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Abstract: With the rising popularity of the Advanced Driver Assistance System (ADAS), there is an
increasing demand for more human-like car-following performance. In this paper, we consider the
role of heterogeneity in car-following behavior within car-following modeling. We incorporate car-
following heterogeneity factors into the model features. We employ the eXtreme Gradient Boosting
(XGBoost) method to build the car-following model. The results show that our model achieves
optimal performance with a mean squared error of 0.002181, surpassing the model that disregards
heterogeneity factors. Furthermore, utilizing model importance analysis, we determined that the
cumulative importance score of heterogeneity factors in the model is 0.7262. The results demonstrate
the significant impact of heterogeneity factors on car-following behavior prediction and highlight the
importance of incorporating heterogeneity factors into car-following models.

Keywords: car-following model; car-following behavior heterogeneity; XGBoost model

1. Introduction

With the rapid development of the Advanced Driver Assistance System (ADAS),
Adaptive Cruise Control (ACC) has been widely adopted. As a result, the demand for more
human-like car-following performance in ACC is growing significantly.

The car-following model has been developed for over 70 years and describes the
longitudinal interactions between the following vehicle and the heading vehicle [1]. These
models have been actively applied to intelligent transportation systems and autonomous
driving [2,3]. Since the earliest car-following model was built by Pipes [4] in 1953, a vast
number of car-following models have been developed. According to the modeling methods,
car-following models were divided into theory-driven models and data-driven models [1].

The theory-driven car-following models use mathematical formulas to express the
driver’s car-following behavior. According to different theories, these models can be
divided into stimulus–response models [5], desired measures models [6], safety distance
or collision avoidance models [7], etc. The advantages of theory-driven car-following
models include the following: (1) clear expression of model formulas, with each parameter
having a defined physical meaning; and (2) low-latency mathematical calculations are
easily computed for the system. However, there are some limitations. Theory-driven
car-following models may not effectively capture the intuitive decision-making process of
human drivers [1]. They also have strong limitations on input variables. The requirement
that each variable must be quantifiable as a clear physical quantity makes it difficult to
consider multiple influencing factors, such as human factors and traffic factors, which are
difficult to quantify and incorporate into the model. Some researchers have attempted to
consider these factors in their models, such as Saifuzzaman [8] and Treiber [9]. However,
this often results in complex model parameters that are difficult to calibrate and reduce the
model’s usability.
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In recent years, with the widespread use of machine learning theory and the availabil-
ity of large-scale trajectory data, data-driven car-following models have made significant
progress. Data-driven car-following models utilize machine learning tools to mine phenom-
ena and underlying patterns within large amounts of car-following behavior data and then
predict car-following behaviors. The feasibility of data-driven car-following models was
initially verified in 1998 when Kehtarnavaz [10] presented a car-following model based
on a feedforward neural network. Subsequently, various machine learning car-following
models have been proposed, such as those based on ensemble learning methods [11] and
artificial neural networks [12,13]. In the past several years, with the penetration of deep
learning models into various fields [14], some data-driven car-following models based
on deep learning theory have emerged. For instance, Wang [15] proposed a data-driven
car-following model based on the gated recurrent unit (GRU) network. This model takes
the velocity, velocity differences, and position differences that were observed over a period
of time as inputs and predicts the driver’s car-following behavior at the next moment. The
result showed that the model achieved high accuracy on the Next-Generation Simulation
Program (NGSIM) dataset. Guo [16] applied the long short-term memory (LSTM) model
to car-following behavior modeling. By extracting statistical variables from the trajectory
data within a special time window (2 s in this literature), the results showed that the model
achieved better performance than the traditional Gipps model. The core idea in these
papers is that by considering long-term sequence data in deep learning models, factors
such as drivers’ experiences and preferences can be automatically embedded into the model
to achieve high-level prediction accuracy. Undoubtedly, the strong imitation ability of deep
learning car-following models for human car-following behavior is one of their advantages.
However, there are also certain limitations to consider. (1) High latency. Choosing to input
long-term sequence trajectory data means that a more complex model structure is required
to process it. Wang [15] used 3 hidden layers with a total of 50 neurons (30-10-10 neuron
structure) to process them, and Guo [16] used seven hidden layers, which takes a longer
processing time. (2) These models lack interpretability because they have no explicit model
expression. These limitations may be unacceptable for vehicle driving systems that require
real-time processing and explainable decision-making. Furthermore, the memory effect is
only one aspect that affects car-following behavior.

