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Abstract: Two recent studies addressed the problem of reducing transitional turbulence in applica-
tions developed in C# on .NET. The first study investigated this problem in desktop and Web GUI
applications and the second in virtual and augmented reality applications using the Unity3D game
engine. The studies used similar solution approaches, but both were somewhat embedded in the
details of their applications and implementation platforms. This paper examines these two families
of applications and seeks to extract the common aspects of their problem definitions and solution
approaches and codify the problem-solution pair as a new software design pattern. To do so, the
paper adopts Wellhausen and Fiesser’s writer’s path methodology and follows it systematically to
discover and write the pattern, recording the reasoning at each step. To evaluate the pattern, the
paper applies it to an arbitrary C#/.NET GUI application. The resulting design pattern is named
DYNAMICALLY COALESCING REACTIVE CHAINS (DCRC). It enables the approach to transitional
turbulence reduction to be reused across a range of related applications, languages, and user interface
technologies. The detailed example of the writer’s path can assist future pattern writers in navigating
through the complications and subtleties of the pattern-writing process.

Keywords: design pattern; writer’s path; event-based architecture; implicit invocation; reactive
programming; transitional turbulence; dependency graph

1. Introduction

A visual user interface must respond quickly to user actions and display their effects
accurately. This is especially important for virtual and augmented reality applications, but
it is also important for desktop and Web applications. Each of these applications “interacts
with its environment on an ongoing basis” [1]. It reacts to a stream of events, where an event
may be a stimulus from the external environment (such as a user movement) or from the
computational environment (such as a notification that some software component changes
its state).

When the handling of an event affects the state of one component of a visual user
interface, that component may cause events that affect several other components (i.e., update
the other components). Each of these components may, in turn, cause events that affect
additional components, and so forth, as the component updates ripple throughout the user
interface. We call the processing of all the component updates resulting from some initial
event an update cycle. When an update cycle is completed, the user interface can potentially
enter a stable state with no updates pending. For convenience, we define latency as the
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period of “time” it takes for all components of a system to reach a stable state after some
stimulus (such as processing an external event).

The display system operates independently of the event handling system. Therefore, it
may take several cycles of the display system for the states of all components to be updated
and the user interface to reach a stable state. This period of transitional turbulence [2] (or
glitchiness [3,4]) can result in displays in which the visible states of the components do
not meet the users’ expectations of the user interface’s behavior. Due to these inconsistent
displays, users can (at least temporarily) perceive the system to be unreliable and inaccurate.
For convenience, we often refer to the occurrence of a visible inconsistency on a display as
an error.

If some component C causes an event that directly affects some other component D,
then D depends on C. To alleviate the transitional turbulence problem, Marum et al. [5,6]
developed a reactive programming approach [7] that encodes these dependency relation-
ships between components in a dependency graph and then uses the graph to rearrange the
processing of the updates from an update cycle in any order consistent with the dependency
relationships. This enables the processing of all the events from one update cycle as if
the update cycle were a single large-grained event that updates all the components. This
enables faster updates and more accurate visualizations, potentially providing users with a
more satisfying experience.

For Web and desktop graphical user interfaces (GUIs) implemented with C#, the
approach builds the dependency graph by analyzing the relationships between the com-
ponents of the GUI (i.e., its graphical controls such as radio buttons) [6,8]. Many effects
that had previously been spread across multiple display cycles now occur within a single
cycle. By conducting a set of experiments, the Marum et al. case study [6,8] shows that the
approach can perform better (i.e., decrease latency) and exhibit more accurate behavior
(i.e., display fewer errors) than similar applications using the standard C#/.NET GUI and
the Sodium [9] and Rx.NET [10] reactive programming libraries.

For virtual and augmented reality applications implemented using the Unity3D game
engine and C# [11], the approach is similar, except that it takes advantage of Unity3D’s
existing object hierarchy [5]. The approach builds the dependency graph by analyzing
the relationships among the Unity3D game components. If Unity3D’s object hierarchy
changes, the approach recomputes the dependency graph. By reordering the events based
on the dependencies, the approach eliminates many of the inconsistent displays without
degrading the performance of the system. By dynamically reacting to changes in the
object hierarchy, the approach can smoothly handle relatively complex applications. By
conducting a set of experiments, Marum et al. [5] shows that the approach can also perform
better and exhibit more accurate behavior than both an unmodified Unity3D application
and a similar application developed using the reactive library UniRx [12].

The Marum et al. case studies [5,6] address two different but related problems and
devise two similar solutions using different user interface technologies. Both solutions
work by augmenting the normal event processing mechanisms used in the applications.
In this research, we examine the two case studies and seek to isolate the essence of the
solution approach so that it can potentially be applied by others to similar problems using
similar programming languages and user interface technologies. To do so, we address the
following research questions:

(RQ1) Can we codify the solution approach as a new software design pattern [13,14]?
(RQ2) Can we follow Wellhausen and Fiesser’s writer’s path [15] to write the new

pattern step by step?

Section 2 describes the writer’s path and the other methods that we use. Sections 3–12
then record how we use these methods systematically to write the desired new software
design pattern, which we name DYNAMICALLY COALESCING REACTIVE CHAINS (DCRC).
Appendix B shows the complete DCRC pattern. Section 13 then demonstrates the technical
feasibility and efficacy of the DCRC pattern by applying it to an arbitrary C#/.NET GUI
application. Section 14 discusses the evolution of the pattern and related and future work.



Algorithms 2024, 17, 56 3 of 39

2. Writing Software Patterns

A software design pattern is defined in the classic “Gang of Four” patterns book as a
“general and reusable solution to a set of problems with common characteristics within a
given context” [14]. A pattern is not invented; it is distilled from practical experience [13].
Patterns codify “best practices” for software architecture and design [16]. Patterns are
written and published to document these best practices and enable others to apply them in
their own work.

The “Siemens” book [13] groups software patterns into three categories:

• An architectural pattern—also called an architectural style [17,18]—is a high-level, language-
independent abstraction that guides the design of the system-wide structure.

• A design pattern is a mid-level, (mostly) language-independent abstraction that guides
the design of a subsystem.

• An idiom is a low-level language-specific abstraction that guides some aspects of both
design and implementation.

Among several existing formats for describing patterns [13–16,19], we choose the
simple format described by Wellhausen and Fiesser [15], which presents the following
structural elements in the given order:

Pattern Name gives an evocative name for the pattern.
Context describes the circumstances in which the problem occurs.
Problem describes the specific problem to be solved.
Forces describe why the problem is difficult to solve, identifying the often contradic-
tory considerations that must be balanced to solve the problem.
Solution describes how the solution to the problem works at an appropriate level
of detail.
Consequences describe what happens when a software designer applies the pattern.
It gives both the possible benefits and liabilities of using the pattern.

All of the above elements except Consequences are also prescribed by the MANDATORY

ELEMENTS PRESENT pattern from Meszaros and Doble’s Pattern Language for Pattern
Writing [16]. In its OPTIONAL ELEMENTS WHEN HELPFUL pattern, the Consequences
element is called the Resulting Context. Following their READABLE REFERENCES TO

PATTERNS pattern, we show the pattern names using small capitals in this paper.
Although a fully specified software pattern should be published in the order given

above, the elaboration of the pattern’s elements usually does not proceed in that order.
Instead, it spirals through the elements and may require multiple iterations over a period
of time. In this paper, we adopt the Wellhausen and Fiesser writer’s path [15] to guide us
in writing the pattern because it is a simple methodology that enables us to explore the
problem domain systematically and refine the description of the pattern incrementally.
We enhance its steps by using other established methods such as Scope, Commonality,
and Variability (SCV) analysis [20] and the pattern-writing patterns from Meszaros and
Doble’s [16] and Harrison’s [21,22] pattern languages. We carefully record our steps to help
others use this methodology to write patterns for other problems.

1. Explore the new pattern’s rationale and scope.
We consider questions such as: Why should we write a new pattern? What is included
in and excluded from its scope? What concrete examples do we have that we can
examine? We then state a crisp definition for the scope.

2. Examine existing solutions.
We consider the answers to the questions from the previous step and discuss the
solutions with others. We seek to determine what is common across all the solutions
and what is variable among the solutions (i.e., holds for only some of the solutions).We
briefly summarize the general solution, focusing on its essence. We collect a list of
possible names for the pattern. We also list any clever ideas identified in the solutions
for later consideration, even if they are not essential to the solution.



Algorithms 2024, 17, 56 4 of 39

3. Describe the problem that leads to the solution.
We strive to state this description in one sentence. We must be careful to separate the
problem from its solution and make sure that the solution actually solves the problem.

4. Consider the consequences of the solution, both its benefits and its liabilities.
We consider any “clever ideas” identified in Step 2. These may help us identify
the consequences of applying the pattern. To identify the benefits, we consider the
desirable outcomes that result from applying the pattern. (That is, we consider
the difference in the result when the pattern is applied versus when the pattern is
not applied.) To identify liabilities, we consider the complications that result from
applying the pattern and what the possible undesirable outcomes are.

5. Identify the forces that make the problem difficult to solve.
The forces usually conflict with one another, pushing in contradictory directions.
We consider what differentiates the chosen solution from other possible solutions
to the problem to help identify the different forces at work. We give each force a
meaningful name.

6. Match each force with the corresponding consequences.
A force makes the problem difficult to solve. How the solution resolves this difficulty
leads to the corresponding consequences. Each force must be resolved and may have
both benefits and liabilities. Each consequence must be matched by a force. The
matching of forces and consequences helps guide us from the problem to the solution.

7. Elaborate the context in which the problem exists.
We carefully consider all the assumptions made by the problem and its solution. The
problem might not even exist outside of this context. The context cannot be changed
by the solution.

8. Choose a pattern name.
A good name should evoke the core idea of the solution. It should be easy to remember.

9. Reexamine and rewrite the six elements of the pattern.
We use the Context to describe the background and assumptions. We focus on devising
a short, crisp Problem description. We put what makes the Problem difficult in the
Forces and ensure the Solution solves the Problem and balances the Forces. We link
the Forces with the Consequences.

10. Put the pattern elements in the standard order.
We restate the Solution and Consequences appropriately to match the other elements,
writing the pattern so that it flows smoothly from Context to Consequences.

11. Evolve the pattern based on feedback and experience.
When writing the pattern, we seek feedback from experts in the technical area and
in pattern writing. After a period of time, we reexamine and rewrite the pattern
description. We continue to evolve the pattern as we gain deeper experience with its
use. Patience is necessary because it takes time to ensure that the pattern description
is accurate.

3. Exploring Rationale and Scope

In Step 1 on the writer’s path, we explore the rationale and scope of the new pattern.
Given the dynamic .NET GUI [6] and VR [5] case studies described in Section 1, there
appears to exist “a recurring solution to a problem” that can potentially “be reused” by
others. As suggested by Meszaros and Doble’s PATTERN pattern [16], we seek to document
“the solution using the pattern form”. We begin by asking: What is the scope (i.e., the
context) of the new pattern?

3.1. Implicit Invocation Architectural Pattern

For the research reported in this paper, we find that the IMPLICIT INVOCATION (II)
architectural pattern [17,23–25] is useful to help us define the scope of the DCRC design
pattern. Using typical software architecture terminology [18,26,27], Shaw describes the
system model as a graph with software components at the nodes and connectors along the
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edges [24]. The components are high-level computational and data storage entities and
the connectors are the interactions among the components. Furthermore, there is a control
structure that governs how the system executes.

Figure 1 depicts the IMPLICIT INVOCATION architectural pattern. According to
Shaw [24], an IMPLICIT INVOCATION system consists of a “loosely coupled collection”
of “independent reactive processes” (i.e., “modules” [17]). The components are these mod-
ules, which can “signal significant events without knowing the recipients of the signals”.
The connectors are the implicit (or automatic) invocations of procedures in the modules’
interfaces “that have registered interest in events”. The control structure is “decentralized”
and asynchronous, so that the individual components are unaware of the recipients of
their signals.

