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Abstract: In this paper, we recover the European option volatility function σ(t) of the underlying
asset and the fractional order α of the time fractional derivatives under the time fractional Vasicek
model. To address the ill-posed nature of the inverse problem, we employ Tikhonov regularization.
The Alternating Direction Multiplier Method (ADMM) is utilized for the simultaneous recovery
of the parameter α and the volatility function σ(t). In addition, the existence of a solution to the
minimization problem has been demonstrated. Finally, the effectiveness of the proposed approach is
verified through numerical simulation and empirical analysis.
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1. Introduction

The option pricing problem is an important issue in the financial field. Black and
Scholes [1] introduced the Black–Scholes (BS) formula, assuming a constant risk-free rate r
and that the underlying asset S satisfies the following equation

dS
S

= µdt + σdWt,

where µ is the expected return rate, σ is the volatility, and dWt is the standard Brown
motion. Under these conditions, the BS formula is derived as

Call option price C = SN(d1)− Ke−r(T−t)N(d2),

Put option price P = Ke−r(T−t)N(−d2)− SN(−d1),

where

d1 =
ln (S/K) + (r + σ2/2)(T − t)

σ
√

T − t
,

d2 =
ln (S/K) + (r − σ2/2)(T − t)

σ
√

T − t
,

N(·) denotes the cumulative standard normal distribution function, and K is the exercise
price. However, in real financial markets, interest rates change over time. Therefore, in the
option pricing process, the impact of interest rate uncertainty on option prices must be
considered. There are various interest rate models, including the Constant Elasticity of
Variance (CEV) model [2], Cox–Ingersoll–Ross (CIR) model [3], Vasicek model [4], etc.
Specifically, our focus in this article is on the Vasicek model.

Fractional derivatives are widely used in fractal theory [5], diffusion theory [6], signal
processing [7], and financial theory ([8–10]) due to their non-locality advantages, i.e., the
current state is influenced not only by the past instantaneous state but also by the state of
the past period of time, which is more in line with the options market. Fractional derivative
have two main forms: the Riemann–Liouville derivative [11] and the Caputo derivative [12].
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In our discussion, we are mainly concerned with fractional derivatives in the Caputo sense.
Since most partial differential equations lack analytic solutions, discretization of the equa-
tions in time and space is necessary. The commonly used methods for discrete Caputo time
fractional derivatives include the Grünwald–Letnikov (GL) formula and L1 formula. Specif-
ically, the GL formula has a first-order accuracy in time direction after discretization, while
the L1 formula has a (2-α)-order accuracy in time direction. Subsequently, Gao et al. [13]
introduced the L1-2 formula with (3-α)-order accuracy, Alikhanov [14] proposed the L2-
1σ formula with (3-α)-order accuracy, and Cao et al. [15] improved the accuracy of the
discretization to the (3-α)-order Caputo derivative. In recent studies, Cao et al. [16] and
Mokhtari et al. [17] improved the accuracy to (4-α)-order. It is worth noting that the process
of improving accuracy involves a higher-order interpolation of the function under the
integral of the Caputo derivative. Using different interpolation functions results in different
levels of precision.

Nourian et al. [8] solved the time fractional Black–Scholes equation by introducing a
new set of wavelet functions. Roul [9] constructed a high-order computational scheme for
European option pricing; this method is (3-α)-order in the time direction. Chen et al. [10]
introduced a novel operator splitting method to address American options within the
framework of the time-fractional Black–Scholes model. Li et al. [18] presented a Newton-
linearized Galerkin finite element method for solving time-oriented nonsmooth nonlinear
time-fraction parabolic problems. The optimal error estimate of L2 norm is obtained
without limitation of time step of spatial mesh size. The theoretical results are verified by
numerical experiments. In [19], the convergence of a class of fully implicit time-stepping
Galerkin finite element method for one-dimensional nonlinear subdiffusion equations is
proved by using the generalized discrete Gronwall inequality. Based on the convergence
of the direct time step scheme, a simple method to prove the convergence of the fast time-
stepping Galerkin finite element method is presented. Yuan et al. [20] proposed a linearized
fast high-order time-stepping scheme to solve the spatiotemporal fractional Schrodinger
equation. A fast L2-1σ formula was used to approximate the time of non-uniform mesh.
The Fourier spectrum method is used to discretize the space. The result of unconditional
convergence is given. Zhang and Jiang [21] considered the two-dimensional nonlinear time-
space fractional Schrodinger equation and applied the second-order fractional backward
difference formula in the time direction and the Fourier spectrum method in the space
direction to solve the model numerically. By using the generalized discrete Gronwall
inequality and the space-time error splitting argument, the convergence of the fast time-
step numerical method is simply proved without applying the Courant–Friedrichs–Lewy
(CFL) condition.

