
Citation: Li, W.; Yang, X.; Xu, C.;

Yang, Y. An FPT Algorithm for

Directed Co-Graph Edge Deletion.

Algorithms 2024, 17, 69. https://

doi.org/10.3390/a17020069

Academic Editor: Chris Walshaw

Received: 18 December 2023

Revised: 24 January 2024

Accepted: 31 January 2024

Published: 5 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

An FPT Algorithm for Directed Co-Graph Edge Deletion
Wenjun Li 1, Xueying Yang 1, Chao Xu 1 and Yongjie Yang 2,*

1 School of Computer and Communication Engineering, Changsha University of Science and Technology,
Changsha 410083, China; lwjcsust@csust.edu.cn (W.L.); yxycsust@163.com (X.Y.)

2 Department of Economics, Saarland University, 66123 Saarbrücken, Germany
* Correspondence: yyongjiecs@gmail.com

Abstract: In the directed co-graph edge-deletion problem, we are given a directed graph and an
integer k, and the question is whether we can delete, at most, k edges so that the resulting graph
is a directed co-graph. In this paper, we make two minor contributions. Firstly, we show that
the problem is NP-hard. Then, we show that directed co-graphs are fully characterized by eight
forbidden structures, each having, at most, six edges. Based on the symmetry properties and several
refined observations, we develop a branching algorithm with a running time of O(2.733k), which is
significantly more efficient compared to the brute-force algorithm, which has a running time of O(6k).

Keywords: edge deletion; FPT algorithms; directed co-graphs; forbidden structures

1. Introduction

Graph-modification problems consist of determining whether a given graph can be
transformed into a graph belonging to a specific graph class by performing a limited number
of operations on vertices or edges. The operations performed typically include deleting
or adding edges or vertices. For edge-modification problems that are NP-hard, there has
been significant attention in recent years toward studying their parameterized complexity.
Over the past few years, many algorithms for these problems have been reported in the
literature. We refer to ref. [1] for a comprehensive survey on this topic. Among them, the
edge-deletion problem, as an important subset of graph-modification problems, has been
widely studied, but most of the research is dedicated to undirected graphs. At present,
most parameterized algorithms for edge-deletion problems (which can be represented by
forbidden induced subgraphs) are based on bounded search tree methods. The main step
involves enumerating all forbidden subgraphs and applying trivial branches separately
to each forbidden subgraph. This type of algorithm has been perpetually reported in the
literature. In ref. [2], Li et al. improved the algorithm for the property interval edge-deletion
problem and obtained a branch algorithm with a running time of O(3.792k). In ref. [3], Liu
et al. derived more effective branching rules for edge-deletion problems in chain graphs
and trivially perfect graphs based on the connection between forbidden subgraphs and the
structural relationship between forbidden subgraphs and their neighborhoods. They also
effectively improved the branch efficiency by utilizing module decomposition technology,
reducing the cumbersome task of verifying the correctness of branch rules. Our branching
algorithm uses a similar branching strategy.

This paper studies the directed co-graph edge-deletion problem (DCGED), in which
we are given a directed graph (digraph) and an integer k, and the question is whether we
can delete, at most, k edges so that the resulting digraph is a directed co-graph. Directed
co-graphs were first studied in ref. [4], and it was proven later that these graphs are exactly
digraphs without D1, D2, . . . , D8 (see Figure 1) as induced subgraphs [5]. Here, deleting
an edge between two vertices means the deletion of all the arcs between them. To the best
of our knowledge, this problem has not been studied from the perspective of complexity
theory. However, it is worth noting that the problem of determining whether an undirected

Algorithms 2024, 17, 69. https://doi.org/10.3390/a17020069 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17020069
https://doi.org/10.3390/a17020069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a17020069
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17020069?type=check_update&version=1

Algorithms 2024, 17, 69 2 of 13

graph can be transformed into a co-graph by deleting, at most, k edges (CGED) has been
explored. Co-graphs are undirected graphs without paths of four vertices as induced
graphs; thus, they are also named P4-free graphs in the literature. It has long been known
that CGED is NP-hard [6]. As each P4 contains exactly three edges, a naive branching
algorithm solves CGED in time O(3k). After several rounds of improvement, the current
best FPT algorithm for CGED has a running time of O(2.56k) [7]. It is important to mention
that CGED also admits a cubic-vertex kernel [8]. The motivation behind this study is that
many NP-hard problems have been found to be polynomial-time solvable when restricted
to co-graphs, and co-graphs can be recognized in linear time [9].