Figure 1. Implicit Invocation architectural pattern.

Implementing the IMPLICIT INVOCATION pattern usually requires some kind of “event
handler that registers components’ interest in receiving events and notifies them that events”
have been signaled [24]. When a component registers interest in an event, it associates a
procedure with that event. To notify the component that the event has been signaled, the
event handler implicitly invokes the associated procedure [17]. We assume that the event
handler is nondeterministic but fair. That is, once an event is signaled by a component, all
the listeners’ associated procedures will eventually be invoked, but there is no guarantee in
what order the events will be handled.

An implicit invocation system has advantages and disadvantages [17,24,28,29]. Among
the advantages is support for software reuse and dynamic reconfiguration. Among the
disadvantages are the nondeterminism of processing order and the difficulty in reasoning
about correctness.

There are, of course, many different variations of the implicit invocation concept, such
as the classic OBSERVER [14] and PUBLISHER-SUBSCRIBER [13,28] design patterns. In this
paper, we use the general term IMPLICIT INVOCATION, which seems to describe the overall
concept and operation of the event-driven programming mechanisms in Marum’s case
studies and many other user interface platforms.

3.2. Identifying the Context

In both the .NET GUI [6,8] and VR [5] case studies, the built-in event handling systems
follow the implicit invocation architectural pattern as described above. In both, we also
observe transitional turbulence as described in Section 1. Both case studies also layer the
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solution to the transitional turbulence problem on top of the built-in event handling systems.
Thus, to define the Context for our new pattern, we focus on the following characteristic:

(C1) The application is constructed according to the IMPLICIT INVOCATION architectural
pattern, assuming nondeterministic but fair handling of events.

As we continue to write the pattern, we identify other assumptions about the Context
in which the pattern is relevant. In writing the new pattern, we also constrain it in the
following ways:

• As suggested by the CLEAR TARGET AUDIENCE [16] and CONSISTENT-“WHO” [22]
patterns, we focus our attention on developers who are working within a software
architecture described by the IMPLICIT INVOCATION pattern. We do not assume any
particular programming language or user interface platform in the general description.

• As suggested by the TERMINOLOGY TAILORED TO AUDIENCE and UNDERSTOOD

NOTATIONS patterns [16], we use terminology, concepts, and notations that should
be familiar to the identified target audience. We also relate the terminology we use
in the pattern description to that we use in the IMPLICIT INVOCATION architectural
pattern description.

• As suggested by the DEAD WEASELS pattern [22], we seek to identify any “weasel
words”—words that “imply meaning but have no real substance” or are too ambiguous
or imprecise to guide the reader in applying the pattern effectively. We try to replace a
“weasel word with a phrase or paragraph that is more specific”. For example, we use a
word such as “system” with care because it might have many different meanings in
the discussion.

4. Examining Existing Solutions

In Step 2 on the pattern writer’s path, we examine existing solutions. Our primary
objective in writing a new pattern is to unify the solutions that emerged from two related
case studies: the dynamic .NET GUI [6,8] and VR [5] families of applications.

There is, of course, a wealth of other research on reactive programming languages
and systems [3,7,9,10,30–35] that we could profitably examine. However, in this paper, we
focus our attention on solutions that follow the IMPLICIT INVOCATION architectural pattern
and work by augmenting the normal event handling mechanisms of the user interface
technologies on which they are built. The solutions in both Marum et al. case studies
satisfy these criteria. The new design pattern seeks to document how a developer should
analyze an existing application, develop appropriate new software mechanisms to reduce
transitional turbulence, and incorporate the mechanisms into a modified application.

As illustrated in Appendix A, both case studies develop a reactive programming
approach that encodes the complex relationships between the components of a specialized
IMPLICIT INVOCATION system in a dependency graph and then uses the graph to rearrange
the updates of the components in any order consistent with the dependency constraints. As
the case studies demonstrate experimentally [5,6,8], this approach enables faster updates
and more accurate visualizations, potentially providing users with a more satisfying expe-
rience. Harrison’s “WHAT”-SOLUTIONS pattern [22] suggests writing the core idea of a
solution in a one- or two-sentence summary. We thus state the Solution element’s summary
as follows:

A solution encodes the complex relationships among the application’s compo-
nents in a dependency graph, and then uses the graph to order the updates of
the components without violating the dependency constraints. The goal is to
reorder the updates of the components so that the new order reduces transitional
turbulence without degrading the performance of the system.

This summary will form a prominent part of the full description of the new pattern’s
Solution element.
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As a result of our analysis, we identify at least three possible names for our pattern: Re-
active Dependency Graph, Transitional Turbulence Reduction, and Dynamically Coalescing
Reactive Chains. We choose among these names in Section 10.

5. Describing the Problem

In Step 3 on the pattern writer’s path, we describe the problem that leads to the solution.
The core of a pattern is the pairing of a Problem with the corresponding Solution. However,
Harrison [22] observes that often “the problem and solution are basically restatements
of one another” during the early phases of writing a pattern. To help differentiate these,
the “WHY”-PROBLEMS pattern [22] suggests that pattern writers ask themselves “how the
world would be worse” if the new pattern is not used. Of course, the pattern writers can
make “the world” as specific as it needs to be by how they define the Context.

The core issue addressed by the example applications in Section 4 is reducing transi-
tional turbulence. Transitional turbulence can result in an external presentation that does
not accurately represent the expected behavior of the system. This leads to the following
statement of the Problem element for the new pattern:

We want to eliminate or reduce the length of the periods of transitional turbulence
during which the external presentation does not accurately reflect the state of
the application. We need to do this without sacrificing performance. The goal
is to better satisfy the observers’ expectations by increasing the accuracy of the
external presentation.

Consider how the problem can be specifically observed in the case studies. In the
example .NET GUI applications, when a user enters data in the form, it may reconfigure
itself. If the interconnections among controls are complex, then it may take several display
cycles for all the changes to propagate throughout the form. During this period, the
form may show invalid options or may redraw itself while the user is entering data. It is
understandable that both situations would be frustrating to the user.

Although the Context and Solution must be refined further, the proposed Solution
seems to solve the stated Problem in the given Context—as Harrison’s BIG PICTURE

pattern [21] suggests it should. The Problem specifies what must be performed. The
Solution proposes how that can be accomplished. The Context describes the environment in
which the Problem and its Solution exist.

6. Considering the Consequences

In Step 4 on the pattern writer’s path, we consider the consequences of applying the
Solution to the Problem, both its benefits and liabilities. To identify these Consequences,
we reexamine aspects of the example applications in Section 4.

6.1. Benefits

To identify the benefits, we consider what the desirable outcomes are from applying
the pattern to the Problem to construct a Solution.

The example applications analyze the structure of the user interface and optimize its
event processing by combining the state changes associated with sequences of related events
into larger units. In doing so, they seek to mitigate the effects of transitional turbulence.
Therefore, we state the first benefit:

• A solution coalesces sets of dependent internal events into “large-grained” events
such that the handling of a large-grained event causes the same overall state change
as the corresponding set. This can decrease latency and increase accuracy.

In the example applications, the structure of the user interface may change at run
time. That is, components and events can be added, deleted, or modified. The applications
dynamically adapt to these changes. They seek to preserve the benefits of the event
processing optimizations that mitigate the effects of transitional turbulence. We state the
second benefit:
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• A solution dynamically adapts to changes in an application’s component architecture
at run time.

The example applications augment the standard (.NET or Unity3D) event processing
system, but do not replace it. They use libraries, the C# reflection facilities, and other
lightweight programming techniques to optimize event processing. In other situations, a
solution might need to use other mechanisms, such as preprocessing tools. We state the
third benefit:

• An application can be readily adapted to use the mechanisms that implement the
solution.

6.2. Liabilities

To identify the liabilities, we consider the complications resulting from applying the
pattern and the possible undesirable results.

In the example applications, the structure of the user interface can change at run time.
These changes in the user interface’s underlying structure may, in themselves, degrade
the event processing performance, and thus increase latency and decrease accuracy. In
addition, these changes may degrade the effectiveness of optimizations that are based on
the user interface’s structure. The application may need to undertake a costly reanalysis of
that structure to incorporate different optimizations—as the example applications do. A
solution should minimize the cost of adapting to structural changes at run time. We state
the first liability:

• Changes to an application’s component architecture at run time can increase latency
and decrease accuracy.

Any Solution that reduces transitional turbulence likely requires that the structure of
the user interface be analyzed and modified before its normal operation begins. This can
be a costly operation, particularly if performed at run time—as the example applications
do. A solution should minimize this startup overhead. We state the second liability:

• Implementing a solution often causes additional processing overhead at startup and
shutdown of the application.

Similarly, any Solution that reduces transitional turbulence likely adds overhead to
the normal processing of events. This overhead may be especially significant when the
solution must adapt to changes in the user interface’s structure. The example applications
introduce this kind of overhead because they use dependency graphs to optimize the event
processing and must rebuild the graph when the structure of the user interface changes. A
solution should minimize this operational overhead. We state the third liability:

• Implementing a solution often causes additional run-time processing overhead, espe-
cially when the component architecture changes.

In addition, any Solution that reduces transitional turbulence likely makes the pro-
grams more complex and, hence, more costly to design, implement, test, and maintain. The
added software mechanisms should be kept lightweight. The example applications use
special libraries to handle most of the additional processing needed; the libraries work on
top of the standard (.NET or Unity3D) event handler.

To enable the dependency graph to be built, the application developer must adapt
some objects in the user interface to allow the library to manipulate them. The mechanisms
are relatively lightweight but do make the application’s code more complicated. We state
the fourth liability:

• An application must be adapted to use the mechanisms that implement the solu-
tion. Modifying the application often complicates its design, implementation, testing,
or use.
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7. Identifying the Forces

In Step 5 on the pattern writer’s path, we identify the forces. The Forces are the often
contradictory aspects of the stated problem and its context that make it difficult to select
and devise a solution [16]. Following the suggestion of the VISIBLE FORCES pattern [16],
we assign each force in the new pattern a meaningful name and display the set of forces as
a list. Following the suggestion of the FORCES HINT AT SOLUTION pattern [22], we order
the Forces in the list from Problem-oriented issues toward Solution-oriented issues. To
identify the Forces, we reexamine aspects of the example applications from Section 4.

Decreasing transitional turbulence is the primary motivation for attempting to solve
the Problem. This gives rise to the first force we identify.

Transitional Turbulence Reduction: We want to decrease the transitional turbulence in
the application’s execution to better satisfy the observers’ expectations.

We adopt the same criteria as Marum et al. [5,6,8] to quantify transitional turbulence:
latency (perhaps measured in update cycles) and error (i.e., inaccuracy) counts. In an
implicit invocation architecture such as the applications we examine in Section 4, decreasing
transitional turbulence probably requires a solution that optimizes event processing.

The structures of the example applications’ user interfaces can change at run time. We
want to handle this situation in any Solution to the Problem. This is the second force.

Run-time Reconfiguration: We want to adapt to changes in an application’s component
architecture at run time.

Dynamically changing the structure may complicate any solution that optimizes the
event processing based on the user interface’s structure. For example, if the solution
builds and uses a dependency graph of the controls in a .NET GUI, then changes in the
the GUI’s structure invalidates the graph. This requires that the dependency graph be
updated whenever the structure changes, which likely makes the code more complex and
degrades performance.

In the example applications (from Section 4), any Solution to the Problem likely
requires that the user interface be analyzed and modified before its normal operation begins.
Both steps probably require that new software mechanisms (i.e., code) be developed and
executed. Additionally, the modified user interface probably has more complex code and a
longer execution time. We want to avoid significantly increasing execution time. This gives
rise to the third force.

Startup Cost Inflation: We want to avoid adding significant startup or shutdown costs.

Consider the example .NET GUI applications. The analysis may construct a depen-
dency graph of the GUI’s controls, and the modification may augment the GUI to use the
dependency graph in optimizing the event processing.

