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Abstract: The binary number system is the basic number representation in computing. We can
encode natural numbers with finite 0-1 sequences. The representation of natural numbers is based on
this system. However, this poses problems and is technically not perfect. Several attempts have been
made to handle integers (signed numbers). We mention only two: the balanced triple number system
and the number system with base −2. Our paper introduces new possibilities. We also shed light on
the graph theoretical background of the new number systems.
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1. Introduction

Positional number systems are fundamental in mathematics (see [1]). The development
and spread of the number system with base 10 is a major achievement of ancient/medieval
mathematics. The advent of computers gave special importance to the number system with
base 2. These number systems encode natural numbers as a finite sequence of digits. The
positions in a sequence of digits are local values weighted by the digits. The sum of these
weighted values is a number, coded by the representation.

In the number system with base 2, the digits are 0/1 (they are called bits), and the
values of the positions are . . ., 16, 8, 4, 2, 1. This basic theorem of the binary system can be
formulated as follows.

Theorem 1. Every natural number can be written uniquely as the sum of distinct powers of two,
where the order of the members of the sum does not matter.

First note that the empty sum is also considered; its value is 0. The value of a sum
with one term is the value of the only term. Second, we eliminate the freedom in the order
of the terms by listing them following increasing order, that is, writing down the number n

n = 2α + 2β + . . . + 2ω, where α > β > . . . > ω.

The digits 0 do not contribute to the value; hence, we do not include them in the sum.
The ternary number system can be introduced in a similar way. In the number system

with base 3, the digits are 0, 1, and 2, and the local values are . . ., 81, 27, 9, 3, 1.
The decimal number system can be discussed similarly. All number systems are

suitable for the unique encoding of natural numbers. If we want to consider integers,
the usual method is to introduce signed numbers. Following a +/− sign, we encode the
absolute value of a number. The mathematical beauty is somewhat compromised: +0 and
−0 are two codes for the same number.

It helps if you use negative digits. Then, the positive/negative numbers can be handled
homogeneously. This option was first published by J. Colson ([2]). Later, independently,
A. Cauchy [3] also discovered this possibility. A survey on the subject was published in
Kvant ([4]).

Algorithms 2024, 17, 55. https://doi.org/10.3390/a17020055 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17020055
https://doi.org/10.3390/a17020055
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-8487-233X
https://doi.org/10.3390/a17020055
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17020055?type=check_update&version=1


Algorithms 2024, 17, 55 2 of 11

If we have digits {−1, 0, 1} (or more generally, a subset of the integers that is closed
under taking opposite), then the sign change will be the sign changes of the digits. This
advantage was also noticed by Shannon [5].

When designing multiple computer architectures, this advantage was considered ([6–
13]). The digits −1, 0, and 1 can be called trits. Their technical realization is possible. Two
early architectures build on this ([12–14]). Many have looked in more depth at the ternary
computers ([15,16]). Currently, binary architecture—thanks to its explosive development—
is the single dominant technology.

We highlight two possibilities where integers are represented by a finite sequence of
−1/0/1 digits.

The first is the balanced ternary system. In this number system, the digits −1, 0, 1
are powers of 3 of the local values ([17]). The advantage of this number system is that
all integers can be represented and the representation is unique. Donald Knuth’s well-
known statement, in his excellent book ([18]), describes this system as ”Perhaps the prettiest
number system of all is the balanced ternary notation,. . .”

The second is the negabinary. Here, the number system is based on −2. The local
values are the powers of −2, and the digits 0 and 1. We can expand (−2)α and consider it
as 2α with a possible sign.

For further systems, see [19–22].
In this note, we propose several new numeral systems based on our main theorem,

Theorem 2. We present six options to produce a scheme for a unique representation of
integers. In spite of their simplicity, I was able to find only one of them in the literature ([20]).

We call the new number system the alternating binary number system. The idea is that
the local values are the same as in the binary system: . . ., 16, 8, 4, 2, 1 (the powers of two).
The digits are −1/0/1. Our main addition assumption is that the non-zero digits must
alternate. The representation of a given integer using the above rules will be ambiguous.
But this ambiguity is limited: all non-zero integers will have exactly two representations.
The basic theorem of our paper is the following statement.