Parameter calibration is a challenging problem in the financial field. Different from the
forward problem of solving option prices with known model parameters, the parameter
calibration problem refers to solving the model parameters based on the price data observed
in the market. The volatility is one of the most important parameters in the option pricing,
which is an indicator to measure the uncertainty of the return rate of assets and is used to
reflect the risk level of financial assets. However, the volatility cannot be derived directly
from market data and needs to be calibrated. This is a typical inverse problem, and it is
usually ill-posed because the calibration problem may have no solution or have infinite
solutions, or there may be solutions that are discontinuously dependent on observation data;
many scholars have conducted research in this area. Dupire [22] proposed a local volatility
model for option pricing in 1994, calibrated the volatility, and obtained an expression
for volatility, which is called the Dupire formula. Xu and Jia [23] studied the Tikhonov
regularization method for the volatility calibration problem under the jump diffusion model
and used an iterative algorithm to solve the problem to obtain the volatility. Jiang et al. [24]
reconstructed the implicit local volatility function using the optimal control framework and
presented numerical experiments. Based on the Legendre pseudo-spectral method of space
discretization and the finite difference method of time discretization, Li and Zhou [25]
gave numerical solutions for the optimal control problem of time-fractional diffusion
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equations. Zhao and Xu [26] jointly recovered the mean-reversion parameter γ and the
volatility function under the fractional Chan–Karolyi–Longstaff–Sanders (CKLS) stochastic
interest rate model. At the same time, numerical experiments are presented that show the
fractional CKLS model (γ = 0.8451) is more suitable for SSE 50ETF than the fractional Vasicek
model. Yimamu and Deng [27] investigated the inverse problem of identifying volatility in
option pricing. They accomplished this problem by transforming the parabolic equation
defined on an unbounded region into a degenerate parabolic equation on a bounded region
through a variable substitution. The study establishes that the optimal approximate solution
converges effectively to the true solution of the original problem. In our paper, we use the
alternating direction multiplier method to simultaneously reconstruct fractional order α
and time-dependent volatility function σ(t). Numerical examples and empirical analysis
demonstrate the effectiveness of this method. Our research aims to reconstruct the volatility
σ and the fractional order α in the time-fractional Vasicek model. This unique perspective,
to the best of our knowledge, has not been thoroughly explored in previous studies. We
aim to provide readers with a novel perspective, offering a potential reference for future
studies dealing with time-fractional direct problems, and offer a valuable contribution to
the field by addressing the challenges associated with the simultaneous reconstruction of
the volatility and the fractional order.

The remainder of this article is organized as follows. Section 2 gives the pricing for-
mula of European put options under the time fractional Vasicek model. Section 3 gives
the existence of the solution to the minimization problem and introduces the Tikhonov
regularization method and ADMM algorithm for solving the volatility σ(t) and the frac-
tional order α. Section 4 combines numerical examples and empirical analysis to obtain the
stability of the algorithm. Finally, Section 5 provides conclusions.

2. Pricing Formula under the Time Fractional Vasicek Model

In this section, we present some fundamental definitions for our exploration and the
pricing formula of European put options under the Caputo time fractional Vasicek model,
laying the foundation for the subsequent exploration and reconstruction of the volatility σ
and the parameter α.

Definition 1 (Kolmogorov [28]). Assume that the system state Yt satisfies the stochastic differen-
tial equation

dYt = a(Yt, t)dt + b(Yt, t)dWt,

where W(t) is a Wiener process (also called Brownian motion), then the conditional mathematical
expectation u(y, t) = E( f (YT |Yt = y)) is the solution of the Cauchy problem (terminal value
problem) of the following backward parabolic equation

∂u
∂t

+ a(y, t)
∂u
∂y

+
1
2

b2(y, t)
∂2u
∂y2 = 0.

u(y, T) = f (y) (y ∈ R).

Definition 2 (Feynman–Kac [28]). Let v be the conditional mathematical expectation

v(y, t) = E
(

f (YT)e
∫ T

t g(Ys ,s)ds|Yt = y
)
= Ey,t

(
f (YT)e

∫ T
t g(Ys ,s)ds

)
,

then it is the solution of the terminal value problem of the following backward parabolic equation

∂v
∂t

+ a(y, t)
∂v
∂y

+
1
2

b2(y, t)
∂2v
∂y2 + g(y, t)v = 0, (y ∈ R, t ∈ [0, T)),

v(y, T) = f (y) (y ∈ R).
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Definition 3. The Caputo time fractional derivative is defined as follows

c
0Dα

t V(t) =


1

Γ(1 − α)

∫ t

0

V′(t′)
(t − t′)α

dt′, 0 < α < 1,

V′(t), α = 1.

The pricing problem of the European option under the Vasicek model is considered.
Suppose the asset price St adheres to the following stochastic process

dSt = rtStdt + σtStdWS
t (1)

and the interest rate process rt satisfies

drt = (a + brt)dt + ωdWr
t , (2)

where σt is the volatility, WS
t and Wr

t are two correlated Brown motions with Cov(dWs
t , dWr

t ) = ρdt
and ρ ∈ (−1, 1), and a, b, ω are constants.

Zero coupon bond is the carrier of interest rate, and we first consider the pricing of
zero coupon bond. Let Pt = P(r, t) represent the value of zero-coupon bonds at time t.
When r = rt is a stochastic process, the value of zero coupon bonds Pt = P(rt, t) is

Pt = E
(

e−
∫ T

t r(s)ds|r(t) = rt

)
.