• If the analysis and modification can be performed statically, then they can be conducted
in a preprocessing phase and will thus have a limited impact on the startup and
shutdown of the GUI’s execution.

• If the analysis and modification must be performed dynamically, then they must be
conducted at run time and can thus have a more significant impact on the startup and
shutdown of the GUI’s execution. We want these costs to be small.

Because of the requirement to support dynamic changes to the GUI (as discussed
above), the example applications do the analysis and modification completely at run time.
Some of the initial analysis and modification could have been performed in a preprocess-
ing step, but that would require the mechanisms to be implemented in two completely
different ways.

As noted above, the modified user interface has more overhead and more complex
code for event processing. The costs of supporting Run-time Reconfiguration also adds
processing overhead and code complexity. However, we want to keep the execution costs
of event processing small. This is the fourth force.
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Operational Overhead Creep: We want to avoid adding significant processing overhead
during the application’s normal operation.

All the mechanisms introduced in the discussion of the other forces above increase the
complexity of the programs. This increases the cost of designing, implementing, testing,
and maintaining the application. We want to keep this cost small. This is the fifth force.

Code Cluttering: We want to avoid significantly complicating the application’s design,
implementation, testing, or use.

We want any modifications of the programs to be simple and supported by libraries
and/or tools. We also want the modifications to the event processing to work on top
of the standard event processing mechanisms. The example applications designed and
implemented libraries to handle most of the additional processing needed; the libraries
work on top of the standard event handlers.

Each force is potentially in conflict with other forces, as shown in Figure 2. A solution
must balance these forces.

• The Transitional Turbulence Reduction force is in conflict with all the other forces. Seeking
to reduce transitional turbulence tends to increase the costs due to the other forces.
Seeking to keep the costs due to the other forces low tends to make it difficult to reduce
transitional turbulence.

• The Code Cluttering force is in conflict with all the other forces. They represent factors
that can make the design and implementation of the code more complex. If no code
can be added (i.e., the program is kept uncluttered), then the other forces cannot
be satisfied.

• The Run-Time Reconfiguration force is in conflict with Operational Overhead Creep. Dy-
namically adapting to changes in the application’s component architecture increases
the operational overhead cost. If no increase in overhead cost is allowed, then the
Run-time Reconfiguration force likely cannot be satisfied.

Figure 2. Conflicts among the pattern’s forces.

8. Matching Forces with Consequences

In Step 6 on the pattern writer’s path, we match each force with the corresponding
consequences. Figure 3 shows how we map the Forces to the benefits and liabilities in the
new pattern.

A force makes the problem difficult to solve. How the solution resolves this difficulty
leads to the corresponding consequence. The matching of forces and consequences helps
guide us from the problem to the solution.

• Each force must be resolved; thus the force must be matched with at least one conse-
quence.

• Each consequence must be matched with exactly one force. That is, it must be the
unique result of the resolution of some force.
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• A force may match both a benefit and a liability. A solution must seek to realize the
benefit without incurring the liability. In Figure 3 note that the Code Cluttering and
Run-time Reconfiguration forces each match with both a benefit and a liability.

If a force cannot be matched to a consequence, then it is likely part of the context of the
problem that is not resolved by the solution.
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9. Elaborating the Context

In Step 7 on the pattern writer’s path, we elaborate the context in which the problem
exists. The context defines “aspects and requirements that are so important that the
problem may not exist outside the context but that are, at the same time, not modified by
the solution” [15]. The context “imposes constraints on the solution” [16].

Section 3.2 states the basic Context as follows:

(C1) The application is constructed according to the IMPLICIT INVOCATION architectural
pattern, assuming nondeterministic but fair handling of events.

Beyond that, we examine what additional assumptions the example applications from
Section 4 make about contexts in which they execute.
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9. Elaborating the Context

In Step 7 on the pattern writer’s path, we elaborate the context in which the problem
exists. The context defines “aspects and requirements that are so important that the
problem may not exist outside the context but that are, at the same time, not modified by
the solution” [15]. The context “imposes constraints on the solution” [16].

Section 3.2 states the basic Context as follows:

(C1) The application is constructed according to the IMPLICIT INVOCATION architectural
pattern, assuming nondeterministic but fair handling of events.

Beyond that, we examine what additional assumptions the example applications from
Section 4 make about contexts in which they execute.

In the previous discussion of the Run-time Reconfiguration force and the corresponding
benefit, we assume that the following characteristic holds for the component architectures.
We add this to the Context:
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(C2) The application’s component architecture may change at run time. The application
organizes the components into a hierarchical structure. This structure may change
dynamically at run time as a result of external stimuli or the actions of components.

In the previous discussion of transitional turbulence, we assumed that the display
system operates independently from the application, but accesses the application’s data
structures before rendering a representation to the display screen. This situation means
that periods of transitional turbulence can exist. Thus, we add the following characteristics
to the Context:

(C3) The application presents some aspects of its state that can be observed periodically
from outside the system. The timing of this presentation is not under the control of
the application.

(C4) Because of the asynchronous nature of the application’s operation, the externally
observable presentation may exhibit periods of transitional turbulence.

The example applications assume that the components encapsulate their states behind
interfaces and restrict all accesses to the states to functions defined in the interface [36–38].
A lack of encapsulation would make it more difficult to determine the relationships among
the controls. Hence, we add the following to the Context:

(C5) Each component is an information-hiding module with a well-defined interface.
The only way to change or access its state explicitly is by calling one of its accessor
or mutator procedures (e.g., properties in some object-oriented languages).

The example applications build dependency graphs that record relationships among
the controls. They do this dynamically at run time, so we assume that the implementation
environment or the application itself allows a program to extract metadata about the
components and their interfaces. Thus, we refine the Context to require that some kind of
reflection capability be available:

(C6) The application supports reflection capabilities. That is, application-level code can
examine the application’s features (such as its components, events, event handlers,
and hierarchical structure) at run time and extract metadata (such as names, types,
and the type signatures of the procedures in component interfaces).

10. Choosing the Pattern Name

In Step 8 on the pattern writer’s path, we choose a pattern name. We can use several
patterns from Meszaros and Doble [16] to guide us in this task.

• The EVOCATIVE NAME pattern suggests choosing a name that evokes an image that
conveys “the essence of the pattern solution to the target audience” [16]. The name
should be memorable and suitable for adding to the technical vocabulary of software
developers.

• The NOUN PHRASE NAME pattern suggests naming the pattern for the result it creates.
• The MEANINGFUL METAPHOR NAME pattern further suggests choosing a name based

on a metaphor that is familiar to the target audience.

We adopt the Pattern Name

DYNAMICALLY COALESCING REACTIVE CHAINS

because it seems to best meet these criteria. It is a noun phrase that metaphorically evokes
how the solution achieves transitional turbulence reduction by coalescing a chain (sequence)
of events into a single large-grained event at run time. For convenience, we sometimes use
the acronym DCRC.

11. Rewriting the Pattern Elements

In Step 9 on the pattern writer’s path, we reexamine and rewrite the six pattern
elements. At this point in our process, the primary element that needs attention is the
Solution, including how it relates to the Problem and the Forces. We need to provide
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sufficient detail for the reader to use the pattern effectively to design and implement a
concrete solution. However, we want to keep the new pattern independent of specific
programming language and user interface technologies and do not want to overwhelm the
reader with arcane details of particular implementations and implementation technologies.

11.1. Solution-Writing Guidelines

Several of Harrison’s pattern-writing patterns [21,22] give us guidance on how to
refine the Solution:

• As discussed in Section 5, the BIG PICTURE pattern [21] suggests that the Problem
and Solution should “by themselves” convey the key idea—“the big picture”—of the
new pattern.

• The MATCHING PROBLEM TO SOLUTION pattern [21] suggests that the Solution should
solve the “whole” Problem “but not more”.

• The CONVINCING SOLUTION pattern [21] suggests that pattern writers seek to make
the Solution “compelling”. Often, this means making it “narrower and deeper”.

• As discussed in Section 4, the “WHAT”-SOLUTIONS pattern [22] suggests writing the
core idea of the Solution in a one- or two-sentence summary placed at the beginning
of the Solution description. The “HOW”-PROCESS pattern [22] suggests extending the
summary with more detail about “what to do, how to do it, and why to do it that way,”
including providing any appropriate illustrations. In particular, it should describe
how the Solution balances the Forces and identify any Forces that are not considered.

• The FORCES HINT AT SOLUTION pattern [22] suggests that the Forces should guide
the reader from the Problem to the Solution.

Because of our goal of keeping the new pattern technology independent, we found sat-
isfying Harrison’s CONVINCING SOLUTION and MATCHING PROBLEM TO SOLUTION

patterns [21] challenging. The latter required us to tweak the statement of the Context to
include subtle assumptions the Solution makes about the environment.

How do the forces hint at the solution? The primary purpose of a solution is to realize
the benefit of the Transitional Turbulence Reduction force. It does so by using a dependency
graph to reorder the updates of the components. To realize the benefit and avoid the
liability of the Code Cluttering force, the solution works by layering lightweight software
mechanisms on top of (i.e., by augmenting) the application’s normal event processing
system. To avoid the liability of the Startup Cost Inflation force, the solution must be able to
build the dependency graph efficiently. To avoid the liability of the Operational Overhead
Creep force, the solution must be able to reorder the events according to their dependencies
and process them efficiently. To realize the benefit and avoid the liability of the Run-
time Reconfiguration force, the solution must be able to detect a change in the component
architecture and rebuild the dependency graph efficiently.

11.2. Solution: Summary (from Section 4)

A solution encodes the complex relationships among the application’s components
in a dependency graph, and then uses the graph to order the updates of the components
without violating the dependency constraints. The goal is to reorder the updates of the
components so that the new order reduces transitional turbulence without degrading the
performance of the system.

11.3. Solution: Definitions.

What do we mean by a “dependency graph” in this context?

• If the execution of some component X of an application can directly affect a subsequent
execution of some other component Y in any way, then Y depends on X. For example, X
might trigger an event for which Y listens; change the value of some attribute of its
state that Y accesses; directly call one of Y’s mutator procedures; or create, delete, or
modify Y.
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• A dependency graph is a directed acyclic graph formed by placing the components at
the nodes and adding a directed edge from some component Y to some component X
only if Y depends on X.

Figure 4 shows a dependency graph for an application with ten components named
with the upper case letters A through J and directed edges from every component to every
other component on which it is directly dependent. The shaded area of the figure includes
the six other components that are directly or indirectly dependent on component A. Any
change in the state of component A may require changes in all other components in the
shaded area. If each edge is implemented as an event, then six independent events must be
processed to propagate the changes to all dependent components. This is the update cycle.
The event handling system processes these events in a nondeterministic order, interleaved
with any other pending events.

To apply the DCRC pattern, we are primarily interested in recording the dependencies
related to the implicit invocations—between components that listen for an event and those
that trigger the event. Of course, being able to record other kinds of dependencies may also
be helpful.

Figure 4. Dependency graph for an application with ten components, illustrating an update cycle.

11.4. Solution: Augmenting the Application.

To apply the DCRC pattern to an application that satisfies the Context, we can aug-
ment the application with appropriate software mechanisms. For example, Figure 5 illustrates
how a solution can augment an application’s event handling to coalesce dependent events
into larger-grained events without modifying the underlying event-handling mechanisms.
Beginning with the application’s II architecture (shown in panel 1), a solution first deter-
mines the dependency relationships between the components (panel 2 and also Figure 4)
and then builds the corresponding dependency graph (panel 3). Then it can use the depen-
dency graph to rearrange the component updates in any order that satisfies the dependency
constraints (panel 4). In particular, the solution seeks to optimize the processing of an
update cycle by performing all the updates in the cycle (the shaded area in Figure 4) directly
as part of the processing of the first event.

