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Abstract: In this work, we consider the problem of shape-based time-series clustering with the widely
used Dynamic Time Warping (DTW) distance. We present a novel two-stage framework based on
Sparse Gaussian Modeling. In the first stage, we apply Sparse Gaussian Process Regression and obtain
a sparse representation of each time series in the dataset with a logarithmic (in the original length
T) number of inducing data points. In the second stage, we apply k-means with DTW Barycentric
Averaging (DBA) to the sparsified dataset using a generalization of DTW, which accounts for the fact
that each inducing point serves as a representative of many original data points. The asymptotic
running time of our Sparse Time-Series Clustering framework is Ω(T2/ log2 T) times faster than the
running time of applying k-means to the original dataset because sparsification reduces the running
time of DTW from Θ(T2) to Θ(log2 T). Moreover, sparsification tends to smoothen outliers and
particularly noisy parts of the original time series. We conduct an extensive experimental evaluation
using datasets from the UCR Time-Series Classification Archive, showing that the quality of clustering
computed by our Sparse Time-Series Clustering framework is comparable to the clustering computed
by the standard k-means algorithm.

Keywords: time series; clustering; Dynamic Time Warping; sparse Gaussian processes

1. Introduction

A time series is a sequence of observations measured successively in time. Time series
are usually classified as dynamic data because their observed values evolve over time.
Typical examples of time series include financial and sales data, stock prices, weather data,
energy production and consumption data, biomedical measurements and biometrics data,
sensor data, and mobility data through GPS detectors. As the computational and data
storage capabilities increase, more (and much larger) time-series datasets become available,
and the demand for efficiently processing them and using them to support forecasting and
decision-making grows. Hence, in the last couple of decades, efficient processing of time
series has become one of the most important and intriguing tasks in modern algorithms
and data science (see, e.g., the long list of references in [1,2] for many diverse examples of
time-series applications and may different approaches to efficient time-series processing
and analysis).

Computational tasks of interest related to time series include regression and predic-
tion [3], forecasting [4], and clustering [2,5]. In this work, we focus on efficient clustering
of relatively long time series (with at least a few hundred data points, see also Table 1),
using the very popular (but also computationally demanding) Dynamic Time Warping
(DTW). Clustering time series is an important (and a daunting) computational task. On
the one hand, it can be easily applied to a wide range of contexts and settings (see, e.g.,
([2], Table 1 )), due to its unsupervised nature. If successfully applied, it naturally leads to
the discovery of interesting patterns that evolve. However, time-series data are inherently
high-dimensional and complex. Even determining the similarity of two time series admits
many different viewpoints (see, e.g., the very long list of dis(similarity) measures in ([2],
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Tables 2 and 3)), with most dis(similarity) measures being computationally demanding.
For example, computing (or approximating) the DTW distance of two time series requires
quadratic time in their length, making it time-consuming for time series with more than a
few thousand observations.

1.1. Clustering Time Series: Approaches and Related Work

Due to its practical significance and its applications to many different fields, there is a
vast literature on efficient clustering of time series following several different approaches (e.g.,
hierarchical, density-based, grid-based, shape-based, feature-based, model-based) and using
various dis(similarity) measures (see, e.g., the long list of references in [2,5,6]). Moreover,
time-series clustering can be used as a subroutine in other data mining algorithms, such as
rule discovery and indexing (see, e.g., [7] and the references therein).

At the conceptual level, there are two main formulations for time-series clustering [5]:
correlation-based online clustering, where time series are clustered in real time based on
their correlation; and offline clustering, where a time-series dataset is partitioned into k
clusters based on a distance function that quantifies how much two time series agree with
each other. There are three main different approaches to time-series similarity, namely
shape-based, feature-based, or model-based [6]. In feature-based approaches, a selection
of static features is extracted from each time series, and similarity reflects the proximity
of the time series in the feature space. In model-based approaches, each time series is
approximated by an appropriate model (e.g., by selecting appropriate parameters for a
particular function form), and similarity reflects the proximity of the time series in the
space of the model parameters. In this work, we focus on shape-based clustering, where
the raw time series is considered, and similarity reflects how well the shapes of two time
series agree with each other.

In offline shape-based clustering, the choice of the distance function is of key impor-
tance (and comprises a major challenge). The majority of shape-based time-series clustering
methods are based on Dynamic Time Warping (DTW), where the distance of two time series
is computed with respect to an optimal alignment of their data points (see, e.g., [8–10] and
their references for the key properties and many applications of DTW). DTW is regarded as
one of the most robust and accurate distance functions for time series because, in a natural,
versatile, and robust way, DTW deals with differences in the time reference, the length,
the time scale and/or the observation frequency of the time series at hand. However, due
to the requirement for an optimal alignment of the data points, computing DTW of two
time series with length T requires O(T2) time (Regarding the computational complexity
of DTW, we refer an interested reader to [11], where a (large) constant factor nearly linear
time approximation algorithm for the closely related edit distance is presented. Moreover,
the related work section of [11] outlines a significant volume of work on the computational
complexity of computing the edit distance either exactly or approximately). Thus, DTW
becomes computationally expensive for time series with more than a few hundred data
points. There has been a significant volume of previous work aiming at computationally
efficient methods for shape-based time-series clustering with the DTW distance by man-
aging to put aside the quadratic computational burden of computing (or approximating)
DTW (see, e.g., the relevant references in [2,5,6]).

Moreover, there is previous work on sparse representation methods for time series
and computationally efficient time series clustering. An interesting approach relevant to
our work is that of Adaptive Piecewise Constant Approximation (APCA) [12]. APCA aims
to approximate a time series using a set of constant-value segments with varying lengths,
such that the total reconstruction error is minimal. The approach of Iorio et al. [13] is also
conceptually similar to ours. They model a time series using P-spline smoothers and then
cluster the functional objects, as summarized by the optimal spline coefficients, using the
k-means algorithm and the DTW distance. Their experimental evaluation approach is also
based on the Adjusted Rand Index (ARI) of the resulting clusterings.
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1.2. Contribution

In this work, following an approach conceptually similar to that of [12,13], we present
and evaluate experimentally a novel two-stage framework for shape-based time-series
clustering with the widely used Dynamic Time Warping (DTW) distance. However, instead
of constant-value segments of varying length [12] or P-spline smoothers [13], we resort to
the richer and better-behaved space of Sparse Gaussian Processes for time-series simplifica-
tion. More specifically, to mitigate the burden of DTW computation, we first use Sparse
Gaussian Process Regression (SGPR) to obtain a sparse representation of each time series in
the dataset, using a logarithmic (in the original length T) number of inducing data points.
We then apply the k-means algorithm to the sparsified time series with an appropriate
generalization of DTW. As with most previous work on the topic and for simplicity, we
focus on univariate time series in the presentation and the experimental evaluation of
our approach, with the understanding that extension to time series with d-dimensional
observations is straightforward.

As in [12,13], our key insight is to regard each time series as a noisy realization of a
functional form. To identify the function that best fits the time series at hand, we apply
regression to the space of Gaussian Processes. A Gaussian Process (GP) is a stochastic
process such that the joint distribution of every finite collection of its random variables
is a multivariate Gaussian distribution [14]. Gaussian Processes extend the notion of
multivariate Gaussian distributions to infinite dimensions (and thus, to distributions over
functions) and are fully characterized by a mean function and a covariance (or kernel)
function (see also Section 3). Building on this intuition, Gaussian Process Regression (GPR)
applies the standard Bayesian regression approach to the space of Gaussian Processes. GPR
aims to identify an optimal set of parameters for the mean function and the kernel function
from a relatively small set of observations and then use the resulting Gaussian Process to
predict the data point values at other points in time.

Gaussian Process Regression is conceptually simple and has many nice theoretical
properties (see also Section 3.3). In practice, however, GPR can only deal with regression
tasks of moderate size (with at most a few thousand data points) due to its cubic running
time. As a result, several sparse approximation methods have been proposed to extend the
practical applicability of GPR (see, e.g., [15] and the references therein). In this work, we
resort to Sparse Gaussian Process Regression (SGPR) [16]. SGPR uses a small number of
carefully selected inducing points to obtain a sparse approximation to the actual Gaussian
Process with a small number of inducing data points (see also Section 3.4 and [17]). (Sparse)
Gaussian Process Regression can potentially approximate any continuous target function,
with the use of appropriate kernel functions, see, e.g., in [17,18]. Hence, our approach does
not make use of any (implicit or explicit) assumptions on the nature of the time series.

In our Sparse Time-Series Clustering framework, we use SGPR and approximate a time
series of length T with a sparse time series consisting of Θ(log T) inducing points. Then,
we cluster the resulting sparse dataset using the k-means algorithm with a generalization
of DTW, which accounts for the fact that each inducing point serves as a representative of
many original data points (see also Section 2.2). In the implementation of k-means, we use
the DTW Barycentric Averaging (DBA) algorithm [19] to update the cluster representatives
in each iteration.

The running time of our Sparse Time-Series Clustering framework is O(NT log2 T +
INk log2 T), where the first term accounts for the time complexity of Sparse Gaussian
Process Regression with Θ(log T) inducing points and the second term accounts for the
running time of k-means with the DTW distance, running for a maximum of I iterations
when applied to N sparse time series with Θ(log T) inducing points each. The running
time of applying the k-means algorithm to the original dataset with N time series of length
T each is O(INkT2). Therefore, the asymptotic running time of our Sparse Time-Series
Clustering framework is Θ(max{T2/ log2 T, IkT/ log2 T}) times faster than the asymptotic
running time of directly applying k-means to the original dataset. Intuitively, the improved
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asymptotic running time of our framework is due to improved running time for computing
DTW from Θ(T2) in the original data to Θ(log2 T) in the sparsified data.

In addition to speeding up k-means, by computing a sparse representation of the
original data set, Sparse Gaussian Process Regression tends to smoothen outliers and
particularly noisy parts of the original time series, thus resulting in clusterings that are
more robust to noisy observations and of higher quality.

We conduct an extensive experimental evaluation of our Sparse Time-Series Clustering
framework on the datasets of the University of California (UCR) Time-Series Classification
Archive [20] (see Section 5). The main finding is that Sparse Time-Series Clustering, with a
logarithmic number of inducing points, computes clusterings with Adjusted Rand Index
(ARI, see Section 2.3) comparable to the ARI of a baseline clustering, computed by applying
the standard k-means algorithm to the original datasets (see Table 3). As for the running
time, k-means runs significantly faster when applied to the sparsified dataset (see Figure 6).
The most computationally demanding step of our framework is the modeling step, where
we apply Sparse Gaussian Process Regression. For large datasets, the total running time
of our framework is faster than applying k-means to the original dataset (see Table 5).
Moreover, there are datasets for which we did not manage to run the standard k-means
algorithm in our computational infrastructure, while our Sparse Time-Series Clustering
framework produces good quality clusterings in reasonable running time (see Table 4).
We should also note that the modeling step may run offline, once per time series, with its
sparse approximation stored for any future use, and is perfectly parallelizable.

1.3. Organization

In Section 2, we introduce the generalization of DTW used in our framework and
the Adjusted Rand Index (ARI), used to evaluate the quality of clusterings. Section 3
gives a brief introduction to Gaussian Processes, Gaussian Process Regression, and Sparse
Gaussian Process Regression. Our framework of Sparse Time-Series Clustering and its
main properties are presented in Section 4. The experimental setting and the key findings
of our experimental evaluation are presented in Section 2.3. We briefly summarize our
work and conclude with some directions for future work in Section 6.

2. Notation and Preliminaries

A univariate time series X of length T is a sequence X = ((x1, t1), (x2, t2), . . . , (xT , tT))
of pairs where each xi ∈ R is a data point and each ti ∈ R, with 0 ≤ t1 < t2 < · · · tT , is the
point in time when xi is observed.

2.1. Time-Series Clustering

Given a set X = {X1, . . . , XN} of N time series, a k-clustering of X is a partitioning of
X into k sets (or clusters) X1, . . . ,Xk ⊆ X such that similar time series are assigned to the
same set (see also ([2], Definition 1)).