Importantly, the heterogeneity of car-following behavior should also be taken into
account in car-following modeling [17]. Heterogeneity stems from differences among
the agent’s traffic flow, which are the heterogeneity of drivers and vehicle characteris-
tics [17]. Heterogeneity refers to differences in behavior and characteristics between drivers
and vehicles. Ossen [17–19] used trajectory data to confirm that heterogeneity in car-
following behavior does exist. The heterogeneity of car-following behavior can be caused
by car-following combinations, driving styles, and traffic flow. Four types of car-following
combinations are divided into (1) Car–Car; (2) Car–Truck; (3) Truck–Truck; and (4) Truck–
Car. The car-following behavior of truck drivers will be more robust than that of car drivers.
It has been observed [19] that the speed of truck drivers is more consistent compared to
that of passenger car drivers. This can be attributed to the larger weight of trucks, which
makes them less agile. Additionally, it is plausible that truck drivers adopt a more assertive
driving style, as they may be able to anticipate future traffic conditions better due to their
heightened visibility and greater driving skills. Zheng [20] found that when the heading
vehicle is large, the time headway (THW), time to collision (TTC), and safety margin (SM)
of the following vehicle are significantly increased. That means the drivers have a lower
level of risk acceptance. According to Zhang [21], drivers are inclined to adjust their driv-
ing behaviors in response to varying traffic conditions. Jiao [22] proposed the concept of
proximity resistance and demonstrated that in congested traffic flow, a higher tolerance for
approach resistance leads to lower following distances being maintained. Traffic flow has a
larger impact on the proximity resistance of truck drivers than that of car drivers.

Table 1 summarizes the heterogeneity factors:
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Table 1. Heterogeneity factors on car-following behavior.

Car-Following
Heterogeneity Factors Conclusion Author

Type of following car
(1) The speed of truck drivers is more constant than that of passenger

car drivers; (2) Truck drivers tend to maintain a larger following
distance from their leading car compared to passenger car drivers.

Ossen [17,19]

Type of leading car Following a larger vehicle results in a greater TTC (time to collision),
THW (time headway), and safety margin for the following vehicle. Zheng [20]

Traffic flow Different traffic states can influence driving styles and THW. Zhang [21] and Wang [23]
Driving style Drivers of passenger cars differ with respect to their driving styles. Ossen [19] and Xie [24]

As we can see, heterogeneous factors will affect the car-following behavior of human
drivers. By using a large amount of trajectory data, Ossen et al. [17,19–21,24]. confirmed
the impact of different factors on car-following behavior, such as vehicle type, preceding
vehicle type, and traffic flow. Research shows these factors can have a significant impact on
drivers’ behavioral habits or decision-making. For example, the behavior of truck drivers in
car-following scenarios tends to exhibit more robust patterns compared to that of passenger
car drivers. The drivers tend to adjust their driving behaviors in response to varying traffic
conditions. Ossen confirmed that how to comprehensively consider these factors is an
important research topic in areas such as traffic modeling and autonomous driving. These
factors have an important impact on the car-following performance of human drivers, so it
is very beneficial to consider these factors when building an autonomous driving system
that is closer to human behavior.

In this research area, some researchers have made contributions. Ahmed’s model [25]
takes into account different traffic flows. Its equation is as follows:

an(t) = αg Vn(t − φτn)
βg

Xn(t − φτn)
γg kn(t − φτn)

δgVn(t − φτn)
ρg + ε

g
n(t) (1)

where kn(t − φτn) represents the traffic flow by calculating the traffic density of following
vehicle within its view (a visibility distance of 100 m was used) at time (t − φτn), g ∈
[acceleration, deceleration], Vn(t − φτn) is the velocity of the following vehicle at time (t −
φτn), Xn(t− φτn) is the spacing from the heading vehicle. Where φ ∈ [0, 1] is the sensitivity
lag parameter and α, β, γ, δ, ρ are the constant parameters.

Wang [26] proposed the model, which considered driving habits and is shown in
Equation (2):

an = α(∆Xn/
∼

∆Xn) + β(∆Vn) + λ + ε (2)

where λ represents the influence of the driving habit and
∼

∆Xn is the desired distance of
the driver. Other variables are similar to Equation (1). However, the model lacked valida-
tion using real-world data. As aforementioned, data-driven models possess a powerful
capability to replicate human behavior. They encode human preferences implicitly within
the model. For example, Wu [27] combined numerous deep neural network structures,
such as GRU and CNN, to learn the behavior of human drivers. Human factors such
as drivers’ preferences, memory effects, prediction, and attention mechanisms could be
automatically addressed by the machine learning model. Wang [15] and Guo [16] also
support this point. Aghabayk [28] applied the local linear model tree (LOLIMOT) model to
build a car-following model and incorporated the vehicle type into the model. The model
proposed by Aghabayk explicitly considers the different scenarios when the preceding
vehicle is a truck or a passenger car, while implicitly taking into account the human driver’s
preferences and habits. The main statements of these models (including their type, equation,
heterogeneity factors embedded, strength, and weakness) are also summarized in Table 2.
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Table 2. Summary of the car-following models considered heterogeneity factors.