The software mechanisms may include some combination of libraries, frameworks,
tools, and design and programming techniques. The various mechanisms should be
lightweight. That is, they should execute efficiently and should not require extensive
modifications to the existing application. The “software mechanisms” needed and the
meaning of “lightweight” depend on the application’s specific implementation technologies
and performance requirements.
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Figure 5. Three-step process to coalesce dependent events by augmenting the event processing.

For applications that satisfy the Context, a developer can augment the application’s
event-handling mechanisms to solve the Problem. In general, to construct a Solution, the
developer needs to design, implement, and install three primary software mechanisms: one
to build the dependency graph at startup of the application, one to rebuild the dependency
graph when needed during the application’s execution, and one to coalesce all the com-
ponent updates in an update cycle into a single event. The construction of these software
mechanisms involves an augmentation workflow with three phases:

1. Augmentation analysis, which requires analyzing the application to identify how to
add the necessary mechanisms;

2. Augmentation development, which requires developing (i.e., designing and implement-
ing) the mechanisms;

3. Augmentation incorporation, which requires incorporating the mechanisms into the
operation of the application.

Figure 6 summarizes the augmentation workflow, restating the tasks as questions to answer.
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(AN3) How to augment application to update dependency graph when component

architecture changes?
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supporting framework (which we cannot modify). We may also want to exclude any
component relationship if that relationship represents an expensive computation or an
arbitrary delay.

11.4.2. Solution: Augmentation Development

In the augmentation development phase, the solution developer must perform the three
tasks AD1, AD2, and AD3 to design and implement the new software mechanisms accord-
ing to the requirements specified in the augmentation analysis phase.

(AD1) Design and implement a lightweight run-time mechanism that enables the pro-
gram to differentiate between the components that are to be included in the
dependency graph and those that are not.

The task AD1 involves features already present in the application (e.g., types, value of
some property, metadata) or may involve modifying the application to add appropriate
features. For example, in an object-oriented system in which the components are objects,
we could modify the included components to implement a “marker interface” that can
be checked by reflection. The developer should establish a criterion to determine what to
include in the dependency graph and what to exclude. In general, this criterion can be
defined as a function that is called by the dependency graph-building procedure. It must
return a boolean value true if its argument should be inserted into the dependency graph
and otherwise return false.

(AD2) Design and implement a lightweight run-time mechanism that enables the pro-
gram to detect whether the component architecture or the dependencies among
the components have changed since the previous check (or since the beginning of
operation).

In this Context, the task AD2 assumes that a change to the hierarchical structure holding
the components likely means a change to the component architecture.

(AD3) Design and implement lightweight mechanisms to construct the dependency
graph initially and to reconstruct it when needed.

To build a dependency graph in task AD3, the program can traverse the hierarchical
structure (e.g., do a breadth-first traversal of the Document Object Model), placing each

Figure 6. Summary questions for the augmentation workflow.
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11.4.1. Solution: Augmentation Analysis

In the augmentation analysis phase, the solution developer must perform the three
tasks AA1, AA2, and AA3 to analyze the original application and define the requirements
for the new software mechanisms.

(AA1) Examine the hierarchical structure to identify how a program can iterate through
the components (i.e., accessing each component exactly once).

(AA2) Examine the design and implementation of the components and the features of the
implementation language to identify how a program can extract the dependency
relationships between the components at run time.

Task AA2 may involve the use of the existing features of the components or the
reflection capabilities of the implementation language. If sufficient capabilities do not exist,
we can design lightweight modifications that implement sufficient application-specific
capabilities.

(AA3) Examine the components and events to determine which of the relationships
between the components to include in the dependency graph and which to ex-
clude. To reduce transitional turbulence, the augmented application program can
manipulate the components and relationships included, but cannot manipulate
those excluded.

Generally speaking, in task AA3, we include the component relationships arising
from the application’s custom code (which we can modify if needed) and exclude those
in the supporting framework (which we cannot modify). We may also want to exclude
any component relationship if that relationship represents an expensive computation or an
arbitrary delay.

11.4.2. Solution: Augmentation Development

In the augmentation development phase, the solution developer must perform the
three tasks AD1, AD2, and AD3 to design and implement the new software mechanisms
according to the requirements specified in the augmentation analysis phase.

(AD1) Design and implement a lightweight run-time mechanism that enables the pro-
gram to differentiate between the components that are to be included in the
dependency graph and those that are not.

Task AD1 involves features already present in the application (e.g., types, value of
some property, metadata) or may involve modifying the application to add appropriate
features. For example, in an object-oriented system in which the components are objects,
we could modify the included components to implement a “marker interface” that can
be checked by reflection. The developer should establish a criterion to determine what to
include in the dependency graph and what to exclude. In general, this criterion can be
defined as a function that is called by the dependency graph-building procedure. It must
return a boolean value true if its argument should be inserted into the dependency graph
and otherwise return false.

(AD2) Design and implement a lightweight run-time mechanism that enables the pro-
gram to detect whether the component architecture or the dependencies among
the components have changed since the previous check (or since the beginning of
operation).

In this Context, the task AD2 assumes that a change to the hierarchical structure
holding the components likely means a change to the component architecture.

(AD3) Design and implement lightweight mechanisms to construct the dependency
graph initially and to reconstruct it when needed.

To build a dependency graph in task AD3, the program can traverse the hierarchical
structure (e.g., perform a breadth-first traversal of the Document Object Model), placing
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each component at a node and adding edges to other nodes according to the depends-on
relationships between components. However, it must prune the graph appropriately to
remove any cycles.

11.4.3. Solution: Augmentation Incorporation

In the augmentation incorporation phase, the solution developer must perform the
three tasks AN1, AN2, and AN3 to incorporate the new software mechanisms into the
original application. This phase builds on the results of the augmentation development
phase. Figure 7 shows how the augmented application can incorporate the three primary
software mechanisms into a typical object-oriented GUI application at run time.

Figure 7. Three-step process to incorporate the augmentation into an existing application.

(AN1) The application must construct the dependency graph at or before startup.

As shown in panel 1 of Figure 7, the augmentation process begins with an IMPLICIT

INVOCATION application modified with the basic mechanisms developed in augmentation
development task AD1. As shown in panel 2, it then uses the mechanisms developed in
task AD3 to build the initial dependency graph at startup.

(AN2) When some component C included in the dependency graph signals an event
E, the application must intercept E and directly call the procedures associated
with event E on all listening components as recorded in the dependency graph.
Then it must recursively apply the process to all events signaled by the listening
components. This continues as long as there are dependencies indicated in
the graph (which cannot have cycles). This process dynamically coalesces the
processing of chains of events into what is processed as one “large-grained” event.
The meaning of “intercept” depends on the specific application’s implementation
technologies.

As shown in panel 4 of Figure 7, the augmented system combines the updates of all
the components in the update cycle into a sequence of direct procedure calls. This coalesces
the processing of a whole chain of events into a single event.

(AN3) After processing each “large-grained” event in the previous step, the application
must check whether the application’s component architecture has changed (e.g.,
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the addition, modification, or deletion of any component in the hierarchical
structure) or the dependencies among components have changed. If so, then the
dependency graph must be updated appropriately to reflect the new component
architecture.

As shown in panel 3 of Figure 7, at the beginning of any update, the augmentation
process uses the mechanisms developed in augmentation development task AD2 to de-
termine whether the dependency graph needs to be rebuilt. If so, it uses the mechanisms
developed in task AD3 to rebuild the graph.

11.4.4. Solution: Balancing the Forces

In the Solution described above, we handle all the identified Forces. How do we
balance the various Forces to achieve this Solution?

Transitional Turbulence Reduction

For a state change in any component, the augmented application must propagate
the effects to all its directly or indirectly dependent components without the delays and
nondeterminism introduced by the normal event-handling system—as if all were part of
the processing of one large-grained event. This can decrease latency and increase accuracy
(i.e., decrease the number of errors).

Run-time Reconfiguration

Frequently during normal operation of the application, the augmented application
checks if its component architecture has changed. If it detects a change, it then reconstructs
the dependency graph to reflect the new architecture. The extra costs incurred in recon-
structing the dependency graph must not itself worsen the solution’s overall effect on the
latency and accuracy.

Changes to an application’s component architecture during normal operation can
increase latency and decrease accuracy. However, a good solution must dynamically adapt
to such changes and seek to mitigate the effects on latency and accuracy.

Startup Cost Inflation

When applying the pattern, developers should seek to keep the cost of initially con-
structing the dependency graph low. The developers should carefully select the components
to include in the analysis and use efficient methods to determine dependency relationships
and build the graph.

The augmented application likely incurs additional processing overhead at startup
and shutdown. In particular, the extra costs for constructing the initial dependency graph
should be small in proportion to the potential accuracy and performance gain in an appli-
cation that runs sufficiently long.

Operational Overhead Creep

The augmented application likely incurs additional processing overhead during nor-
mal operation, especially when the component architecture changes. In particular, the extra
costs for checking for changes in the component architecture and reconstructing the depen-
dency graph should be small in proportion to the potential accuracy and performance gain
in an application that runs sufficiently long. In cases in which the component architecture
changes infrequently, the augmented application should incur minimal costs.

Code Cluttering

To implement a solution, the developer must augment the existing application by
incorporating a set of software mechanisms as described above. Unfortunately, modifying
the application often complicates its design, implementation, testing, and use.

However, in a good design and implementation of the solution’s new software mecha-
nisms, it should be possible to readily augment the existing solution. Therefore, the new



Algorithms 2024, 17, 56 19 of 39

software mechanisms must be carefully designed, implemented, and documented so that
the solution can work well with typical application designs.

For example, for a typical GUI application, it should be possible to implement the
solution approach as a software framework with wrapper classes for the controls and a
library that implements the algorithms to build/reconstruct the dependency graph and
uses it to coalesce chains into “large-grained” events.

12. Putting the Elements in Standard Order

In Step 10 on the pattern writer’s path, we put the pattern elements in the standard
order as defined in Section 2. We seek to organize the DCRC pattern according to the
SINGLE-PASS READABLE [16], SKIPPABLE SECTIONS [16], and FINDABLE SECTIONS [16]
patterns. That is, we seek to write the pattern so that it flows smoothly from Context to
Consequences, capable of being read sequentially and understood in one pass. We also
seek to indicate the pattern’s elements clearly and enable readers to skip past elements or
detailed descriptions when they are trying to understand and use the pattern.

As shown in Appendix B, the full pattern description consists of the Pattern Name
from Section 10, the refined Context from Section 9, the Forces from Section 7, the refined
Solution from Section 11, and the Consequences from Section 6 restructured to show the
mapping from the Forces in Figure 3. For a presentation of the pattern separate from this
paper, it might be helpful to provide additional elements such as those suggested by the
GLOSSARY [16] and OPTIONAL ELEMENTS WHEN HELPFUL [16] patterns.

13. Applying the Pattern

In Sections 3–12, we elaborated the DCRC software pattern by following the steps on
the writer’s path, applying relevant pattern-writing patterns along the way. In this section,
we first demonstrate the technical feasibility and efficacy [4,39] of the DCRC pattern by
applying it to an arbitrary GUI application developed using C# and the built-in .NET GUI
framework.

A software pattern corresponds to a design science technological rule [40] of the form:

To solve an instance of the Problem in the Context apply the Solution.

Thus, to apply the DCRC pattern, we must show that the beginning application satisfies its
Context and Problem, then we modify the application as described by its Solution.

13.1. Satisfying the Context and Problem

Section 9 presented the DCRC pattern’s Context, which captures six characteristics
that must be satisfied by the problem’s environment. We list those below and identify the
features of a C#/.NET GUI application that satisfy each characteristic.

(C1) The application is constructed according to the IMPLICIT INVOCATION architectural
pattern, assuming nondeterministic but fair handling of events.

(C2) The application’s component architecture may change at run time. The application
organizes the components into a hierarchical structure. This structure may change
dynamically at run time as a result of external stimuli or the actions of components.