Therefore, from the Kolmogorov theorem and the Feynman–Kac formula, we can
obtain the backward parabolic equation that the price of the zero coupon bond satisfies
under the Vasicek model

∂P
∂t

+
σ2

2
∂2P
∂r2 + (a + br)

∂P
∂r

− rP = 0, (r ∈ R, t ∈ [0, T)), (3)

P(r, T) = 1.

Next, the pricing formula of the European put option under the Vasicek model
is derived.

Lemma 1. Assuming that the stochastic interest rate r and the underlying asset price S satisfy
the Formulas (1) and (2), then the price of the European put option V(r, S, t) with maturity T and
strike K satisfies the following equation

∂V
∂t

+
1
2

σ2(t)S2 ∂2V
∂S2 + ρσ(t)ωS

∂2V
∂S∂r

+
1
2

ω2 ∂2V
∂r2 + (a + br)

∂V
∂r

+ rS
∂V
∂S

− rV = 0, (4)

with the condition
V(r, S, T) = (K − S)+.

Proof. Consider a portfolio Π, which consists of (−∆1) units of the underlying asset S,
(−∆2) units of the zero coupon bond P(r, t), and one option V(S, r, t), then the value of the
portfolio at time t is

Π = V − ∆1S − ∆2P.

Applying Itô’s Lemma, we obtain

dΠ =

(
∂V
∂t

+
1
2

σ2(t)S2 ∂2V
∂S2 +

1
2

ω2 ∂2V
∂r2 + Sσ(t)ωρ

∂2V
∂S∂r

)
dt +

(
∂V
∂S

− ∆1

)
dS

+

(
∂V
∂r

− ∆2
∂P
∂r

)
dr + ∆2

(
∂P
∂t

+
1
2

σ2 ∂2P
∂r2

)
dt. (5)
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To eliminate risk in this portfolio, we take

∆1 =
∂V
∂S

, ∆2 =
∂V/∂r
∂P/∂r

,

substitute it into (5), then combine Formula (3) to obtain

dΠ =

(
∂V
∂t

+
1
2

σ2(t)S2 ∂2V
∂S2 +

1
2

ω2 ∂2V
∂r2 + Sσ(t)ωρ

∂2V
∂S∂r

)
dt − ∂V/∂r

∂P/∂r

[
rP − (a + br)

∂P
∂r

]
dt.

The no-arbitrage principle gives us

E(dΠ) = rΠdt,

then

∂V
∂t

+
1
2

σ2(t)S2 ∂2V
∂S2 + ρσ(t)S

∂2V
∂S∂r

+
1
2

ω2 ∂2V
∂r2 + (a + br)

∂V
∂r

+ rS
∂V
∂S

− rV = 0.

To ensure the completeness of the narrative, we first introduce the direct problem.
Replacing the term in Equation (4) that involves the integer-order derivative with the

Caputo fractional-order derivative, denoted as ∂αV
∂tα , where order α ∈ (0, 1), we have

∂αV
∂tα

+
1
2

σ2(t)S2 ∂2V
∂S2 + ρσωS

∂2V
∂S∂r

+
1
2

ω2 ∂2V
∂r2 + (a + br)

∂V
∂r

+ rS
∂V
∂S

− rV = 0, (6)

the fractional order derivative ∂αV
∂tα is defined as

∂αV
∂tα

=
1

Γ(1 − α)

∂

∂t

∫ T

t

V(S, t′)− V(S, T)
(t′ − t)α

dt′, 0 < α < 1.

Then, we invert the time variable as τ := T − t and the relationship between the
Caputo derivative c

0Dα
τV and the time fractional derivative ∂αV

∂tα given by article [29], that is,
∂αV
∂tα = −c

0Dα
τV.

In this way, we obtain the pricing formula of European put options under the Caputo
time fractional Vasicek model

c
0Dα

τV =
1
2

σ2(τ)S2 ∂2V
∂S2 + ρσ(τ)ωS

∂2V
∂S∂r

+
1
2

ω2 ∂2V
∂r2

+ (a + br)
∂V
∂r

+ rS
∂V
∂S

− rV, (7)

with the conditions
V(r, S, 0) = max(K − S, 0),

lim
S→0

V(r, S, τ) = K, lim
S→+∞

V(r, S, τ) = 0,

lim
r→0

V(r, S, τ) = lim
r→+∞

V(r, S, τ) = max(K − S, 0).

Direct problem: For the given initial boundary problem, the price of the European
put option can be precisely computed as long as the volatility and parameter α are known.
Subsequently, we can use the implicit finite difference method to numerically address
this problem.

Inverse problem: Let Vij denote the market price of an option with strike price Kij(j =
1, 2, . . . , Mi) and expiration date Ti(i = 1, 2, . . . , N), where K1 ≤ K2 ≤ · · · ≤ KMi and
T1 ≤ T2 ≤ · · · ≤ TN . The inverse problem is a calibration problem, which can be formulated
as finding a time-dependent volatility function and parameter α such that the predicted
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price V(τ0, r0, S0, Ti, Kij, α, σ(τ)) falls between the corresponding bid price Vb
ij and ask price

Va
ij , that is

Vb
ij ≤ V(τ0, r0, S0, Ti, Kij, α, σ(τ)) ≤ Va

ij .