Model Type Model Equation/Category Heterogeneity
Factors Strength Weakness Author

Theory-driven
model

an(t) =

αg Vn(t−φτn)
βg

Xn(t−φτn)
γg kn(t − φτn)

δgVn(t − φτn)
ρg + ε

g
n(t)

Traffic flow Explicit model
expression;

Low latency

Parameter calibration
is challenging

Ahmed
[25]

Theory-driven
model an = α(∆Xn/

∼
∆Xn) + β(∆Vn) + λ + ε Driving habit Wang [26]

Data-driven
model

(deep-learning)
multilayer GRUs Drivers’

preferences
Strong learning

ability to
imitate human

behavior

Inexplicit model
expression;

Resource-intensive
requirements;

Low interpretability

Wu [27]

Data-driven
model

(deep-learning)
GRU Drivers’

preferences Wang [15]

Data-driven
model

(deep-learning)
LSTM Drivers’

preferences Guo [16]

Data-driven
model (ensemble

learning)
local linear model tree (LOLIMOT) model

Type of
following

vehicle

Strong learning
ability to

imitate human
behavior;

Lightweight;
Interpretable

Only handle local
linear relationships

Aghabayk
[28]

As shown in Table 2, these studies have taken into account heterogeneity factors in
modeling the following behavior, but there are still research gaps in human-likeness and
model methods.

1. Current car-following models are too limited in consideration of human-likeness. In
theory-driven models, only a few factors are typically included due to the increased
complexity that arises from incorporating additional parameters. Furthermore, quan-
tifying certain factors into physically meaningful parameters can be challenging. In
data-driven models, the current focus of research primarily revolves around using
deep learning models to directly emulate human behavior, often overlooking the
consideration of heterogeneity factors. As mentioned before, research on behavioral
heterogeneity factors has been extensively analyzed to determine whether they have
an impact on car-following behavior. However, these factors are not fully considered
in the construction of car-following models in the field of autonomous driving.

Thus, in order to achieve a more human-like effect, we add these factors to the car-
following model so that the model can learn this knowledge through machine learning and
make human-like responses.

2. Current car-following models mainly use theory-driven models and deep learning
models; the choice of models can be expanded. Incorporating heterogeneity factors
into theory-driven models often leads to more parameters, making model calibration
challenging. Deep learning models have good performance, but they have complex
structures, resource-intensive requirements, and low interpretability. Ensemble learn-
ing models provide a promising avenue for further exploration. It can imitate human
behavior through machine learning, and it can also embed other heterogeneous fac-
tors artificially. Crucially, the ensemble learning model has strong learning ability
and is lightweight, which are two of the key factors applied in actual autonomous
driving systems.

Therefore, in order to increase the practicality of data-driven car-following models
in actual autonomous driving systems, we explore more ensemble learning decision-tree
models for car-following modeling.

In summary, to bridge the research gaps in these two aspects, the purpose of our
research is to try to embed behavioral heterogeneity factors into the car-following model
to achieve more human-like car-following performance. At the same time, we apply
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the ensemble learning method to expand the breadth of practical application of the car-
following model in autonomous driving.

In this paper, we first incorporate heterogeneity factors into the car-following model.
Secondly, we use an interpretable machine learning model to build a car-following model
based on the HighD (Highway Driving Dataset for Autonomous Driving) dataset. Finally,
we conduct a comparison between car-following models that consider heterogeneity and
those that do not and quantify the impact of heterogeneity factors on car-following behavior.

Our contributions are highlighted as follows:

(1) Incorporating the heterogeneity factors of car-following behavior into the car-following
model to achieve more human-like car-following performance.

(2) Apply decision tree-based ensemble learning algorithms for the data-driven car-
following model, which can partially overcome the issues of deep learning models’
lack of interpretability and high latency.

(3) This paper quantifies the impact of heterogeneity factors on car-following behavior.
That helps researchers better understand the effect of heterogeneity in car-following
modeling.

The remainder of this paper is organized as follows: In Section 2, we introduce the
decision tree-based ensemble learning method that will be used in this paper. Then, three
different encoding methods are introduced for the heterogeneity factor. Section 3 analyzes
the heterogeneity of car-following behavior in the HighD dataset and applies the proposed
model to predict the car-following behavior of drivers. We conclude this paper with a
discussion in Section 4.