D1 D2 D3

D4 D5 D6

D7 D8

Figure 1. Forbidden structures for directed co-graphs.

In this paper, we embark on an exploration of the DCGED problem. Our motivation
is analogous: many directed graph problems, which are NP-hard in general, become
polynomial-time solvable when restricted to directed co-graphs [10–12], and directed co-
graphs can be recognized efficiently [5]. For the edge-deletion problem of a graph class,
more effective branch rules can significantly reduce the size of the search tree, thereby
reducing the overall running time of the branch algorithm. Obviously, the size of the
search tree obtained by the branch algorithm of the DCGED problem is dominated by the
largest forbidden subgraph. As the largest forbidden structure in a directed co-graph, D8
contains six edges. Therefore, there exists a straightforward branch-and-bound algorithm
that solves the problem in time O(6k). In this paper, based on some detailed observation
results, we can effectively improve the algorithm. Our branch algorithm adopts two
important ideas: The first one is to consider a vertex that has a structural relationship with
the forbidden subgraph and branch based on its different structural relationships with
the forbidden subgraph. Considering more refined structural relationships will lead to
more effective branching rules. The second point is based on an observation that we find
some structural connections between the forbidden subgraphs. That is, deleting an edge
in a larger forbidden subgraph may result in exporting another forbidden subgraph. At
this point, in order to destroy the newly generated forbidden subgraph, another round of
branching must be executed. Even some forbidden subgraphs may induce a branching
chain. Combining such a branching strategy can significantly improve the branching rules
of the problem. Based on these two ideas and some important properties, we derive an
improved algorithm for the DCGED problem running in time O(2.733k).

2. Our Main Contributions and Technique Highlights

We first show the NP-hardness of DCGED based on the relationship between DCGED
and CGED. Given this, we study its fixed-parameter algorithms. Note that as each of the
forbidden structures to directed co-graphs contains, at most, six edges, a straightforward
branch-and-bound algorithm solves the problem in time O(6k). To the best of our knowl-
edge, no other improved algorithms are publicly known so far. Our second contribution is
a branch-and-bound algorithm for DCGED that runs in time O(2.733k).

Algorithms 2024, 17, 69 3 of 13

Our technique relies on the observation that D1–D3 each contain, at most, two edges
and thus can be exhaustively branched, with the worst branching factor being two. In
addition, we fully considered the structural relationships between different forbidden
subgraphs when removing any edge in each of the D4–D6 that triggers the further removal
of other edges. The bottleneck lies in eliminating the forbidden structures D7 and D8. To
eliminate the induced D7 and D8, we first exert branching rules satisfying the following
condition: the deletion of some edges in an induced D7 or D8 results in a new induced D1,
D2, or D3. Each such branching step deletes multiple edges, and, through a refined
analysis, we can ensure a worst-case branching factor no greater than 2.733. Afterward,
we examine the neighbors of vertices in each induced D7 and D8 and demonstrate that the
vertices in each induced D7 and D8 have precisely the same in-neighbors and the same
out-neighbors. This symmetric property allows us to derive a branching algorithm of the
desired running time.