From the above formula, the calibration problem is transformed to solve such an
optimization problem:

Minimize the following error function associated with the given set of market option prices

Γ(α, σ) =
N

∑
i=1

Mi

∑
j=1

[V(τ0, r0, S0, Ti, Kij, α, σ(τ))− V̂ij]
2, (8)

where V̂ij = (Va
ij + Vb

ij)/2 is the mean of the bid and ask prices.
The calibration problem can be formulated as finding the parameters that minimize

the error function Γ(α, σ). However, the parameter α and the volatility function σ(t) are
discontinuously dependent on the market price, which means that small disturbances in
the market price may lead to large changes in the error function Γ(α, σ). This is an ill-posed
problem, so we use regularization methods to solve it.

3. Regularization Method

In this section, we introduce the Tikhonov regularization [30,31] to make the problem
well posed. We calibrate fractional order α and volatility function σ(t) by minimizing the
following optimization problem

min
α,σ

||(α, σ)||2∗ + λ
N

∑
i=1

Mi

∑
j=1

[V(τ0, r0, S0, Ti, Kij, α, σ(τ))− V̂ij]
2, (9)

where ||(α, σ)||∗ = (||α||22 + ||σ′||22)1/2, || · ||2 represents L2-norm, λ > 0 is the regularization
parameter, and V̂ij is the real market option price.

3.1. Existence of Solutions to Optimization Problems

In the following theorem, we establish the existence of a solution to the minimization
problem. Let M = (0, 1)× [0, T] and

Φλ(α, σ, V̂) = ||(α, σ)||2∗ + λ
N

∑
i=1

Mi

∑
j=1

[V(τ0, r0, S0, Ti, Kij, α, σ(τ))− V̂ij]
2

and we define ϕλ,V̂(α, σ) : (α, σ) 7→ Φλ(α, σ, V̂), where (α, σ) ∈ L2(M).

Theorem 1. Fix λ, V̂ and define q = inf
(α,σ)∈L2(M)

ϕλ,V̂(α, σ), assume that for any z ∈ (q,+∞),

the set Qλ,V̂(z) = ϕ−1
λ,V̂

(α, σ) ⊂ L2(M) is bounded and ϕλ,V̂(α, σ) is weakly lower semicontinuous.
Then, the minimization problem (9) has a solution belonging to Qλ,V̂(z).

Proof. Because z > q, then there must be a minimization sequence (αn, σn). L2(M) is a
Hilbert space, that is, it is a reflexive Banach space, so we can deduce that any bounded
sequence in L2(M) has a weakly convergent subsequence. Therefore, (αn, σn) contains
subsequence (αnk , σnk ), which weakly converges to (ᾱ, σ̄). And because of the weakly lower
semi-continuity of ϕλ,V̂(α, σ),

ϕλ,V̂(ᾱ, σ̄) ≤ inf min
k→∞

ϕλ,V̂(αnk , σnk ) = q

and Qλ,V̂(z) = ϕ−1
λ,V̂

(α, σ) is weakly closed. Therefore, (ᾱ, σ̄) is a solution of the minimiza-
tion problem belonging to Qλ,V̂(z).



Algorithms 2024, 17, 54 7 of 14

3.2. ADMM Algorithm

Now, we consider the augmented Lagrangian function

min lµ(α, σ) : = ||(α, σ)||2∗ + λ
N

∑
i=1

Mi

∑
j=1

[V(τ0, r0, S0, Ti, Kij, α, σ(τ))− V̂ij]
2

+
N

∑
i=1

Mi

∑
j=1

µij[V(τ0, r0, S0, Ti, Kij, α, σ(τ))− V̂ij],

where µij > 0 is the Lagrange multiplier.
The ADMM algorithm consists of staring from (σ0, α0, µ0

ij) to generate inductively a

sequence (σk, αk, µk
ij) as follows:

− Step 1: minimization with repect to σ:

σk+1 := arg min
σ

lµk (αk, σ),

− Step 2: minimization with repect to α:

αk+1:= arg min
α

lµk (α, σk+1),

− Step 3: update the Lagrange multiplier:

µk+1
ij :=µk

ij + β[V(τ0, r0, S0, Ti, Kij, αk+1, σk+1(τ))− V̂ij],

where β is the step size.

For step 1
Similar to Reference [31], introduce a ‘false’ time parameter θ and a function σ̂(t, θ).

Starting with initial guess σ̂(t, 0), solve the following parabolic equation

∂σ̂

∂θ
=

∂2σ̂

∂t2 − λ
N

∑
i=1

Mi

∑
j=1

∂V
∂σ

(τ, r0, S0, Ti, Kij, αk, σ(τ))[V(τ, r0, S0, Ti, Kij, αk, σ(τ))− V̂ij]

− 1
2

N

∑
i=1

Mi

∑
j=1

µij
∂V
∂σ

(τ, r0, S0, Ti, Kij, αk, σ(τ)).