2. Materials and Methodology
2.1. Data and Variables
2.1.1. Data Description

To validate our research, we sought out the widely recognized HighD dataset, which
is an open-source dataset widely used in the field. The dataset has been extensively utilized
for various studies, including car-following [29,30], lane-changing [31], and trajectory
prediction [32]. One of the key advantages of the HighD dataset is its high-quality data
and diverse range of scenarios. The HighD dataset comprises post-processed trajectories
of 110,000 cars and trucks extracted from drone video recordings captured during the
years 2017 and 2018 on German highways. The recordings were conducted at six different
locations (refer to Figure 1) along a road segment of approximately 420 m (refer to Figure 2).
Each vehicle in the dataset has a median visibility duration of 13.6 s.
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The dataset provides valuable insights through two primary data files per recording.
The first file contains statistical information on the driving behavior and attributes of all
vehicles present during the recording period. This includes vehicle identifiers (which
remain consistent within the data file), vehicle dimensions, types, and lane positions, as
well as maximum acceleration and inter-vehicle distances during operation. Please refer to
Table 3 for key indicators. The second data file contains detailed motion information for
each vehicle, including speed, acceleration, distance to the preceding vehicle, and preceding
vehicle identifiers, recorded at each frame. This information enables a comprehensive
understanding of the real-time driving states of vehicles. Please refer to Table 3 for a
detailed breakdown.

Table 3. Key features of the HighD dataset.

Name Description Unit

ID The ID of the track. The IDs are assigned in ascending order. [-]

Width
The width of the post-processed bounding box of the vehicle. This

corresponds to
the length of the vehicle.

[m]

Height
The height of the post-processed bounding box of the vehicle. This

corresponds to
the width of the vehicle.

[m]

minXVelocity Minimal velocity in the driving direction. [m/s]

minDHW The minimal distance headway (minDHW). This value is set to −1 if
no preceding vehicle exists. [m]

Class The vehicle class of the tracked vehicle (car or truck). [-]

Frame The current frame. [-]
ID The ID of the track. The IDs are assigned in ascending order. [-]

precedingID The ID of the preceding vehicle in the same lane. This value is set to 0
if no preceding vehicle exists. [-]

xVelocity The longitudinal velocity is in the image coordinate system. [m/s]
THW The time headway. This value is set to 0 if no preceding vehicle exists. [m]

In summary, the HighD dataset offers a comprehensive and reliable resource for
studying highly automated driving systems. The HighD dataset’s rich features and diverse
scenarios make it a valuable asset for our research.

2.1.2. Data Pre-Processing

The aim of this paper is to enhance the human-likeness of the car-following model
by incorporating the behavioral heterogeneity factors mentioned earlier. To reduce the
influence of other interference factors, such as the external environment and differences
in locations, it is better to choose one recording to analyze. In this paper, the 46-th track
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recording of location 1 has been selected as it exhibits the highest proportion of trucks and
the total number of vehicles within the recordings.

Subsequently, in order to extract car-following state data for our experiments, we
performed data preprocessing. This involved a two-step approach:

Firstly, we identified vehicles that were actively engaged in car-following. This was
achieved by systematically examining the vehicle IDs in the HighD dataset files to identify
cases where a vehicle had a preceding vehicle and the car-following duration was at least
15 frames. This filtering criterion was employed to exclude instances where the vehicle was
potentially involved in lane-changing maneuvers or exiting the recording area.

Secondly, trajectory data were further refined to ensure that drivers were in a steady
car-following state. To achieve this, we applied the following filtering constraints:

• Exclude distance headways larger than 150 m to guarantee the influence of the heading
vehicle.

• Exclude the situation of the dangerous car following the scenario where the relative
distance is less than 50 m and the relative speed is greater than 3 m/s.

By employing these stringent filtering criteria, we obtained a refined subset of data
that accurately captured steady car-following states. This subset serves as the foundation
for our experiments and enables us to conduct a comprehensive analysis of car-following
behaviors.

In total, the dataset includes 1103 trajectories (207,417 samples extracted), as shown in
Table 4.

Table 4. Overview of the dataset.

Type High Flow 1 Middle Flow Low Flow

Car–Car 2 55,329 67,853 6123
Car–Truck 1768 6064 5086
Truck–Car 1565 9579 11,293

Truck–Truck 781 22,683 19,293
1 High flow, middle flow, and low flow denote the different traffic conditions. 2 Car–Car denotes that the following
vehicle is a car, the heading vehicle is a car, and others are similar.

In our experiment, 80% of the data were used for training; the rest were used for tests.

2.1.3. Input and Output Variables

This paper includes two types of input variables, one of which is trajectory variables.
These variables have been demonstrated to play a significant role in modeling car-following
behavior [33]. That is listed in the following Table 5.

Table 5. Input variables based on trajectory data.

Symbols Meaning Unit

vego The longitude velocity of the following vehicle m/s
vrel The relative velocity between FV and HV m/s
d The distance between FV and HV m

thw Time headway s
TTCi The reciprocal of TTC (time to collision) s−1

Another type of input variable is heterogeneity. Past researchers have stated that
traffic flow and car-following combinations will affect car-following behavior [19,24,34–36].
In this paper, different traffic flows are represented by the mean velocity of the lane. Using
80 km/h and 100 km/h as the threshold, the traffic flow is divided into three situations:
high flow, medium flow, and low flow. There are four types of car-following combinations:
Car–Car, Car–Truck, Truck–Car, and Truck–Truck. When using categorical variables as
input features in predictive models, it is necessary to encode them into numerical values.
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The appropriate encoding method will be an important consideration in the development
of the model. This is discussed in Section 2.2.