3. Preliminaries

For an integer i, [i] denotes the set of all positive integers no greater than i.
A directed graph (digraph) is a tuple G = (V, A), where V is the set of vertices of G

and A is the set of arcs of G. An arc from a vertex v to another vertex v′ is denoted by (v, v′).
For a digraph G = (V, A), we define E(G) = {{u, v} : {(u, v), (v, u)} ∩ A ̸= ∅} as the set
of edges in the underlying undirected graph of G. For notational brevity, we denote an
edge between two vertices v and u by vu. For a graph G (be it directed or undirected), we
use V(G) to denote the vertex set of G. Deleting an edge vu from G means deleting all arcs
between v and u. Thus, if we delete an edge vu from G, we obtain a graph with vertex set V
and arc set A \ {(v, u), (u, v)}. For E′ ⊆ E(G), G − E′ denotes the digraph obtained from G
by deleting all edges in E′. A graph G is considered to be F- f ree if it does not contain an
induced subgraph that is isomorphic to F. In this case, F is also referred to as the forbidden
graph for G. In this paper, we use the branch vector (τ1, τ2, . . . , τr) to represent a branching
rule that branches into r instances, where the maximum number of new parameters is
k − τ1, k − τ2, . . . , k − τr. The linear recurrence of the maximum number of leaves for this
branch vector is T(k) ≤ T(k − τ1) + T(k − τ2) + . . . + T(k − τr). The DCGED problem is
formally defined as follows:

DIRECTED CO-GRAPH EDGE DELETION (DCGED)
Input: A directed graph G and an integer k.
Question: ∃E′ ⊆ E(G) so that |E′| ≤ k and G − E′ is a directed co-graph?

4. Our Results

We first show the NP-hardness of DCGED, and we then present our algorithm for DCGED.

Theorem 1. DCGED is NP-hard.

Proof. Let (G, k) be an instance of CGED. Recall that this problem determines whether we
can remove, at most, k edges from G so that the resulting graph contains no paths of three
edges as induced subgraphs. Let G′ be the digraph obtained from G by changing each edge
uv with two arcs (v, u) and (u, v). Among all eight forbidden structures D1–D8, only in D7
are all arcs bidirected; thus, it holds that there are, at most, k edges in G whose removal
results in a co-graph, if and only if removing the corresponding k edges in G′ results in a
directed co-graph. Then, the theorem follows from the NP-hardness of CGED [6].

Our second main contribution is a single exponential time algorithm for the DCGED
problem based on branching. For a collection {E1, E2, . . . , Ej} of subsets of edges, a branch-
ing rule that splits the instance into j subinstances, where the i-th subinstance, i ∈ [j], is
obtained from the original instance by deleting exactly the edges in Ei and decreasing
the parameter k by |Ei|, is denoted by {−E1,−E2, . . . ,−Ej}. Here, each −Ei is called a
branching case of the branching rule. For clarity, we use {−e : e ∈ Ei} to denote the

Algorithms 2024, 17, 69 4 of 13

branching case −Ei; to describe a branching rule, we list all its branching cases, with one in
each line.

Theorem 2. DCGED can be solved in time O(2.733k).

Proof. Let (G, k) be an instance of DCGED. We now discuss branching rules for the prob-
lem. We stress that the branching rules are iteratively applied to the instance in an order
where, when a branching rule delineated below is applied, all rules introduced before are
exhaustively applied.

Clearly, direct branching on the edges of an induced Di, i ∈ [3] has a branching
factor of 2, and direct branching on the edges of an induced Di, i ∈ {4, 5} has a branching
factor of 3. However, after deleting any edge in an induced D4 (D5), at least one new
induced D1, D2, or D3 emerges. Therefore, at least two edges need to be deleted in the
induced D4 (D5). Its branching vector is (2, 2, 2), resulting in a branching rule with a
branching factor of

√
3, which is less than 1.733.

Now, we proceed to the branching rules for D6. It can be observed that in order to
destroy an induced D6 and some induced D1–D5 occurring after the deletion of some edges
in the D6, we need to delete at least three edges. To facilitate our analysis, let the vertices of
an induced D6 be labeled as in Figure 2. The detailed branching cases are as follows.

ab

c d
D6

Figure 2. An induced D6 used in the proof of Theorem 2.