In this work, we mostly focus on time series with the same number T of data points
and on shape-based clustering, where we aim to maximize the similarity of time series in the
same cluster (or to maximize the dissimilarity of time series in different clusters). Shape-
based clustering is defined with respect to a shape-based dissimilarity (or distance) function
d : X × X → R≥0, which is symmetric, i.e., d(X, Y) = d(Y, X) for all X, Y ∈ X , and
satisfies d(X, X) = 0 for all X ∈ X , but in the context of our work, may not satisfy the
triangle inequality. We say that a dissimilarity function d satisfies the triangle inequality if for
all X, Y, Z ∈ X , d(X, Z) ≤ d(X, Y) + d(Y, Z). If a dissimilarity function is symmetric, has
d(X, X) = 0 for all X ∈ X , and satisfies the triangle inequality, we say that d is a distance
function. For simplicity and clarity, we abuse the terminology and refer to dissimilarity
functions d that may not satisfy the triangle inequality as distance functions. We focus
on the widely used Dynamic Time Warping (DTW) distance (cf. Section 2.2), which is
symmetric but does not satisfy the triangle inequality.
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Given a distance function d : X × X → R≥0, a k-shape-based clustering (or k-
clustering, for brevity) is a partitioning X into k clusters X1, . . . ,Xk ⊆ X , where each
cluster Xj is associated with a representative time series Cj (which may or may not belong
to Xj), with the closest representative of each time series X ∈ Xj being Cj, i.e.,

Xj =

{
X ∈ X : d(X, Cj) = min

i∈[k]
{d(X, Ci)}

}
, (1)

such that the total clustering cost, defined as

Cost(X , k) =
k

∑
j=1

∑
X∈Xj

d(X, Cj) , (2)

is minimized.

2.2. Distance Functions

There is a very long list of possible distance functions among time series (see, e.g., ([2],
Table 3)). In this work, we focus on a prominent representative of shape-based distance
functions for time series, the Dynamic Time Warping (DTW) distance. For completeness,
we first introduce the simpler Euclidean distance for time and then present DTW as an
elastic generalization of it.

2.2.1. Euclidean Distance

The Euclidean distance [21] is a so-called lockstep distance, which can be applied only if
two time series have the same number of data points, i.e., the same length. The Euclidean
distance L2(X, Y) of two time series X and Y with T data points each is simply the L2 norm
of the L2 distances between the corresponding data points (see also Figure 1a). Namely,

L2(X, Y) =

√√√√ T

∑
i=1

(xi − yi)2 (3)

A generalization of the Euclidean distance, usually referred to as the Minkowski distance
for time series, can be obtained by taking the Lp norm of the Lp distances between the
corresponding data points (instead of the L2 norm of the L2 distances in (3)), for some fixed
p ≥ 1 or p = ∞. The main advantages of the Euclidean distance are that (i) it is simple and
intuitive, and (ii) it can be computed in linear time in the size of the input. However, the
Euclidean distance fails to deal with slight time shifts and/or periodical changes in the
sampling frequency of the time series.
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(a) Euclidean distance.
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(b) DTW distance.

Figure 1. Simple example outlining the difference between the Euclidean distance in (a) and the
Dynamic Time Warping (DTW) in (b) for time series.
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2.2.2. Dynamic Time Warping Distance

The Dynamic Time Warping (DTW) distance is a so-called elastic distance, which can
deal with time series of different lengths, different sampling frequencies, and different
time alignments. DTW seeks an optimal alignment (or warping) of the data points of
two time series X and Y that minimizes the resulting pairwise Euclidean distance of the
corresponding data points. DTW is regarded as one of the most robust and accurate distance
functions for time series and has been extensively used in practice (see, e.g., [8–10,22] and
the references therein).

The optimal alignment of two time series X and Y, with X = ((x1, t1), . . . , (xT , tT))
and Y = (y1, τ1), . . . , (yV , τV)), which is used for the computation of DTW, is a sequence
W = ((T1, V1), . . . , (Tl , Vl)) with l ≤ T + V index pairs that aligns the data points of X and
Y such that (i) (T1, V1) = (1, 1) and (Tl , Vl) = (T, V), i.e., the first and the last points of X
and Y are aligned with each other; (ii) every point of X (resp. Y) is aligned with at least one
point of Y (resp. X); and (iii) for every two consecutive index pairs (Tℓ, Vℓ), (Tℓ+1, Vℓ+1),
(Tℓ − Tℓ+1, Vℓ −Vℓ+1) ∈ {(0, 1), (1, 0), (1, 1)}, i.e., the alignment sequence is increasing and
without cross-alignments (see also Figure 1b).

Then, the DTW distance of two time series X and Y is defined as:

D(X, Y) = min
X-Y warping W

√
∑

(Tℓ,Vℓ)∈W
(xTℓ − yVℓ

)2 (4)

We note that DTW is symmetric and satisfies D(X, X) = 0, but it does not satisfy the
triangle inequality. The square of DTW can be computed in quadratic time Θ(TV), using
dynamic programming based on the recursion below, which is similar to the recursion used
for computing the Edit Distance of two strings:

D(X[i], Y[j]) =


∑

j
ℓ=1(x1 − yℓ)2 if i = 1

∑i
ℓ=1(xℓ − y1)

2 if j = 1

(xi − yj)
2+

min{D(X[i− 1], Y[j− 1]), D(X[i− 1], Y[j]), D(X[i], Y[j− 1])} otherwise

where X[i] = ((x1, t1), . . . (xi, ti)) denotes the prefix of X consisting of X’s first i data points
and Y[j] = ((y1, τ1), . . . (yj, τj)) denotes the prefix of Y consisting of Y’ first j data points.

We should note that the definition of DTW sometimes restricts the maximum number
of data points that can be aligned with a single one, which leads to faster computation and
possibly better practical results (see also [23]).

In this work, we focus on a generalization of DTW, referred to as β-DTW, for some
fixed parameter β ≥ 0, where the distance between two aligned data points (xi, ti) and
(yj, tj) is computed as:

δβ((xi, ti), (yj, tj)) = (xi − yj)
2 + β(ti − tj)

2 , (5)

instead of simply (xi − yj)
2. Then, β-DTW is computed by the dynamic programming

above by replacing the distance function (xi − yj)
2 with the more general δβ((xi, ti), (yj, tj)).

For β = 0, we obtain the standard DTW. As β grows larger, β-DTW penalizes the align-
ment of data points observed at quite different points in time. Using a moderate value of β
proves useful in our Sparse Time-Series Clustering framework because the inducing points
used for time-series representation can be located by Sparse Gaussian Process Regression
at very different points in time. In fact, the locations of the inducing points highly depend
on the shape and the variance of the regressed time series at different time intervals. Hence,
the second term in δβ(·) serves to penalize significant differences in how two time series
evolve. Moreover, as β increases above a certain (instance-dependent) threshold, β-DTW
becomes a lockstep distance and essentially coincides with the Euclidean distance.
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2.3. Evaluation Criteria of Sparse Time-Series Clustering

We focus on shape-based clustering, where the clustering algorithm seeks to minimize
Cost(X , k), with X being a set of time series to be partitioned into a predefined number k of
clusters. Cost(X , k) is given by (2), with respect to the β-DTW distance for every instance.
To this end, we apply the k-means algorithm with the β-DTW distance for some fixed
parameter β ≥ 0, and the DTW Barycenter Averaging (DBA) algorithm [19] for updating
the cluster representatives in each iteration. For each dataset X , k-means is applied to the
original time series in X and to the time series consisting of the inducing points placed by
Sparse Gaussian Process Regression (SGPR) applied to each time series in X .

A ground truth clustering is available for all our instances (X , k). Therefore, to
evaluate the performance of our approach, we resort to the Adjusted Rand Index (ARI), an
extensively used extrinsic clustering metric quantifying how much the clustering computed
by our algorithm overlaps with the ground truth clustering. For completeness, we briefly
define the Rand Index (RI) and the Adjusted Rand Index (ARI) below.

2.3.1. Rand Index

The Rand Index (RI) [24] quantifies the similarity of two clusterings (i.e., the ground
truth clustering and the clustering computed by the algorithm) by counting the number
of “correct” pairs of data points, which are both assigned either to the same or to different
clusters in the two clusterings. More precisely, RI is defined as

RI =
2 (SS + DD)

n(n− 1)
,

where n is the number of data points (and n(n− 1)/2 is the total number of data point
pairs) and SS + DD is the number of “correct” pairs. Specifically, SS (resp. DD) is the
number of pairs of data points that belong to the same cluster (resp. to different clusters)
in both clusterings. By definition, RI ∈ [0, 1]. However, the threshold above which RI
values are considered satisfactory strongly depends on the number of clusters k, with a
completely random (and oblivious to the cluster sizes) clustering achieving an expected RI
of 1/k against any given clustering.

2.3.2. Adjusted Rand Index

The Adjusted Rand Index (ARI) [25,26] is essentially a normalization of RI so that a
random clustering obtains an ARI equal to 0. A simple and natural way to define ARI is:

ARI =
RI−E[RI]
1−E[RI]

, (6)

where E[RI] is computed over all random clusterings with given cluster sizes compared
against the ground truth clustering. (6) defines ARI as the fraction by which the RI of
the computed clustering (against a fixed ground truth clustering) outperforms the RI of a
random clustering (with given cluster sizes, against the same ground truth clustering).

An equivalent definition of ARI is given in ([27], Section 2):

ARI =
2 (SS ·DD− SD ·DS)

(SS + SD)(SD + DD) + (SS + DS)(DS + DD)
, (7)

where SS (resp. DD) is the number of pairs of data points that belong to the same cluster
(resp. to different clusters) in both clusterings and DS (resp. SD) is the number of pairs of
data points they belong to different clusters (resp. to the same cluster) in the ground truth
clustering and to the same cluster (resp. to different clusters) in the clustering computed by
the algorithm.

A perfect agreement among two clusterings is denoted by ARI = 1.0, while an essen-
tially random clustering is denoted by ARI = 0.0. ARI can take negative values, denoting
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clusterings with an unusually high number of discordant data point pairs. However, cor-
recting for E[RI] in (6) implies that ARI values do not explicitly depend on the number k
of clusters.

2.3.3. Evaluation

In this work, we resort to ARI to quantify the performance of the clusterings computed
by our framework. More precisely, for every instance (X , k), with a setX of time series to be
partitioned into a predefined number k of clusters, we calculate the ARI for the clustering
computed by k-means on the original instance (X , k) and on the instance obtained by
applying SGPR to the time series in X .

Comparing the ARI of the two clusterings indicates the performance loss (or sometimes
benefit) due to the sparsity of X ’s representation in our framework. Moreover, we use
the spread and the average difference (which can be gain or loss), computed with respect
to the ARI of the two algorithms on a family of instances, as a summary indicator of the
performance of our Sparse Time-Series Clustering framework.

2.3.4. Average and Spread Difference of Two Clustering Methods

To compare two clustering methods for multiple instances, we need to aggregate
the difference in ARI values of the two methods across all instances. To this end, we
use the average difference and the second moment of the difference of the two methods’
ARI values.

The average difference quantifies the average performance gain (or loss) of a clustering
method against another one with respect to their ARI values across multiple instances:

Diff(1,2) =
N

∑
i=1

ARI1(i)−ARI2(i)
N

(8)

We usually refer to Diff(1,2) as Gain(1,2), if Diff(1,2) > 0, as Loss(1,2), if Diff(1,2) < 0.
The spread corresponds to the second moment of the difference between the ARI values

of two clustering methods across multiple instances:

Spread =
N

∑
i=1

(ARI1(i)−ARI2(i))2

N
(9)

where ARI1(i) (resp. ARI2(i)) denotes the ARI value of algorithm 1 (resp. 2) for instance i
and N is the total number of instances.

3. Gaussian Process Regression for Time Series

A typical approach to dealing with a sequence of individual data points, such as a
time series, boils down to inferring a continuous function that approximately describes the
entire sequence. There are a few popular approaches in this direction depending on the
prior information about the model and on the complexity of the data itself (see, e.g., [28]).

If a time series can be described (or can be approximated) by a relatively simple
function (i.e., a polynomial of degree d), we may use parametric fitting to estimate the
function’s unknown parameters from a few data points. Then, interpolation, or regression,
can be used to essentially fill in the space between data points and to create a continuous
function representation of the time series, which can be used as a way to predict new or
hidden data points, as well as to reduce the size and the complexity of the time series
representation. In the context of time series, we may regard regression as a supervised
learning problem, where we wish to learn a continuous mapping f from the time domain
to the domain of data points, given a relatively simple class of functions to select from (i.e.,
polynomials of degree d) and a relatively small set of data points.

Although regression may sound natural and practically appealing, in most practical
applications, time series cannot be reasonably approximated by a fixed class of relatively
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simple functions. Hence, in this work, we resort to (sparse) Gaussian Process Regression (GPR),
a general approach relying on minimal assumptions about the nature of the time series.

GPR is a Bayesian nonparametric approach to regression, where instead of calculating
a probability distribution over the finite set of parameters of a specific functional form, we
calculate a probability distribution over all admissible functions that best approximates the
time series at hand. In the following paragraphs, we briefly present the main ingredients of
sparse Gaussian Process Regression (see also [14,29] for elaborate introductions to Gaussian
Processes and their applications).