(10)

From the necessary conditions for the existence of extreme values, we can obtain that
if σ̂(t, θ) tends to a steady-state solution as θ → ∞, then this solution will satisfy the Euler
Lagrange equation for the functional lµ.

In order to solve the above equation, we need to calculate ∂V
∂σ (τ, r0, S0, Ti, Kij, αk, σ(τ))

by its definition, define δ(·) as the Dirac delta function, then, calculate the following expression

∂V
∂σ

(τ, r0, S0, Ti, Kij, αk, σ(τ)) = [
d
dϵ

V(τ, r0, S0, Ti, Kij, αk, σ(τ) + ϵδ)]ϵ=0.

Solving the variational derivative is similar to the solution approach for Equation (7).
First, we define an operator as follows

Gσ = −c
0Dα

τ +
1
2

σ(τ)S2 ∂2

∂S2 + ρσ(τ)ωS
∂2

∂S∂r
+

1
2

ω2 ∂2

∂r2 + (a + br)
∂

∂r
+ rS

∂

∂S
− rI,

where I is the identity operator.
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Therefore, when the volatility function is disturbed, the expected pricing function
satisfies the following equation

Gσ+ϵδV(τ, r0, S0, Ti, Kij, αk, σ + ϵδ) = 0. (11)

Then, differential (11) with ϵ and evaluating for ϵ = 0, we have

Gσ
∂V
∂σ

(τ, r0, S0, Ti, Kij, αk, σ) = −σ(τ)S2 ∂2V
∂S2 (τ, r0, S0, Ti, Kij, αk, σ)

− ρωS
∂2V
∂S∂r

(τ, r0, S0, Ti, Kij, αk, σ).

The variational derivative adheres to both the homogeneous boundary condition and
the initial condition.

Finally, we iteratively solve Equation (10)

σk
n−σk−1

n
∆θ =

σk
n+1−2σk

n+σk
n−1

(∆t)2 − 1
2

N
∑

i=1

Mi
∑

j=1
µk

ij
∂V
∂σ (τn, r0, S0, Ti, Kij, αk, σk(τn))

−λ
N
∑

i=1

Mi
∑

j=1

∂V
∂σ (τn, r0, S0, Ti, Kij, αk, σk(τn))[V(τn, r0, S0, Ti, Kij, αk, σk(τn))− V̂ij].

For step 2

αk+1 = arg min
α

{||α||22 + λ
N

∑
i=1

Mi

∑
j=1

[V(τ, r0, S0, Ti, Kij, αk, σk+1)− V̂ij]
2

+
N

∑
i=1

Mi

∑
j=1

µij[V(τ, r0, S0, Ti, Kij, αk, σk+1)− V̂ij]},

this optimization problem can be tackled by employing the Particle Swarm Optimization
(PSO) algorithm (Algorithm 1). Alternatively, a direct exploration of α from 0 to 1 can also
be conducted to solve the problem.

Algorithm 1: Particle Swarm Optimization (PSO)
Data: Initialize swarm of particles (αi)
Result: Optimal solution
Initialize particle positions and velocities randomly;
Initialize historical best position as current positions;
Initialize global best position as one of the historical best position;
while stopping criterion not met do

foreach particle do
Update velocities using Equation (12);
Update positions using Equation (13);
Evaluate fitness of the current position;
if current position is better than personal best then

Update personal best position;

if current position is better than global best then
Update global best position;

Output the global best position as the optimal solution;

Equations for the velocity and the position updates:

Velocity update: vi(t + 1) = w · vi(t) + c1 · r1 · (pi − αi(t)) + c2 · r2 · (pg − αi(t)), (12)
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Position update: αi(t + 1) = αi(t) + vi(t + 1), (13)

where w is the inertia weight, c1 and c2 are acceleration constants typically set to 0.2, r1 and
r2 are random values in the range [0, 1], pi represents the historical best position of particle
αi, and pg is the global best position among all particles.

For step 3
Directly update the Lagrange multiplier µij.

4. Numerical Experiments
4.1. Numerical Simulation

In this part, we study the effectiveness of the reconstruction algorithm for two
examples where the volatility σ(t) and the fractional order α are known. In our nu-
merical experiments, we utilized the parameters mentioned in [32] for consistency; let
K = [10, 12, 14, 16], T = [0.25, 0.5, 0.75, 1], [Smin, Smax] = [0.25, 40], [rmin, rmax] = [0.002, 1.2] ,
the initial value S0 = 8, r0 = 0.25, and other parameters

a = 0.001, ω = 0.3, b = −0.2, ρ = 0.4.

Example 1. Considering volatility function σ(τ) = 0.2 − 0.1 log(1.5 + 3τ), α = 0.7, the La-
grangian multiplier and the update step size of µij are respectively taken as λ = 5, µ0

ij = 0.3, β = 5.

