏

f−1
i=1 si.

• The choice of fixed kernel size (k = 3 and s =1) leads to different RF sizes,
allowing for the capture of multiple scales.
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4. Multi-Scale Feature Map Combination:

• Feature maps Fr1 ∈ RC2×D×H×W , Fr2 ∈ RC2×D×H×W , and Fr3 ∈ RC2×D×H×W

with different RF sizes are combined in the channel dimension within each
encoding and decoding block.

• The consolidated multi-scale feature map Fr1∼3 = Concat(Fr1 , Fr2 , Fr3)) is ob-
tained by concatenating these feature maps.

5. Efficient Multi-Scale Feature Capture:

• Unlike approaches that introduce additional parallel convolutional layers, the
MSFA module directly integrates feature maps from successive convolutional
layers with different receptive fields.

• This design choice aims to efficiently capture multi-scale features from reflection
patterns in GPR C-scans influenced by diverse subsurface object properties.

• Overall, the MSFA mechanism is introduced to enhance the network’s ability to
represent the nonlinear mapping from C-scans to 3D permittivity maps, taking
into account multi-scale features in subsurface imaging.

Finally, the following outlines a three-step process for the 3DInvNet, a two-stage
scheme designed for denoising GPR C-scans and reconstructing 3D subsurface permittivity
maps. The three steps involve denoiser pre-training, inverter pre-training, and fine-tuning
the pre-trained networks using transfer learning. Here is a summary of each step:

Step 1: Denoiser Pre-training

• Objective: Train the denoiser component using a diverse dataset of noisy and
noise-free C-scans.

• Loss Function: Mean Squared Error (MSE) between the predicted denoised
C-scan yD and the corresponding ground truth (ŷD).

• Loss Function Formula: L1(yD, ŷD) =
1

D·H·W ∑D
d=1 ∑H

h=1 ∑W
w=1

(
yDd,h,w − ŷDd,h,w

)2

• Optimizer: Adam optimizer.

Step 2: Inverter Pre-training

• Objective: Pre-train the inverter using noise-free C-scan ground truth (ŷD) as
input data.

• Loss Function: Mean Absolute Error (MAE) between the predicted permittivity
map X and the ground truth X̂.

• Loss Function Formula: L2
(
X, X̂

)
= 1

D·H·W ∑D
d=1 ∑H

h=1 ∑W
w=1

∣∣(Xd,h,w − X̂d,h,w
)∣∣

• Optimizer: Adam optimizer.

Step 3: Fine-tune the Pre-trained Networks (Transfer Learning)

• Additional Data Creation: Generate a small dataset containing new scenarios.
• Initial Network States: Utilize the pre-trained networks as the starting point for

fine-tuning.
• Parameter Updates: Further refine the network parameters by minimizing the

loss functions L1(yD, ŷD) and L2
(
X, X̂

)
using the new training dataset

until convergence.
• Enhanced Networks: After fine-tuning, the networks are better suited to handle

a broader range of scenarios.
• Objective: Improve networks’ adaptability and robustness.

In Summary:
Denoiser: Captures informative features from subsurface objects and mitigates envi-

ronmental noise in GPR C-scans.
Inverter: Establishes a relationship between discriminative features extracted from

denoised C-scans and corresponding subsurface scenarios.
Comprehensive Testing: Validates the capability of the proposed method to accurately

and efficiently reconstruct 3D permittivity maps across various subsurface scenarios using
both numerical simulations and real measurement data.
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6. Global Seismic Tomography: The Inverse Problem and Beyond

Global seismic tomography has remained an active area of research since its initial
systematic exploration in the early 1980s. Seismic waves generated by sufficiently large
earthquakes propagate across the globe, and as they traverse the Earth’s interior, they carry
valuable information about the medium through which they travel, including their arrival
times and waveform characteristics [138,139]. As explained by Trampert [69], the funda-
mental challenge in seismic tomography is to reconstruct the three-dimensional elastic
velocity distribution within the Earth using extensive datasets of arrival times, waveforms
from both body and surface waves, and free oscillations. A recent comprehensive assess-
ment encompassing various research studies proposed by Ritzwoller and Lavely [140]
has demonstrated a robust convergence of information regarding the Earth’s structural
characteristics, employing diverse datasets and distinct mapping techniques. Regions
characterized by lower seismic velocities exhibit correlations with geoid highs and the
locations of numerous global hotspots. These three-dimensional velocity models hold
promise in establishing a solid foundation for comprehending the driving mechanisms
underlying plate tectonics.