3.1. Gaussian Processes for Time Series

At a conceptual level, a Gaussian Process extends the notion of multivariate Gaussian
distributions to infinite dimensions (and thus, to distributions over functions). Formally,
a Gaussian Process is a stochastic process (Z1, . . . , Zt, . . .) such that the joint distribution
of every finite collection (Zt1 , . . . , Ztk ) of its random variables is a multivariate Gaussian
distribution ([14], Definition 2.1).

For this work, it is convenient to regard a Gaussian Process model as a probability
distribution over continuous functions (or over time series). For simplicity and since in
this work we mostly deal with real-valued time series, where the observed data points
xi ∈ R, we restrict our attention to regression over functions that map points in time
to real data points. Starting with the special case where a time series is evaluated in a
fixed number n of points in time, for any n-dimensional vectors x⃗ = (x1, . . . , xn) and
t⃗ = (t1, . . . , tn) ∈ Rn, a n-variate Gaussian distribution N (m(⃗t ), k(⃗t, t⃗ )) determines the
probability that the observed data points (x1, . . . , xn) at times (t1, . . . , tn) are drawn from a
n-variate Gaussian distribution with mean function m : R→ R and covariance function
(a.k.a. kernel function) k : R × R → R. In fact, given a time series X = (x⃗, t⃗ ), we
want to compute a m(⃗t ) = (m(t1), . . . , m(tn)) and positive semidefinite covariance matrix
K = (k(ti, tj))i,j∈[n]) maximizing the probability that the observed data point vector x⃗ is
drawn the n-variate Gaussian distribution N (m(⃗t ), k(⃗t, t⃗ )).

The notion of a Gaussian Process naturally extends the idea of a n-variate Gaussian
distribution to arbitrary dimensions, which allows us to regress over continuous functions
and time series. A Gaussian process is defined by a mean function m : R→ R and a kernel
function k : R×R→ R. The mean function m(·) determines the expected value m(t) of a
data point xt ∈ R at any time t. The kernel function k(·, ·) quantifies the correlation k(t, t′)
between the observed data points xt and xt′ at any two times t and t′. We let f ∼ GP(m, k)
denote that the time series described by the function f : R→ R (i.e., the values of the data
points are f (t) at all times t) follows a Gaussian Process GP with mean function m and
kernel function k.

The mean function m determines the average value of data points over time and is
usually normalized to 0 over the entire time horizon. The kernel function k determines the
shape of the time series modeled by the Gaussian Process, in the sense that if two points in
time t and t′ are highly correlated (e.g., because t and t′ are neighboring points in time, or
because we expect that the observed data points at t and t′ should be close to each other),
the kernel function should favor time series f with similar values f (t) and f (t′).

3.2. Kernel Functions for Time Series

Kernel functions play a central role in Gaussian Process Regression because they
incorporate the information (and our assumptions) about the smoothness and the degree
of correlation between data points in the time series that we aim to approximate. The
kernel function k : R× R → R maps any two points in time t and t′ to a real number
that quantifies the expected similarity between the observed data points xt and xt′ . In any
finite dimensions n, the covariance matrix K of the corresponding n-variate Gaussian is
computed by evaluating the kernel function k(t, t′) over all n2 pairs of points t and t′ in
time. The kernel function should ensure that the resulting covariance matrix is always
positive semidefinite.
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A kernel function k is stationary, if for any two points in time t and t′ and any translation
u, it holds that k(t, t′) = k(t+ u, t′+ u). Specifically, the covariance k(t, t′) of any two points
in time t and t′ only depends on t− t′ and is invariant under translation. If the covariance
k(t, t′) of any two points in time t and t′ only depends on their distance |t− t′|, we say that
the kernel function is isotropic. In the following, we discuss two widely used stationary
(and isotropic) kernel functions, the Radical Basis Function (RBF) kernel and the Matérn
kernel (see also ([14], Chapter 4)).

3.2.1. The Radial Basis Function Kernel

The Radial Basis Function (RBF) kernel (a.k.a. the Gaussian kernel or the Squared
Exponential kernel) is defined as:

kRBF(s,ℓ)(t, t′) = s2 exp
(
− (t− t′)2

2ℓ2

)
(10)

In (10), k has two hyperparameters: the scale factor s, which quantifies the deviation to
the mean value m of a function f drawn from the corresponding Gaussian Process; and
the length scale ℓ, which quantifies the strength of the correlation between the data points
f (t) and f (t′) of two points in time at distance |t− t′|. Gaussian Process Regression with
the RBF kernel corresponds to Bayesian linear regression with an infinite number of basis
functions. Due to its nice properties (see, e.g., ([14], Sections 4.2 and 4.3)), RBF has become
the default kernel function in practical applications.

3.2.2. The Matérn Kernel

The class of Matérn kernels is a generalization of RBF kernels with an additional
hyperparameter ν, which controls the smoothness of the kernel function. A Matérn kernel
is defined as:

kM(s,ℓ,ν)(t, t′) =
s22ν−1

Γ(ν)

(√
2ν|t− t′|

ℓ

)ν

Kν

(√
2ν|t− t′|

ℓ

)
, (11)

where Γ(·) is the gamma function and Kν(·) is the modified Bessel function of the second
kind. Larger values of ν result in smoother approximated time series, while as ν grows to
∞, the Matérn kernel becomes equivalent to the RBF kernel. We note that the cases where
ν = 3/2 and ν = 5/2 have nice closed forms ([14], (4.17)) and are of special interest to
practical applications. In this work, we use the Matérn kernel for ν = 3/2.

3.3. Gaussian Process Regression

Gaussian Process Regression (GPR) applies the standard Bayesian regression approach to
Gaussian Processes. In Bayesian regression, we first compute a posterior distribution on the
parameters of an admissible functional form (e.g., polynomials of degree d) based on some
prior information about these parameters (if available) and on the available data points.
This is extended to a predictive posterior distribution, i.e., a distribution on the values of
unseen data points, which is derived from the prior distribution on the parameters of the
admissible functional form.

In our setting, we are given a time series X = ((x1, t1), . . . , (xn, tn)) with n data points
and aim to compute a posterior Gaussian Process, which provides a probability distribution
over unseen data points x(t) at any point in time t. We assume that each data point
xi = f (ti) + ϵi, where f : R→ R is a latent function (for which do not make any particular
assumptions) and ϵi ∼ N (0, σ2) is an independent sample drawn from a white noise
process with standard deviation σ.

For the Bayesian regression process, we make the standard assumption that the data
are normalized to 0 over the entire time horizon. Hence, we consider Gaussian Processes
with a zero-mean function, i.e., with mean function m(t) = 0 for all points in time t. Then,
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the prior distribution is a n-variate Gaussian distribution conditioned on the input time
series X = ((x1, t1), . . . , (xn, tn)). Specifically, the distribution of x⃗ conditional on t⃗ is:

x⃗ | t⃗ ∼ N (0, kθ + σ2) , (12)

where kθ : R × R → R is a kernel function (e.g., an RBF kernel or a Matérn kernel)
with hyperparameters θ and x⃗ = (x1, . . . , xn) are noisy values sampled from the latent
function f : R → R at times t⃗ = (t1, . . . , tn). Due to noise, the covariance matrix of N is
K̃θ,σ = Kθ + σ2 I, where Kθ = (kθ(ti, tj))i,j∈[n]) is the positive semidefinite covariance matrix
computed by applying the kernel function kθ to t⃗, σ is the standard deviation of the white
noise, and I is the identity matrix.

The hyperparameters θ of the kernel function kθ and the standard deviation of the
observation noise σ are optimized based on the input time series X = ((x1, t1), . . . , (xn, tn)).
Hyperparameter optimization in (12) corresponds to a non-convex optimization prob-
lem, which is typically solved through gradient-based optimization techniques, such as
Adam [30] and L-BFGS [31]. The running time is typically cubic, and the space requirement
is typically quadratic in the size of the input data, i.e., O(n3) and O(n2) for time and space,
respectively, with the computational complexity dominated by the time required to invert
the covariance matrix K̃θ,σ.

We use the resulting posterior Gaussian Process GP(0, kθ) in order to estimate the
values of m data points x⃗′ = (x′1, . . . , x′m) observed at times t⃗ ′ = (t′1, . . . , t′m), assuming that
the values x′j are sampled from the same latent function f : R → R used for X and thus,
the joint distribution of x⃗ and x⃗′ is given by GP(0, kθ).

Therefore, the joint distribution of x⃗ and x⃗′ is an (n + m)-variate Gaussian distribu-
tion obtained by applying the Gaussian Process GP(0, kθ) to time vectors t⃗ and t⃗ ′. The
covariance matrix Kθ (⃗t, t⃗ ′) is a positive semidefinite (n + m)× (n + m) matrix with the
following form:

Kθ (⃗t, t⃗′) =
[

Kθ (⃗t, t⃗ ) + σ2 I Kθ (⃗t, t⃗ ′)
Kθ (⃗t ′, t⃗ ) Kθ (⃗t ′, t⃗ ′)

]
,

where the covariance (sub)matrix Kθ (⃗a, b⃗) is defined as Kθ (⃗a, b⃗) = (kθ(ai, bj))ai∈⃗a,bj∈⃗b.

Conditioning on X and its posterior distributionN (0, kθ + σ2), we obtain the Gaussian
predictive distribution of x⃗′. Specifically, we obtain that the values of the data points x⃗′

follow a m-variate Gaussian distribution with mean value vector m⃗′ and covariance matrix
K′ as given below:

m⃗′ = Kθ (⃗t ′, t⃗ )(Kθ (⃗t, t⃗ ) + σ2 I)−1 x⃗ (13)

K′ = Kθ (⃗t ′, t⃗ ′)− Kθ (⃗t ′, t⃗ )(Kθ (⃗t, t⃗ ) + σ2 I)−1Kθ (⃗t, t⃗ ′) (14)

We note that the predicted mean value of x⃗′ in (13) is a linear combination of the input
values x⃗. Equivalently, one can obtain the mean value of each x′j as a linear combination

∑n
i=1 αjkθ(ti, t′j), with coefficients α⃗ = (Kθ (⃗t, t⃗ ) + σ2 I)−1 x⃗. We also note that the covariance

matrix in (14) does not directly depend on the input values x⃗ (but it depends on the points
in time t⃗ when these values are observed). We refer the interested reader to ([14], Section 2.2)
for more details on Gaussian Process Regression.

3.4. Sparse Gaussian Process Regression

From a conceptual viewpoint, Gaussian Process Regression (GPR) is versatile and
elegant, with a simple conceptual structure and many desirable theoretical properties.
In practice, however, GPR can only deal with regression tasks of moderate size, with at
most a few thousand input data points, due to the cubic time complexity required for
computing the posterior and the predictive posterior distributions. As a result, several
sparse approximation methods have been proposed to make GPR practically applicable
to settings with a medium to large number of input data points (see, e.g., [15,17] and the



Algorithms 2024, 17, 61 12 of 29

references therein). These sparse GPR methods aim to represent the underlying Gaussian
Process using a much smaller set of m, with m≪ n, inducing points, which can be learned
so that they are highly informative about the actual posterior Gaussian Process. Sparse
GPR methods achieve a time complexity of O(m2n) and a space complexity of O(m2 + n)
for approximating the posterior and the predictive posterior Gaussian Processes.

A standard approach to optimizing the sparse Gaussian Process is by minimizing its
Kullback–Leibler (KL) divergence to the actual (and possibly intractable) Gaussian Process.
In general, optimal (with respect to the KL divergence) sparse Gaussian processes do not
have a closed form (as, e.g., happens with the predictive Gaussian process in (13) and (14)).
Then, Variational Inference (VI) can be used to approximate the actual posterior with a
variational distribution.

In this work, we use the Variational Free Energy (VFE) framework (a.k.a. Sparse Gaus-
sian Process Regression (SGPR)), introduced by Titsias [16]. SGPR uses a small number of
carefully selected inducing points, along with variational inference, to obtain a low-rank
approximation (with respect to the KL divergence) to the actual Gaussian Process. In SGPR,
the total number m of inducing points is chosen in advance so that the overall time and
space complexity are acceptable. Their locations in time and their values are optimized
so that more inducing points are located at time intervals where the time series exhibits a
more complex behavior (see also Figure 2).

Other approaches to sparse GPR include treating inducing point selection as a contin-
uous optimization problem [32] and online approaches where the sparse Gaussian Process
is iteratively trained by processing each input individually [33,34]. We refer the interested
reader to [17] for an elaborate treatment of Sparse Gaussian Process Regression.

Figure 2. Sparse Gaussian Process Regression (SGPR) uses a predetermined number of inducing
points (red dots) to compute a sparse approximate representation of a given time series (black stars).