We will use the European put option price calculated using the exact volatility σ(τ)
and parameter α as the market price of the option. Stop iterating when |σd(τ)− σd−1(τ)| <
1 × 10−6, where σd(τ) represents the volatility generated by the d-th iteration, and the total
number of iterations is not greater than 100. Figure 1 presents a graph of exact volatility
versus reconstructed volatility, and the recover value of parameter α is 0.7. We add noise
with intensity δ of 0.01, 0.03, and 0.05 to the exact volatility to verify the stability

σδ = 0.2 − 0.1 log(1.5 + 3τ) + δ × rand(−1, 1).
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Figure 1. Exact volatility and reconstructed volatility for Example 1.

We first use perturbed volatility to calculate option prices and then use the resulting
option prices to reconstruct fractional α and volatility σ(τ). Figure 2 shows the comparison
of real volatility and reconstructed volatility under different noise intensities. Table 1
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gives the root mean square error (RMSE), the maximum volatility error, the reconstructed
fractional α, and the maximum option price error, where RMSE can be calculated by

RMSE =

√
1
n

n

∑
i=1

(σi − σ̂i)2.

0 0.2 0.4 0.6 0.8 1

Time t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

V
o

la
ti
lit

y
 

(t
)

Reconstructed volatility
Exact volatility

0 0.2 0.4 0.6 0.8 1

Time t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

V
o

la
ti
lit

y
 

(t
)

Reconstructed volatility
Exact volatility

0 0.2 0.4 0.6 0.8 1

Time t

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

V
o

la
ti
lit

y
 

(t
)

Reconstructed volatility
Exact volatility

Figure 2. Real volatility and reconstructed volatility under different noise intensities (left: δ = 0.01,
middle: δ = 0.03, right: δ = 0.05) for Example 1.

Table 1. Numerical results under different intensity disturbances.

max |σd − σd−1| RMSE max |σ − σ̂| α max |V − V̂ |

δ = 0 9.4106 × 10−7 9.4772 × 10−4 1.836 × 10−3 0.700 1.07 × 10−3

δ = 0.01 9.8816 × 10−7 0.0026 6.565 × 10−3 0.700 1.249 × 10−3

δ = 0.03 9.9998 × 10−7 0.0052 1.9694 × 10−2 0.697 9.465 × 10−3

δ = 0.05 1.0000 × 10−6 0.0090 3.2824 × 10−2 0.696 1.309 × 10−2

Example 2. In this example, we examine the volatility function represented as σ(τ) = 0.5(τ −
0.5)2 + 0.1, α = 0.37; the Lagrangian multiplier and the update step size of µij are respectively
taken as

λ = 1.5, µ0
ij = 0.2, β = 1,

the volatility curve exhibits a smile-shaped pattern.

Figure 3 shows an image of exact volatility versus reconstructed volatility. We can
obtain the precise volatility and reconstructed volatility under different noise intensities
from Figure 4. Finally, Table 2 shows the RMSE, the absolute error of volatility, and the
reconstructed fractional α under different noise intensities.

Table 2. Numerical results under different intensity disturbances.

max |σd − σd−1| RMSE max |σ − σ̂| α max |V − V̂ |

δ = 0 9.9770 × 10−7 0.0030 4.621 × 10−3 0.364 2.855 × 10−3

δ = 0.01 9.9975 × 10−7 0.0044 7.820 × 10−3 0.367 5.162 × 10−3

δ = 0.03 9.9999 × 10−7 0.0073 1.9694 × 10−2 0.372 1.9478 × 10−2

δ = 0.05 4.8906 × 10−7 0.0156 3.2824 × 10−2 0.359 3.4620 × 10−2
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Figure 3. Exact volatility and reconstructed volatility for Example 2.
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Figure 4. Real volatility and reconstructed volatility under different noise intensities (left: δ = 0.01,
middle: δ = 0.03, right: δ = 0.05) for Example 2.

4.2. Empirical Analysis

In this part, we utilize the proposed algorithm to recover the volatility function and
fractional order based on the Shanghai Stock Exchange (SSE) 50ETF data on 12 December
2023. Table 3 shows real market price for SSE 50ETF put option price with respect to
the maturity and strike. The maturity times are T1 = 11/250, T2 = 31/250, T3 = 76/250,
T4 = 141/250 and the strike prices are Ki = 2.20+ (i − 1)0.05 for i = 1, 2, . . . , 10. The current
value of the underlying asset is S0 = 2.337, and the interest rate r0 = 2.43%. The Lagrangian
multiplier and the update step size of µij are respectively chosen as

λ = 20, µ0
ij = 0.2, β = 10

and other parameters are taken as:

a = 0.004, ω = 0.1, b = −0.2, ρ = 0.8.

Figures 5 and 6 depict the comparison between the actual SSE 50ETF market prices and
the reconstructed option prices at various time points, complementing the visual analysis,
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and Table 4 provides information on multiple parameters obtained from the experimental
results, and we can obtain α = 0.120, consistent with the recent trends in the SSE 50ETF.

Table 3. The option price of the SSE 50ETF on 12 December 2023.