Theorem 2. Every non-zero integer n has exactly two representations as

n = sα2α + sβ2β + . . . + sψ2ψ + sω2ω,

where α > β > . . . > ψ > ω, si ∈ {−1, 1}, for i = α, . . . , ω; furthermore, any two consecutive
signs differ.

Alternation means the sα = sγ = . . . and sβ = . . . = −sα.
In exactly one of the two forms, ψ is undefined or ψ > ω + 1 (this is called type I). The other

has at least two terms and ψ = ω + 1 (this is called type II).

The theorem implies a new numeral system, a new coding of integers with a finite
sequence of digits. The sum of the theorem contains the non-zero digits of an alternating
binary representation. As usual, we write 1̄ instead of the −1 digit. The 1̄ and 1 digits are
at the corresponding location of the code. The powers of two, which are not present at the
sum, correspond to 0 digits. For example,

2023 = 2048 − 32 + 8 − 1 = 211 − 25 + 23 − 20 = 1000001̄01001̄alt-bin.

The digit associated with sα2α is the first digit of the code, which is referred to as the
most significant digit. A single 0 digit is the code of the empty sum: 0 = 0alt-bin. Given a
representation/code, a sequence of digits, the number n, can be decoded.

Although uniqueness is not true, the two representations are strongly related. One
representation ends with s · (2ω+1 − 2ω). The other ends with s · 2ω. Otherwise, the two
representations are the same.

In the next section, we give a proof of this. We briefly mention several conventions
which lead to a unique representation.
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Finally, we provide the graph theoretical explanation of our main theorem. This is a
crucial part of our paper. It can be seen that there are numerous ways to design number
systems. After describing the number system, it is no longer difficult to understand the
existence and uniqueness of the representation. In some cases, the existence and uniqueness
can be automated ([23,24]). We present the path we took to introduce our number system.

In this paper, N denotes the natural of natural numbers {0, 1, 2, . . .}, Z denotes the set
of integers, and N+ denotes the set of positive integers.

2. The Proof of Theorem 2

The proof will be a simple series of simple claims and their proof.
1. Suppose that

sα2α − sα2β + sα2γ ∓ . . .

is a non-empty alternative binary representation of the number n. Then, n is not 0 and its
sign is equal to the sign of sα.

Indeed,
n = sα(2α − 2β) + sα(2γ − 2δ) + . . . ,

where the “brackets” are positive. (Brackets contain two terms, with the possible exception
of the last one which might have only one term.)

2. 0 has a single representation, the empty sum.
3. It is enough to prove the theorem for positive integers, assuming that the most

significant digit is +1.
4. Let n be a positive integer and take an alternative binary representation of it with

ℓ(> 0) terms. Consider the representation first k(< ℓ) of the representation and denote
their sum by Sk. If k is even, then Sk < n. If k is odd, then Sk > n.

Indeed,
n = (2α − 2β) + (2γ − 2δ) + . . . = 2α − (2β − 2γ)− . . . ,

where the “brackets” have positive values.
5. Each positive integer n has an alternating binary representation.
Let us write down n in the binary number system, i.e., as the sum of different powers

of two (with strictly decreasing order of exponents). Substitute 2k+1 − 2k for each power
of two: 2k. We obtain a new representation of our initial number as the sum of signed
powers of two; furthermore, the signs alternate. The exponents will be decreasing but
not strictly decreasing. There can be only two powers of the same exponent, they must
follow each other, and they must have different signs. Thus, they cancel. By performing the
cancellations, we obtain a representation of our starting number in the alternating binary
number system.

6. Let n be a power of two, i.e. n = 2k for a suitable natural number k. Then, n has
exactly two alternating binary binary representations: 2k and 2k+1 − 2k.