4. The Sparse Time-Series Clustering Framework

The Sparse Time-Series Clustering (STSC) framework consists of two stages, as outlined
in Algorithm 1. The input instance consists of (X , k), where X is a set of N time series to be
partitioned into k clusters. The first stage is to approximate each time series Xj ∈ X with a
sparse time series X′j consisting of m inducing data points by applying Sparse Gaussian
Process Regression (see Section 4.1 and Algorithm 2). The second stage is to cluster the
reduced instance ({X′1, . . . , X′N}, k) using the k-means algorithm with the β-DTW distance,
for some fixed parameter β ≥ 0, and the DTW Barycenter Averaging (DBA) algorithm
(see Section 4.2 and Algorithm 3). The outcome of the second stage is a tuple with k
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representative time series, which define a k-clustering of the reduced dataset {X′1, . . . , X′N}
(and the corresponding k-clustering for the original dataset X ) by (1).

Algorithm 1 Sparse Time-Series Clustering Framework

1: Input : Instance X = (X1, . . . , XN) with N time series, number of clusters k
2: Output: k cluster representatives (C1, . . . , Ck) (which k-cluster X into (X1, . . . ,Xk).

3: framework(X , m, seed):
4: for j ∈ [N] do
5: X′j ← modeling(Xj, m) {▷ SGPR with m inducing points on each Xj ◁}
6: end for
7: (C1, . . . , Ck)← clustering({X′1, . . . , X′N}, k, seed)

{▷ k-means clustering of reduced instance ◁}
8: return (C1, . . . , Ck)

Algorithm 2 Modeling through Sparse Gaussian Process Regression

1: Input : time series X = ((x1, t1), . . . , (xT , tT)), number of inducing points m
2: Output: approximate time series X′ = ((x′1, τ1), . . . , (x′m, τm)) with m inducing points

3: modeling (X = ((x1, t1), . . . , (xT , tT)), m):
4: model← train_SGPR(X, m)

{▷ apply SGPR for the given number m of inducing points ◁}
5: (x′1, τ1), . . . , (x′m, τm))← extract_induced_points(model, m)
6: return X′ = ((x′1, τ1), . . . , (x′m, τm))

Algorithm 3 k-Means Clustering

1: Input : dataset X = (X1, . . . XN) with N time series, number k of clusters,
seed for initialization

2: Output: C = (C1, . . . , Ck) with k cluster representatives

3: clustering (X , k, seed):
4: for j ∈ [k] do
5: r ← random_generator(seed, N)

{▷ randomly choose initial cluster representatives ◁}
6: C(0)

j ← Xr

7: end for
8: for i ∈ [100] do
9: (C(i)

1 , . . . , C(i)
k )← DBA(X , k, (C(i−1)

1 , . . . , C(i−1)
k ))

{▷ update representatives with DBA ◁}
10: if (C(i)

1 , . . . , C(i)
k ) ≈ (C(i−1)

1 , . . . , C(i−1)
k ) then

11: break {▷ k-means converged to a k-clustering ◁}
12: end if
13: end for
14: return (C1, . . . , Ck)

In the following (and unless stated otherwise), we consider a datasetX = {X1, . . . , XN}
of N univariate time series, where each time series X = ((x1, t1), . . . , (xT , tT)) ∈ X consists
of T data points. We assume that all time series in the same dataset have the same length
T (nevertheless, our framework can be applied to datasets with time series of different
lengths without any modification).
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4.1. Modeling through Sparse Gaussian Process Regression

In this stage, we apply the framework of Sparse Gaussian Process Regression, as out-
lined in Section 3, in order to obtain a sparse approximation X′ = (x′1, τ1), . . . , (x′m, τm)) of
each time series X = ((x1, t1), . . . , (xT , tT)) in the original dataset X (see also Algorithm 2).

We use the Variational Free Energy (VFE) (a.k.a. Sparse Gaussian Process Regression
(SGPR)) approach, outlined in Section 3.4, using the Matérn kernel with parameter ν = 3/2.
Each time series X = ((x1, t1), . . . , (xT , tT)) is approximated by a sparse time series X′ =
((x′1, τ1), . . . , (x′m, τm)) with m≪ T inducing data points.

A logarithmic (in length T of the original time series) number of inducing points
suffices for a reasonably good approximation of the original time series. More specifically,
we use m = γ log2 T, for γ ∈ {1, 2, 3, 4, 5} (and with the resulting number rounded to the
closest integer), in our experimental evaluation. Thus, the time complexity of this step is
O(T log2 T), and the space required is O(T + log2 T).

4.2. Clustering Stage

The second and final stage of our framework is to partition the datasetX ′ = (X′1, . . . , X′N),
consisting of N sparse time series with m inducing points each, into k-clusters using the k-
means algorithm for time series, with the DTW Barycenter Averaging (DBA) algorithm [19]
used for updating the cluster representatives in each iteration of k-means.

We apply k-means with the β-DTW distance, defined in Section 2.2, with β = αT
m . We

use α ∈ {0, 10−4, 10−3, 10−2} in our experimental evaluation. The intuition behind setting
β to a multiple of T/m is that we expect that each inducing point serves as a representative
of approximately T/m points, with increasing density of inducing points in time intervals
where the time series exhibits more complex behavior. Hence, we want to (mildly) penalize
with a multiple of T/m cases where different time series exhibit a high density of inducing
points in distant time intervals.

The time complexity of k-means with the β-DTW distance and the DBA algorithm for
updating the cluster representatives is Θ(INkm2) = O(INk log2 T), where I is the number
of iterations and O(m2) is the time required to compute the β-DTW distance between
a pair of sparse time series, and Θ(Nkm2T) = Θ(Nk log2 T) is the time complexity of a
single iteration of k-means. In our experimental evaluation, we run k-means and DBA for a
maximum of I = 100 iterations.

4.3. Time Complexity

The overall time complexity of our Sparse Time-Series Clustering framework is
Θ(NT log2 T + INk log2 T), where the first term corresponds to the time complexity of
the Sparse Gaussian Process Regression with m = Θ(log T) inducing points and the second
term corresponds to the running time of k-means with the β-DTW distance when applied
to N sparse time series with m = Θ(log T) inducing points each. As expected, the running
time of our framework crucially depends on the number m of inducing points.

In our experimental evaluation, we compute a baseline clustering by applying
Algorithm 3. The overall time complexity for computing a baseline clustering with k-
means on the original dataset with N time series of T data points each is Θ(INkT2).

Therefore, the asymptotic running time of our Sparse Time-Series Clustering frame-
work is about Θ(max{T2/ log2 T, IkT/ log2 T}) times faster than the asymptotic running
time of directly applying k-means to the original dataset. Intuitively, the asymptotic running
time of our framework is Ω(T2/ log2 T) times faster than the standard k-means because the
improved running time for computing DTW from Θ(T2) in the original data to Θ(log2 T)
in the sparsified data.

5. Experimental Evaluation
5.1. Datasets

The University of California (UCR) Time-Series Classification Archive [20] is one of
the most widely used and the largest labeled time-series data archives for classification,



Algorithms 2024, 17, 61 15 of 29

consisting of 128 datasets. Each dataset is divided into training and test data and is
accompanied by performance indicators of several algorithms with different parameter
settings. In this work, we use the univariate datasets of the UCR archive in order to support
the claim that our Sparse Time-Series Clustering (STSC) framework leads to clusterings
with respect to the β-DTW distance of similar (or even improved) quality (compared against
applying k-means to the original datasets), but with significantly improved running time.
Baseline results are available for most of the UCR datasets in [22]. Nevertheless, we chose
to run the baseline k-means algorithm on all the datasets used for experimental evaluation.
For the scope of this work, we focused on univariate datasets and omitted datasets for
which, due to computational power considerations, we were not able to run the k-means
algorithm with DTW metric (see Section 5.6 for more details).

The datasets used in our experimental evaluation are synthetic, semi-synthetic, or real
and originate from various domains. Each dataset is univariate and contains from 40 to
5000 time series. Although the time series within each dataset have the same length, the
length varies across datasets, ranging from 60 to 1882. A concise summary of these datasets
is provided in Table 1, including information such as the number of time series, the number
of clusters, the length of each time series, and dataset type.

Table 1. Dataset Description.

Dataset Size Length No. of
Classes Type

Adiac 781 176 37 IMAGE
ArrowHead 211 251 3 IMAGE
Beef 60 470 5 SPECTRO
BeetleFly 40 512 2 IMAGE
BirdChicken 40 512 2 IMAGE
Car 120 577 4 SENSOR
CBF 930 128 3 SIMULATED
Coffee 56 286 2 SPECTRO
Computers 500 720 2 DEVICE
CricketX 780 300 12 MOTION
CricketY 780 300 12 MOTION
CricketZ 780 300 12 MOTION
DiatomSizeReduction 322 345 4 IMAGE
DistalPhalanxOutlineAgeGroup 539 80 3 IMAGE
DistalPhalanxCorrect 876 80 2 IMAGE
DistalPhalanxTW 539 80 6 IMAGE
Earthquakes 461 512 2 SENSOR
ECG200 200 96 2 ECG
ECGFiveDays 884 136 2 ECG
FaceAll 2250 131 14 IMAGE
FaceFour 112 350 4 IMAGE
FacesUCR 2250 131 14 IMAGE
FiftyWords 905 270 50 IMAGE
Fish 350 463 7 IMAGE
GunPoint 200 150 2 MOTION
Ham 214 431 2 SPECTRO
Herring 128 512 2 IMAGE
InsectWingbeatSound 2200 256 11 SENSOR
ItalyPowerDenand 1096 24 2 SENSOR
LargeKitchenAppliances 750 720 3 DEVICE
Lightning2 121 637 2 SENSOR
Lightning7 143 319 7 SENSOR
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Table 1. Cont.

Dataset Size Length No. of
Classes Type

Meat 120 448 3 SPECTRO
MedicalImages 1141 99 10 IMAGE
MiddlePhalanxOutlineAgeGroup 554 80 3 IMAGE
MiddlePhalanxOutlineCorrect 891 80 2 IMAGE
MiddlePhalanxTW 553 80 6 IMAGE
MoteStrain 1272 84 2 SENSOR
OliveOil 60 570 4 SPECTRO
OSULeaf 442 427 6 IMAGE
PhalangesOutlinesCorrect 2658 80 2 IMAGE
Plane 210 144 7 SENSOR
ProximalPhalanxOutlineAgeGroup 605 80 3 IMAGE
ProximalPhalanxOutlineCorrect 891 80 2 IMAGE
ProximalPhalanxTW 605 80 6 IMAGE
RefrigerationDevices 750 720 3 DEVICE
ShapeletSim 200 500 2 SIMULATED
ShapesAll 1200 512 60 IMAGE
SmallKitchenAppliances 750 720 3 DEVICE
SonyAIBORobotSurface1 621 70 2 SENSOR
SonyAIBORobotSurface2 980 65 2 SENSOR
Strawberry 983 235 2 SPECTRO
SwedishLeaf 1125 128 15 IMAGE
Symbols 1020 398 6 IMAGE
SyntheticControl 600 60 6 SIMULATED
ToeSegmentation1 268 277 2 MOTION
ToeSegmentation2 166 343 2 MOTION
Trace 200 275 4 SENSOR
TwoLeadECG 1162 82 2 ECG
TwoPatterns 5000 128 4 SIMULATED
Wine 111 234 2 SPECTRO
WordSynonyms 905 270 25 IMAGE
Worms 258 900 5 MOTION

5.2. Experimental Setting

Both our Sparse Time-Series Clustering framework and the baseline, which applies
k-means to the original datasets, are implemented in Python. For the application of k-means
to the sparse (resp. the original) dataset, we use β-DTW (resp. the standard DTW) and DBA
for updating the cluster representatives in each iteration. We use the GPyTorch library [35]
for the implementation of Sparse Gaussian Process Regression and the Tslearn package [36]
for the implementation of k-means. Our experiments run on an Intel(R) Xeon(R) Silver 4210
CPU (2.20 GHz) with 16 GB of RAM.

5.3. Parameter Selection and Tuning

We run our experiments with a logarithmic (in the length T of the original time
series) number m of inducing points. More specifically, we run our experiments with
m = γ log2 T (rounded to the closest integer), for γ ∈ {1, 2, 3, 4, 5}. For the Sparse Gaussian
Process Regression, we choose a constant-mean prior for the Gaussian Process and use
the Matérn kernel with parameter ν = 1.5. We use Adam [30] to optimize the parameters
of SGPR. We use a learning rate of 1/10 for optimizing the parameters of the Gaussian
Process (i.e., the hyperparameters of the Matérn kernel and the standard deviation of the
noise) and a learning rate of 1/(10γ) for optimizing the locations of the inducing points.
For the initialization of SGPR’s inducing point location optimization, we divide the time
horizon of the dataset into m equally sized intervals. Thus, we avoid ending up with quite
different inducing point locations for different initializations, which may happen due to
the non-convexity of SGPR’s objective and its sensitivity to different initializations.
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We should highlight that SGPR’s objective function is highly sensitive to Adam’s
learning rate. If the learning rate is too large, we end up with inducing points outside the
time horizon of the original time series, while if the learning rate is too low, the learning
becomes local, and inducing points tend to reflect the behavior of the time series in a
small interval around them. Hence, we had to carefully select the learning rates for our
experiments, with the value of 1/10 proven to be a good and consistent choice. A summary
of the parameters used in the experimental evaluation, with a short description of their role
and their values, can be found in Table 2.

