
Citation: Sulaiman, A.T.; Bello-Salau,

H.; Onumanyi, A.J.; Mu’azu, M.B.;

Adedokun, E.A.; Salawudeen, A.T.;

Adekale, A.D. A Particle Swarm and

Smell Agent-Based Hybrid Algorithm

for Enhanced Optimization.

Algorithms 2024, 17, 53.

https://doi.org/10.3390/a17020053

Academic Editor: Akemi Galvez

Tomida

Received: 30 October 2023

Revised: 21 December 2023

Accepted: 21 January 2024

Published: 23 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

A Particle Swarm and Smell Agent-Based Hybrid Algorithm for
Enhanced Optimization
Abdullahi T. Sulaiman 1,†, Habeeb Bello-Salau 1,† , Adeiza J. Onumanyi 2,* , Muhammed B. Mu’azu 1,
Emmanuel A. Adedokun 1 , Ahmed T. Salawudeen 3 and Abdulfatai D. Adekale 1

1 Department of Computer Engineering, Ahmadu Bello University Zaria, Zaria 810107, Nigeria;
abdullahiat@gmail.com (A.T.S.); bellosalau@abu.edu.ng (H.B.-S.); mbmuazu@abu.edu.ng (M.B.M.);
wale@abu.edu.ng (E.A.A.); adekale@abu.edu.ng (A.D.A.)

2 Next Generation Enterprises and Institutions, Council for Scientific and Industrial Research (CSIR),
Pretoria 0001, South Africa

3 Department of Electrical and Electronics Engineering, University of Jos, Jos 930003, Nigeria;
atsalawudeen@unijos.edu.ng

* Correspondence: aonumanyi@csir.co.za
† These authors contributed equally to this work.

Abstract: The particle swarm optimization (PSO) algorithm is widely used for optimization purposes
across various domains, such as in precision agriculture, vehicular ad hoc networks, path planning,
and for the assessment of mathematical test functions towards benchmarking different optimization
algorithms. However, because of the inherent limitations in the velocity update mechanism of the
algorithm, PSO often converges to suboptimal solutions. Thus, this paper aims to enhance the
convergence rate and accuracy of the PSO algorithm by introducing a modified variant, which is
based on a hybrid of the PSO and the smell agent optimization (SAO), termed the PSO-SAO algorithm.
Our specific objective involves the incorporation of the trailing mode of the SAO algorithm into the
PSO framework, with the goal of effectively regulating the velocity updates of the original PSO, thus
improving its overall performance. By using the trailing mode, agents are continuously introduced
to track molecules with higher concentrations, thus guiding the PSO’s particles towards optimal
fitness locations. We evaluated the performance of the PSO-SAO, PSO, and SAO algorithms using
a set of 37 benchmark functions categorized into unimodal and non-separable (UN), multimodal
and non-separable (MS), and unimodal and separable (US) classes. The PSO-SAO achieved better
convergence towards global solutions, performing better than the original PSO in 76% of the assessed
functions. Specifically, it achieved a faster convergence rate and achieved a maximum fitness value of
−2.02180678324 when tested on the Adjiman test function at a hopping frequency of 9. Consequently,
these results underscore the potential of PSO-SAO for solving engineering problems effectively,
such as in vehicle routing, network design, and energy system optimization. These findings serve
as an initial stride towards the formulation of a robust hyperparameter tuning strategy applicable
to supervised machine learning and deep learning models, particularly in the domains of natural
language processing and path-loss modeling.