The structure and operation of the built-in event handling system of the C#/.NET
GUI follows the IMPLICIT INVOCATION architectural pattern. The GUI’s “components”
are its controls, each of which is represented by an object. The GUI arranges the objects
representing the controls into a hierarchical data structure internally, for example, the
Document Object Model (DOM) in a Web application. This data structure forms the
“component architecture”. It may change as the result of some action from outside the
GUI or by execution of the GUI’s controls themselves. Thus, a C#/.NET GUI application
satisfies the characteristics C1 and C2.

(C3) The application presents some aspects of its state that can be observed periodically
from outside the system. The timing of this presentation is not under the control of
the application.
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(C4) Because of the asynchronous nature of the application’s operation, the externally
observable presentation may exhibit periods of transitional turbulence.

A C#/.NET GUI application consists of controls that are executed asynchronously and
communicate through the event handling mechanism. Due to the fine-grained nature of
the events, it may be necessary to process many events to propagate the changes at one
control to all other controls. However, the display system operates independently from the
GUI and directly accesses the GUI’s data structures. Thus, a C#/.NET GUI application can
exhibit transitional turbulence and therefore satisfies characteristics C3 and C4.

(C5) Each component is an information-hiding module with a well-defined interface.
The only way to change or access its state explicitly is by calling one of its accessor
or mutator procedures (e.g., properties in some object-oriented languages).

In a C#/.NET GUI application, each control is an object that instantiates a class from
the Control class hierarchy. This object implements its class’s interface and encapsulates
(i.e., hides) all its attributes. Thus, the only way for another object to access or alter a
control’s internal state is to call a method on its interface. Some of the control’s methods
are associated with the operation of the event-handling system. Therefore, a control is an
“information-hiding module” with a well-defined interface [36,37,41]. Thus a C#/.NET GUI
application satisfies characteristic C5.

(C6) The application supports reflection capabilities. That is, application-level code can
examine the application’s features (such as its components, events, event handlers,
and hierarchical structure) at run time and extract metadata (such as names, types,
and the type signatures of the procedures in component interfaces).

The primary programming language of the .NET framework is the object-oriented
language C#. The language’s extensive reflection facilities enable a program to examine its
objects at run time and extract metadata about their features (e.g., the names, types, and
values of attributes, the names and type signatures of methods, the types of objects, and the
classes and interfaces extended by classes). Thus a C#/.NET GUI satisfies characteristic C6.

Therefore, a .NET GUI application satisfies the Context of the DCRC software pattern.
Now let us consider the pattern’s Problem element, which states:

We want to eliminate or reduce the length of the periods of transitional turbulence
during which the external presentation does not accurately reflect the state of the
application. We need to do this without sacrificing performance. The goal is to
better satisfy observers’ expectations by increasing the accuracy of the external
presentation.

As we noted above, a C#/.NET GUI application can exhibit transitional turbulence.
This can cause the GUI display to inaccurately reflect the state of the application for periods
of time. In some circumstances, we may want to eliminate or reduce the length of these
periods without sacrificing performance. Therefore, the DCRC pattern addresses a problem
that is relevant for C#/.NET GUI applications.

13.2. Constructing a Solution

Given an arbitrary GUI application that uses the built-in C#/.NET GUI framework
and satisfies the DCRC pattern’s Context and Problem elements, we now show how to
modify the application to achieve a Solution. Section 11 states the basic requirement in the
pattern’s Solution summary as follows:

A solution encodes the complex relationships among the application’s compo-
nents in a dependency graph and then uses the graph to order the updates of
the components without violating the dependency constraints. The goal is to
reorder the updates of the components so that the new order reduces transitional
turbulence without degrading the performance of the system.
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For a C#/.NET GUI application, we say that a control B “depends on” a control A if
the execution of A can directly affect a subsequent execution of B in any way. We form the
“dependency graph” by placing the controls at the nodes and adding a directed edge from
one node to another if the corresponding components have a depends-on relationship.

The pattern’s Solution calls for us to augment the C#/.NET GUI with “lightweight
software mechanisms” to reduce transitional turbulence without extensive modification
of the built-in event handling mechanism. The required mechanisms may include C#
interfaces, classes, methods, functions, data structures, or combinations thereof. The
pattern’s Solution element describes the construction of these software mechanisms using
an augmentation workflow consisting of three phases:

1. augmentation analysis, which requires analyzing the application to identify how to
add the necessary mechanisms

2. augmentation development, which requires developing (i.e., designing and imple-
menting) the mechanisms

3. augmentation incorporation, which requires incorporating the mechanisms into the
operation of the application

To show that we can construct the desired software mechanisms, we answer the questions
given in Figure 6.

13.2.1. Augmentation Analysis

In the augmentation analysis phase, we must perform the three analysis tasks AA1, AA2,
and AA3 given in Section 11.4.

(AA1) How can we enable a C#/.NET GUI application to iterate through its compo-
nents?

A GUI application provides a hierarchical collection of its controls. For a Web applica-
tion, this collection holds the Document Object Model (DOM). For a desktop application,
the Designer class holds a collection of controls as objects of class Control or one of its
subclasses. We can augment the application to iterate through this collection and examine
each of its controls, as task AA1 requires.

(AA2) How can we enable a C#/.NET GUI application to extract the dependency rela-
tionships between its components?

C#’s Type class enables a program to examine any of its objects and extract metadata
about their features, including the names and type signatures of its methods and the names,
types, and values of its attributes. We can augment the application to examine its control
objects to determine the dependency relationships among them, as task AA2 requires.

Suppose A and B are two controls in the GUI. If one of control A’s attributes holds a
reference to control B or one of A’s methods has a formal parameter of type B, then control B
depends on the control A.

(AA3) How can we enable a C#/.NET GUI application to select which components to
include in and exclude from its dependency graph?

We likely should exclude any control from the event processing optimization that we
cannot modify, such as a control that is part of of the .NET system or a third-party library.
We should also exclude any control that requires excessive execution time. We should
include all other controls, which we call the “reactive” controls. These controls and their
interrelationships must be included in the dependency graph.

To allow us to designate a control as reactive, we define a C# interface named
iReactive that declares a special event handling method reactiveUpdate(). We re-
quire that any class that implements iReactive defines an appropriate method body for
reactiveUpdate(). If we need to mark an existing control as reactive, we can “wrap” the
object with an instance of a class that implements iReactive. When the augmented appli-
cation builds the dependency graph, we can include all controls that implement iReactive
and exclude all those that do not.
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13.2.2. Augmentation Development

In the augmentation development phase, we must perform the three design and
implementation tasks AD1, AD2, and AD3 given in Section 11.4. In this phase, we use
the results of the augmentation analysis above to design and implement the mechanisms.
We then incorporate the resulting mechanisms into the GUI application as described in
Section 13.2.3.

(AD1) How can we design and implement a mechanism for a C#/.NET GUI application
to differentiate between the components to be included in and excluded from the
dependency graph?

We require that all reactive control objects implement the iReactive interface as
described in Section 13.2.1 above. We then develop a mechanism (e.g., a function) that uses
the C# reflection facilities to determine whether or not an object implements the iReactive
interface. (If an object does, it must be included in the dependency graph; if it does not, it
must be excluded from the dependency graph.)

(AD2) How can we design and implement a mechanism to detect whether a C#/.NET
GUI application’s component architecture or the dependencies among the com-
ponents have changed?

To determine whether the GUI has changed, we develop a mechanism to store a snap-
shot of the GUI’s structure at the beginning of an update cycle (as defined in Section 13.2.3
below). The snapshot consists of the dependency graph, where each node has a reference
to its associated control object. At the end of the update cycle, the mechanism must check
whether the GUI structure has changed since the beginning of the cycle. In particular, it
must detect GUI changes that modify existing dependencies or add new ones.

To determine whether there are changes in the dependencies, the mechanism must
examine each reactive control. If that control did not appear in the previous snapshot, then
the dependency graph is no longer valid. (To compare two control objects, a C#/.NET
program checks if they have the same name and type.) If that control did appear in the
previous snapshot and any of its dependencies have changed, then the dependency graph is
no longer valid. To check whether a control’s dependencies have changed, the mechanism
examines the control’s attributes and methods using C#’s reflection facilities. If any control
appears in the previous snapshot but not in the current GUI, then the dependency graph is
no longer valid. If nothing has changed from the previous snapshot, then the dependency
graph remains valid. If the dependency graph is no longer valid, then it needs to be rebuilt.

(AD3) How can we design and implement the mechanism to construct the dependency
graph initially and to reconstruct it when needed?

As discussed in Section 13.2.1 above, a .NET GUI consists of a hierarchical collection of
control objects. A C# program can iterate through this collection and examine each control
using C#’s reflection facilities. If some control object C implements the iReactive interface
(meaning it should be included in the dependency graph), then the mechanism inserts a
new node for C into the dependency graph. For every other control that depends on C, the
mechanism inserts a directed edge from that node to C’s node.

The algorithms are essentially the same for the initial construction of the dependency
graph and for the graph’s reconstruction because of a change in the GUI’s structure. The
reconstruction is different in that it only needs to iterate through the controls referenced by
the previous dependency graph.

13.2.3. Augmentation Incorporation

In the augmentation incorporation phase, we must perform the three application
augmentation tasks AN1, AN2, and AN3 given in Section 11.4. In this phase, we take the
software mechanisms developed in Section 13.2.2 above and incorporate them into the
GUI application.
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(AN1) How can we augment the C#/.NET GUI application to construct the dependency
graph at or before startup?

A C# GUI is an instance of the class Form or one of its subclasses. This class defines
an event handler method form_start() that executes during the Form’s instantiation—
after it instantiates all its controls but before it renders the form to the display. We mod-
ify this method to incorporate the construction of the dependency graph into the event
handling system.

To designate a Form as reactive, we define a C# interface named iUpdatable that
declares a form_start() method. We require that any class implementing iUpdatable
defines an appropriate method body for form_start(). Using the mechanisms devel-
oped in Section 13.2.2 above, this method must examine the GUI and construct the initial
dependency graph as an object in the Form subclass.

(AN2) How can we augment the C#/.NET GUI application to use the dependency graph
to coalesce the processing of chains of events into a “large-grained event”?

As discussed in Section 13.2.1, we define an interface iReactive that declares a spe-
cial event handler method reactiveUpdate(). Any Control subclass that implements
iReactive must define reactiveUpdate() to have appropriate behavior (which may in-
clude the behavior of the built-in event handler method Update()). The reactive control
class must also override the built-in Update() method so that it calls the reactiveUpdate()
method instead of the control’s standard event handling code.

If a reactive control responds to an external (e.g., user interaction) event, then the built-
in event handler method Update() must detect the external event and redirect its handling
to the augmented event handler method reactiveUpdate(). Based on the constraints in
the dependency graph, this method constructs a sequence of updates of the dependent
controls. Then it explicitly invokes the reactiveUpdate() methods of each control in the
sequence. This process thus propagates the effects of one external event throughout the
GUI. From the standpoint of the built-in event handling system, this whole sequence of
updates is executed as one “large-grained” event in the augmented GUI application.

(AN3) How can we augment the C#/.NET GUI application to update the dependency
graph when the component architecture changes during operation?

We must modify the application so that, at the end of the update cycle, it checks
whether the GUI structure has changed since the beginning of the cycle (as described in
Section 11.4.2 above). If the GUI has changed, we must rebuild the dependency graph
(using mechanisms from Section 11.4.2). We add this check to the augmented event handler
reactiveUpdate (as described above). It must do this immediately after inferring the
execution order from the dependency graph and calling the reactiveUpdate() methods
of the dependent controls.

13.3. Evaluating the Pattern

Section 13.1 argued that an arbitrary GUI application developed using C# and its
built-in .NET GUI framework satisfies the DCRC pattern’s Context and Problem ele-
ments. Section 13.2 then demonstrated how to modify that application to achieve a So-
lution. Furthermore, the original Marum et al .NET GUI case study [6,8] discussed in
Section 1 implemented and tested several such applications. Thus, the DCRC pattern is
technically feasible.