(1) Deletion of the edge ab
After deleting ab, vertices a, d, and b form an induced D3. The deletion of ad or bd
will induce new forbidden structures, which will trigger the deletion of further edges.
In particular, we have the following branching cases, as shown in Figure 3.

ab

c d

ab

c d

ad
ab

c d

ac

ab

c d

cd

ab

c d

bc

ab

c d

bd

ab

c d

cd

ab

c d

bc

Figure 3. An illustration of the branching cases for D6 when the edge ab is deemed to be deleted.

Algorithms 2024, 17, 69 5 of 13

• {−ab,−ad,−ac}
• {−ab,−ad,−cd,−bc}
• {−ab,−bd,−cd}
• {−ab,−bd,−bc}

(2) Deletion of the edge ac
After deleting ac, {a, b, c} induces a D2 and {a, c, d} induces a D3. The deletion of ab is
covered in Case (1). Thus, we need only to consider the deletion of edge bc to destroy
the D2. It follows that the branching cases {−ac,−bc,−ad} and {−ac,−bc,−cd}
cover all potential solutions where the edge ac is deleted, as shown in Figure 4 (in
the first branching case, we obtain an induced D7, meaning that further edges need
to be deleted. However, as this does not improve the worst-case branching factor,
and the induced D7s are handled by branching rules introduced later, to simplify the
presentation, we do not discuss this improvement).

(3) Deletion of the edge ad
After deleting ad, vertices a, c, and d form an induced D3, and since the deletion of ac
is covered in Cases (1) and (2), we consider the deletion of cd. Observe now that b, c,
and d form an induced D2. If we delete bc, then a, b, and c form an induced D2,
implying that at least one of ab and ac needs to be deleted, which is covered in
Cases (1) and (2). Therefore, we do not need to consider the case where bc is deleted.
In other words, in this case, we need only the branching case {−ad,−cd,−bd}.

(4) Deletion of the edge bc
The deletion of bc triggers the deletion of at least one of ab and ac, both of which are
covered by previous cases.

(5) Deletion of the edge bd
After deleting bd, an induced D2 formed by a, b, and d and an induced D3 formed
by b, c, and d occur. To destroy the D2, at least one of ab and ad needs to be deleted,
both of which are covered by previous cases.

(6) Deletion of the edge cd
After deleting the edge cd, the vertices b, c, and d form an induced D2, inviting the fur-
ther deletion of at least one of bc and bd, both of which are covered by previous cases.

To summarize, to destroy D6, we apply the following branching rule, which has
a branching vector of (3, 3, 3, 3, 3, 3, 4) and a corresponding maximum branching factor
of 1.870:

• {−ab,−ad,−ac}
• {−ab,−ad,−cd,−bc}
• {−ab,−bd,−cd}
• {−ab,−bd,−bc}
• {−ac,−bc,−ad}
• {−ac,−bc,−cd}
• {−ad,−cd,−bd}

ab

c d

ab

c d

ad
ab

c d

ab

c d

cd

Figure 4. An illustration of the branching cases for D6 when the edge ac is deemed to be deleted.

Algorithms 2024, 17, 69 6 of 13

Now, we consider the forbidden structures D7 and D8. We first apply branching
rules satisfying the following condition: the deletion of some edges in an induced D7
or D8 results in a new induced Dis, where i ∈ [3]. Specifically, we assume that there is an
induced D7 or D8 denoted by H in G so that the deletion of some edge xy from H results
in an induced Di, where i ∈ [3], denoted by H′. Let v denote the third vertex in H′. It is
clear that v is the middle vertex of H′ (i.e., the one with degree two in the underlying graph
of H′). Let e and e′ be the other two edges in H other than xy. Then, we exert the following
branching rule that has a branching factor 1 +

√
3 < 2.733:

• {−e}
• {−e′}
• {−xy,−vx}
• {−xy,−vy}

We continue our branching for D7 as follows. Let H be an induced D7. If H is a
connected component, we directly delete it from G and decrease k by one. Assume now
that there exists at least one vertex v not in H but adjacent to at least one vertex from H. By
symmetry, and by the assumption that none of the above-discussed branching rules are
applicable, we need to consider the following cases.