Keywords: benchmark; optimal; particle swarm optimization; smell agent optimization; solution;
test functions

1. Introduction

The particle swarm optimization (PSO) algorithm is a widely recognized swarm
intelligence-based optimization technique, extensively applied to diverse optimization
problems [1–3]. For example, in precision agriculture, PSO and other optimization algo-
rithms can be used to identify specific plants affected by diseases, thus enabling the targeted
application of pesticides or the elimination of unwanted weed growth [4–6]. In vehicular
ad hoc networks, optimization algorithms play a role in determining the optimal route for

Algorithms 2024, 17, 53. https://doi.org/10.3390/a17020053 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17020053
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-9207-8670
https://orcid.org/0000-0002-0166-0786
https://orcid.org/0000-0002-4220-2562
https://orcid.org/0000-0002-3677-2104
https://doi.org/10.3390/a17020053
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17020053?type=check_update&version=1

Algorithms 2024, 17, 53 2 of 14

vehicle navigation amid numerous possibilities from source to destination [7–9]. Further-
more, during the development of optimization algorithms, the initial evaluation of such
algorithms typically involves applying them to standard mathematical test functions to
gauge their performance [10]. Other examples include the use of optimization techniques
in solving the traveling salesman problem [7–9,11,12] and in path planning areas [13,14].
These examples illustrate the many application areas in which optimization algorithms, like
PSO, can be effectively utilized to yield societal benefits.

The PSO algorithm operates by guiding a population of particles through the search
space iteratively, with the objective of locating the optimal solution [15]. In this case,
the search space refers to the population of all possible solutions to the problem under
consideration. Specifically, each particle represents a potential solution to the problem, with
its position in the search space representing a candidate solution. The PSO algorithm then
updates each particle’s position iteratively, guided by both its own best position (referred
to as personal best or pbest) and the best position among its neighboring particles [15].
Initially, each particle is assigned a random velocity, propelling it into the optimization
hyperspace. Consequently, every particle maintains a record of its hyperspace coordinates,
which are tied to its best solution found so far (pbest). Simultaneously, the entire swarm of
particles collectively monitors the optimal solution and its location in hyperspace, referred
to as the global best (gbest) [16]. In an n-dimensional search space, the position and velocity
of a particle indexed by i at some present iteration cycle t are determined by the following
equations [17]:

xt
i = [xi1, . . . , xin] (1)

vt
i = [vi1, . . . , vin] (2)

v(t+1)
i = vt

i + c1r1 · (pbestt
i − xt

i) + c2r2 · (gbestt
i − xt

i) (3)

where c1 and c2 are the velocity control parameters, and r1 and r2 are random numbers
generated differently. Therefore, the position of the particles is updated as expressed in
Equation (4):

x(t+1)
i = xt

i + v(t+1)
i (4)

Many variants of the PSO algorithm exist in the literature, designed to enhance its
performance. Noteworthy among these is the constriction factor PSO (CFPSO) [18,19],
developed to mitigate premature convergence, a common issue in conventional PSO. CFPSO
uses a constriction factor to regulate the particle velocity, thereby curbing excessive growth.
This mechanism aids in preserving population diversity and safeguards against premature
convergence to sub-optimal solutions.

Similarly, a popular variant of the PSO algorithm is the hybrid PSO, which amalga-
mates PSO with other optimization techniques to enhance its performance. Some studies
advocate for the fusion of PSO with differential evolution (DE) to create a hybrid PSO-DE
algorithm [20,21]. This hybrid approach combines PSO’s global search capabilities with
DE’s local search abilities, resulting in an improved convergence speed and solution quality.
Furthermore, research has delved into the concept of adaptive PSO, another common
PSO variant that dynamically adjusts the algorithm’s parameters during optimization to
enhance its performance [22,23]. Various strategies, such as altering the inertia weight
or adapting the learning component, have been explored to fine-tune the PSO update
equation. These adaptations serve to balance the exploration and exploitation phases of the
algorithm, ultimately improving the convergence speed and accuracy.

Moreover, the multi-objective PSO is a specialized PSO modification tailored for
solving multi-objective optimization problems [24–26]. Multi-objective optimization tasks
involve the simultaneous consideration of conflicting objectives [24]. The multi-objective
PSO employs a Pareto-based approach to generate a set of non-dominated individuals that
represent the trade-offs between the different objectives. Essentially, the PSO algorithm and
its variants stand as potent optimization techniques with widespread applications in solving
diverse optimization problems, including mathematical test functions. The selection of a
specific PSO variant hinges on the unique characteristics of the problem under investigation.