To investigate the efficacy of the pattern’s Solution in reducing transitional turbulence,
we can examine the results of the Marum et al. .NET GUI case study [8]. The case study
developed a library that embodied the solution approach. The library carries out the
dependency graph construction at startup, the graph’s reconstruction when needed, and
the coalescing of events at run time.

Using the library, the case study developed three different application scenarios
(i.e., three different, relatively complex self-completing forms) for the two different user
interface platforms (i.e., desktop and Web) and conducted a set of experiments comparing
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the unmodified .NET GUI applications against the augmented .NET GUI applications. The
experiments investigated how transitional turbulence and performance were affected. That
is, they evaluated how well the augmented applications balanced the Transitional Turbulence
Reduction force against the conflicting Startup Cost Inflation, Run-time Reconfiguration, and
Operational Overhead Creep forces.

The experiments measured the startup costs for each application [8]. The average
startup costs for the augmented .NET GUI applications was 2.6 times the average startup
costs of the corresponding unmodified applications (i.e., 55 ms versus 21 ms). Therefore, as
expected, there was Startup Cost Inflation that had to be mitigated by overall improvements
in performance and transitional turbulence reduction.

The experiments also measured the overall execution time for each application, which
included times for start-up, operational overhead, run-time reconfiguration, and component
execution [8]. The augmented .NET GUI applications executed in about half of the total
time required by the corresponding unmodified .NET GUI applications. Thus, for these
experiments, the Startup Cost Inflation, Run-time Reconfiguration, and Operational Overhead
Creep forces were appropriately balanced.

The experiments characterize transitional turbulence by determining the average
number of errors per cycle and the number of cycles required for transitional turbulence to
subside [6,8]. One of the application scenarios shows a decrease in the average errors per
cycle by 80% from the corresponding unmodified .NET GUI application to the augmented
.NET GUI application (i.e., from five errors to one). The other two application scenarios
showed only one error per cycle for both the unmodified or augmented .NET GUI applica-
tions. The three application scenarios showed that it took an average of 75% fewer cycles for
the transitional turbulence to subside in the augmented .NET GUI applications than it did
in the unmodified.NET GUI applications (i.e., one cycle instead of four). Therefore, these
experiments show that when transitional turbulence exists in an unmodified application,
the augmented application exhibits a reduction in transitional turbulence, which shows that
the three performance-related forces are in balance. The augmented applications decreased
both the transitional turbulence and the overall execution time.

The experiments did not measure to what extent the design and implementation of the
augmented applications became more complex [6,8]. However, by expressing the solution
as a separate library and a set of wrapper classes for the C#/.NET GUI components, the
augmented applications seem to have kept the added complexity small compared to the
significant improvements in transitional turbulence and overall performance.

These experiments indicate that the Solution provided by the DCRC pattern is ef-
ficacious in a variety of circumstances. That is, it can reduce transitional turbulence in
situations where it exists. In a separate case study, Marum et al. [5] demonstrated the
feasibility and efficacy of the solution approach for a variety of VR applications using
Unity3D. Of course, more experiments should be conducted on the C#/.NET GUI and
other applications of the pattern to explore the efficacy of the pattern more fully.

This research extracted the DCRC pattern from two specific Marum et al. case studies
and elaborated it systematically using the writer’s path. We sought to capture all the
assumptions the case studies made about the user interfaces and event-handling systems in
the Context element. As a result, we expect the pattern to be applicable to any application
that satisfies the Context.

In this section, we have argued that the DCRC pattern is applicable to an arbitrary
C#/.NET GUI application. We expect that it is also applicable in other situations (e.g., other
applications, languages, and user interface technologies) that satisfy the context. Additional
experimentation and evaluation will be needed to determine whether that is indeed the
case. If not, it may be necessary to evolve the pattern’s context and other elements to handle
the additional situations.
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14. Discussion

In this section, we reflect on this pattern-writing research, examine related work, and
suggest future research on the DCRC pattern and writer’s path methodology.

14.1. Evolving the Pattern

The final step on the pattern writer’s path is to evolve the pattern based on feedback
and experience. The patterns community [42] often uses a process called shepherding to
assist pattern writers [21,22]. This is a “process in which a pattern author receives feedback
from another, experienced pattern author” [15]. It is an iterative process in which the
experienced writer—the “shepherd”—gives feedback to the pattern’s author—the “sheep”.
Harrison’s THREE ITERATIONS [21] pattern suggests that approximately three rounds of
feedback and revision are required. Often, this coaching is associated with a conference
such as Pattern Languages of Programs (PLoP) [42].

We incorporated a feedback mechanism into our pattern writing process. The DCRC
pattern is being written by a diverse four-person team. Two members of the team have
expertise in software architecture and two in the application areas and technologies under-
lying the two case studies. The pattern authors include one member from each group, and
the pattern reviewers include the other member from each group. Three members of the
team were involved in the initial case studies [5,6] and one was unfamiliar with the case
studies before joining the team. The team seeks to further revise the DCRC pattern as it
gains more experience using the pattern and writing other patterns.

In the future, we plan to continue to evaluate the generality of the DCRC pattern by
conducting new case studies or replicating previous case studies using different program-
ming languages and user interface technologies. For example, we plan to replicate the .NET
GUI case study using Java and JavaFX [43,44] and the VR case study using C++ and the
CryEngine game engine [45].

In the DCRC pattern description, we seek to specify a design pattern with a relatively
broad context. It would have been easier for us to specify idioms for the narrower contexts
of C#/.NET and Unity3D by drawing on our understanding of the work in the Marum et
al. case studies [5,6,8]. As work on the pattern continues in the future, it may be useful to
specialize the general pattern to specific technologies, which may enable the definition of
related idioms that are much simpler and more straightforward to apply than the current
description of the DCRC pattern.

Software patterns are, in some sense, always works in progress that can incorporate
“deeper experience gained when applying patterns in new and interesting ways” [46].
In particular, they may be refined to form part of a pattern language—“a network of in-
terrelated patterns that defines a process for resolving software development problems
systematically”. A pattern language combines a vocabulary—a set of evocatively named
patterns—with a grammar—the rules for combining individual patterns into valid sequences
in which they can be applied.

A better understanding of the DCRC pattern may enable the definition of a network
of more specific patterns that can be woven into a pattern language [46–48]. For example,
the relatively complex Solution element suggests that refactoring into several fine-grained
patterns would be helpful. In addition, studying common variations of the event-driven,
IMPLICIT INVOCATION architecture and implementation platforms can potentially lead to a
family of related patterns.

14.2. Reflecting on the Writer’s Path Methodology

As our primary methodology for writing patterns, we adopted the writer’s path from
Wellhausen and Fiesser’s tutorial [15], integrating other established methods [16,20–22,46]
where helpful. The writer’s path is promoted as accessible to novice pattern writers.
However, we could not find detailed examples of its use, so we chose to record our steps
along the path systematically for the possible benefit of other pattern writers. This record
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also gives us the opportunity to identify challenges and issues for possible future research
related to the methodology.

• As we began to write the DCRC pattern, we observed that the Context, Problem, and
Solution elements were entangled with each other and with the incidental details of
the implementation technologies, the nature of the application domains, the specific
program implementations, and the history of their development. In future research,
we suggest that steps 1–3 on the writer’s path be refined further to help writers
articulate clear, precise Context, Problem, and Solutions descriptions at an appropriate
level of abstraction.

• To match the Forces with the Consequences, we found it necessary to refactor both
the Forces and the Consequences to ensure that the issues were covered in compatible
ways. In future research, we suggest that writer’s path steps 4–6 be enhanced to help
pattern writers identify the Forces and Consequences and state them compatibly.

• As stated in Section 11, the DCRC pattern’s Solution element is complex and, thus,
difficult to understand. In future research, we suggest that the writer’s path be refined
further to guide pattern writers in extracting essential information from existing
solutions, narrowing the scope, and simplifying the pattern description.

• As we were rewriting the Solution (in writer’s path Step 9), we found it necessary to
revise the Context to capture several subtle assumptions made by the full Solution
description (e.g., support for reflection). In future research, we suggest that the earlier
steps of the writer’s path be enhanced to help pattern writers identify the Solution’s
assumptions about the application’s environment.

• The writer’s path methodology does not currently address how to collect feedback
from users and incorporate changes into the pattern, except by repeating the relevant
steps. In future research, we suggest extending the methodology to guide pattern
writers during this maintenance phase of the pattern life cycle, in particular, on when
and how to evolve a pattern into a pattern language [46–48].

Although some researchers have begun efforts to better ground pattern writing in
the scientific method [49,50], our purpose in this paper is pragmatic. We use the pattern-
writing process to help us systematically deconstruct a set of related applications to reveal
their hidden common structure, separating the essential features of the solution from the
incidental features of the implementations. For the cases we studied, the writer’s path
enabled us to capture this structure and draft an appropriate software pattern. In the future,
it may be useful to revise the writer’s path methodology to incorporate the insights of
Riehle et al. [50], Iba [19], design science methodologists [4,40], and others.

14.3. Leveraging Related Research

There are many different variations of the IMPLICIT INVOCATION software pattern.
These include the simple OBSERVER [14], advanced OBSERVER [14], revisited OBSERVER [51],
EVENT NOTIFICATION [52], and PROPAGATOR [53] design patterns. Mijač et al. [29] eval-
uates these patterns extensively and finds “a great similarity between considered design
patterns, especially in their overall idea and intent”, but identifies “features that should
be considered when dealing with complex propagation scenarios.” In subsequent work,
Mijač et al. [4] proposes the REACTOR design pattern to include these improved features.
Mijač et al. [35] then incorporates these ideas into an application framework named RE-
FRAME, which “provides built-in abstractions, mechanisms and tools for handling reactive
dependencies” in the C#/.NET context.

Both the REACTOR and the DCRC design patterns place the dependency graph in a
central role, but the contexts of the two patterns differ. The DCRC pattern seeks to augment
an existing user interface implementation (such as one that uses the built-in C#/.NET GUI)
by adding software mechanisms that build the dependency graph and use it to reduce
transitional turbulence. Future enhancements to the DCRC can take advantage of insights
from the REACTOR pattern. Similarly, if restricted to specific languages and user interface
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technologies, the ideas of the DCRC pattern can potentially form the basis of an application
framework, as REFRAME does with the REACTOR pattern.

The Marum et al. case studies [5,6] included comparisons of (what we now call) the
DCRC solution approach with similar applications developed using the reactive program-
ming packages Sodium [9], Rx.NET [10], and UniRx [12]. In the future, these and other
reactive programming approaches [7] should be examined more closely to determine what
new ideas can be incorporated into a future revision of the DCRC pattern. Of interest are
approaches such as FrTime [3], functional reactive programming [32], FlapJax [33], Elm [30],
Distributed REScala [31], and DOM-based functional reactive programming [34].

Our primary focus in this paper has been on defining a pragmatic design pattern that
is useful to both practitioners and researchers. To date, we have not paid attention to formu-
lating a formal specification or model. However, the ongoing work to evolve the pattern’s
Solution could benefit from a better formal understanding of the IMPLICIT INVOCATION

architectural pattern and its variants. These have been the focus of formal methods research
using a variety of different formalisms, including Z notation [23], process algebra and trace
semantics [54], temporal logic [55], model checking [56,57], aspect-oriented programming
concepts [58], pattern contracts [59,60], category theory [61], and colored Petri nets [62].

15. Conclusions

Two recent studies addressed the problem of reducing transitional turbulence in appli-
cations developed in C# on .NET. The first investigated this problem in desktop and Web
GUI applications [6,8] and the second in virtual and augmented reality applications using
the Unity3D game engine [5]. The studies used similar solution approaches, but both were
somewhat embedded in the details of their applications and implementation platforms.