Case 1: v has exactly one neighbor in H.

We have two subcases to consider, as shown in Figure 5.

v

a b c d

Case 1.1

v

a b c d

Case 1.2
Figure 5. Two cases in which a vertex v has exactly one neighbor in an induced D7.

In both subcases, there are indeed two induced D7s; hence, deleting only one edge is
insufficient. Specifically, for Case 1.1, we apply the following branching rule:

• {−ab}
• {−bc}
• {−av,−cd}

For Case 1.2, we apply the following branching rule:

• {−cd}
• {−bc}
• {−ab,−vb}

Both branching rules have the same branching vector of (1, 1, 2) and a corresponding
maximum branching factor of 1 +

√
2 < 2.4143.

Case 2: v has exactly two neighbors in H.

We need to consider the four subcases shown in Figure 6.

Algorithms 2024, 17, 69 7 of 13

v

a b c d

Case 2.1

v

a b c d

Case 2.2

v

a b c d

Case 2.3

v

a b c d

Case 2.4

Figure 6. Four cases that need to be considered when a vertex v has exactly two neighbors in an
induced D7.

For Case 2.1, we apply the following branching rule, where the branching vector is
(1, 1, 2), corresponding to the branching factor 1 +

√
2 < 2.4143:

• {−cd}
• {−bc}
• {−ab,−vb}

For Case 2.2, we apply the following branching rule, where the branching vector is
(1, 1, 2, 2), corresponding to the branching factor 1 +

√
3 < 2.733:

• {−ab}
• {−cd}
• {−bc,−vb}
• {−bc,−vc}

For Case 2.3, we apply the following branching rule, where the branching vector is
(1, 2, 2, 2, 2) and the branching factor is 1+

√
17

2 < 2.5616:

• {−cd}
• {−va,−ab}
• {−va,−bc}
• {−vc,−ab}
• {−vc,−bc}

For Case 2.4, we apply the following branching rule, where the branching vector is
(1, 1, 2) and the branching factor is 1 +

√
2 < 2.4143:

• {−ab}
• {−bc}
• {−va,−cd}

Case 3: v has exactly three neighbors in H.

Figure 7 depicts all subcases that we need to consider. For Case 3.1, we apply
the following branching rule, which has a branching vector of (1, 2, 2, 3, 3) and a
corresponding maximum branching factor of 2.2696:

Algorithms 2024, 17, 69 8 of 13

• {−cd}
• {−va,−ab}
• {−va,−bc,−vb}
• {−vc,−bc}
• {−vc,−ab,−vb}

v

a b c d

Case 3.1

v

a b c d

Case 3.2

Figure 7. Two cases that need to be considered when a vertex v has exactly three neighbors in an
induced D7.

For Case 3.2, we apply the following branching rule, which has a branching vector of
(2, 2, 2, 2, 3, 3, 3, 3) and a corresponding maximum branching factor of 2.3830:

• {−cd,−bc}
• {−cd,−vb,−va}
• {−cd,−vb,−ab}
• {−cd,−vd}
• {−bc,−vb,−va}
• {−bc,−vd}
• {−ab,−va}
• {−ab,−vd,−vb}

Case 4: v is adjacent to all vertices of H.

When none of the branching rules introduced above are applicable, if a vertex is
adjacent to one vertex of H, then it is adjacent to all vertices of H, and, moreover,
the subgraph induced by this vertex and all vertices of H is isomorphic to one of
the graphs in Figure 8. Then, by the symmetry between the edges ab and cd, the
branching cases {−ab} and {−bc} of branching factor 2 are sufficient in this case.

v

a b c d

Case 4.1

v

a b c d

Case 4.2

v

a b c d

Case 4.3

Figure 8. Three cases that need to be considered when a vertex v is adjacent to all vertices in an
induced D7.