We know (4.) that 2α−1 ≤ 2α − 2β ≤ n ≤ 2α.
7. If n is between two consecutive powers of two (for a suitable natural number k we

have 2k < n < 2k+1), then the first term of each representation of n is necessarily 2k+1.
Again, we know (4.) that 2α−1 ≤ 2α − 2β ≤ n < 2α.
8. If 2k < n < 2k+1 (k ∈ N), then every representation of n is 2k+1 − ρ where ρ is the

representation of the number 2k+1 − n(> 0)
9. If 2k < n < 2k+1 (k ∈ N), then 2k+1 − n is strictly smaller than n.
Then, the proof is completed by a simple induction.
In the case of a non-zero number in one of the two options for the representation, the

last is non-zero, and the preceding digit is 0d, or dd̄, where d ∈ {−1, 1}. There are several
simple ways to make the representation unique.

Theorem 3. The alternating binary representation will be unique if any of the following additional
conditions are satisfied:

(a) The last non-zero digit must be 1.
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(b) The last non-zero digit must be −1.
(c) The last non-zero digit must be immediately preceded by a 0 digit (or we have only one non-zero

digit).
(d) The last non-zero digit must be immediately preceded by a non-zero digit.
(e) The number of non-zero digits is odd.
(f) The number of non-zero digits is even.

The proofs are straightforward.
If we choose any of the rules above, we obtain a numeral system. For example, we can

fix (c) as the basic rule of binary alternating coding of integers. We will denote the −1 digit
as 1̄ and we use subscript 2-Alt when representing n using place-value notation. We list a
few integers with small absolute value and their representation.

−11 = 1̄11̄012-Alt,−10 = 1̄101̄02-Alt,−9 = 1̄1001̄2-Alt,−8 = 1̄0002-Alt,−7 = 1̄0012-Alt,

−6 = 1̄0102-Alt,−5 = 1̄01012-Alt,−4 = 1̄002-Alt,−3 = 1̄012-Alt,−2 = 1̄02-Alt,

−1 = 1̄2-Alt, 0 = 0, 1 = 12-Alt, 2 = 102-Alt, 3 = 101̄2-Alt, 4 = 1002-Alt, 5 = 101̄012-Alt,

6 = 101̄02-Alt, 7 = 1001̄2-Alt, 8 = 10002-Alt, 9 = 11̄0012-Alt, 10 = 11̄0102-Alt.

3. Connection to Graph Theory

Let G = (V, E, I) be a triple. The elements of V are called vertices; V is the vertex set
of G. The elements of E are called edges; E is the edge set G. I is an incidence relation
between V and E (I ⊂ V × E). If v ∈ V and e ∈ E are incident, then we say that the vertex
v is an endpoint of the edge e. We call G a graph if every edge has two endpoints.

These two endpoints may coincide, in which case e is called a loop. If an edge e has
two endpoints u and v, then we say that u and v are connected by e or u and v are adjacent.
If two edges have the same two endpoints, then we say that they are parallel edges. If there
are no parallel edges in a graph, we only need to describe when two vertices are connected
to define the graph. Moreover, if a graph contains no loops, then we call it a simple graph.

If V and E are finite sets, then G is a (finite) graph. If V or E are infinite, then G is an
infinite graph.

Definition 1. Let G be the infinite graph without parallel edges whose vertices are the natural
numbers and two vertices are connected if and only if their sum is a power of two.

Notice that, because 2k + 2k = 2k+1 for every vertex that is a power of two, a loop
is present in our graph. These are the only loops in G. Let G0 be the simple graph that is
obtained by removing the loops that are incident to the powers of two.

It is easy to see that G0 is a graph of infinitely many vertices, each of which has infinite
neighbors. Let v be a vertex of G0. If k is the natural number satisfying 2k−1 < v < 2k,
then the neighbors of v are 2k − v, 2k+1 − v, and 2K − v, where K is an arbitrary natural
number k + 1 < K. If v = 2k, then the neighbors of v are 0 and 2K − v for every k + 1 < K
natural numbers.

Lemma 1. For positive v ∈ N, the vertex v has exactly one neighbor that is smaller than v.