To answer question RQ1 posed in Section 1, we examined these two families of applica-
tions, extracted the common aspects of their problem definitions and solution approaches,
and codified this problem-solution pair as a new software design pattern named DYNAMI-
CALLY COALESCING REACTIVE CHAINS (DCRC). We developed the pattern incrementally
in Sections 3–12 and then demonstrated its technical feasibility and efficacy in Section 13.
In Section 14, we discuss related work and how the DCRC pattern might evolve in the
future. This pattern enables the problem-solving approach to be reused in a range of related
applications and implementation technologies. This work lays a foundation for further
research on transitional turbulence and related software architecture issues.

To answer question RQ2 posed in Section 1, we adopted the writer’s path methodology
from Wellhausen and Fiesser’s tutorial [15] to write new software patterns in a step-by-step
manner. We outlined the writer’s path in Section 2 and then, in Sections 3–12, followed
the path systematically to write the DCRC pattern, carefully recording our reasoning
at each step. In Section 14, we discuss related work and possible future enhancements
to the writer’s path methodology. There are many published patterns, but few well-
documented examples of how those patterns were written. The writer’s path methodology
and detailed example in this paper can assist future pattern writers in navigating through
the complications and subtleties of the pattern-writing process. By examining the use of
the methodology in this example, we also identified ways in which the methodology itself
can be improved.

Writing software patterns is a pragmatic art that has been practiced successfully for
more than three decades. It is not possible to capture all the useful processes for pattern
writing in one simple software engineering methodology. Even if that were possible, it
probably would not match the thinking styles of all software engineers. However, carefully
worked examples with thoughtful reflection on the thinking processes involved can be
quite useful to others who seek to write or update patterns. That was a motivation for this
paper’s attention to detail.
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Appendix A. Examining Two Existing Solutions

In Step 2 on the pattern writer’s path, we examine existing solutions. Our primary
objective in writing a new pattern is to unify the solutions that emerged from two related
case studies:

• Dynamic Web and desktop graphical user interface (GUI) applications implemented
with C# on the .NET platform [6,8]

• Dynamic virtual reality (VR) and augmented reality (AR) applications implemented
in the Unity3D game engine using C# [5].

Appendix A.1. Dynamic GUI Application

In the first case study, Marum et al. [6,8] explored the issue of transitional turbulence
occurring in Web and desktop GUI applications implemented with C# on the .NET platform.

In this environment, a GUI consists of a loosely coupled collection of controls (i.e., the
components in the IMPLICIT INVOCATION architectural pattern). Each control responds
to events in which it is “interested”. A response to an event may result in the control
changing its state and triggering new events that notify other controls of the state change.
Thus, one control responding to one event may trigger chains of events affecting several
other controls in the GUI. In complex cases, these event chains may be long; reaching
a stable state may require the processing of many events. The propagation of events
is performed by an event-handling layer of the system, not by the controls themselves.
Therefore, from the perspective of an application developer, the order in which events are
handled is nondeterministic.

Although a GUI’s controls are loosely coupled from a communication perspective, an
implementation usually arranges them into some hierarchical data structure. For example,
the controls within a Web-based GUI are organized by the Document Object Model (DOM)
within a browser. Similarly, controls within a C# desktop GUI are organized by a separate
class named Designer; this class abstracts the user interface’s visual representation and
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contains a hierarchical set of controls. The display system uses these data structures when
it periodically renders the GUI on the screen.

This is where transitional turbulence can arise. The processing of a long chain of events
may span several cycles of the display system. A control may be rendered with a state
that is inconsistent with the states of other controls. This may result in displays that are
temporarily inaccurate or misleading from the perspective of a human user’s expectations
of the user interface’s behavior. To combat this problem, this case study developed a
reactive programming [7] approach that analyzes the complex relationships among the
GUI controls, encodes these dependencies into a dependency graph, and then uses the
graph to rearrange the updates of the controls in an order consistent with the dependency
constraints. It builds the graph when the GUI starts up and then rebuilds it whenever
it detects that the dependencies might have changed. The approach thus coalesces the
processing of a chain of what may be several events in the unmodified system into a single
large-grained event that updates the states of many controls at once.

Due to the nature of the display system, the approach cannot totally eliminate the
transitional turbulence that can cause inaccurate or misleading displays. However, coa-
lescing multiple events into large-grained events does potentially decrease the number
of inaccuracies displayed for the rendered state of the system by simplifying the isolated
updates of each individual component of the system and agglutinating them into larger
execution flows consisting of several components linked into a chain. So, even though
the approach makes the code more complex, it flattens the multiple execution flows into a
single flow while maintaining the overall performance of the system in terms of starting
and update processing times.

To evaluate the approach, this case study developed a prototype library and used it
to perform several experiments [6,8]. The experiments involved both desktop and Web
versions of three different forms that self-complete (i.e., compute the values in some fields
from values supplied in other fields). The experiments performed an automated test a
large number of times on each form and measured the startup time, the total time, and the
total number of inaccuracies (i.e., errors) when compared against the predicted visual and
overall state of the system after the chain of events occurred. Marum et al. [6,8] compared
the approach with other approaches that used the .NET GUI library. Figure A1 shows,
in general, how the case study’s approach constructs the dependency graph for this GUI
application and modifies the GUI’s event handling mechanism accordingly.

Figure A1. Constructing a dependency graph for the dynamic GUI and determining a new
update order.

The experiments indicate that, on average, the approach requires less total time and
exhibits fewer visual inaccuracies, at the cost of a modest increase in startup time compared
to the three alternatives. Each application developed with the prototype library required
approximately 2.6 times as much time to start up as the corresponding unmodified .NET
application required. However, it was able to complete the entire chain of form updates in
about half of the time the corresponding unmodified .NET application required. Further-
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more, it exhibited significantly fewer visual inaccuracies for complex self-completion forms
than the corresponding unmodified .NET application exhibited. Based on the results of
their experiments, they concluded that their approach improves performance and results
in a more accurate behavior in many situations.

The Marum et al. solution approach seems to work well for the kind of problems
envisioned and the technologies used in the first case study [6,8]. Given how the approach
works, it seems reasonable that it will work for other applications requiring similar solutions.
In the next subsection, we examine a related case study that uses somewhat different
technologies, seeking a more precise understanding of the general solution and the problem
it solves.

Appendix A.2. Dynamic VR Applications

In the second case study, Marum et al. [5] extended and systematized the research
from a preliminary study [64] conducted a few months earlier. This preliminary work also
motivated the case study that we examined in the previous subsection.

The case study sought to eliminate the instability corresponding to the transitional
turbulence that occurs in virtual reality (VR) and augmented reality (AR) applications
implemented with C# in the popular Unity3D game engine [11]. These applications
are inherently reactive and nondeterministic with respect to how and when the internal
mechanism will execute such events and eventually deliver the resulting state.

Whenever multiple game objects in the simulated scene interact with each other, it may
take several cycles for the VR/AR application to update the states of all components and
reach stability. As we discuss for the first case study, this is called transitional turbulence or,
sometimes, the “ripple effect”. Transitional turbulence can result in inconsistencies in what
is displayed for the user, which may lead to inconsistent and misleading states within the
VR/AR application, making the entire application seem unreliable and unpredictable. The
approach focuses on reordering the execution of events so that the “ripple effect” can often
be resolved within one update cycle.

Much of the nondeterminism is due to the unpredictable nature of the user interactions,
but some of it is due to the lack of the application developer’s control over some aspects of
the execution, especially those aspects affecting the order in which events and the responses
to those events occur in the system. The removal of this type of nondeterminism yields a
more accurate system.

This study shows that Unity3D does not provide a mechanism for controlling the
order of execution. Marum et al. [5] argues that the ability to change the execution order
of components—and, consequently, to enable the correct ordering of the components’
executions in a scene graph—is key to achieving highly accurate systems. To be perceived
as accurate, simulated interactions must occur in the same order as the interactions would
occur in the corresponding real-world situation. If they do not, then the simulation does
not seem realistic to the user. Consider a domino chain. When the first domino falls, the
second should fall when the weight of the first domino causes it to fall. The third falls
similarly, and so forth throughout the chain. If any one of these falls is shown incorrectly,
the whole simulated sequence is likely to be perceived as unrealistic.

As in the dynamic GUI case study, this case study developed a reactive programming
approach to mitigate the transitional turbulence problems. This approach analyzes the
complex relationships among the game objects present in the scene hierarchy, encodes
these dependencies in a dependency graph, and then uses the graph to rearrange the
updates in an order consistent with the dependency constraints. It builds the graph when
the application starts up and then rebuilds it whenever it detects that the dependencies
might have changed. The approach thus coalesces the processing of a chain of what may be
several events in the unmodified system into a single, large-grained event that updates the
states of many controls at once. As in the previous case study, because of the nature of the
display system, the approach cannot totally eliminate the transitional turbulence that can
cause inaccurate or misleading displays, but coalescing multiple events into large-grained
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events does potentially decrease the number of inaccuracies and increase the system’s
performance.

To evaluate the approach, this case study developed a prototype library and used it
to perform several experiments [5]. The experiments involved a three-way comparison
among Unity3D applications using their approach, the built-in Unity3D event system, and
UniRx, the Reactive Extensions library for the Unity3D platform [12]. Figure A2 shows, in
general, how the case study constructs a dependency graph for this VR application and
modifies the game scene accordingly.

Figure A2. Three-step augmentation of a dynamic VR application using the design pattern’s model.

The experiments used a test scenario built around an expression evaluator to demon-
strate how the update order of the game objects affects the interactions among the game
objects. The test scenario represented the expression as a game tree with an operator at
each internal node with its operands as its subtrees. The values are at the leaf nodes. For
the correct value of the expression to be calculated, the operand subtrees must be evaluated
before the corresponding operator. To determine the effects of reconfiguration of Unity3D’s
game tree, the experiments include (a) tests that kept the expression tree stable throughout
the run and (b) tests that randomly introduced changes in the tree’s structure during the
test run. For each test run, the experiment measured the startup time, latency, and total
errors during the run and computed the average startup time, latency, errors per cycle,
errors that resulted in a visibly inaccurate state, and the number of miscalculations that
occurred in a test that failed. The experiments indicate that, on average, the approach
exhibited a shorter latency and fewer errors, at the cost of a modest increase in the startup
time compared to the other two alternatives. Marum et al. [5] concluded that the approach
improves performance and results in more accurate behavior.

Thus, the Marum et al. solution approach also seems to work well for the types of
problem envisioned and the technologies used in the second case study [5]. In Sections 4–15,
Appendixs A.2 and A.2, the task is to identify the commonalities of the two specific solutions
and codify a general, technology-independent approach as a new design pattern.
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Appendix B. Final Design Pattern

Appendix B.1. Pattern Name

DYNAMICALLY COALESCING REACTIVE CHAINS

Appendix B.2. Context

(C1) The application is constructed according to the IMPLICIT INVOCATION architectural
pattern, assuming nondeterministic but fair handling of events.

(C2) The application’s component architecture may change at run time. The application
organizes the components into a hierarchical structure. This structure may change
dynamically at run time as a result of external stimuli or the actions of components.

(C3) The application presents some aspects of its state that can be observed periodically
from outside the system. The timing of this presentation is not under the control of
the application.

(C4) Because of the asynchronous nature of the application’s operation, the externally
observable presentation may exhibit periods of transitional turbulence.

(C5) Each component is an information-hiding module with a well-defined interface.
The only way to change or access its state explicitly is by calling one of its accessor
or mutator procedures (e.g., properties in some object-oriented languages).

(C6) The application supports reflection capabilities. That is, application-level code can
examine the application’s features (such as its components, events, event handlers,
and hierarchical structure) at run time and extract metadata (such as names, types,
and the type signatures of the procedures in component interfaces).