Table 2. Collection of parameters (with their role in our approach) and their corresponding values
used in experimental evaluation. We recall that T denotes the length of the time series, N is the
number of time series in the instance, and k is the number of clusters.

Parameter Algorithm—Role Value

learning rate Adam, parameter optimization SGPR 1/10
learning rate Adam, optimization of inducing point 1/(10γ), for γ ∈ {1, 2, 3, 4, 5}

locations in SGPR
ν Matérn kernel, SGPR 3/2
m # inducting points in SGPR γ log2 T, for γ ∈ {1, 2, 3, 4, 5}
α (αT/m)-DTW distance for clustering ∈ {0, 10−4, 10−3, 10−2}
I max # iterations of k-means and DBA 100

For the k-means algorithm, we use the β-DTW distance with β = αT/m (which
we often denote (αT/m)-DTW), for α ∈ {0, 10−4, 10−3, 10−2} and the DTW Barycenter
Averaging (DBA) [19] for updating the cluster representatives in each iteration. We run
k-means and DBA for a maximum of 100 iterations each.

We execute 10 runs of Algorithm 1 for each sparse dataset and each parameter combi-
nation (we have 5 choices for γ times 4 choices for α, which makes 12 different parameter
combinations for each dataset), showcasing the average CPU time and the average Ad-
justed Rand Index (ARI) against the ground truth clustering provided in the UCR archive.
In each run, the initial set of k cluster representatives is chosen randomly. Nevertheless, the
seeds were predefined for each run to ensure reproducibility and facilitate fair comparisons
between different methods.

To assess our approach against the standard k-means, we opted to compute a baseline
ARI for each original dataset from scratch by executing 10 runs of Algorithm 3 for each of
them with the standard DTW distance (with β = 0). As for the sparse case, the initial set
of k cluster representatives is chosen randomly with predefined seeds. For each original
dataset, we logged the average CPU time and the average Adjusted Rand Index (ARI)
against the ground truth clustering. Therefore, we ensure consistent initialization and CPU
time reporting across all runs, facilitating a comprehensive comparison and evaluation of
run times.

5.4. Dataset Level Assessment

Our experimental evaluation indicates that Algorithm 1 (Sparse Time-Series Cluster-
ing), with sufficiently many (but still logarithmic in T) inducing points and for relatively
small values of α in (αm/T)-DTW, computes clusterings with ARI metrics quite similar
to the ARI metrics of the baseline, computed by applying Algorithm 3 (i.e., standard k-
means) to the original datasets. However, the asymptotic running time of Algorithm 1 is
Ω(T2/ log2 T) times faster than the asymptotic running time of Algorithm 3.

Following the practices described in [22], in our experimental evaluation, we report
the average ARI score over 10 runs of Algorithms 1 and 3 and also rank the performance
(according to the average ARI in decreasing order) of Algorithms 1 and 3 with different
parameter configurations in all the datasets of Table 1. A comprehensive summary of the
average ARI and the average rank for each method (over all Table 1 UCR datasets for each
parameter configuration) can be found in Table 3.
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Table 3. Summarized ARI averages for different parameter configurations. The average relative order
of the results achieved by each algorithm is reported in parentheses. ARI values for each dataset are
reported in Table A1 (where α = 0) and in Table A2 (where we report average ARI over all different
values of α ∈ {0, 10−4, 10−3, 10−2}) in Appendix A.

(αT/m)-DTW

Parameter α Baseline 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

0 0.249 (2.524) 0.173 (4.270) 0.222 (3.683) 0.217 (3.492) 0.220 (3.762) 0.225 (3.270)
10−4 0.249 (2.587) 0.175 (4.365) 0.222 (3.746) 0.217 (3.635) 0.220 (3.635) 0.226 (3.032)
10−3 0.249 (2.746) 0.172 (4.508) 0.213 (3.841) 0.214 (3.317) 0.215 (3.444) 0.224 (3.143)
10−2 0.249 (2.762) 0.162 (4.381) 0.196 (4.127) 0.210 (3.476) 0.215 (3.492) 0.228 (2.762)
best 0.249 (3.254) 0.193 (4.238) 0.238 (3.810) 0.238 (3.333) 0.243 (3.333) 0.252 (3.032)

mean 0.249 (2.556) 0.171 (4.413) 0.213 (3.857) 0.215 (3.556) 0.217 (3.587) 0.226 (3.032)

In each of the first four lines of Table 3, we compare the average ARI of the standard k-
means (baseline) with the average ARI of our framework for a different number of inducing
points while maintaining the parameter α in (αT/m)-DTW constant. In the fifth (resp. the
sixth) line, we take the best (resp. the mean) ARI over all values of α, for each different
number of inducing points γ log2 T, for γ ∈ {1, 2, 3, 4, 5}.

In Table 3, we observe that average ARI values improve as the number of inducing
points increases (for every fixed value of α, see also the spread diagrams in Figure 3,
where we use α = 10−4). Moreover, for m ≤ 4 log2 T inducing points, average ARI values
slightly deteriorate as the value of α increases (see also the spread diagrams in Figure 4,
where we use m = 2 log2 T), while for m = 5 log2 T inducing points, average ARI values
marginally improve as α increases (see also the spread diagrams in Figure 5, where we use
m = 5 log2 T). We note that as the number m of inducing points increases, (αT/m)-DTW
becomes less sensitive in an increase in α. Then, a combination of many inducing points
and α ∈ [10−3, 10−2] produces quite satisfactory results (see also the spread diagrams in
Figure 5c,d. For m = 5 log2 T inducing points, keeping the best ARI over all values of α for
each dataset gives clusterings of marginally better quality on average compared against the
clusterings produced by the standard k-means algorithm (see the best ARI for m = 5 log2 T
in the best line of Table 3 and the spread diagram in Figure 5e). On the other hand, even for
m = 5 log2 T inducing points, any fixed value of α results in clusterings of slightly worse
quality on average compared against the clusterings produced by the standard k-means
algorithm (see the mean ARI for m = 5 log2 T in the mean line of Table 3 and the spread
diagram in Figure 5f).

Even though it allows for conclusions that are informative and easy to grasp, av-
eraging ARI results across different datasets (and possibly across different parameter
configurations) is inadequate for a comprehensive evaluation of the proposed framework
for Sparse Time-Series Clustering. A particularly poor or particularly good performance in
specific datasets for certain parameter configurations may significantly affect the average
ARI, potentially leading to misleading conclusions (notice also the standard deviations in
Table A2). A characteristic example is the TwoPatterns dataset (see the corresponding rows
in Tables A1 and A2), where the standard k-means achieves an average ARI of 0.870, while
the average ARI of our framework for different numbers of inducing points (where average
is taken across all values of α) ranges from 0.304 to 0.825 (see the corresponding row in
Table A1 and the large standard deviations in the corresponding row of Table A2).
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(a) ARI spread with m = log2 T
(loss = 0.073, spread = 0.031).
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(b) ARI spread with m = 2 log2 T
(loss = 0.026, spread = 0.024)
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(c) ARI spread with m = 3 log2 T
(loss = 0.031, spread = 0.013).
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(d) ARI spread with m = 4 log2 T
(loss = 0.028, spread = 0.014).
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(e) ARI spread with m = 5 log2 T
(loss = 0.023, spread = 0.015).
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(gain = 0.021, spread = 0.017).
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(g) Mean ARI spread
(loss = 0.036, spread = 0.014).

Figure 3. Spread diagrams with comparative ARI results of Algorithm 1 against Algorithm 3 with
(10−4T/m)-DTW and m = γ log2 T inducing points, for γ ∈ {1, 2, 3, 4, 5}. The spread and the average
loss of the sparse framework are reported in the caption and in the upper left corner. We observe a
slight improvement in clustering quality as the number of inducing points increases. We observe a
small average gain in (f), where we keep the best ARI, and a small average loss in (g), where we take
the mean ARI in each dataset (both across all values of γ ∈ {1, 2, 3, 4, 5}).

To provide a more detailed picture of the quality of clusterings produced by our
framework for different datasets and how they compare against the clustering produced
by the standard k-means, in Appendix A, we present in Table A1 the average ARI for each
dataset for the baseline and our framework with m = γ log2 T inducing points, for each
value of γ ∈ {1, 2, 3, 4, 5} and α = 0, where average ARI is taken across all 10 runs for both
the standard k-means and our framework. In Table A2, we present the same information
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for all datasets along with the standard deviation computed across all 10 runs (for standard
k-means) and all 10 runs and all different values of α ∈ {0, 10−4, 10−3, 10−2}. The informa-
tion in Table A2 demonstrates the importance of careful (and possibly dependent on the
parameters of the datasets) tuning. Nevertheless, the mean (across all different datasets
and all values of α) loss of our framework for 5 log2 T inducing points is small, and keeping
the best clustering for each dataset results in a small improvement in the average clustering
quality of Algorithm 1 compared against the standard (and way more time demanding)
k-means.
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(a) ARI spread with α = 0
(loss = 0.027, spread = 0.023).
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(c) ARI spread with α = 10−3
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(e) Best ARI spread
(loss = 0.011, spread = 0.023).
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(f) Mean ARI spread
(loss = 0.035, spread = 0.022).

Figure 4. Spread diagrams with comparative ARI results of Sparse Time-Series Clustering against
standard k-means overall datasets for the (αT/m)-DTW distance, with different values of α ∈
{0, 10−4, 10−3, 10−2} and with m = 2 log2 T inducing points. The average spread and the average
loss of the sparse framework are reported in the caption and on the upper left corner of each plot.
We observe a slight deterioration in clustering quality as α increases and a small average loss in (e)
and (f), where we keep the best ARI and the mean ARI in each dataset (both across all values of
α ∈ {0, 10−4, 10−3, 10−2}).

5.5. Computational Efficiency

As noted in Section 4.3, an important contribution of our work is that the combined
computational complexity of our Sparse Time-Series Clustering framework is O(NT log2 T +
INk log2 T), where I is the iterations of k-means, N is the number of time series in the
dataset and T is their length, compared against a running time of O(INkT2) of the standard
k-means algorithm applied to the original dataset. Next, we evaluate the running time and
the CPU utilization of our framework in practice. .
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(loss = 0.024, spread = 0.016).
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Figure 5. Spread diagrams with comparative ARI results of Sparse Time-Series Clustering against
standard k-means overall datasets for the (αT/m)-DTW distance, with different values of α ∈
{0, 10−4, 10−3, 10−2} and with m = 5 log2 T inducing points. The average spread and the average
loss of the sparse framework are reported in the caption and on the upper left corner of each plot. In
contrast to the case where m = 2 log2 T, in Figure 4, with m = 5 log2 T inducing points, we observe a
stable clustering quality, and even a slight improvement, as α increases. This behavior is attributed to
the fact that larger m makes (αT/m)-DTW less sensitive to an increase in α. We also observe a small
average gain in (e), where we keep the best ARI, and a small average loss in (f), where we take the
mean ARI in each dataset (both across all values of α ∈ {0, 10−4, 10−3, 10−2}).

Table 4 displays the CPU utilization times for our framework and standard k-means
on all datasets. Specifically, we provide the following metrics: Tk is the CPU utilization time
of the standard k-means algorithm applied to the original dataset; Ta is the CPU utilization
time of the modeling phase, where Sparse Gaussian Process Regression is applied, in steps
4–6 of Algorithm 1; and Tb is the CPU utilization time of the k-means algorithm in step 7
of Algorithm 1, where Algorithm 3 is applied to the sparse time series produced by the
Sparse Gaussian Process Regression. Moreover, Ta + Tb is the total CPU utilization of our
method, (Ta + Tb)/Tk indicates the CPU utilization overhead due to the modeling process
(which dominates the running time of our framework); Tk/Tb quantifies how much slower
k-means become when applied to the original dataset compared against the same algorithm
applied to the sparsified dataset; and Ta/N is the average running time of the modeling
phase (Sparse Gaussian Process Regression) per time series in the particular dataset.
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Table 4. CPU Utilization time of the standard k-means algorithm and the modeling and the clustering
phase of Algorithm 1. Tk denotes the CPU utilization time of the standard k-means algorithm in
the original dataset; Ta denotes the CPU utilization time of the modeling phase; and Tb denotes the
CPU utilization time of the clustering phase. Ta + Tb is the total CPU utilization of our method,
(Ta + Tb)/Tk indicates the CPU utilization overhead due to the modeling process; Tk/Tb quantifies
how much slower k-means becomes when applied to the original dataset compared against the same
algorithm applied to the sparsified dataset; and Ta/N is the average running time of the modeling
phase per time series in the particular dataset.