Let G0(n) be the finite graph is obtained from G0 such that Vn = {1, 2, . . . , n} with n
elements and the edges G0(n) are the edges of G connecting two nodes from Vn (see Figure
1).

Theorem 4. The graph G0(n) is a tree.
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Proof. We can think about G0(n) as a result of the following sequence of graph extensions:

G0(1) → G0(2) → G0(3) → . . . → G0(n − 1) → G0(n).

The initial graph G0(1) is a graph with one node (1) and no edge, i.e., G0(1) is the smallest
tree. Each expansion step is a “branching” (we extend our actual graph with a new vertex
and a new edge that connects the new node to an old one). This operation preserves
connectivity and cycle-freeness. That is, the operation forms a tree from a tree.

0

168

24

4

12

20

2

14

18

6

2610

22

1

17157

259

23

3

13

19

5

11

21

Figure 1. The tree G0(26).

Corollary 1. G0 is a tree.

Thus, there is exactly one path from any vertex, let us call it n, to the vertex 0. We
assume that n ̸= 0.

For each edge, label it with the sum of its two endpoints. Thus, we obtain an edge-
labeled graph (the labels are powers of two). As the path from n to 0 is traversed, the
labels of its edges strictly decrease. The walks with strictly decreasing labels from n to 0 are
exactly the paths from n to 0 (that happen to be unique).

This is not true in G. There is a second walk from n to 0 with strictly decreasing edge
labels, a walk where the penultimate step is a loop.

The above graph theoretic remark and the alternating binary number system are
closely related. The next theorem formalizes this.

Theorem 5. Let n be a positive integer. Let Wn be the set of n → 0 walks in G with strictly
decreasing edge labels. Let Rn be the set of alternating binary representations of n.

Then, there is a bijection between Wn and Rn.

Remember that G is almost the same as the G0 graph (a tree), except there are additional
loops at the neighbors of 0. Hence, Wn consists of two walks: the unique n → 0 path P
in G0, and a walk that is the same as P, except that just before reaching 0 we go along a
loop. The bijection, presented below, proves that Rn also has two elements, which is the
statement of Theorem 2. We can consider Corollary 1 as the graph theoretical analog of
Theorem 2.

Proof. Let n = 2α − 2β + 2γ − 2δ ± . . . be an arbitrary alternating binary representation of n
(an element of Rn). We introduce the following numbers: n0 = n = 2α − 2β + 2γ − 2δ ± . . .,
n1 = 2β − 2γ + 2δ ∓ . . ., n2 = 2γ − 2δ ± . . ., n3 = 2δ ∓ . . ., . . ., 0. These numbers: n0 = n,
n1, n2, . . ., nℓ−1, nℓ = 0 are vertices in G, and they form a sequence of vertices of walk from
n to 0. The labels of the edges are 2α > 2β > 2γ . . ..
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Conversely, let us take a walk from n to 0 in G (an element of Wn). Let n =
n0, n1, . . . , nℓ = 0 be the sequence of its nodes. (n + n1)− (n1 + n2) + (n2 + n3)− . . . + s ·
(nℓ−1 + nℓ) is an element of Rn, where s is a sign depending on the parity of ℓ.

The two mappings are inverses of each other; hence, they prove the theorem.

We recall that after obtaining the two walks in G we can agree on a condition that
makes the route unique. These conditions can be based on the ending of the walk or on
parity of the length. At the end of the previous section, we fixed condition (c) in Theorem 3
and gave examples for the concrete representation of small numbers. It is easy to check
that condition (c) corresponds to the agreement that the representation is based on the path
in the tree G0.

4. Graphs Related to Fibonacci Numbers and the Related Numeral System

In this chapter, we apply the previously introduced graph theory technique. The
positional values of the binary system are the powers of two. Now, we start with the
Zeckendorff numeral system [25–28]. Its positional values are the Fibonacci numbers.