K V(K, T1) V(K, T2) V(K, T3) V(K, T4)

2.20 0.0021 0.0099 0.0255 0.0411
2.25 0.0060 0.0189 0.0391 0.0569
2.30 0.0177 0.0353 0.0578 0.0759
2.35 0.0421 0.0588 0.0816 0.0986
2.40 0.0796 0.0902 0.1107 0.1241
2.45 0.1241 0.1290 0.1442 0.1542
2.50 0.1712 0.1714 0.1827 0.1885
2.55 0.2206 0.2182 0.2238 0.2256
2.60 0.2695 0.2651 0.2668 0.2648
2.65 0.3191 0.3145 0.3140 0.3092

Figure 5. Left: actual market prices; right: algorithmically reconstructed prices.
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Figure 6. SSE 50ETF option price and numerical option price at (a) T = 0.044, (b) 0.124, (c) 0.304, and
(d) 0.564.
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Table 4. The error outcomes following the calibration of SSE 50ETF options.

max |σd − σd−1| α max |V − V̂ |

Empirical results 9.9351 × 10−7 0.120 1.810 × 10−2

5. Conclusions

In this article, we reconstruct both the volatility σ and the fractional order α under the
time fractional Vasicke model. Since the calibration problem is ill-posed, we used Tikhonov
regularization and the ADMM algorithm for an iterative solution. At the same time,
the existence of the solution to the minimization problem is given. And the effectiveness
and robustness of the method can be obtained from numerical examples and empirical
analysis. From empirical analysis, it can be concluded that α = 0.120 is more suitable for
the current SSE 50ETF. Furthermore, it serves as an inspiration for readers to employ the
derived fractional order in solving time-fractional forward problems, given its relevance
to the current Chinese options market. It is worth noting that the possibility of negative
interest rates could be addressed by considering alternative models such as the CIR model
or CEV model.

Author Contributions: Methodology, project administration, supervision, writing—original, soft-
ware, draft preparation, Y.D.; data curation, validation, writing—review and editing, Z.X. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 12071479.

Data Availability Statement: Data available on request due to restrictions (e.g., privacy, legal or
ethical reasons). The data presented in this study are available on request from the corresponding
author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Black, F.; Scholes, M. The pricing of options and corporate liabilities. J. Political Econ. 1973, 81, 637–654. [CrossRef]
2. Cox, J.C. The constant elasticity of variance option pricing model. J. Portf. Manag. 1996, 23, 15–17. [CrossRef]
3. Cox, J.C.; Ingersoll, J.E., Jr.; Ross, S.A. A Theory of the Term Structure of Interest Rates, 2nd ed.; World Scientific: Singapore, 2005.
4. Vasicek, O. An equilibrium characterization of the term structure. J. Financ. Econ. 1977, 5, 177–188. [CrossRef]
5. Yao, K.; Liang, Y.S.; Zhang, F. On the connection between the order of the fractional derivative and the Hausdorff dimension of a

fractal function. Chaos Soliton Fract. 2009, 41, 2538–2545. [CrossRef]
6. Sene, N. Fractional model for a class of diffusion-reaction equation represented by the fractional-order derivative. Fractal Fract.

2020, 4, 15. [CrossRef]
7. Cruz-Duarte, J.M.; Rosales-Garcia, J.; Correa-Cely, C.R.; Garcia-Perez, A.; Avina-Cervantes, J.G. A closed form expression for

the Gaussian-based Caputo-Fabrizio fractional derivative for signal processing applications. Commun. Nonlinear Sci. 2018, 61,
138–148. [CrossRef]

8. Nourian, F.; Lakestani, M.; Sabermahani, S.; Ordokhani, Y. Touchard wavelet technique for solving time-fractional Black-Scholes
model. Comput. Appl. Math. 2022, 41, 150. [CrossRef]

9. Roul, P. Design and analysis of a high order computational technique for time-fractional Black-Scholes model describing option
pricing. Math. Method Appl. Sci. 2022, 45, 5592–5611. [CrossRef]

10. Chen, C.; Wang, Z.; Yang, Y. A new operator splitting method for American options under fractional Black-Scholes models.
Comput. Math. Appl. 2019, 77, 2130–2144. [CrossRef]

11. Cao, J.; Li, C. Finite difference scheme for the time-space fractional diffusion equations. Open Phys. 2013, 11, 1440–1456. [CrossRef]
12. Li, C.; Chen, A.; Ye, J. Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys.

2011, 230, 3352–3368. [CrossRef]
13. Gao, G.; Sun, Z.; Zhang, H. A new fractional numerical differentiation formula to approximate the Caputo fractional derivative

and its applications. J. Comput. Phys. 2014, 259, 33–50. [CrossRef]
14. Alikhanov, A.A. A new difference scheme for the time fractional diffusion equation. J. Comput. Phys. 2015, 280, 424–438.

[CrossRef]
15. Cao, J.; Xu, C.; Wang, Z. A High Order Finite Difference/Spectral Approximations to the Time Fractional Diffusion Equations.