Dataset Tk Tb Ta
Tk

Tb

(Ta + Tb)

Tk

Ta

N

Adiac 809.606 117.040 5468.717 6.9 6.9 7.002
ArrowHead 449.036 5.795 1473.779 77.5 3.3 6.985
Beef 237.538 1.238 460.083 191.9 1.9 7.668
BeetleFly 91.529 0.609 289.232 150.3 3.2 7.231
BirdChicken 152.857 0.660 312.412 231.6 2.0 7.810
Car 350.987 2.881 968.850 121.8 2.8 8.074
CBF 127.093 45.560 5959.039 2.8 47.2 6.408
Coffee 100.512 0.798 383.234 126.0 3.8 6.843
Computers 1448.839 12.139 2334.388 119.4 1.6 4.669
CricketX 2457.813 62.977 5748.995 39.0 2.4 7.371
CricketY 1731.068 61.845 5792.806 28.0 3.4 7.427
CricketZ 1628.689 62.495 5524.100 26.1 3.4 7.082
DiatomSizeReduction 702.399 8.619 2606.539 81.5 3.7 8.095
DistalPhalanxOutlineCorrect 42.445 14.438 5711.787 2.9 134.9 6.520
DistalPhalanxOutlineAgeGroup 22.358 10.411 3348.379 2.1 150.2 6.212
DistalPhalanxTW 32.310 19.760 3462.503 1.6 107.8 6.424
Earthquakes 764.784 17.812 3897.637 42.9 5.1 8.455
ECG200 10.045 4.051 1430.853 2.5 142.8 7.154
ECGFiveDays 193.677 26.262 5910.736 7.4 30.7 6.686
FaceAll 681.338 267.684 13,986.357 2.5 20.9 6.216
FaceFour 174.810 2.035 583.206 85.9 3.3 5.207
FacesUCR 656.559 168.009 9845.755 3.9 15.3 4.376
FiftyWords 3719.422 110.433 4634.011 33.7 1.3 5.120
Fish 1401.001 14.399 3173.496 97.3 2.3 9.067
GunPoint 204.587 3.420 1606.681 59.8 7.9 8.033
Ham 498.690 5.834 2085.700 85.5 4.2 9.746
Herring 393.123 2.633 972.268 149.3 2.5 7.596
InsectWingbeatSound 8642.398 137.208 8987.362 63.0 1.1 4.085
ItalyPowerDemand 48.611 26.104 6500.469 1.9 134.3 5.931
LargeKitchenAppliances 3391.768 19.276 2969.682 176.0 0.9 3.960
Lightning2 280.387 3.525 1002.119 79.6 3.6 8.282
Lightning7 266.726 4.853 1057.223 55.0 4.0 7.393
Meat 140.371 2.340 1162.826 60.0 8.3 9.690
MedicalImages 193.023 82.434 7299.850 2.3 38.2 6.398
MiddlePhalanxOutlineAgeGroup 22.883 11.684 3700.447 2.0 162.2 6.680
MiddlePhalanxOutlineCorrect 40.408 15.421 5762.425 2.6 143.0 6.467
MiddlePhalanxTW 41.743 20.060 3480.027 2.1 83.8 6.293
MoteStrain 213.246 50.299 7216.290 4.2 34.1 5.673
OliveOil 63.692 0.953 534.073 66.8 8.4 8.901
OSULeaf 2005.386 21.865 3731.238 91.7 1.9 8.442
PhalangesOutlinesCorrect 151.922 47.915 14,683.742 3.2 97.0 5.524
Plane 12.636 4.129 1233.003 3.1 97.9 0.584
ProximalPhalanxOutlineCorrect 28.106 13.378 5230.995 2.1 186.6 24.910
ProximalPhalanxOutlineAgeGroup 21.364 12.143 3819.305 1.8 179.3 6.313
ProximalPhalanxTW 33.438 19.141 3490.010 1.7 104.9 3.917
RefrigerationDevices 2699.834 16.155 2965.134 167.1 1.1 4.901
ShapeletSim 291.462 5.064 1651.373 57.6 5.7 2.202
ShapesAll 9397.260 132.630 4991.169 70.9 0.5 24.956
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Table 4. Cont.

Dataset Tk Tb Ta
Tk

Tb

(Ta + Tb)

Tk

Ta

N

SmallKitchenAppliances 1683.222 18.953 3321.628 88.8 2.0 2.768
SonyAIBORobotSurface1 34.634 15.644 3655.760 2.2 106.0 4.874
SonyAIBORobotSurface2 71.301 25.905 6676.567 2.8 94.0 10.751
Strawberry 1183.540 23.964 7845.866 49.4 6.6 8.006
SwedishLeaf 224.676 67.156 5367.119 3.3 24.2 5.460
Symbols 4984.632 43.091 9755.276 115.7 2.0 8.671
SyntheticControl 26.540 16.777 3758.807 1.6 142.3 3.685
ToeSegmentation1 464.657 8.339 1931.603 55.7 4.2 3.219
ToeSegmentation2 263.977 4.073 1176.577 64.8 4.5 4.390
Trace 225.796 4.452 1505.905 50.7 6.7 9.072
TwoLeadECG 115.038 33.520 7091.992 3.4 61.9 35.460
TwoPatterns 767.798 313.861 28,274.694 2.4 37.2 24.333
Wine 51.230 1.493 831.680 34.3 16.3 0.166
WordSynonyms 3179.780 61.514 3889.850 51.7 1.2 35.044
Worms 1540.641 9.298 2799.553 165.7 1.8 3.093

mean 982.337 37.214 4401.955 53.8 40.0 8.095

We observe that k-means runs from 1.6 (in very small datasets) up to 230 times faster
when applied to the sparsified dataset (compared against the k-means algorithm applied to
the original instance, see also Figure 6). The speed-up is due to the improved running time
for computing DTW from Θ(T2) in the original data to Θ(log2 T) in the sparsified data. As
expected, the speed-up becomes more apparent when it comes to datasets with time-series
length T above a few hundred. On average, k-means runs more than 50 times faster when
applied to the sparsified dataset than when applied to the original one.
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Figure 6. CPU utilization time comparison of the k-means algorithm applied to the original datasets
(blue bars) and to the sparsified data sets (orange bars). k-means on the sparsified instance can run
up to 230 times faster than k-means on the original instance.

On the other hand, the computational overhead of Sparse Gaussian Process Regres-
sion becomes quite high, compared against the running time of the standard k-means
algorithm, when Algorithm 1 is applied to datasets of small to moderate size (and with
time series of small to moderate length). However, for datasets with larger sizes and
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longer time series, such as InsectWingbeatSound (with 2200 time series of length 256 each),
RefrigerationDevices and LargeKitchenAppliances (both with 750 time series of length
720 each), the benefits of the significantly improved asymptotic computational complexity
of our framework become apparent. In these datasets, the total Ta + Tb running time of
our framework is practically identical to the total running time of the standard k-means.
For some larger datasets, such as ShapesAll (with 1200 time series of length 512 each), the
total Ta + Tb running time of our framework is half the total running time of the standard
k-means. Moreover, there are datasets, such as ElectricDevices (with about 16,500 time
series of length 96 each), where our framework is able to run successfully in our computa-
tional infrastructure and to produce clusterings with average ARI higher than that reported
in [22], while it is impossible to successfully run the standard k-means algorithm due to the
quadratic computational complexity of DTW and/or the large size of the dataset (see also
Table 5 and Section 5.6).

Table 5. ARI results for the ElectricDevices dataset consisting of 16637 time series of length 96 each.
The best ARI computed by the standard k-means in [22] is 0.19, while our framework achieves a best
ARI of 0.21, which is 10% larger than that reported in [22].

Parameter a 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

0 0.18 0.19 0.18 0.17 0.17
10−4 0.21 0.18 0.18 0.19 0.19
10−3 0.14 0.20 0.18 0.18 0.18
10−2 0.04 0.12 0.21 0.18 0.20

In a nutshell, we observe that the total CPU utilization of our framework becomes
comparable to that of applying k-means to the original data for datasets with NT2 ranging
from 108 to 3 · 108, while the benefits of our framework’s significantly improved asymptotic
computational complexity become apparent for datasets with NT2 larger than 4 · 108. On
the other hand, if we focus on k-means only, for datasets with T at most 100, applying
k-means to sparsified datasets is about 10–20 times faster than its application to the original
data. As T grows larger to 200–400, the speed-up factor of k-means increases to 60–80, and
reaches values above 120–150 for a time-series length T above 600.

As an additional note regarding the high computational overhead due to Sparse Gaus-
sian Process Regression, we should mention that (i) SGPR could run offline, independently
of k-means (or any other shape-based time-series clustering algorithm) and only once per
time series, with the resulting sparse time series stored for any future use; and (ii) that one
could arrange for SGPR to run in parallel (and completely independently) for each different
time series, which would result in a completion time about two orders of magnitude faster,
without increasing the total CPU utilization.

5.6. Empirical Results: Time and Memory Considerations

As mentioned in Section 5.1, we excluded certain UCR univariate datasets from our
experimental evaluation, because it was impossible to successfully run the standard k-
means algorithm on the original dataset in our computational infrastructure )and [22] does
not provide running time estimations for the UCR datasets). The application of k-means to
those datasets was terminated either due to memory issues, because of the very large size
Θ(NT) of the dataset, or due to running time exceeding two days without completing a
single run of k-means.

Nevertheless, using our Sparse Time-Series Clustering framework, we managed to
obtain results for those datasets successfully, demonstrating its usefulness. For example,
Table 5 reports the ARI achieved by our framework for the ElectricDevices dataset, a very
large dataset consisting of 16637 time series of length 96 each and k = 7 clusters (this is
one of the datasets for which we could not run k-means with the original time series in our
computational infrastructure). We note that the best ARI is obtained by k-means with the
original data, and the standard DTW distance is 0.19, as reported in [22].
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6. Discussion and Future Work

Our proposed framework, as we demonstrated in Section 5, has competitive results to
the standard k-means algorithm for time-series clustering. In our comprehensive evaluation,
we highlight the significant advantages of our framework in clustering quality, CPU
utilization, and memory requirements, especially for larger datasets and for time series of
moderate to large lengths.

The bottleneck of our method in terms of CPU utilization is the modeling phase. We
underline that this step is completely independent for each time series; hence, it can be
parallelized, reducing the total running time of our framework. Moreover, SGPR can be
run once as an offline step, with its results stored for any future use. The modeling step
allows us to significantly reduce the memory requirements for the clustering step since the
time-series representation is logarithmic in the length of the original time series, making
the clustering step feasible in huge datasets (with a large number of long time series) for
the popular, but computationally demanding, DTW distance.

The extensive evaluation of our framework, including additional metrics, has been
made accessible on GitHub, providing a comprehensive resource for researchers. This
transparency ensures the reproducibility of results and facilitates further exploration and
validation. The reported CPU utilization times comprise an important addition to the thus
far assessment of time-series clustering methods.

Moving forward, there are several promising directions for future work. First, an
in-depth exploration of the tuning process is warranted to establish a correlation between
the nature of the dataset and the optimal parameter selection of the framework. This
understanding could lead to refined configurations, enhancing the effectiveness of the
proposed framework across diverse datasets and applications.

Additionally, the incorporation of different alignment distances in our framework
presents an intriguing direction of research. For instance, Frechét distance [37] and Wasser-
stein distance [38], which can be used in time-series clustering, come with computational
challenges. Therefore, our framework, with the reduction of the time-series length, may al-
low the efficient application of these distances in time-series clustering to longer univariate
time-series.

Last but not least, the extension of our framework to handle multivariate time series is
a natural direction for future work. The ability to effectively analyze and model complex,
multi-dimensional time-series data expands the range of potential applications across
diverse domains.
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Appendix A. Tables with Detailed ARI and Results

Table A1. ARI of UCR datasets for Algorithm 3 (the baseline computed by standard k-means) and
Algorithm 1 (Sparse Time-Series Clustering) with standard DTW (i.e., β = 0) and number of inducing
points m = γ log2 T, for every γ ∈ {1, 2, 3, 4, 5}. The best ARI achieved is marked in bold. In
parenthesis, we report the relative order of the corresponding ARI among the six ones reported, from
1 (best) to 6 (worst). In the last line, we report the average ARI (and the average relative order) for
each column across all datasets.