Denote by (Fi)
∞
i=0 the Fibonacci sequence ([29] A000045) defined as Fn = Fn−1 + Fn−2

(n ≥ 2) with F0 = 0 and F1 = 1. We refer to F2 < F3 < F4 < · · · as the Fibonacci numbers.
So, when we mention Fibonacci numbers, we mean elements of the Fibonacci sequence
with indices at least 2.

In analogy to the previously introduced G graph, we define a new graph.

Definition 2. Our graph F has a vertex set consisting of natural numbers. We connect vertices u
and v if u + v is a Fibonacci number.

Specifically, 0 is adjacent to exactly the Fibonacci numbers.
In the graph F , there will be loops. First, note that every third Fibonacci number is

even. For the sake of completeness, we acknowledge this commonly known fact.

Lemma 2. Fn (for n ≥ 2) is even if and only if n is divisible by 3.

Proof. F2 = 1, F3 = 2, F4 = 3. We prove by induction that for every positive integer k, F3k
is even, and F3k−1 and F3k+1 are odd. For the base case k = 1, this is known.

We assume that for k = ℓ the claim is true: F3ℓ is even, and F3ℓ−1 and F3ℓ+1 are odd.
We need to prove that F3ℓ+3 is even, and F3ℓ+2 and F3ℓ+4 are odd. This is straightforward
from F3ℓ+2 = F3ℓ+1 + F3ℓ, F3ℓ+3 = F3ℓ+2 + F3ℓ+1, and F3ℓ+4 = F3ℓ+3 + F3ℓ+2.

If u = v = F3k/2, then u + v = F3k. Thus, uv forms an edge in F , creating a loop.
The graph F is not a tree, not only because of the loop edges but also because it

contains many 4-cycles.

Lemma 3. If u, v, u′, v′ are non-negative integers such that u + v = Fk, u + u′ = Fk+2, and
v + v′ = Fk+2, then u′ + v′ = Fk+3. Specifically, u, v, u′, v′ form the vertices of a 4-cycle.

Proof. We only need to check that u′ + v′ will be a Fibonacci number with the right index.

u′ + v′ = u + u′ = (Fk+2 − u) + (Fk+2 − v) = Fk+2 + Fk+2 − (u + v)

= Fk+2 + (Fk+1 + Fk)− Fk = Fk+2 + Fk+1 = Fk+3.

Thus, the statement is obvious.

Definition 3. Let u(≤ Fk) be a positive integer. Define v = Fk − u, u′ = Fk+2 − u, v′ =
Fk+2 − v). The cycle Ck(u) in the graph F is formed by the edges uv, uu′, vv′, and u′v′.

Note that the cycles Ck(u) and Ck(Fk − u) are the same; only the roles of u and v are
exchanged.
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Lemma 4. The points of the Ck(0) = Ck(Fk) cycle (u = 0, v = Fk, v′ = Fk+1, u′ = Fk+2) are
connected by only one additional edge beside the edges of the cycle: uv′. If u is a positive integer that
is not a Fibonacci number, then among the points of Ck(u), only the edges of the cycle are present.

Proof. The points of the Ck(0) cycle are: u = 0, v = Fk, v′ = Fk+1, u′ = Fk+2. uv′ is
obviously an edge since u + v′ is a Fibonacci number. u′ and v may be connected. Because
Fk+2 < u′ + v = Fk + Fk+2 < Fk+1 + Fk+2 = Fk+3, their sum lies between two consecutive
Fibonacci numbers, meaning it cannot be a Fibonacci number.

Let a be a positive integer: Fℓ < a < Fℓ+1 ≤ Fk. The points of the Ck(a) cycle are:
u = a, v = Fk − a, v′ = Fk+1 + a, u′ = Fk+2 − a. Assume that uv′ is an edge of F . Then,
u + v′ is a Fibonacci number

u + v′ = (Fk − v) + (Fk+2 − v) = Fk + Fk+2 − 2v < Fk + Fk+2 < Fk+3;

furthermore,

u + v′ = Fk + Fk+2 − 2v > Fk + Fk+2 − 2Fk > Fk+2 − Fk = Fk+1.