Seismic tomography plays a crucial role in mapping the current thermodynamic and
compositional characteristics of heterogeneities within the convicting mantle, imposing
stringent constraints on potential models of mantle convection [141–143]. Key geological
features, such as the thickness of continental roots, the depth range of mid-ocean ridge sig-
nals, and variations in lithospheric velocity with age [142,144], offer valuable insights into
the genesis and evolution of continental and oceanic lithospheric structures. Additionally,
the relative changes in P-wave velocities compared to S-wave velocities provide substantial
mineralogical constraints on the mantle’s composition [141]. The thermal conditions pre-
vailing in the lower mantle establish critical boundary conditions for potential geodynamo
models aiming to explain the Earth’s magnetic field dynamics [139]. Notably, a long-
standing correlation between the geoid and seismic models has been acknowledged [138],
suggesting that both gravity and seismological data can collectively contribute to our
understanding of three-dimensional density fluctuations within the Earth.

Seismic tomography primarily revolves around the reconstruction of the Earth’s three-
dimensional velocity field by analyzing surface observations of elastic waves. The forward
problem entails the prediction of a seismogram. The tomographic inverse problem is
inherently characterized by an uneven distribution of seismic sources (earthquakes) and
receivers (limited to seismic stations on continents and oceanic islands). This results in
an irregular sampling of the Earth’s interior using elastic waves, where some regions are
over-sampled while others remain undersampled. In such circumstances, the inverse
problem becomes ill-posed, typically exhibiting a rapidly declining eigenvalue spectrum.
This steep decline signifies that minor data errors can lead to substantial variations in the
solution, rendering the problem ill-conditioned. Both ill-posedness and ill-conditioning are
associated with substantial null spaces, indicating non-unique solutions. The remedy for
these challenges involves the application of implicit or explicit regularization techniques.
Regularization serves the purpose of either constraining the potential model space or
selecting a specific solution from the multitude of possible solutions.

The propagation of seismic waves within an elastic medium is primarily governed
by the elastodynamic equations. Assuming a known source excitation and instrument
response, this leads to a nonlinear relationship between the observed data and the pro-
vided Earth model through the underlying physics of wave propagation encapsulated
in the forward theory. In summary, global seismic tomography has achieved significant
advancements in mapping three-dimensional elastic wave velocity fields. This progress
has yielded valuable insights that have sparked interdisciplinary discussions within the
field of Earth sciences.

Moreover, seismic full waveform inversion (FWI) for imaging Earth’s interior was
introduced in the late 1970s. As highlighted by Tromp [145], its goal is to use all of the
information in a seismogram to understand the structure and dynamics of Earth, such as
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hydrocarbon reservoirs, the nature of hotspots, and the forces behind plate motions and
earthquakes [145] (see Figure 6). FWI in seismology starts by choosing seismic sources,
ranging from earthquakes to controlled sources like air guns or explosions. It involves
comparing observed and simulated seismograms to optimize model parameters, such as
wave speeds and densities. However, FWI focuses on specific waveform characteristics,
often using time windows where seismograms align [146,147]. Selecting an accurate
starting model is crucial but challenging, particularly in the exploration of seismology.
Forward simulations calculate synthetic seismograms, vital in comparison with observed
data, using various numerical methods. FWI needs a fast solver for wave propagation,
with a shift toward frequency-domain approaches [148]. Comparison of observed and
simulated seismograms requires a chosen misfit function, measuring differences like phase
and amplitude. Inversion aims to minimize this misfit using the adjoint-state method,
calculating gradients of model parameters [149–151]. Yet, challenges like cycle skipping
and data volume remain [152–154]. FWI algorithms use optimization techniques like L-
BFGS but face issues such as local minima and data quality mismatches. This method
distinguishes itself from ray-based methods, as it involves comprehensive 3D numerical
simulations and iterative updates of Earth models, allowing for a detailed study of seismic-
wave propagation [155–157]. FWI finds applications in controlled-source exploration,
earthquake studies, and ambient-noise seismology, including hydrocarbon exploration and
seismic interferometry. Notable examples demonstrate its diverse use in various seismic
contexts worldwide.
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Figure 6. FWI accurately computes highly detailed, data-driven models of subsurface velocity,
absorption Q, and reflectivity for use in seismic imaging and interpretation by minimizing the
difference between observed and modeled seismic waveforms.

In the following, a summary of six key points is provided for seismic tomography,
focusing on the inverse problem and the associated challenges and techniques involved in
reconstructing the Earth’s three-dimensional velocity field:

A. The Inverse Problem basic stages
Forward Problem: In seismic tomography, the forward problem predicts a seismogram

s(t, ∆) at a distance ∆ from the seismic source over time t based on a prescribed velocity
field υ(r).