Finally, we discuss branching rules for D8. Let H be an induced D8. If H is a connected
component of G, we directly delete H from G and decrease k by one. Otherwise, let v be a
vertex not in H but adjacent to some vertices of H. Assuming that none of the branching
rules introduced above are applicable, we need to consider the following cases.

Case 1: v is adjacent to exactly one vertex of H.

All subcases that need to be considered are shown in Figure 9.

Algorithms 2024, 17, 69 9 of 13

v

a b c d

Case 1.1

v

a b c d

Case 1.2

v

a b c d

Case 1.3

v

a b c d

Case 1.4

Figure 9. Four cases that need to be considered when a vertex v is adjacent to exactly one vertex in an
induced D8.

For Case 1.1, we apply the branching rule:

• {−ab}
• {−bc}
• {−va,−cd}

For Case 1.2, we apply the branching rule:

• {−cd}
• {−bc}
• {−vb,−ab}

For Case 1.3, we apply the branching rule:

• {−ab}
• {−bc}
• {−vc,−cd}

For Case 1.4, we apply the branching rule:

• {−cd}
• {−bc}
• {−vd,−ab}

The above four branching rules have the same branching vector of (1, 1, 2) and a
corresponding maximum branching factor of 1 +

√
2 < 2.4143.

Case 2: v has exactly two neighbors from H.

All subcases that need to be considered are shown in Figure 10.

Algorithms 2024, 17, 69 10 of 13

v

a b c d

Case 2.1

v

a b c d

Case 2.2

v

a b c d

Case 2.3

v

a b c d

Case 2.4

Figure 10. Four cases that need to be considered when a vertex v is adjacent to two vertices in an
induced D8.

For Case 2.1, we apply the following branching rule, where the branching vector is
(1, 1, 2) and the corresponding branching factor is 1 +

√
2 < 2.4143:

• {−bc}
• {−cd}
• {−vb,−ab}

For Case 2.2, we apply the following branching rule, where the branching vector is
(1, 2, 2, 2, 2) and the corresponding branching factor is 1+

√
17

2 < 2.5616:

• {−cd}
• {−va,−ab}
• {−va,−bc}
• {−vc,−ab}
• {−vc,−bc}

For Case 2.3, we apply the following branching rule, where the branching vector is
(1, 2, 2, 2, 2) and the corresponding branching factor is 1+

√
17

2 < 2.5616:

• {−ab}
• {−vb,−bc}
• {−vb,−cd}
• {−vd,−bc}
• {−vd,−cd}

For Case 2.4, we apply the following branching rule, where the branching vector is
(1, 1, 2) and the corresponding branching factor is 1 +

√
2 < 2.4143:

• {−ab}
• {−bc}
• {−vc,−cd}

Case 3: v has exactly three neighbors from H.

All subcases that need to be considered are shown in Figure 11.

Algorithms 2024, 17, 69 11 of 13

v

a b c d

Case 3.1

v

a b c d

Case 3.2

v

a b c d

Case 3.3

v

a b c d

Case 4.4

Figure 11. Four cases that need to be considered when a vertex v is adjacent to exactly three vertices
in an induced D8.

For Case 3.1, we apply the following branching rule, which has a branching vector of
(1, 2, 2, 3, 3) and a corresponding maximum branching factor of 2.2696:

• {−cd}
• {−va,−ab}
• {−va,−bc,−vb}
• {−vc,−bc}
• {−vc,−ab,−vb}

For Case 3.2, we apply the following branching rule, which has a branching vector of
(2, 2, 2, 2, 3, 3, 3, 3) and a corresponding maximum branching factor of 2.3830:

• {−bc,−vd}
• {−bc,−vb,−va}
• {−cd,−vd}
• {−cd,−vb,−va}
• {−cd,−bc}
• {−ab,−va}
• {−ab,−vb,−vd}
• {−ab,−vb,−cd}