Algorithms 2024, 17, 53 3 of 14

In this paper, based on the smell agent optimization (SAO) algorithm, we introduce a
hybrid method, denoted as the PSO-SAO algorithm, aimed at enhancing the convergence
accuracy of the original PSO algorithm. We achieved this by modifying the velocity update
process of the original PSO through the incorporation of the trailing mode from the SAO
algorithm (proposed in [27]). Hence, the specific objective of our study is to use the concept
of the trailing mode in the SAO algorithm to continuously introduce agents to track
molecules with higher concentrations, thus guiding the particles in the PSO towards
optimal fitness locations. The velocity update process in PSO has been adapted to depend
on a newly introduced parameter called the hopping frequency in PSO-SAO. This parameter
dictates whether our hybrid algorithm uses the trailing mode or the standard PSO velocity
update equation. The optimal value for the hopping frequency can be determined through
experimental analysis, taking into consideration the specific application area of interest.

Our proposed PSO-SAO algorithm holds significant importance in the field of op-
timization techniques due to its ability to enhance convergence accuracy and efficiently
navigate complex solution spaces. Its incorporation of the trailing mode from the SAO algo-
rithm introduces adaptability, providing a promising approach for addressing optimization
challenges. The algorithm’s potential applications span various domains, including preci-
sion agriculture, path loss prediction, path planning, machine learning, and deep learning
models. By offering an effective tool for optimizing complex systems, the PSO-SAO algo-
rithm creates opportunities for enhancing decision-making processes, resource utilization,
and overall system performance in practical applications.

Therefore, in line with this concept, our study’s primary contribution revolves around
the innovative integration of PSO with the trailing mode of SAO, resulting in an improved
performance. To evaluate its robustness, we follow standard benchmark procedures [28]
and assess the PSO-SAO algorithm across 37 standard benchmark test functions [29],
comparing it to the original PSO and SAO algorithms. The remainder of this paper is
structured as follows: Section 2 details the proposed PSO-SAO algorithm, Section 3 presents
the results and discussions, and Section 4 provides the paper’s concluding remarks.

2. Hybridization of PSO and SAO Algorithms

This section provides a brief high-level summary of metaheuristics and then outlines
our hybridization approach that combines the PSO algorithm with the trailing mechanism
of the SAO algorithm. This hybridization aims to enhance the performance of the original
PSO algorithm by addressing convergence issues towards suboptimal solutions.

Firstly, we note that metaheuristics are powerful problem-solving techniques used
in various fields to find optimal or near-optimal solutions for complex problems. Unlike
traditional mathematical optimization methods, which may struggle with highly nonlinear
or combinatorial problems, metaheuristics are versatile and can efficiently explore solution
spaces. These algorithms draw inspiration from natural processes or human behaviors to
iteratively refine solutions. They employ strategies like population-based search, mutation,
and selection to explore a wide range of possibilities and gradually converge towards better
solutions. Here, we introduce the PSO-SAO algorithm, which is proposed for its ability to
enhance the convergence accuracy and adaptability of the original PSO.

In developing the PSO-SAO approach, an initial population of randomly generated
solutions is used to initiate the PSO process. Each solution (or particle) is associated with
a random velocity and explores the optimization hyperspace. Each particle tracks its
own position coordinates in hyperspace, denoted as the personal best (pbest). The swarm
collectively maintains the overall best solution and its position in hyperspace, referred to
as the global best (gbest). The position (x) and velocity (v) of particle i in an n-dimensional
search space at a specific iteration cycle t are determined by Equations (1) and (2). The
fitness of each particle is assessed, and their respective pbest and the population gbest values
are updated using Equation (3), while particle positions are updated using Equation (4).
Figure 1 provides an overview of the PSO implementation processes.

Algorithms 2024, 17, 53 4 of 14

Start

Initialization of
PSO parameters

Initialize particles
with random

positions and
velocities

Evaluate fitness of
each particles'

position (p)

If fitness (p) is
better than pbest,

then pbest = p

Update particle
velocity and

position

If Gbest
is optimum
solution?