Integral Formulation: The forward problem is represented as an integral equation
involving the velocity field, spatial location r and the underlying principles of elastic wave
propagation si(t, ∆) =

∫
Ω[υ(r)] gi[t, ∆, υ(r)]dr.

Inverse Problem Challenges: The inverse problem involves reconstructing the velocity
field υ(r) from observed seismograms, and it is inherently ill-posed due to the uneven
distribution of seismic sources and receivers.
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Regularization: Regularization techniques, whether implicit or explicit, are applied to
address ill-posedness and ill-conditioning issues in the inverse problem. These techniques
constrain the model space or select a specific solution.

B. Forward Theory
Seismogram Characteristics: A typical seismogram exhibits sequences of P and S

body waves, along with dispersed surface waves, providing information about the Earth’s
interior structure.

Propagation Equations: The propagation of seismic waves within an elastic medium
is governed by elastodynamic equations. A simplified form of seismic tomography relies
on the arrival times of body waves.

Ray Theory and Travel-Time Tomography: Travel-time tomography is based on the in-
tegration of slowness to determine travel time. Fermat’s principle and Rayleigh’s principle
are utilized in the context of ray theory.

C. Parametrization of the Model
Model Parameters δυ(r): Model aims to deduce from the data and exhibit continuity

across positions. The model is expanded using fundamental functions Bj(r), and the
problem is transformed into a linear inverse problem υ(r) = ∑∞

j=1 mjBj(r).
D. Cost Function
Cost Function Cλ = ∆D(δd, Am) + λ∆M(m, m0): A cost function is defined to balance

the fit to observed data and the size of the model. Regularization plays a role in determining
the trade-off parameter λ.

E. Regularization
Implicit and Explicit Regularization: Regularization is applied implicitly through

choices such as upper limit selection L and basic function types. Explicit regularization
involves parameters like λ and the use of a reference model m0.

F. Inverse Operator
Bayesian Perspective: Global tomography investigations often adopt a Bayesian per-

spective, seeking the most likely solution at the minimum of the cost function.
Newton Approximation: The Newton approximation is a widely recognized algo-

rithm mn+1 = mn +
(

A†
nC−1

d An + λC−1
m

)−1(
A†

nC−1
d δd− λC−1

m mn

)
for minimizing the cost

function, involving the Hessian matrix ∇∇Cn
λ where Cλ(mn) = Cn

λ and gradient vector.
In conclusion, global seismic tomography over the past two decades has made signifi-

cant advancements in mapping three-dimensional elastic wave velocity fields, providing
valuable insights for interdisciplinary discussions in Earth sciences.

7. Optical Coherence Tomography

Tomographic imaging methods, including X-ray computed tomography [81], magnetic
resonance imaging [82], and ultrasound imaging [83], have established extensive utility
within the field of medicine. Each of these techniques measures distinct physical properties
and offers advantages in terms of resolution and penetration depth for specific medical
applications. Optical Coherence Tomography (OCT) enables non-invasive cross-sectional
imaging of internal biological tissue structures [158] by assessing the way light reflects
within these tissues, as described by Huang, Swanson et al. [159]. A block diagram of a
simplified structure of OCT is provided in Figure 7.

Both low-coherence light and ultra-short laser pulses have the capacity to assess the
internal structures of biological systems. When optical signals pass through or bounce off
biological tissues, they contain time-of-flight data, which subsequently provide insight into
the spatial details of tissue microstructures. Time-resolved transmission spectroscopy, for
instance, has been utilized to gauge the absorption and scattering characteristics within tis-
sues, offering a non-invasive means of diagnosing hemoglobin oxygenation in the brain [84].
In addition, femtosecond laser pulses have enabled optical ranging measurements of mi-
crostructures in the eye and skin. Time gating techniques, both coherent and non-coherent,
have been employed to selectively capture directly transmitted light, allowing for the
acquisition of transmission images in optically opaque tissue. Furthermore, low-coherence
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reflectometry has proven useful in various applications, including ranging measurements
in optical components, surface contour mapping in integrated circuits, and measuring the
distance within the retina and other ocular structures.
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internal structures of biological systems. When optical signals pass through or bounce off 

Figure 7. OCT simplified block diagram. The output from the super luminescent diode is coupled
into a single-mode fiber and divided at a 50/50 coupler. The resulting optical signals are directed
into both the sample and the reference arm. The reflections are combined at the sample coupler and
subsequently detected by a photodiode. The detector output is then demodulated to generate the
envelope of the interferometric signal, which is subsequently digitized and stored on a computer.
This process involves a series of longitudinal scans, with the lateral beam position being translated
after each longitudinal scan.