For Case 3.3, we apply the following branching rule, which has a branching vector of
(2, 2, 2, 2, 3, 3, 3, 3) and a corresponding maximum branching factor of 2.3830:

• {−cd,−vc,−av}
• {−cd,−vc,−ab}
• {−cd,−vd}
• {−vc,−bc,−vd}
• {−va,−bc}
• {−ab,−bc}
• {−ab,−va}
• {−vc,−ab,−vd}

For Case 3.4, we apply the following branching rule, which has a branching vector of
(1, 2, 2, 3, 3) and a corresponding maximum branching factor of 2.2696:

Algorithms 2024, 17, 69 12 of 13

• {−ab}
• {−vb,−bc}
• {−vb,−cd,−vc}
• {−vd,−bc,−vc}
• {−vd,−cd}

Case 4: v is adjacent to all vertices of H.

Let us consider a graph where none of the branching rules introduced so far are
applicable, which is called a reduced graph. It is easy to verify that in a reduced
graph, for any induced D8 and any vertex v adjacent to all vertices of D8, the subgraph
induced by the vertex v and the D8 is isomorphic to one of the graphs in Figure 12.
Two important observations are formulated below.

v

a b c d

v

a b c d

v

a b c d

Figure 12. All possible subgraphs induced by a vertex fully adjacent to an induced D8 in a
reduced graph.

Observation 1. Let G be a reduced graph. Then, all induced D8s in G are pairwise vertex disjoint.

Observation 2. Let G be a reduced graph. Then, deleting any edge from an induced D8 in G
does not yield any new induced forbidden structures (D1–D8).

Let i be the number of all induced D8 in a reduced graph G. By Observation 1, we
need to delete i edges to destroy all the induced D8s in G. By Observation 2, the
resulting graph is a directed co-graph. In light of this fact, when we arrive at a reduced
graph at a branching node, we determine that the given instance is a YES-instance if
there are, at most, k induced D8s in the reduced graph.

Throughout the algorithm, when we reach a branching node whose associated pa-
rameter k is zero, we immediately conclude that the given instance is a YES-instance if
the graph associated with the branching node is a directed co-graph. Then, as the worst
branching factor is 2.733, the branch-and-bound algorithm runs in time O(2.733k).

5. Conclusions

We showed that DCGED is NP-hard and developed a branching algorithm for DCGED
with a running time of O(2.733k), which significantly improves upon the brute-force
algorithm’s running time of O(6k).

An obvious direction for future research is to further improve our algorithm. As
mentioned earlier, when we consider the structural relationship between the forbidden
subgraph and a neighboring vertex, we can effectively reduce the size of the search tree and
obtain more effective branch rules. Therefore, it will be interesting to investigate whether it
is possible to further reduce the size of the search tree and improve the efficiency of branch
algorithms by considering deeper structural relationships between forbidden subgraphs
and their neighboring vertices. Additionally, it would be interesting to examine whether
the problem admits any polynomial kernels. Furthermore, we studied the case in which
destroying the connection between two adjacent vertices incurs one unit cost, regardless
of whether there are one or two arcs between them. It would be intriguing to investigate
the variant in which removing any arc incurs one unit cost. Lastly, we utilized symmetry
properties to further improve the size of the search tree for the DCGED problem, resulting
in a more efficient branch algorithm. We believe that this property can be applied to more
edge-modification problems.