Yes

End

No

Figure 1. PSO operational flow process.

Specifically, from Figure 1, the initial positions in the PSO algorithm are randomly
assigned, and the particle fitness at these positions is evaluated. Then, the velocity is
adjusted, and new positions are determined. Thereafter, the fitness of each particle is
reevaluated, and the updated fitness is compared to the previous fitness, thus retaining
the better value (i.e., smaller or larger value in the case of minimization or maximization
problems, respectively). This process then updates the pbest and gbest positions. The PSO
procedure then continues until the termination criteria are met. For performance analysis
purposes, we classify the benchmark functions used in this work into three categories:
unimodal and non-separable (UN), unimodal and separable (US), and multimodal and
non-separable (MS), as summarized in Table 1. In this case, the unimodal functions have
a single global optimum, aiding in assessing the exploitation capability of an algorithm,
while multimodal functions possess multiple local optima, thus facilitating the evaluation
of the exploration capability of an algorithm. Specifically, exploitation capability refers to
the algorithm’s capacity to effectively utilize and exploit known information to maximize
performance or achieve optimal results within a given context. It involves refining solutions
and making incremental improvements by leveraging existing knowledge or resources.
Conversely, exploration capability refers to the ability to search and explore new solutions
within a problem space. This process involves discovering new information, potentially
sacrificing immediate gains to uncover new possibilities or better solutions. Balancing
exploitation and exploration capabilities is crucial, especially in optimization algorithms, as
it determines the trade-off between refining known solutions and discovering potentially
superior alternatives. Further details about the classification and benchmark test functions
can be found in [27].

In order to improve the PSO’s efficiency and prevent it from converging to suboptimal
values, we incorporated the trailing mechanism from the SAO, for which the full working
mechanism of the SAO algorithm can be accessed in [27,30]. The SAO algorithm uses the
phenomenon of smell and the intuitive trailing behavior of an agent to identify a smell
source. The algorithm is inspired by the behavior of animals that use their sense of smell to
locate food sources. The algorithm works by simulating the behavior of an agent that moves
through a search space, leaving a trail of pheromones as it moves. The pheromones are then
used to communicate information about the quality of the solutions found by the agent to
other agents in the search space. The agents then use this information to guide their search
towards better solutions. The algorithm is designed to balance exploration and exploitation
of the search space, thus allowing it to find optimal solutions efficiently. The computational
analysis of the SAO in [27,30] demonstrates the robustness of SAO in finding optimal
solutions for mechanical, civil, and industrial design problems. The experimental results
obtained showed that the algorithm leads to an improvement in solution quality by 10–20%
of other selected metaheuristics while solving constraint benchmarks and engineering
problems, with further details available in [27,30].

Algorithms 2024, 17, 53 5 of 14

Table 1. Mathematical benchmark test functions [26].

FNo Name D Formula C Range Fmin

F1 Adjiman 2 f (x) = cos(x1) sin(x2)− x1
(x2

2+1)
NS, MM [−1, −1; 2, 1] −2.0218

F2 Beale 2 f (x) = (1.5 − x1 + x1x2)
2 +

(
2.25 − x1 + x1x2

2
)2

+
(
2.625 − x1 + x1x3

2
)2 NS, UM [−4.5, 4.5] 0

F3 Bird 2 f (x) = sin(x1)e(1−cos(x2))
2
+ cos(x2)e(1−sin(x1))

2
+ (x1 − x2)

2 NS, MM [−2π, 2π] −106.7645
F4 Bohachevsky1 2 f (x) = x2

1 + 2x2
2 − 0.3 cos(3πx1)− 0.4 cos(4πx2) + 0.7 NS, MM [−100, 100] 0

F5 Booth 2 f (x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2 NS, UM [−10, 10] 0