Unlike time-domain techniques, low-coherence reflectometry can be conducted us-
ing continuous-wave light, eliminating the necessity for ultra-short pulse laser sources.
Recent technological progress in low-coherence reflectometry has made it possible to
create compact, modular systems that employ diode light sources and fiber optics, result-
ing in the achievement of micrometer-level spatial resolutions and heightened detection
sensitivities [158,159].

OCT’s ability to provide optical sectioning is comparable to confocal microscopy
systems. However, while the longitudinal resolution in confocal microscopy relies on the
numerical aperture at hand, OCT’s resolution is primarily constrained by the coherence
length of the light source. Consequently, OCT can maintain exceptional depth resolution,
even when the available aperture is limited. This characteristic is especially advantageous
for conducting in vivo assessments of deep tissues, such as in transpupillary imaging of
the posterior eye and endoscopic imaging [159].

OCT, being an optical method, offers a versatile range of optical properties that can
be harnessed to discern tissue structure and composition. Certain tissues with a defined
orientation, such as the elastic lamina of arteries and the retinal nerve fiber layer (RNFL),
exhibit birefringence. In OCT, the analysis of reflected light’s polarization can be employed
to enhance the differentiation of these birefringent tissue structures. Moreover, OCT sys-
tems can function across multiple wavelengths to assess spectral properties. This allows
for the detection of various characteristics, including chromophore content, hemoglobin
oxygenation, hydration levels, or the dimensions of light-scattering structures. Conse-
quently, OCT emerges as a promising technique suitable for both fundamental research
and clinical applications.

Fercher, Hitzenberger et al. [160] present theoretical models that illustrate the en-
hanced sensitivity of Swept Source and Fourier Domain that OCT techniques present in
comparison to the conventional time-domain approach. The alternative method [160]
proposed to achieve coherence gating without using a scanning delay line involves collect-
ing the interferometric signal as a function of optical wavenumber by combining sample
and reference light at a fixed group delay [161]. Two distinct techniques have been de-
veloped based on this spectral discrimination (SD) approach. The first is Fourier domain
OCT [161–166], which utilizes a broadband light source and employs spectral discrimina-
tion with a dispersive spectrometer in the detector arm. The second technique is swept
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source OCT [161,165–168], which encodes time with wavenumber by rapidly tuning a
narrowband light source across a broad optical bandwidth.

Dental OCT applications in oral tissue imaging, caries, periodontal disease, and oral
cancers have been discussed by Hsieh, Ho et al. [169]. The article also compares OCT
with other oral diagnostic methods. Dental OCT enables the qualitative and quantitative
assessment of morphological changes in dental hard and soft tissues in vivo. Early detection
and treatment can enhance both tooth and patient survival rates. Another advantage of
dental OCT is its three-dimensional imaging capability, facilitating more precise and rapid
identification of issues in soft and hard tissues.

In the early days of OCT, the primary focus was on investigating dental soft and
hard tissue morphology. This was partly due to limitations in the size of the OCT systems
and the technology for manufacturing light sources [170–172]. However, in recent years,
with the advancement of components and technology, this powerful tool has found new
applications in advanced diagnostic challenges. Dental OCT is useful for visualizing tissues
like the gingival, periodontal structures, and mucosa. With longer center wavelengths, OCT
can also be applied to imaging bone-related conditions. Looking ahead, the development
of an OCT system with a handheld optical probe and a more streamlined setup holds
promise for telemedicine integration, where it could be utilized with Picture Archiving
and Communication Systems (PACS). This advancement could prove invaluable for home
nursing care plans in our aging society.

The work by Cogliati, Canavesi et al. [173] introduces distortion-free OCT volumetric
imaging via a handheld probe equipped with a dual-axis micro-electro-mechanical system
(MEMS). In the context of this imaging probe, where optics are positioned between the 2D
MEMS scanner and the sample, the work discusses the implementation of pre-shaped open-
loop input signals containing customized nonlinear elements on a dedicated control board.
Unlike the common use of sinusoidal signals for MEMS scanning, this approach enables
real-time distortion-free imaging without the need for post-processing. The MEMS mirror
has been successfully integrated into a compact and lightweight handheld probe, achieving
a significant 12-fold reduction in volume and a 17-fold reduction in weight compared to
a previous dual-mirror galvanometer-based scanner. Experimental results demonstrate
distortion-free imaging without post-processing using a Gabor-domain optical coherence
microscope (GD-OCM) with exceptional 2 µm axial and lateral resolutions, covering a
1× 1 mm2 field of view. This work presents utilizing a MEMS-based scanning device
for the generation of distortion-free images in conjunction with a GD-OCM. A novel
aspect introduced in this paper is the concurrent placement of dual-axis MEMS at the
pupil location.