Dataset Baseline 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

Adiac 0.266 (1) 0.229 (3) 0.242 (2) 0.201 (6) 0.227 (4) 0.214 (5)
ArrowHead 0.165 (2) 0.195 (1) 0.139 (4) 0.163 (3) 0.111 (6) 0.132 (5)
Beef 0.100 (2) 0.115 (1) 0.097 (3) 0.078 (6) 0.090 (4) 0.083 (5)
BeetleFly 0.091 (2) 0.036 (6) 0.051 (4) 0.048 (5) 0.079 (3) 0.118 (1)
BirdChicken 0.010 (4) 0.062 (1) 0.002 (6) 0.022 (2) 0.010 (5) 0.018 (3)
Car 0.102 (2) 0.277 (1) 0.081 (4) 0.082 (3) 0.063 (6) 0.078 (5)
CBF 0.689 (1) 0.511 (5) 0.650 (2) 0.641 (3) 0.584 (4) 0.426 (6)
Coffee 0.592 (2) 0.210 (6) 0.539 (3) 0.503 (4) 0.352 (5) 0.763 (1)
Computers 0.043 (5) 0.023 (6) 0.052 (3) 0.052 (4) 0.065 (1) 0.058 (2)
CricketX 0.218 (1) 0.106 (6) 0.153 (5) 0.157 (4) 0.167 (3) 0.187 (2)
CricketY 0.219 (1) 0.138 (6) 0.177 (4) 0.185 (2) 0.169 (5) 0.179 (3)
CricketZ 0.223 (1) 0.109 (6) 0.156 (5) 0.167 (3) 0.162 (4) 0.177 (2)
DiatomSizeReduction 0.904 (1) 0.355 (6) 0.652 (3) 0.729 (2) 0.610 (4) 0.391 (5)
DistalPhalanxOutlineCorrect 0.001 (2) −0.003 (6) 0.001 (1) −0.001 (5) −0.001 (4) −0.001 (3)
DistalPhalanxOutlineAgeGroup 0.366 (3) 0.396 (2) 0.402 (1) 0.363 (5) 0.360 (6) 0.365 (4)
DistalPhalanxTW 0.302 (4) 0.423 (1) 0.330 (3) 0.343 (2) 0.300 (5) 0.277 (6)
Earthquakes −0.043 (6) 0.027 (5) 0.033 (2) 0.027 (4) 0.030 (3) 0.034 (1)
ECG200 0.100 (5) 0.117 (2) 0.139 (1) 0.100 (4) 0.080 (6) 0.107 (3)
ECGFiveDays 0.008 (5) 0.091 (1) 0.043 (4) 0.045 (3) 0.002 (6) 0.066 (2)
FaceAll 0.461 (1) 0.072 (6) 0.209 (5) 0.367 (3) 0.358 (4) 0.455 (2)
FaceFour 0.352 (2) 0.001 (6) 0.339 (3) 0.277 (5) 0.316 (4) 0.419 (1)
FacesUCR 0.445 (2) 0.070 (6) 0.212 (5) 0.353 (3) 0.342 (4) 0.456 (1)
FiftyWords 0.325 (1) 0.210 (6) 0.241 (5) 0.274 (4) 0.299 (3) 0.311 (2)
Fish 0.283 (1) 0.204 (2) 0.172 (4) 0.179 (3) 0.169 (5) 0.138 (6)
GunPoint −0.004 (3) 0.026 (1) −0.005 (6) −0.003 (2) −0.004 (4) −0.005 (5)
Ham 0.032 (2) −0.004 (6) 0.027 (3) 0.045 (1) 0.023 (5) 0.024 (4)
Herring 0.013 (1) −0.007 (6) −0.005 (5) 0.003 (4) 0.007 (3) 0.007 (2)
InsectWingbeatSound 0.057 (4) 0.079 (2) 0.081 (1) 0.066 (3) 0.045 (5) 0.043 (6)
ItalyPowerDemand 0.004 (1) 0.000 (6) 0.001 (3) 0.001 (4) 0.001 (5) 0.002 (2)
LargeKitchenAppliances 0.170 (1) 0.065 (4) 0.080 (2) 0.065 (5) 0.051 (6) 0.066 (3)
Lightning2 0.025 (2) 0.008 (5) 0.003 (6) 0.008 (4) 0.017 (3) 0.029 (1)
Lightning7 0.293 (1) 0.197 (2) 0.162 (6) 0.169 (5) 0.190 (4) 0.190 (3)
Meat 0.630 (1) 0.225 (4) 0.186 (5) 0.095 (6) 0.418 (2) 0.277 (3)
MedicalImages 0.101 (1) 0.039 (6) 0.060 (5) 0.062 (4) 0.066 (3) 0.073 (2)
MiddlePhalanxOutlineAgeGroup 0.388 (4) 0.337 (5) 0.336 (6) 0.405 (2) 0.392 (3) 0.408 (1)
MiddlePhalanxOutlineCorrect −0.005 (6) 0.025 (1) 0.000 (3) 0.000 (2) −0.002 (4) −0.003 (5)
MiddlePhalanxTW 0.290 (5) 0.382 (1) 0.303 (4) 0.323 (3) 0.326 (2) 0.278 (6)
MoteStrain 0.029 (6) 0.386 (2) 0.398 (1) 0.364 (4) 0.372 (3) 0.357 (5)
OliveOil 0.459 (1) 0.238 (2) 0.090 (3) 0.017 (5) −0.007 (6) 0.081 (4)
OSULeaf 0.148 (1) 0.064 (6) 0.136 (3) 0.128 (5) 0.132 (4) 0.139 (2)
PhalangesOutlinesCorrect 0.006 (5) 0.012 (1) 0.001 (6) 0.006 (4) 0.010 (3) 0.010 (2)
Plane 0.825 (1) 0.665 (6) 0.734 (5) 0.770 (4) 0.815 (3) 0.818 (2)
ProximalPhalanxOutlineCorrect 0.055 (4) 0.051 (6) 0.082 (1) 0.062 (3) 0.053 (5) 0.064 (2)
ProximalPhalanxOutlineAgeGroup 0.450 (4) 0.486 (1) 0.416 (5) 0.385 (6) 0.465 (2) 0.461 (3)
ProximalPhalanxTW 0.377 (4) 0.380 (3) 0.431 (1) 0.384 (2) 0.355 (5) 0.347 (6)
RefrigerationDevices 0.076 (1) 0.002 (6) 0.008 (5) 0.026 (4) 0.040 (2) 0.033 (3)
ShapeletSim 0.006 (1) −0.003 (5) −0.003 (6) −0.001 (4) 0.002 (3) 0.004 (2)
ShapesAll 0.340 (1) 0.247 (6) 0.294 (5) 0.315 (2) 0.313 (4) 0.314 (3)
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Table A1. Cont.

Dataset Baseline 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

SmallKitchenAppliances 0.214 (1) 0.014 (6) 0.032 (5) 0.045 (4) 0.049 (3) 0.051 (2)
SonyAIBORobotSurface1 0.697 (1) 0.535 (4) 0.548 (3) 0.599 (2) 0.487 (6) 0.524 (5)
SonyAIBORobotSurface2 0.104 (5) −0.033 (6) 0.355 (1) 0.295 (3) 0.300 (2) 0.263 (4)
Strawberry −0.033 (6) −0.029 (5) 0.016 (1) −0.011 (3) −0.011 (2) −0.029 (4)
SwedishLeaf 0.333 (4) 0.180 (6) 0.314 (5) 0.367 (1) 0.356 (3) 0.364 (2)
Symbols 0.675 (1) 0.642 (3) 0.622 (6) 0.658 (2) 0.639 (4) 0.639 (5)
SyntheticControl 0.773 (1) 0.633 (6) 0.733 (4) 0.756 (2) 0.728 (5) 0.743 (3)
ToeSegmentation1 0.022 (4) 0.005 (6) 0.022 (3) 0.027 (1) 0.027 (2) 0.021 (5)
ToeSegmentation2 0.043 (5) 0.063 (2) 0.071 (1) 0.041 (6) 0.056 (4) 0.059 (3)
Trace 0.584 (2) 0.526 (6) 0.570 (5) 0.574 (4) 0.585 (1) 0.577 (3)
TwoLeadECG 0.074 (5) 0.011 (6) 0.817 (1) 0.138 (4) 0.519 (2) 0.371 (3)
TwoPatterns 0.870 (1) 0.304 (6) 0.702 (5) 0.825 (2) 0.813 (3) 0.799 (4)
Wine −0.004 (3) −0.005 (5) −0.005 (4) −0.002 (2) −0.002 (1) −0.007 (6)
WordSynonyms 0.240 (1) 0.169 (6) 0.172 (5) 0.202 (4) 0.221 (3) 0.223 (2)
Worms 0.083 (1) 0.031 (6) 0.074 (5) 0.079 (4) 0.080 (3) 0.082 (2)

0.249 (2.524) 0.173 (4.270) 0.222 (3.683) 0.217 (3.492) 0.220 (3.762) 0.225 (3.270)

Table A2. Average ARI (and standard deviation) of UCR datasets for Algorithm 3 (the baseline
computed by standard k-means) and Algorithm 1 (Sparse Time-Series Clustering) with number
of inducing points m = γ log2 T, for γ ∈ {1, 2, 3, 4, 5} and (αm/T)-DTW. Averages and standard
deviations are computed over ARI values of 10 different runs (for the baseline) and ARI values of 10
different runs for each different value of α{0, 10−4, 10−3, 10−2} for the sparse framework. The best
average ARI is reported in bold. In parenthesis, we report the relative order of the corresponding
average ARI among the six ones reported, from 1 (best) to 6 (worst). In the last line, we report the
average ARI (and the average relative order) for each column across all datasets.