The output variable is the longitudinal velocity after Ts. The model expression is
as follows:

ŷ(t) = f (
→
X
(t)
),

→
X
(t)

= [v(t)ego, v(t)rel , d(t), thw(t), TTCi(t), ht, hc],
ŷ(t) = v̂(t+T)

ego ,

(3)

where ht denotes the categorical variable of traffic flow, ht denotes the categorical variable
of car-following combination, and f (·) denotes the implicit function.

2.2. Methodology

In this section, we describe the methodology employed in our study. Firstly, we
provide an overview of the experimental workflow, outlining the steps undertaken in our
study. Then, we begin by introducing the principles of ensemble learning models, followed
by detailed explanations of the two models used in this study: random forest (RF) and
XGBoost (XGB). Subsequently, we discussed the encoding methods employed for handling
categorical variables. Through this comprehensive methodology, we aim to elucidate the
approach taken to develop and evaluate our car-following model.

2.2.1. The Design of the Experimental Process

The Design of the Experimental Process is as follows:
Step 1. Car-Following Dataset Creation: The car-following dataset is created by

collecting data and applying filtering techniques to ensure data quality. Steady-state car-
following data are selected to capture stable behavior patterns. Additionally, input and
output features are carefully chosen to represent relevant aspects of car-following behavior.
Please refer to Section 2.1 for more details.

Step 2. Model Selection: the appropriate model is chosen based on the specific
requirements of the research.

Step 3. Encoding Method Selection: For heterogeneity variable embedding, we will
compare three different encoding methods to select the best one.

Step 4. Model Training and Fine-Tuning: After determining the optimal encoding
method, we will train the final model and tune the parameters using grid research.

Step 5. Model Evaluation: This step involves evaluating the trained model to assess
its effectiveness in capturing and predicting car-following behavior accurately. For details
about model metrics, please refer to Section 2.2.6.

Step 6. Ablation Experiment: An ablation experiment is performed to analyze the
impact of removing heterogeneity variables from the model, providing insights into the
individual contributions of heterogeneity variables to the overall model performance.

The flow chart of the experiment is shown in Figure 3.

2.2.2. Ensemble Learning

We chose the eXtreme Gradient Boosting (XGBoost) algorithm and the random forest
(RF) algorithm as the experimental models in this paper to determine the final model. They
are all types of ensemble learning and tree-based models.

The ensemble learning method gives them excellent performance in capturing compli-
cated patterns within data. Moreover, the special structure of the tree-based model allows
them to explain the model’s decision-making clearly, thus enhancing its interpretability. As
mentioned in Section 1, current data-driven car-following models based on deep learning
suffer from a lack of interpretability and efficiency, which makes it difficult to apply them
in real-world scenarios. The theory-driven car-following models are limited in flexibility
and accuracy, and their mathematical formula is too abstract to explain the human decision-
making process. Therefore, we applied XGBoost and RF models that can strike a balance
between interpretability, accuracy, and latency to address this issue.
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Ensemble learning is one of many machine learning methods. The core idea is to
integrate the results of all basic learners. A major question needs to be answered in ensemble
methods: How to combine basic learners to yield the final model? Accordingly, two types
of ensemble methods are identified: the Bagging method and the Boosting method. The RF
model and the XGBoost model are representatives of them, respectively.
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2.2.3. Random Forest Method

Random Forest is a bagging model that trains multiple decision trees in parallel. The
final output is determined by aggregating the predictions of individual trees, typically
using majority voting [37]. In contrast, the XGBoost algorithm creates an ensemble of
decision trees sequentially. Each subsequent tree is trained to correct the errors made by the
previous ones, all of which work to improve each other and determine the final output [38].
The following is a further introduction to them.

Random forest (RF) was developed by Breiman and Cutler in 2001 [37]. RF has been
actively applied in many areas due to its excellent performance [39]. “Random” means
the randomness of sampling from the training dataset and the randomness of selecting
features for the basic regression tree. RF model training can be highly parallelized, which
is advantageous for the speed of large-sample training in the area of big data. The main
process in the RF model is as follows:
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For the input dataset D = {(x1, y1), (x2, y2), . . . , (xm, ym)}, the RF model uses the
Bagging sampling method to obtain n subsample sets, which each have m samples. With
the subsample set Di, (i = 1, 2, . . . , n), k features were selected randomly from all features
for training the basic learner. Finally, average the results of each basic learner as the
prediction result Ŷ.