Therefore, u + v′ can only take one value as a Fibonacci number: Fk+2. This value cannot
be the label on this edge because it corresponds to the label of the uu’ edge (and the vv’
edge too). Hence, uv′ cannot be an edge. By the symmetry of u and v, we obtain that u′v is
not an edge either.

It will be shown that these cycles, along with the loop edges, are the essential cycles in
F. Therefore, it is not difficult to sparsify the F graph to obtain a tree. This is in spite of the
fact that some of the 4-cycles share a common edge; hence, they form longer cycles in G.

Definition 4. Let F0 be the graph obtained from F by removing the edges connecting 0 to Fibonacci
numbers with odd indices, the loop edges, and the u′v′ edges of the 4-cycles Ck(a).

Theorem 6. F0 is a tree.

The theorem points out a spanning tree of F : F0.

Proof. Let F0(n) be the spanning subgraph of F0 formed by the vertices 0, 1, 2, . . . , n and
the edges between them. It is sufficient to show that for any n, this graph is cycle-free and
connected.

For small values of n, it is easy to verify the statement. See F0(25) on Figure 2.

0

218

13

3

1810

24

5

16

1

2012

22

7

14

4

179

25

2

1911

23

6

15

Figure 2. The tree F0(25).

By induction, we prove that F0(Fk) is a tree. Assume that we know this for F0(Fℓ).
We add the vertices Fℓ + 1, Fℓ + 2, . . . , Fℓ+1 − 1, Fℓ+1 to it and check that our graph remains
a tree. We do this by proving that by adding any of these numbers it will be connected to
exactly one earlier (smaller) node.
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In the case of Fℓ+1, this is true. In F , there are two earlier neighbors of it: 0, and Fℓ. If
ℓ+ 1 is even, then 0 is connected to Fℓ+1, but FℓFℓ+1 is the deleted edge of Cℓ−2(0) in F0. If
ℓ+ 1 is odd, then 0Fℓ+1 is a deleted edge, but FℓFℓ+1 is a remaining edge of Cℓ(0) in F0.

The same logic works in the case of Fℓ + i, where 0 < i < Fℓ−1. In F , there are two
earlier neighbors of it: Fℓ+1 − (Fℓ + i) = Fℓ−1 − i, and Fℓ+2 − (Fℓ + i) = Fℓ+1 − i. The two
connecting edges are in two 4-cycles. In one of them, the edge is deleted; in the other, it is
not deleted. Fℓ + i has exactly one earlier neighbor in F0.

As previously, we can label the edges. The label of an edge will be the sum of the
numbers corresponding to its endpoints. The labels are Fibonacci numbers.

Lemma 5. Consider G0 as a graph with labeled edges. In this case, the edge labeling possesses the
following two properties:

(a) The edges incident to 0 have labels that are even-indexed Fibonacci numbers.
(b) The labels of two adjacent (sharing a common endpoint) edges cannot correspond to Fibonacci

numbers with consecutive indices.

Proof. The labeling can also be introduced for the edges of graph F . It is worth noting that
both statements are false in F . In F0, both statements become true due to the definition of
F0, which is a result of sparsifying F .

In F , all Fibonacci numbers appear on edges incident to 0. In the definition of F0, we
precisely excluded those edges whose labels correspond to odd-indexed Fibonacci numbers.
This yields statement (a).

Let us consider two adjacent edges in F with label Fibonacci numbers that correspond
to consecutive indices. Suppose these two edges are uu′ and u′v′ with labels Fk and Fk+1.
Then, due to the Ck−2(u) cycle, the edge u′v′ is not present in F0. This confirms statement
(b).

The claim of this lemma and the fact that F0 is a tree leads to a new numeral system.
The logic is the same: we have a tree defined on the set of natural numbers. From a vertex n,
there is unique path to 0. This path can be converted to a representation of n. The existence
and uniqueness follow from graph theory.