F6 Branin RCOS1 2 f (x) =
(

x2 −
5.1x2

1
4π2 + 5x1

π − 6
)2

+ 10
(

1 − 1
8π

)
cos(x1) + 10 NS, MM [−5, 0; 10, 15] 0.3979

F7 Branin RCOS2 2 f (x) =
(

x2 −
5.1x2

1
4π2 + 5x1

π − 6
)2

+ 10
(

1 − 1
8π

)
× cos(x1) cos(x2)× ln(x2

1 + x2
2 + 1) + 10 NS, MM [−5; 15] 5.5590

F8 Brent 2 f (x) = (x1 + 10)2 + (x2 + 10)2 + e−x2
1−x2

2 NS, UM [−10; 10] 0
F9 Bukin F6 2 f (x) = 100

√∣∣x2 − 0.01x2
1

∣∣+ 0.01|x1 + 10| NS, MM [−15, −3; −3, 3] 0

F10 Camel-Six
Hump 2 f (x) = (4 − 2.1x2

1 +
x4

1
3)x2

1 + x1x2 + (4x2
2 − 4)x2

2
NS, MM [−5; 5] −1.0316

F11 Chichinadze 2 f (x) = x2
1 − 12x1 + 11 + 10 cos(πx1

2) + 8 sin(5πx1
2)− (1/5)0.5 exp(−0.5(x2 − 0.5)2) S, MM [−30; 30] −43.3159

F12 Deckkers-Aarts 2 f (x) = 105x2
1 + x2

2 − (x2
1 + x2

2)
2 + 10−5(x2

1 + x2
2)

4 NS, MM [−20; 20] −24777
F13 Easom 2 f (x) = − cos(x1) cos(x2) exp

(
−(x1 − π)2 − (x2 − π)2

)
S, MM [−100, 100] −1

F14 Matyas 2 f (x) = 0.26
(
x2

1 + x2
2
)
− 0.48x1x2 NS, UM [−10,10] 0

F15 McComick 2 f (x) = sin(x1 + x2) + (x1 − x2)
2 − (3/2)x1 + (5/2)x2 + 1 NS, MU [−10, 10] −1.9133

F16 Michalewicz 2 f (x) = −∑2
i=1 sin(xi)(sin(ix2

i /π))20 NS, MM [0, π] −1.8013
F17 Quadratic 2 f (x) = −3803.84 − 138.08x1 − 232.92x2 + 128.08x2

1 + 203.64x2
2 + 182.25x1x2 NS, MM [−10, 10] −3873.7243

F18 Scahffer 2 f (x) = ∑30
i=1 (x2

i + x2
i+1)

0.25{[sin 50(x2
i + x2

i+1)
0.1]2 + 1} NS, MM [−100, 100] 0

F19 Styblinski-Tang 2 f (x) = 1
2 ∑n

i=1
(
x4

i − 16x2
i + 5xi

)
NS, MM [−5, 5] −78.332

F20 Box-Betts 3 f (x) = ∑k
i=1(e

−0.1(i+1)x1 − e−0.1(i+1)x2 − [(e−0.1(i+1))− e−(i+1)x3])2 NS, MM [0.9, 1.2; 9, 11.2; 0.9, 1.2] 0
F21 Colville 4 f (x) = 100(x1 − x2)

2 +(x1 − 1)2 +(x3 − 1)2 + 90(x2
3 − x4)

2 + 10.1((x2 − 1)2 +(x4 − 1)2)+ 19.8(x2 − 1)(x4 − 1) NS, MM [−1,1] 0
F22 Csendes 4 f (x) = ∑D

i=1 x6
i (2 + sin 1

xi
) S, MM [−1,1] 0

F23 Michalewicz 5 f (x) = −∑2
i=1 sin(xi)(sin(ix2

i /π))20 NS, MM [0, π] −4.6877
F24 Miele Cantrell 4 f (x) = (e−x1 − x2)

4 + 100(x2 − x3)
6 + (tan(x3 − x4))