Three key parameters affect RF model performance: the number of maximum features
selected k, the number of regression trees, n and the maximum tree depth of each regression
tree d. The larger k is, the better the performance of base learners is, but the independence
between base learners will be reduced. Generally, increasing the number of regression
trees n can improve the accuracy of the model, but at the cost of increased computational
complexity and training time. The depth of each tree d in a random forest affects its
ability to generalize and avoid overfitting. The probability of overfitting increases with
larger values of d. These parameters will be optimized in this paper by the grid search
method [40].

2.2.4. XGBoost Method

XGBoost was developed by Chen and Guestrin [38]. It represented an advanced and
scalable implementation of gradient-boosting machines. The fundamental concept is that
each new model is designed to fit the prediction residual of the previous model. The
predicted result is obtained by aggregating the results of each model, as shown in the
following equation:

ŷi =
K

∑
k=1

fk(xi), (4)

where i = 1, 2, . . ., n. n is the number of samples and fk is the k-th regression tree function.
The objective function is composed of a loss function L(yi, ŷi) and a regularization

item Ω( fi), as shown in Equation (5):

fobj =
n

∑
i=1

L(yi, ŷi) +
K

∑
k=1

Ω( fk), (5)

As mentioned above, in time t, the objective function can be expressed as in Equation (6):

f (t)obj =
n

∑
i=1

L(yi, ŷ(t−1)
i + ft(xi)) + Ω( ft) + C, (6)

It seems complicated except for the case of the loss function; XGBoost takes the Taylor
expansion to approximate this, as shown in Equation (7):

f (t)obj ≈
n

∑
i=1

[L(yi, ŷ(t−1)
i ) + gi ft(xi) +

1
2

hi ft
2(xi)] + Ω( ft) + C, (7)

where the gi and hi are as follows:

gi =

∂L
(

y, ft−1

(→
X
))

∂ ft−1

(→
X
) , hi =

∂2L
(

y, ft−1

(→
X
))

∂ f 2
t−1

(→
X
) (8)

The prediction result in t time can be expressed as:

ft(x) = wq(x), w ∈ RT , q : Rd → {1, 2, . . . , T} (9)

where q is the structure of the tree and w is the leaf weight of the tree.
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Regularization item Ω( fi) represents the complexity of the model to avoid model
overfitting, as shown in Equation (10):

Ω( ft) = γT +
1
2

λ ∥ w ∥2, (10)

where T are several leaf nodes, w is the sum of the leaf node scores in trees, and γ, λ are
adjusted parameters.

Thus, the objective function can be expressed as follows:

f (t)obj =
T

∑
j=1

[(∑i∈Ij
gi)wj +

1
2
(∑i∈Ij

hi + λ)w2
j ] + γT, (11)

where Ij represents the set of leaf samples in the j-th tree.
Then, we define the Gj = ∑i∈Ij

gi, Hj = ∑i∈Ij
hi objective function that can be simpli-

fied as follows:

fobj = −1
2

T

∑
j=1

Gj

HJ + λ
+ γT (12)

Multiple parameters in XGBoost can be fine-tuned to improve the performance of
the model. In this paper, we selected three key parameters in XGBoost for optimization:
learning rate, the maximum tree depth of each regression tree, and the number of regression
trees. The learning rate is an important parameter in XGBoost that controls the contribution
of each weak learner to the final prediction. Specifically, the learning rate determines the
scaling factor applied to the prediction of each weak learner, with smaller values leading to
a more conservative model that may require more weak learners to achieve high accuracy
and larger values leading to a more aggressive model that may be prone to overfitting and
instability. The rest of the two parameters are similar to those in the RF model.

2.2.5. Encoding Methods

Common encoding methods include label encoding, one-hot encoding, and target
encoding (also known as mean encoding) [41]. Label encoding maps each category to
a unique integer, thereby converting categorical variables to numerical variables. This
method is simple and easy to implement, but it assumes an inherent order or ranking
between categories, which may not always exist. One-hot encoding creates a binary vector
for each category, with a value of 1 for the category and 0 for all others. This approach can
handle nominal variables with no inherent order but can lead to the curse of dimensionality
and may not work well with high-cardinality variables. Target encoding replaces each
category with the mean of the target variable for that category, effectively encoding the
relationship between the categorical variable and the target. While it can capture non-linear
relationships and reduce dimensionality, it is vulnerable to overfitting and may introduce
bias if the target variable is correlated with the categorical variable. Therefore, we will use
these three encoding methods in the experimental stage to compare the model effects to
obtain the most suitable encoding method.