Adv. Mater. Res. 2014, 875, 781785. [CrossRef]

http://doi.org/10.1086/260062
http://dx.doi.org/10.3905/jpm.1996.015
http://dx.doi.org/10.1016/0304-405X(77)90016-2
http://dx.doi.org/10.1016/j.chaos.2008.09.053
http://dx.doi.org/10.3390/fractalfract4020015
http://dx.doi.org/10.1016/j.cnsns.2018.01.020
http://dx.doi.org/10.1007/s40314-022-01853-y
http://dx.doi.org/10.1002/mma.8130
http://dx.doi.org/10.1016/j.camwa.2018.12.007
http://dx.doi.org/10.2478/s11534-013-0261-x
http://dx.doi.org/10.1016/j.jcp.2011.01.030
http://dx.doi.org/10.1016/j.jcp.2013.11.017
http://dx.doi.org/10.1016/j.jcp.2014.09.031
http://dx.doi.org/10.4028/www.scientific.net/AMR.875-877.781


Algorithms 2024, 17, 54 14 of 14

16. Cao, J.; Li, C.; Chen, Y.Q. High-order approximation to Caputo derivatives and Caputo-type advection-diffusion equations (II).
Adv. Mater. Res. 2015, 18, 735–761. [CrossRef]

17. Mokhtari, R.; Mostajeran, F. A High Order Formula to Approximate the Caputo Fractional Derivative. Com. Appl. Math. Comput.
2020, 2, 1–29. [CrossRef]

18. Li, D.; Wu, C.; Zhang, Z. Linearized Galerkin FEMs for nonlinear time fractional parabolic problems with non-smooth solutions
in time direction. J. Sci. Comput. 2019, 80, 403–419. [CrossRef]

19. Zhang, H.; Zeng, F.; Jiang, X.; Karniadakis, G.E. Convergence analysis of the time-stepping numerical methods for time-fractional
nonlinear subdiffusion equations. Fract. Calc. Appl. Anal. 2022, 25, 453–487. [CrossRef]

20. Yuan, W.; Zhang, C.; Li, D. Linearized fast time-stepping schemes for time-space fractional Schrödinger equations. Phys. D 2023,
454, 133865. [CrossRef]

21. Zhang, H.; Jiang, X. Convergence analysis of a fast second-order time-stepping numerical method for two-dimensional nonlinear
time-space fractional Schrödinger equation. Numer. Methods Partial Differ. Equations 2023, 39, 657–677. [CrossRef]

22. Dupire, B. Pricing with a smile. Risk 1994, 7, 525–546.
23. Xu, Z.; Jia, X. The calibration of volatility for option pricing models with jump diffusion processes. Appl. Anal. 2019, 98, 810–827.

[CrossRef]
24. Jiang, L.; Chen, Q.; Wang, L.; Zhang, J. A new well-posed algorithm to recover implied local volatility. Quant. Financ. 2003, 3, 451.

[CrossRef]
25. Li, S.; Zhou, Z. Legendre pseudo-spectral method for optimal control problem governed by a time-fractional diffusion equation.

Int. J. Comput. Math. 2017, 95, 1308–1325. [CrossRef]
26. Zhao, J.; Xu, Z. Simultaneous identification of volatility and mean-reverting parameter for European option under fractional

CKLS model. Fractal Fract. 2022, 6, 344. [CrossRef]
27. Yimamu, Y.; Deng, Z. Convergence of Inverse Volatility Problem Based on Degenerate Parabolic Equation. Mathematics 2022,

10, 2608. [CrossRef]
28. Jiang, L.; Li, C. Mathematical Modeling and Methods of Option Pricing, 1st ed.; World Scientific: Singapore, 2005.
29. Zhang, H.; Liu, F.; Turner, I.; Yang, Q. Numerical solution of the time fractional black-scholes model governing European options.

Comput. Math. Appl. 2016, 71, 1772–1783. [CrossRef]
30. Tikhonov, A.N. On the solution of ill-posed problems and the method of regularization. Russ. Acad. Sci. 1963, 151, 501–504.
31. Lagnado, R.; Osher, S. A technique for calibrating derivative security pricing models: Numerical solution of an inverse problem.

J. Comput. Financ. 1997, 1, 13–25. [CrossRef]
32. Kharrat, M.; Arfaoui, H. A new stabled relaxation method for pricing European options under the time-fractional Vasicek model.

Comput. Econ. 2023, 61, 1745–1763. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1515/fca-2015-0045
http://dx.doi.org/10.1007/s42967-019-00023-y
http://dx.doi.org/10.1007/s10915-019-00943-0
http://dx.doi.org/10.1007/s13540-022-00022-6
http://dx.doi.org/10.1016/j.physd.2023.133865
http://dx.doi.org/10.1002/num.22907
http://dx.doi.org/10.1080/00036811.2017.1403588
http://dx.doi.org/10.1088/1469-7688/3/6/304
http://dx.doi.org/10.1080/00207160.2017.1417591
http://dx.doi.org/10.3390/fractalfract6070344
http://dx.doi.org/10.3390/math10152608
http://dx.doi.org/10.1016/j.camwa.2016.02.007
http://dx.doi.org/10.21314/JCF.1997.002
http://dx.doi.org/10.1007/s10614-022-10264-4

	Introduction
	Pricing Formula under the Time Fractional Vasicek Model
	Regularization Method
	Existence of Solutions to Optimization Problems
	ADMM Algorithm

	Numerical Experiments
	Numerical Simulation
	Empirical Analysis

	Conclusions
	References