Algorithms 2024, 17, 69 13 of 13

Author Contributions: Conceptualization, C.X. and Y.Y.; methodology, W.L. and X.Y.; validation, C.X.
and Y.Y.; formal analysis, Y.Y. and X.Y.; investigation, W.L.; resources, Y.Y.; writing—original draft
preparation, W.L. and Y.Y.; writing—review and editing, X.Y. and C.X.; supervision, W.L.; project
administration, Y.Y.; funding acquisition, W.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This paper was supported by the National Natural Science Foundation of China (grant
nos. 62372066, 62372394 and 62002032), the Natural Science Foundation of Hunan Province of China
(grant no. 2022JJ30620), and the Postgraduate Scientific Research Innovation Project of Hunan
Province (grant no. CX20220944).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Crespelle, C.; Drange, P.G.; Fomin, F.V.; Golovach, P.A. A Survey of Parameterized Algorithms and the Complexity of Edge

modification. Comput. Sci. Rev. 2023, 48, 100556. [CrossRef]
2. Li, W.; Tang, X.; Yang, Y. An Improved Branching Algorithm for the Proper Interval Edge Deletion Problem. Front. Comput. Sci.

2022, 16, 162401. [CrossRef]
3. Liu, Y.; Wang, J.; You, J.; Chen, J.; Cao, Y. Edge Deletion Problems: Branching Facilitated by Modular Decomposition. Theor.

Comput. Sci. 2015, 573, 63–70. [CrossRef]
4. Béchet, D.; de Groote, P.; Retoré, C. A Complete Axiomatisation for the Inclusion of Series-Parallel Partial Orders. In Proceedings

of the Rewriting Techniques and Applications, 8th International Conference, RTA-97, Sitges, Spain, 2–5 June 1997; Lecture Notes
in Computer Science; Comon, H., Ed.; Springer: Berlin/Heidelberg, Germany, 1997; Volume 1232, pp. 230–240. [CrossRef]

5. Crespelle, C.; Paul, C. Fully Dynamic Recognition Algorithm and Certificate for Directed Cographs. Discret. Appl. Math. 2006,
154, 1722–1741. [CrossRef]

6. El-Mallah, E.; Colbourn, C.J. The Complexity of Some Edge Deletion Problems. IEEE Trans. Circuits Syst. 1988, 35, 354–362.
[CrossRef]

7. Nastos, J.; Gao, Y. Bounded Search Tree Algorithms for Parametrized Cograph Deletion: Efficient Branching Rules by Exploiting
Structures of Special Graph Classes. Discret. Math. Algorithms Appl. 2012, 4, 1250008. [CrossRef]

8. Guillemot, S.; Havet, F.; Paul, C.; Perez, A. On the (Non-)Existence of Polynomial Kernels for Pl-Free Edge Modification Problems.
Algorithmica 2013, 65, 900–926. [CrossRef]

9. Bretscher, A.; Corneil, D.G.; Habib, M.; Paul, C. A Simple Linear Time LexBFS Cograph Recognition Algorithm. SIAM J. Discret.
Math. 2008, 22, 1277–1296. [CrossRef]

10. Schmitz, Y.; Wanke, E. The Directed Metric Dimension of Directed Co-Graphs. arXiv 2023, arXiv:2306.08594.
11. Gurski, F.; Komander, D.; Rehs, C. How to Compute Digraph Width Measures on Directed Co-Graphs. Theor. Comput. Sci. 2021,

855, 161–185. [CrossRef]
12. Gurski, F. Dynamic Programming Algorithms on Directed Cographs. Stat. Optim. Inf. Comput. 2017, 5, 35–44. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.cosrev.2023.100556
http://dx.doi.org/10.1007/s11704-020-0137-3
http://dx.doi.org/10.1016/j.tcs.2015.01.049
http://dx.doi.org/10.1007/3-540-62950-5_74
http://dx.doi.org/10.1016/j.dam.2006.03.005
http://dx.doi.org/10.1109/31.1748
http://dx.doi.org/10.1142/S1793830912500085
http://dx.doi.org/10.1007/s00453-012-9619-5
http://dx.doi.org/10.1137/060664690
http://dx.doi.org/10.1016/j.tcs.2020.11.047
http://dx.doi.org/10.19139/soic.v5i1.260

	Introduction
	Our Main Contributions and Technique Highlights
	Preliminaries
	Our Results
	Conclusions
	References