Appendix B.3. Problem

We want to eliminate or reduce the length of the periods of transitional turbulence
during which the external presentation does not accurately reflect the state of the applica-
tion. We need to do this without sacrificing performance. The goal is to better satisfy the
observers’ expectations by increasing the accuracy of the external presentation.

Appendix B.4. Forces

Transitional Turbulence Reduction: We want to decrease the transitional turbulence in the
application’s execution to better satisfy the observers’ expectations.

Run-time Reconfiguration: We want to adapt to changes in an application’s component
architecture at run time.

Startup Cost Inflation: We want to avoid adding significant startup or shutdown costs.

Operational Overhead Creep: We want to avoid adding significant processing overhead dur-
ing the application’s normal operation.

Code Cluttering: We want to avoid significantly complicating the application’s design, im-
plementation, testing, or use.

Appendix B.5. Solution

Appendix B.5.1. Solution: Summary

A solution encodes the complex relationships among the application’s components
in a dependency graph, and then uses the graph to order the updates of the components
without violating the dependency constraints. The goal is to reorder the updates of the
components so that the new order reduces transitional turbulence without degrading the
performance of the system.

Appendix B.5.2. Solution: Definitions

What do we mean by a “dependency graph” in this context?
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• If the execution of some component X of an application can directly affect a subsequent
execution of some other component Y in any way, then Y depends on X. For example, X
might trigger an event for which Y listens; change the value of some attribute of its
state that Y accesses; directly call one of Y’s mutator procedures; or create, delete, or
modify Y.

• A dependency graph is a directed acyclic graph formed by placing the components at
the nodes and adding a directed edge from some component Y to some component X
only if Y depends on X.

Figure 4 shows a dependency graph for an application with ten components named
with the upper case letters A through J and directed edges from every component to every
other component on which it is directly dependent. The shaded area of the figure includes
the six other components that are directly or indirectly dependent on component A. Any
change in the state of component A may require changes in all other components in the
shaded area. If each edge is implemented as an event, then six independent events must be
processed to propagate the changes to all dependent components. This is the update cycle.
The event handling system processes these events in a nondeterministic order, interleaved
with any other pending events.

To apply the DCRC pattern, we are primarily interested in recording the dependencies
related to the implicit invocations—between components that listen for an event and those
that trigger the event. Of course, being able to record other kinds of dependencies may also
be helpful.

Appendix B.5.3. Solution: Augmenting the Application.

To apply the DCRC pattern to an application that satisfies the Context, we can aug-
ment the application with appropriate software mechanisms. For example, Figure 5 illustrates
how a solution can augment an application’s event handling to coalesce dependent events
into larger-grained events without modifying the underlying event-handling mechanisms.
Beginning with the application’s II architecture (shown in panel 1), a solution first deter-
mines the dependency relationships between the components (panel 2 and also Figure 4)
and then builds the corresponding dependency graph (panel 3). Then it can use the depen-
dency graph to rearrange the component updates in any order that satisfies the dependency
constraints (panel 4). In particular, the solution seeks to optimize the processing of an
update cycle by performing all the updates in the cycle (the shaded area in Figure 4) directly
as part of the processing of the first event.

These software mechanisms may include some combination of libraries, frameworks,
tools, and design and programming techniques. The various mechanisms should be
lightweight. That is, they should execute efficiently and should not require extensive
modifications to the existing application. The “software mechanisms” needed and the
meaning of “lightweight” depend on the application’s specific implementation technologies
and performance requirements.

For applications that satisfy the Context, a developer can augment the application’s
event-handling mechanisms to solve the Problem. In general, to construct a Solution, the
developer needs to design, implement, and deploy three primary software mechanisms:
one to build the dependency graph at startup of the application, one to rebuild the de-
pendency graph when needed during the application’s execution, and one to coalesce all
the component updates in an update cycle into a single event. The construction of these
software mechanisms involves an augmentation workflow with three phases:

1. Augmentation analysis, which requires analyzing the application to identify how to add
the necessary mechanisms;

2. Augmentation development, which requires developing (i.e., designing and implementing)
the mechanisms;

3. Augmentation incorporation, which requires incorporating the mechanisms into the
operation of the application.
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Figure 6 summarizes the augmentation workflow, restating the tasks as questions to answer.

Solution: Augmentation Analysis

In the augmentation analysis phase, the solution developer must perform the three
tasks AA1, AA2, and AA3 to analyze the original application and define the requirements
for the new software mechanisms.

(AA1) Examine the hierarchical structure to identify how a program can iterate through
the components (i.e., accessing each component exactly once).

(AA2) Examine the design and implementation of the components and the features of the
implementation language to identify how a program can extract the dependency
relationships between the components at run time.

Task AA2 may involve the use of the existing features of the components or the
reflection capabilities of the implementation language. If sufficient capabilities do not exist,
we can design lightweight modifications that implement sufficient application-specific
capabilities.

(AA3) Examine the components and events to determine which of the relationships
between the components to include in the dependency graph and which to ex-
clude. To reduce transitional turbulence, the augmented application program can
manipulate the components and relationships included, but cannot manipulate
those excluded.

Generally speaking, in task AA3 we include the component relationships arising from
the application’s custom code (which we can modify if needed) and exclude those in the
supporting framework (which we cannot modify). We may also want to exclude any
component relationship if that relationship represents an expensive computation or an
arbitrary delay.

Solution: Augmentation Development

In the augmentation development phase, the solution developer must perform the
three tasks AD1, AD2, and AD3 to design and implement the new software mechanisms
according to the requirements specified in the augmentation analysis phase.

(AD1) Design and implement a lightweight run-time mechanism that enables the pro-
gram to differentiate between the components that are to be included in the
dependency graph and those that are not.

Task AD1 involves features already present in the application (e.g., types, value of
some property, metadata) or may involve modifying the application to add appropriate
features. For example, in an object-oriented system in which the components are objects,
we could modify the included components to implement a “marker interface” that can
be checked by reflection. The developer should establish a criterion to determine what to
include in the dependency graph and what to exclude. In general, this criterion can be
defined as a function that is called by the dependency graph-building procedure. It must
return a boolean value true if its argument should be inserted into the dependency graph
and otherwise return false.

(AD2) Design and implement a lightweight run-time mechanism that enables the pro-
gram to detect whether the component architecture or the dependencies among
the components have changed since the previous check (or since the beginning of
operation).

In this context, task AD2 assumes that a change to the hierarchical structure holding
the components likely means a change to the component architecture.

(AD3) Design and implement lightweight mechanisms to construct the dependency
graph initially and to reconstruct it when needed.
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To build a dependency graph in task AD3, the program can traverse the hierarchical
structure (e.g., do a breadth-first traversal of the Document Object Model), placing each
component at a node and adding edges to other nodes according to the depends-on relation-
ships between components. However, it must prune the graph appropriately to remove
any cycles.

Solution: Augmentation Incorporation

In the augmentation incorporation phase, the solution developer must perform the
three tasks AN1, AN2, and AN3 to incorporate the new software mechanisms into the
original application. This phase builds on the results of the augmentation development
phase. Figure 7 shows how the augmented application can incorporate the three primary
software mechanisms into a typical object-oriented GUI application at run time.

(AN1) The application must construct the dependency graph at or before startup.

As shown in panel 1 of Figure 7, the augmentation process begins with an IMPLICIT

INVOCATION application modified with the basic mechanisms developed in augmentation
development task AD1. As shown in panel 2, it then uses the mechanisms developed in
task AD3 to build the initial dependency graph at startup.

(AN2) When some component C included in the dependency graph signals an event
E, the application must intercept E and directly call the procedures associated
with event E on all listening components as recorded in the dependency graph.
Then it must recursively apply the process to all events signalled by the listening
components. This continues as long as there are dependencies indicated in
the graph (which cannot have cycles). This process dynamically coalesces the
processing of chains of events into what is processed as one “large-grained” event.
The meaning of “intercept” depends on the specific application’s implementation
technologies.

As shown in panel 4 of Figure 7, the augmented system combines the updates of all
the components in the update cycle into a sequence of direct procedure calls. This coalesces
the processing of a whole chain of events into a single event.

(AN3) After processing each “large-grained” event in the previous step, the application
must check whether the application’s component architecture has changed (e.g.,
the addition, modification, or deletion of any component in the hierarchical
structure) or the dependencies among components have changed. If so, then the
dependency graph must be updated appropriately to reflect the new component
architecture.

As shown in panel 3 of Figure 7, at the beginning of any update, the augmentation
process uses the mechanisms developed in augmentation development task AD2 to de-
termine whether the dependency graph needs to be rebuilt. If so, it uses the mechanisms
developed in task AD3 to rebuild the graph.

Appendix B.5.4. Solution: Balancing the Forces

In the Solution described above, we handle all the identified Forces. How do we
balance the various Forces to achieve this Solution?

Transitional Turbulence Reduction

For a state change in any component, the augmented application must propagate
the effects to all its directly or indirectly dependent components without the delays and
nondeterminism introduced by the normal event-handling system—as if all were part of
the processing of one large-grained event. This can decrease latency and increase accuracy
(i.e., decrease the number of errors).
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Run-time Reconfiguration

Frequently during normal operation of the application, the augmented application
checks if its component architecture has changed. If it detects a change, it then reconstructs
the dependency graph to reflect the new architecture. The extra costs incurred in recon-
structing the dependency graph must not itself worsen the solution’s overall effect on the
latency and accuracy.

Changes to an application’s component architecture during normal operation can
increase latency and decrease accuracy. However, a good solution must dynamically adapt
to such changes and seek to mitigate the effects on latency and accuracy.

Startup Cost Inflation

When applying the pattern, developers should seek to keep the cost of initially con-
structing the dependency graph low. The developers should carefully select the components
to include in the analysis and use efficient methods to determine dependency relationships
and build the graph.

The augmented application likely incurs additional processing overhead at startup
and shutdown. In particular, the extra costs for constructing the initial dependency graph
should be small in proportion to the potential accuracy and performance gain in an appli-
cation that runs sufficiently long.

Operational Overhead Creep

The augmented application likely incurs additional processing overhead during nor-
mal operation, especially when the component architecture changes. In particular, the extra
costs for checking for changes in the component architecture and reconstructing the depen-
dency graph should be small in proportion to the potential accuracy and performance gain
in an application that runs sufficiently long. In cases in which the component architecture
changes infrequently, the augmented application should incur minimal costs.

Code Cluttering

To implement a solution, the developer must augment the existing application by
incorporating a set of software mechanisms as described above. Unfortunately, modifying
the application often complicates its design, implementation, testing, and use.

However, in a good design and implementation of the solution’s new software mecha-
nisms, it should be possible to readily augment the existing solution. Therefore, the new
software mechanisms must be carefully designed, implemented, and documented so that
the solution can work well with typical application designs.

For example, for a typical GUI application, it should be possible to implement the
solution approach as a software framework with wrapper classes for the controls and a
library that implements the algorithms to build/reconstruct the dependency graph and
uses it to coalesce chains into “large-grained” events.

Appendix B.6. Consequences

Appendix B.6.1. Benefits

• Transitional Turbulence Reduction: A solution coalesces sets of dependent internal events
into “large-grained” events such that the handling of a large-grained event causes the
same overall state change as the corresponding set. This can decrease latency and
increase accuracy (i.e., decrease the number of errors).

• Run-time Configuration: A solution dynamically adapts to changes in an application’s
component architecture at run time.

• Code Cluttering: An application can be readily adapted to use the mechanisms that
implement the solution.
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Appendix B.6.2. Liabilities

• Run-time Reconfiguration: Changes to an application’s component architecture at run
time can increase latency and decrease accuracy.

• Startup Cost Inflation: Implementing a solution often causes additional processing
overhead at startup and shutdown of the application.

• Operational Overhead Creep: Implementing a solution often causes additional run-time
processing overhead, especially when the component architecture changes.

• Code Cluttering: An application must be adapted to use the mechanisms that implement
the solution. Modifying the application often complicates its design, implementation,
testing, or use.
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