Theorem 7 (Fibonacci-alternating representation). Every natural number n can be written
uniquely as a sum

n = Fℓ − Fi1 + Fi2 − Fi3 + · · ·+ (−1)t−1Fit−1 ,

with i0 = ℓ ≫ i1 ≫ i2 ≫ · · · ≫ it−3 ≫ it−2 ≫ it−1 ≥ 2, where i ≫ j denotes i > j + 1
(i.e. i ≥ j + 2); furthermore, it−1 is even. This sum is called the alternating representation of n.

The proof of Theorem 7 is based on Theorem 6.

Proof. Any natural number n can be considered as a vertex in F0. There is a unique n → 0
path in F0. Let n = n0, n1, . . . , nℓ = 0 be the sequence of its nodes. n = (n + n1)− (n1 +
n2) + (n2 + n3)− . . . + s · (nℓ−1 + nℓ), where s is a sign depending on the parity of ℓ. The
values of the expressions in the brackets are Fibonacci numbers. We obtain the existence of
the presentation.

For the uniqueness, assume that we have two representations of n. Both of them can
be interpreted as the 0 → n path in F0 (see the proof of the binary case). Since F0 is a tree,
we obtain a contradiction that proves the theorem.

As previously, we can extend this representation to integers. We give a few examples
of this new representation that we denote by F-Alt indices:

−11 = 1̄00101̄F-Alt,−10 = 1̄00100F-Alt,−9 = 1̄01001̄F-Alt,−8 = 1̄0000F-Alt,

−7 = 1̄0001F-Alt,−6 = 1̄0101̄F-Alt,−5 = 1̄0100F-Alt,−4 = 1̄001F-Alt,−3 = 1̄00F-Alt,
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−2 = 1̄0F-Alt,−1 = 1̄F-Alt, 0 = 0F−Alt, 1 = 1F−Alt, 2 = 101̄F−Alt, 3 = 100F−Alt,

4 = 1001̄F−Alt, 5 = 101̄00F−Alt, 6 = 10101̄F−Alt, 7 = 10001̄F−Alt,

8 = 10000F−Alt, 9 = 101̄001F−Alt, 10 = 1001̄00F−Alt, 11 = 1001̄01F−Alt.

The new numeral system is based on a spanning tree of G. The graph G has many
cycles. Finding a spanning tree of it is not natural. There are several ways to construct one.

It is possible to describe a different spanning tree and introduce a new numeral system
with Fibonacci numbers as place-values. Such numeral systems already exist; for example,
see [30,31] for considered numeral systems. The connection between them and graph
theory has not been explored so far.

5. Conclusions

The representations we described are very simple (one can say beautiful). Our results
may inspire new research. The new number system raises many questions. How can
basic operations be performed with numbers based on the new representation? How can
numbers in the conventional notation be converted to the new one? What is the complexity
of our algorithms? These questions have led to numerous results in the case of previous
number systems (see [16,32–37]).

A new number system stimulates new research. The Zeckendorf number system is
a good example ([25]). After the introduction of that number system, research in several
directions was initiated. The distribution of digits and algorithms for arithmetic were
studied ([38]). Later versions with negative digits ([30,31,39]) were developed. Many other
areas of mathematics were connected to these notions. We mention only one, the research
of automatic sequences.

The graph G in the last section is also natural; the proof of the fact that G0 is a tree
is simple. Finally, I found some hints to this claim in the literature. The graph G0 arises
naturally when one considers “Problems with Powers of Two”, the problem introduced by
B. Haran and N.J.A. Sloane [40]. In the Online Encyclopedia of Integer Sequences (QEIS),
T. Scheuerle makes a comment to A352178 ([41]). He is probably formulating this claim.

After stating the theorems on representing integers, the uniqueness and existence of
the state representation can be easily proven through elementary means, much like we
did with the binary system. There are automated proofs as well. However, the essence of
everything lies in stating the theorem; this is where mathematics begins.

Our article highlights that graphs can be defined in various ways from numbers.
Often, a spanning tree for these graphs can be naturally identified. This tree can be viewed
as a tree rooted at 0. Each vertex/natural number has a unique path leading to 0. This
corresponds to a number-theoretic representation of n. The recognition of this relationship
between graph theory and number systems seems entirely novel.
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