Creating a detailed block diagram for optical coherence tomography algorithms in-
volves representing the key components and stages in the process. Keep in mind that the
actual implementation can vary based on the specific OCT system and application. Here is
a simplified block diagram for OCT algorithms:

1. Data Acquisition:

Light Source: Generates coherent light.
Interferometer: Splits the light into sample and reference arms.
Sample Arm: Directs light onto the sample.
Reference Arm: Sends light to a reference mirror.
Interference Detection: Combines sample and reference beams; interference is detected.

2. Signal Processing:

Interference Signal Processing: Extracts the interference signal.
Fourier Transform: Converts the interference signal from time to frequency domain.
A-Scan Generation: Produces an A-scan (depth profile).

3. Image Reconstruction:

B-Scan Formation: Combines multiple A-scans to form a B-scan (cross-sectional image).
En-face Image Generation: Constructs en-face images at different depths.
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4. Image Enhancement and Analysis:

Speckle Reduction: Techniques to reduce speckle noise.
Contrast Enhancement: Improves visibility of structures.
Segmentation: Identifies boundaries and structures in the OCT images.
3D Rendering: Creates three-dimensional representations of the imaged volume.

5. Image Display and Analysis:

Visualization: Displays OCT images in real-time.
Quantitative Analysis: Extracts numerical information from images.
Clinical Decision Support: Provides support for medical diagnoses.

6. Advanced Algorithms:

Motion Correction: Compensates for motion artifacts.
Doppler OCT: Measures blood flow within tissues.
Polarization-Sensitive OCT: Provides additional tissue information based on polariza-
tion properties.
Machine Learning: Incorporates machine learning techniques for image analysis and
pattern recognition.

7. Data Storage and Management:

Database: Stores acquired OCT data.
Archiving: Manages storage of large datasets for future reference.

8. Integration with Other Modalities:

Multimodal Imaging: Integrates OCT with other imaging modalities for comprehen-
sive diagnostics.

9. Clinical Applications:

Ophthalmology: Retinal imaging, anterior segment imaging.
Dermatology: Skin imaging.
Cardiology: Cardiovascular imaging.
Endoscopy: Imaging within body cavities.

10. Feedback Loop:

System Calibration: Ensures accuracy and reliability.
User Feedback: Allows for adjustments based on user input.
System Optimization: Continuous improvement based on performance feedback.

8. Conclusions

An extensive reference on tomographic methods, techniques, effective algorithm
implementation, and applications in various physical problems (medical, geophysics, solid
state physics, etc.) is provided in the introduction of the paper.

Furthermore, this comprehensive review provides an insightful analysis of six key
themes in the domain of tomographic reconstruction. By critically assessing and synthesiz-
ing findings from various research papers, we have gained a comprehensive perspective
on the evolution and potential future directions of tomographic imaging algorithms. Ac-
cordingly, optimization of breast tomosynthesis image reconstruction, highlighting the
importance of refining these methods for more accurate diagnostics and improved pa-
tient care, is exposed. The emergence of multi-slice fusion as an innovative approach
promises real-time insights into dynamic physiological processes, pushing the boundaries
of medical diagnosis. Shifting our attention to computational efficiency, we witnessed a
significant transformation in the acceleration of tomographic reconstruction algorithms
using commodity PC graphics hardware. This advancement offers enhanced accessibility
to high-speed reconstruction, making it more affordable and accessible for researchers and
practitioners. In the realm of geophysics, the 3DInvNet introduced a revolutionary deep
learning-based approach to GPR data inversion. This integration of artificial intelligence
with traditional sensing methods opens new possibilities for understanding geological and
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environmental sciences. Exploring Earth sciences, advanced inverse problem solutions in
global seismic tomography are found, providing valuable insights into the Earth’s inte-
rior and expanding our perspectives beyond conventional techniques. Optical coherence
tomography was presented with extensive reference to four different papers to show off
the fine detail captured from biological tissues. Recent topics such as “large-scale image
reconstruction” can be elaborated in references [174,175]. Recently, iterative reconstruction
algorithms with total variation (TV) regularization have been developed to reconstruct CT
images from highly undersampled data in order to reduce the imaging dose [176,177].

In summary, this review paper weaves together a tapestry of advancements in tomo-
graphic imaging techniques. These six interconnected themes, spanning medical imaging,
computational acceleration, and deep learning in geophysics, underscore the versatility
and potential of tomography. The multidimensional examination offers a holistic view of
how tomographic reconstruction can shape the future of various scientific disciplines and
medical diagnostics.
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