2.2.6. Evaluation Metrics

In this study, we utilize several model evaluation metrics to assess our approach. The
metrics employed include Mean Squared Error (MSE), Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and R-squared (R2). These metrics provide comprehensive
insights into the performance of the model. The model formulas are listed below:

The MSE is as follows:

MSE =
1
n

n

∑
i=1

(ŷi − yi)
2 (13)
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The RMSE is as follows:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2 (14)

The MAE is as follows:

MAE =
1
n

n

∑
i=1

|ŷi − yi| (15)

The R2 is as follows:

R2 = 1 −

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − y)2

(16)

3. Application of the Proposed Methodology
3.1. Heterogeneity in Car-Following Behavior Analysis

In this section, we try to understand the heterogeneity of drivers’ car-following behav-
ior through the distribution of some variables with different car-following combinations
and different traffic flows.

As shown in Figure 4, the left picture shows the overall distribution, and the right
shows the distribution under different car-following combinations. It can be found that
the speed of the Car–Truck, Truck–Truck, and Truck–Car combinations is concentrated
around 25 m/s, while the speed of the Car–Car combination is more widely distributed.
From the perspective of distribution, the second peak of the overall distribution is mainly
caused by Car–Car combinations, and other types of car-following combinations are mainly
concentrated on the first peak.
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Figure 4. The distribution of the following vehicle velocity.

The distribution of the time headway is shown in Figure 5. It can be found that the
tail of the overall distribution is mainly occupied by the other three combinations. The
THW of the Car–Car combination is mainly distributed between 1–3 s. THW is an indicator
used to measure the driver’s perception of risk, which represents how long it will take for
the following vehicle to reach the heading vehicle at the current speed. It illustrated that
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the other three types have a stronger sense of risk and tend to maintain lower speeds and
higher THW to guarantee safety.
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With different traffic flows, the distribution of the following vehicle velocity is shown
in Figure 6. The mixture distribution of velocity almost divided the three normal distribu-
tions with different traffic flows.
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Figure 6. The distribution of the following vehicle’s velocity.

It is not difficult to find that, after distinguishing car-following combinations and traffic
flows, the heterogeneity of car-following behavior has been preliminarily explained. The
driver’s behavioral decision (referring to the velocity of ego vehicles in the car-following
scenario) is affected by the type of heading vehicles and ego vehicles, as well as the traffic
density of the road where they are driving.

In Sections 3.3 and 3.4, we will encode these heterogeneity factors into car-following
models to obtain better car-following prediction performance and further quantify their
impact on car-following behavior through the model results.
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3.2. Suitable Encoder for Heterogeneity Variables

As shown in Table 6, it can be found that the one-hot method achieves the best results
on our models. Therefore, the one-hot method is used for subsequent encoding.

Table 6. RF results for different encoder methods and XGBoost results for different encoder methods.

RF Result Label Encoder One-Hot Encoder Target Encoder

MSE 0.003889 0.003415 0.003937
RMSE 0.062341 0.058439 0.062747
MAE 0.022645 0.022282 0.022700

R2 0.999870 0.999886 0.999868

XGB Result Label Encoder One-Hot Encoder Target Encoder

MSE 0.002177 0.002160 0.002178
RMSE 0.046662 0.046471 0.046667
MAE 0.017940 0.017828 0.017942

R2 0.999927 0.999928 0.999927

3.3. The Model Experiments Result

We use the grid search method for parameter optimization. The parameter setting
range is as Table 7.

Table 7. The parameter setting range in the RF model and XGBoost model.

Parameter RF Model XGBoost Model

n_estimators [100, 200, 300, 400, 500] [200, 250, 300]
max_depth [10, 15, 20, 25, 30, 35, 40, 45, 50] [10, 20, 30, 40, 50]

max_features [3, 4, 5] \
learning_rate \ [0.1, 0.01, 0.001]

The obtained optimal parameter combinations are shown in Table 8.

Table 8. The optimal parameter combinations.

Parameter RF Model XGBoost Model

n_estimators 500 300
max_depth 35 40

max_features 4 \
learning_rate \ 0.1

The results obtained with the optimal parameters on the test dataset are presented
in Table 9 below. In addition, we have incorporated two widely used machine learning
models, namely support vector regression (SVR) [42] and linear regression (LR) [43], to
further compare and evaluate the performance of our proposed model in this study.

Table 9. The model result comparison.

Model Result RF Model XGBoost Model SVR Model LR Model IDM Model * S3 Model *

MSE 0.003276 0.002181 0.054726 0.056757 0.009 0.006
RMSE 0.057236 0.046696 0.233935 0.238237 \ \
MAE 0.022197 0.017466 0.148378 0.155900 \ \

R2 0.999890 0.999927 0.998169 0.998101 \ \
* IDM model and S3 model based on HighD dataset [33].

The XGBoost model outperforms other models in all metrics, making it the final model
selected for our study. Furthermore, the performance of the XGBoost model (MSE = 0.002)
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surpasses that of the IDM model (MSE = 0.009) and S3 model (MSE = 0.006) based on
the HighD dataset [33]. These findings highlight the effectiveness of the XGBoost model
in predicting car-following behavior and demonstrate its superiority over other models
reported in the literature. More details are shown in Table 9.