Dataset Baseline 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

Adiac 0.266 ± 0.017 (1) 0.234 ± 0.005 (3) 0.240 ± 0.001 (2) 0.201 ± 0.001 (6) 0.227 ± 0.002 (4) 0.217 ± 0.005 (5)
ArrowHead 0.165 ± 0.058 (3) 0.204 ± 0.011 (1) 0.149 ± 0.019 (5) 0.178 ± 0.026 (2) 0.135 ± 0.031 (6) 0.150 ± 0.022 (4)
Beef 0.100 ± 0.032 (2) 0.114 ± 0.001 (1) 0.099 ± 0.004 (3) 0.086 ± 0.008 (6) 0.091 ± 0.006 (4) 0.086 ± 0.005 (5)
BeetleFly 0.091 ± 0.068 (2) 0.033 ± 0.005 (6) 0.049 ± 0.003 (5) 0.060 ± 0.014 (4) 0.072 ± 0.004 (3) 0.106 ± 0.008 (1)
BirdChicken 0.010 ± 0.027 (3) 0.058 ± 0.004 (1) 0.002 ± 0.000 (6) 0.010 ± 0.010 (4) 0.004 ± 0.006 (5) 0.018 ± 0.001 (2)
Car 0.102 ± 0.045 (2) 0.286 ± 0.016 (1) 0.083 ± 0.008 (5) 0.092 ± 0.013 (3) 0.081 ± 0.024 (6) 0.088 ± 0.015 (4)
CBF 0.689 ± 0.143 (1) 0.443 ± 0.107 (6) 0.583 ± 0.116 (2) 0.582 ± 0.105 (3) 0.543 ± 0.071 (4) 0.456 ± 0.043 (5)
Coffee 0.592 ± 0.243 (2) 0.217 ± 0.012 (6) 0.526 ± 0.024 (3) 0.498 ± 0.011 (4) 0.360 ± 0.008 (5) 0.745 ± 0.035 (1)
Computers 0.043 ± 0.028 (3) 0.018 ± 0.005 (6) 0.041 ± 0.018 (4) 0.041 ± 0.018 (5) 0.055 ± 0.022 (1) 0.050 ± 0.015 (2)
CricketX 0.218 ± 0.030 (1) 0.108 ± 0.003 (6) 0.151 ± 0.003 (5) 0.152 ± 0.005 (4) 0.170 ± 0.005 (3) 0.179 ± 0.009 (2)
CricketY 0.219 ± 0.028 (1) 0.136 ± 0.005 (6) 0.184 ± 0.007 (5) 0.199 ± 0.014 (2) 0.185 ± 0.014 (4) 0.192 ± 0.011 (3)
CricketZ 0.223 ± 0.017 (1) 0.111 ± 0.004 (6) 0.154 ± 0.004 (5) 0.163 ± 0.007 (4) 0.164 ± 0.002 (3) 0.179 ± 0.008 (2)
DiatomSizeReduction 0.904 ± 0.114 (1) 0.355 ± 0.001 (6) 0.647 ± 0.009 (3) 0.730 ± 0.009 (2) 0.619 ± 0.042 (4) 0.452 ± 0.050 (5)
DistalPhalanxOutlineCorrect 0.001 ± 0.001 (2) −0.003 ± 0.001 (6) 0.001 ± 0.000 (1) −0.001 ± 0.000 (5) −0.001 ± 0.000 (4) −0.001 ± 0.000 (3)
DistalPhalanxOutlineAgeGroup 0.366 ± 0.138 (4) 0.416 ± 0.013 (1) 0.401 ± 0.001 (2) 0.363 ± 0.001 (5) 0.360 ± 0.002 (6) 0.367 ± 0.001 (3)
DistalPhalanxTW 0.302 ± 0.030 (4) 0.405 ± 0.025 (1) 0.328 ± 0.006 (3) 0.337 ± 0.007 (2) 0.296 ± 0.005 (5) 0.279 ± 0.003 (6)
Earthquakes −0.043 ± 0.005 (6) 0.009 ± 0.012 (5) 0.027 ± 0.012 (3) 0.026 ± 0.010 (4) 0.035 ± 0.008 (1) 0.033 ± 0.003 (2)
ECG200 0.100 ± 0.073 (5) 0.132 ± 0.020 (2) 0.141 ± 0.005 (1) 0.106 ± 0.011 (4) 0.092 ± 0.011 (6) 0.110 ± 0.005 (3)
ECGFiveDays 0.008 ± 0.010 (5) 0.084 ± 0.011 (1) 0.026 ± 0.019 (4) 0.074 ± 0.020 (2) 0.002 ± 0.000 (6) 0.060 ± 0.007 (3)
FaceAll 0.461 ± 0.040 (2) 0.099 ± 0.016 (6) 0.228 ± 0.020 (5) 0.387 ± 0.020 (3) 0.385 ± 0.028 (4) 0.494 ± 0.042 (1)
FaceFour 0.352 ± 0.121 (2) 0.013 ± 0.019 (6) 0.332 ± 0.009 (4) 0.272 ± 0.009 (5) 0.335 ± 0.024 (3) 0.432 ± 0.018 (1)
FacesUCR 0.445 ± 0.055 (2) 0.097 ± 0.015 (6) 0.228 ± 0.015 (5) 0.375 ± 0.023 (3) 0.368 ± 0.031 (4) 0.492 ± 0.040 (1)
FiftyWords 0.325 ± 0.047 (4) 0.245 ± 0.025 (6) 0.291 ± 0.042 (5) 0.326 ± 0.045 (3) 0.346 ± 0.042 (2) 0.356 ± 0.043 (1)
Fish 0.283 ± 0.034 (1) 0.214 ± 0.009 (2) 0.182 ± 0.015 (5) 0.200 ± 0.030 (3) 0.189 ± 0.021 (4) 0.171 ± 0.044 (6)
GunPoint −0.004 ± 0.003 (3) 0.014 ± 0.011 (1) −0.005 ± 0.000 (6) −0.004 ± 0.001 (2) −0.004 ± 0.001 (4) −0.005 ± 0.000 (5)
Ham 0.032 ± 0.025 (2) −0.004 ± 0.000 (6) 0.021 ± 0.006 (5) 0.045 ± 0.001 (1) 0.028 ± 0.008 (3) 0.025 ± 0.001 (4)
Herring 0.013 ± 0.015 (1) −0.007 ± 0.001 (6) −0.005 ± 0.001 (5) 0.004 ± 0.001 (4) 0.010 ± 0.004 (2) 0.008 ± 0.001 (3)
InsectWingbeatSound 0.057 ± 0.008 (6) 0.128 ± 0.043 (5) 0.143 ± 0.055 (1) 0.139 ± 0.070 (2) 0.133 ± 0.077 (3) 0.130 ± 0.081 (4)
ItalyPowerDemand 0.004 ± 0.002 (2) 0.008 ± 0.015 (1) 0.002 ± 0.001 (3) 0.001 ± 0.001 (5) 0.001 ± 0.000 (6) 0.002 ± 0.000 (4)
LargeKitchenAppliances 0.170 ± 0.078 (1) 0.061 ± 0.004 (4) 0.068 ± 0.011 (2) 0.060 ± 0.009 (5) 0.047 ± 0.003 (6) 0.064 ± 0.013 (3)
Lightning2 0.025 ± 0.016 (2) 0.021 ± 0.027 (4) 0.021 ± 0.035 (3) 0.020 ± 0.019 (5) 0.012 ± 0.003 (6) 0.032 ± 0.004 (1)
Lightning7 0.293 ± 0.044 (1) 0.232 ± 0.038 (2) 0.197 ± 0.038 (6) 0.206 ± 0.039 (5) 0.209 ± 0.023 (4) 0.221 ± 0.038 (3)
Meat 0.630 ± 0.183 (1) 0.222 ± 0.007 (4) 0.182 ± 0.005 (5) 0.098 ± 0.003 (6) 0.415 ± 0.007 (2) 0.285 ± 0.006 (3)
MedicalImages 0.101 ± 0.018 (1) 0.031 ± 0.015 (6) 0.056 ± 0.006 (5) 0.065 ± 0.004 (4) 0.067 ± 0.001 (3) 0.078 ± 0.005 (2)
MiddlePhalanxOutlineAgeGroup 0.388 ± 0.077 (4) 0.364 ± 0.027 (5) 0.331 ± 0.010 (6) 0.393 ± 0.013 (2) 0.392 ± 0.001 (3) 0.404 ± 0.007 (1)
MiddlePhalanxOutlineCorrect −0.005 ± 0.000 (6) 0.011 ± 0.008 (1) −0.000 ± 0.000 (3) −0.000 ± 0.001 (2) −0.003 ± 0.000 (4) −0.003 ± 0.000 (5)
MiddlePhalanxTW 0.290 ± 0.104 (5) 0.396 ± 0.011 (1) 0.294 ± 0.010 (4) 0.326 ± 0.003 (2) 0.324 ± 0.005 (3) 0.280 ± 0.001 (6)
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Table A2. Cont.

Dataset Baseline 1 · log T 2 · log T 3 · log T 4 · log T 5 · log T

MoteStrain 0.029 ± 0.005 (6) 0.385 ± 0.009 (4) 0.402 ± 0.012 (1) 0.383 ± 0.017 (5) 0.399 ± 0.025 (2) 0.389 ± 0.045 (3)
OliveOil 0.459 ± 0.145 (1) 0.238 ± 0.000 (2) 0.087 ± 0.004 (3) 0.017 ± 0.000 (5) −0.008 ± 0.001 (6) 0.081 ± 0.000 (4)
OSULeaf 0.148 ± 0.023 (1) 0.067 ± 0.005 (6) 0.139 ± 0.003 (3) 0.126 ± 0.002 (5) 0.136 ± 0.004 (4) 0.147 ± 0.007 (2)
PhalangesOutlinesCorrect 0.006 ± 0.001 (3) 0.004 ± 0.005 (5) 0.004 ± 0.003 (6) 0.006 ± 0.000 (4) 0.010 ± 0.000 (2) 0.010 ± 0.000 (1)
Plane 0.825 ± 0.147 (1) 0.671 ± 0.008 (6) 0.733 ± 0.003 (5) 0.767 ± 0.006 (4) 0.808 ± 0.008 (3) 0.823 ± 0.004 (2)
ProximalPhalanxOutlineCorrect 0.055 ± 0.003 (4) 0.052 ± 0.000 (6) 0.085 ± 0.005 (1) 0.063 ± 0.002 (3) 0.053 ± 0.000 (5) 0.065 ± 0.001 (2)
ProximalPhalanxOutlineAgeGroup 0.450 ± 0.108 (4) 0.477 ± 0.010 (1) 0.422 ± 0.010 (5) 0.380 ± 0.009 (6) 0.463 ± 0.004 (3) 0.471 ± 0.010 (2)
ProximalPhalanxTW 0.377 ± 0.119 (3) 0.373 ± 0.010 (4) 0.425 ± 0.008 (1) 0.379 ± 0.009 (2) 0.358 ± 0.003 (5) 0.349 ± 0.002 (6)
RefrigerationDevices 0.076 ± 0.032 (1) 0.003 ± 0.002 (6) 0.008 ± 0.000 (5) 0.026 ± 0.001 (4) 0.039 ± 0.002 (2) 0.035 ± 0.002 (3)
ShapeletSim 0.006 ± 0.011 (1) −0.002 ± 0.001 (5) −0.003 ± 0.000 (6) −0.002 ± 0.001 (4) −0.000 ± 0.002 (3) 0.002 ± 0.002 (2)
ShapesAll 0.340 ± 0.027 (1) 0.265 ± 0.013 (6) 0.316 ± 0.018 (5) 0.334 ± 0.019 (4) 0.337 ± 0.021 (3) 0.338 ± 0.021 (2)
SmallKitchenAppliances 0.214 ± 0.024 (1) 0.021 ± 0.007 (6) 0.028 ± 0.006 (5) 0.043 ± 0.002 (4) 0.052 ± 0.003 (3) 0.054 ± 0.006 (2)
SonyAIBORobotSurface1 0.697 ± 0.051 (1) 0.423 ± 0.178 (6) 0.560 ± 0.016 (3) 0.599 ± 0.010 (2) 0.498 ± 0.016 (5) 0.503 ± 0.032 (4)
SonyAIBORobotSurface2 0.104 ± 0.081 (5) −0.007 ± 0.043 (6) 0.325 ± 0.029 (1) 0.321 ± 0.027 (2) 0.302 ± 0.011 (3) 0.266 ± 0.031 (4)
Strawberry −0.033 ± 0.003 (6) −0.017 ± 0.016 (4) 0.016 ± 0.001 (1) −0.012 ± 0.001 (3) −0.009 ± 0.002 (2) −0.024 ± 0.005 (5)
SwedishLeaf 0.333 ± 0.041 (4) 0.171 ± 0.012 (6) 0.321 ± 0.007 (5) 0.375 ± 0.008 (3) 0.376 ± 0.022 (2) 0.392 ± 0.023 (1)
Symbols 0.675 ± 0.103 (1) 0.641 ± 0.015 (5) 0.633 ± 0.009 (6) 0.667 ± 0.015 (2) 0.646 ± 0.026 (4) 0.652 ± 0.010 (3)
SyntheticControl 0.773 ± 0.126 (1) 0.594 ± 0.074 (6) 0.713 ± 0.019 (5) 0.751 ± 0.013 (2) 0.730 ± 0.004 (4) 0.743 ± 0.002 (3)
ToeSegmentation1 0.022 ± 0.018 (2) 0.004 ± 0.002 (6) 0.017 ± 0.008 (5) 0.025 ± 0.016 (1) 0.021 ± 0.012 (3) 0.018 ± 0.008 (4)
ToeSegmentation2 0.043 ± 0.049 (5) 0.047 ± 0.018 (4) 0.058 ± 0.017 (1) 0.042 ± 0.011 (6) 0.050 ± 0.016 (3) 0.054 ± 0.007 (2)
Trace 0.584 ± 0.116 (1) 0.489 ± 0.053 (6) 0.540 ± 0.052 (5) 0.561 ± 0.014 (4) 0.584 ± 0.001 (2) 0.576 ± 0.001 (3)
TwoLeadECG 0.074 ± 0.014 (5) 0.009 ± 0.005 (6) 0.585 ± 0.341 (1) 0.098 ± 0.055 (4) 0.342 ± 0.196 (2) 0.278 ± 0.119 (3)
TwoPatterns 0.870 ± 0.032 (1) 0.131 ± 0.119 (6) 0.348 ± 0.296 (5) 0.447 ± 0.352 (3) 0.448 ± 0.347 (2) 0.445 ± 0.347 (4)
Wine −0.004 ± 0.004 (3) −0.005 ± 0.000 (5) −0.005 ± 0.000 (4) −0.003 ± 0.001 (2) −0.002 ± 0.000 (1) −0.007 ± 0.000 (6)
WordSynonyms 0.240 ± 0.016 (3) 0.190 ± 0.016 (6) 0.206 ± 0.028 (5) 0.236 ± 0.030 (4) 0.247 ± 0.028 (2) 0.251 ± 0.025 (1)
Worms 0.083 ± 0.020 (1) 0.028 ± 0.003 (6) 0.070 ± 0.006 (5) 0.081 ± 0.002 (3) 0.080 ± 0.004 (4) 0.082 ± 0.002 (2)

0.249 (2.556) 0.171 (4.413) 0.213 (3.857) 0.215 (3.556) 0.217 (3.587) 0.226 (3.032)
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