Then, we utilized feature importance results in the XGBoost model to further under-
stand the impact of heterogeneity factors on car-following behavior. In the XGBoost model,
the cover type feature importance measures the number of times a feature is used as a split
point in a tree model multiplied by the average coverage value (cover) of that feature across
all split points. The coverage value indicates the number of samples covered by the feature
when it is selected as a split point. The importance of the cover-type features reflects the
contribution of a feature to the model, that is, the degree of influence of the feature on the
sample points. The larger the coverage value, the more times the feature is selected as a
split point in the tree model and the more sample points it covers in each split, indicating a
greater contribution of the feature to the model. Figure 7 displays the important feature
results for our model.
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Features are sorted in descending order according to their importance scores, and the
top three features are all related to heterogeneity factors (middle-flow: 0.3388; Car–Car:
0.2672; and Truck–Truck: 0.1202). This suggests that different traffic flows and car-following
combinations play a significant role in decision tree node splitting. Through this approach,
we were able to quantify the impact of heterogeneity factors on car-following behavior.

3.4. The Ablation Experiments Result

Many researchers have conducted extensive studies through ablation experiments to
demonstrate the importance of features. For instance, Wang [44] conducted ablation experi-
ments in their study, gradually eliminating different features and observing their impact on
the results, thus validating the critical role of specific features in the model. Therefore, we
chose ablation experiments to further investigate the importance of heterogeneity factors
in the car-following model. We eliminate heterogeneity input features, i.e., traffic flows
and car-following combinations (this model is called the comparison model) and observe
their impact on the model performance. The obtained results show that the MSE of the
comparison model increases by 57.39% compared to the best XGBoost model in this paper.
The detailed results are outlined in Table 10.
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Table 10. The ablation experiments result.

Model Result XGBoost Model Comparison Model *

MSE 0.002181 0.003530
RMSE 0.046696 0.059411
MAE 0.017466 0.023146

R2 0.999927 0.999881
* A comparison model is one without heterogeneity factors.

Table 9 compares the results of the model with the test dataset. In order to better
demonstrate the performance of the model in this paper in different car-following scenarios,
we randomly selected some vehicles and compared the results of the models under different
traffic flows and different car-following combinations. See Figures 8–11.

The comparison of these trajectories illustrates that the proposed model in this paper
performs better than the comparison model. The proposed model provides more precise
and smoother predictions of drivers’ car-following behavior. In contrast, the comparison
model only achieved a certain level of effectiveness in the Car–Car scenario, while the
proposed model achieved good prediction results under different conditions.
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4. Conclusions and Discussion

In summary, this paper demonstrates the superiority of incorporating heterogeneity
factors for the car-following model. Firstly, the findings reveal distinct car-following
behaviors under different combinations of vehicles and traffic flows. The drivers in the Car–
Truck, Truck–Car, and Truck–Truck combinations exhibit a higher level of risk perception,
characterized by longer time headway (THW) and lower speeds. These results align with
previous research on heterogeneity analysis. Secondly, experiments were conducted to
identify the optimal encoding method for incorporating heterogeneity factors, with one-
hot encoding found to be the most suitable approach. In the end, the proposed model
(MSE = 0.002181, R2 = 0.999927), incorporating heterogeneity factors, outperformed the
model that did not consider these factors (MSE = 0.003530, R2 = 0.999881) as well as a
theory-driven car-following model (MSE = 0.006). The influence of heterogeneity factors on
car-following behavior was quantified through feature importance scores, with middle-flow,
Car–Car, and Truck–Truck factors ranking highest. This study provides valuable insights
into the intersection of heterogeneity and car-following modeling. It is also a meaningful
attempt at the model chosen in this paper. Currently, data-driven models based on deep
learning are mainstream, but they are lacking in latency and interpretability. Traditional
theory-driven models cannot easily incorporate other variables, like machine learning
models. This paper chooses the ensemble learning method based on the decision tree. The
experimental results prove that the model in this paper can achieve high accuracy and
has a certain degree of interpretability, and there is no doubt that the delay is lower than
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the deep learning model. This paper provides a basis for the application of the ensemble
learning method based on a decision-tree model in car-following model research.

Moving forward, there are several avenues for future research. Due to limitations
in the dataset, this study focused solely on car-following models in highway scenarios.
However, urban scenarios require consideration of additional factors, such as vehicle-to-
vehicle interaction and environmental information. Thus, future research could explore the
development of car-following models that incorporate heterogeneity factors, specifically
in urban scenes. This would contribute to a more comprehensive understanding of car-
following behavior and its implications in diverse driving environments.
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