4 + x8
1 NS, MM [−1, 1] 0

F25 Step 5 f (x) = ∑D
i=1(⌊xi + 0.5⌋)2 S, UM [−100, 100] 0

F26 Michalewicz 10 f (x) = −∑2
i=1 sin(xi)(sin(ix2

i /π))20 NS, MM [0, π] −9.6602
F27 Shubert 5 f (x) = ∑n

i=1 i cos(i + 1)xi + i × ∑n
i=1 i cos(i + 1)xi+1 + i S, MM [−10, 10] −186.7309

F28 Ackley 30 f (x) = −20 exp[− 1
5

√
1
n ∑D

i=1 x2
i]− exp[1

n ∑D
i=1 cos(2πxi)] + 20 + e NS, MM [−32, 32] 0

F29 Brown 30 ∑n−1
i=1 (xi

2)(x2
i+1+1) + (x2

i+1)
(x2

i +1) NS, UM [−1, 4] 0
F30 Ellipsoid 30 f (x) = ∑n

i=1 i.x2
i NS, UM [−5.12, 5.12] 0

F31 Griewank 30 1
4000 − 20 exp

(
∑D

i=1 (xi − 100)2
)
−

(
∏D

i=1 cos
(

xi−100√
i

))
+ 1 NS, MM [−100, 100] 0

F32 Mishra 30 f (x) =
(

1 + D − ∑N−1
i=1 xi

)N−∑N−1
i=1 xi NS, MM [0,1] 2

Algorithms 2024, 17, 53 6 of 14

Table 1. Cont.

FNo Name D Formula C Range Fmin

F33 Quartic 30 f (x) = ∑D
i=1 ix4

i + random[0, 1) S, MM [−1.28, 1.28] 0
F34 Rastrigin 30 f (x) = 10n + ∑n

i=1 [x
2
i − 10 cos(2πxi)] NS, MM [−5.12, 5.12] 0

F35 Rosenbrock 30 f (x) = ∑D−1
i=1 (100(xi+1 − x2

i)
2 + (xi − 1)2) NS, UM [−30, 30] 0

F36 Salomon 30 f (x) = 1 − cos(2π
√

∑30
i=1 x2

i) + 0.1
√

∑30
i=1 x2

i
NS, MM [−100, 100] 0

F37 Sphere 30 f (x) = ∑D
i=1 x2

i S, MM [−100, 100] 0

Algorithms 2024, 17, 53 7 of 14

Thus, based on the performance of the SAO algorithm, it demonstrated a good balance
between exploitation and exploration, which significantly influenced the effectiveness of
any population-based algorithm. Consequently, as the PSO’s success relies heavily on the
effectiveness of its velocity-computation technique and update process, there is potential
for the trailing property of the SAO to be integrated into the PSO to prevent its convergence
to suboptimal values. The trailing mode within the SAO algorithm carries significant
importance as it directs agents from smell perception to evaporation locations. This mode
captures both favorable and unfavorable odor molecules, which can serve as an occasional
alternative to the position update behavior in PSO. The integration of this behavior in a
hybrid algorithm will thus allow for dynamic position updates, using the solution found
by the trailing behavior only if it surpasses the original PSO update solution. Moreover,
this occasional switch eliminates the necessity of using velocity in the optimization process,
facilitating a more extensive search. Furthermore, we note that in the trailing mode of the
SAO, agents continuously track molecules with a higher concentration, hence directing
them towards the best fitness location. The agents in the SAO algorithm possess olfaction
capacities based on psychological and physical conditions, and the size of the olfactory lobe.
A larger olfactory lobe favors exploitation, while a smaller lobe implies weaker olfaction.
For the trailing mode to function, the odor must first evaporate in the agent’s direction,
followed by the sniffing procedure to determine olfaction capacity, O f , which is calculated
as follows [27]:

O f =
f (xAgent)(

∑N
i=1 f (xi)

)
/N

(5)

where f (xAgent) is the agent’s fitness, f (xi) denotes the fitness of an individual molecule,
and N is the number of molecules. Equation (6) further defines the agent’s trailing behavior
as follows:

x(t+1)
i = x(t)i + r1 · O f · (x(t)Agent − x(t)i)− r2 · O f · (x(t)Worst − x(t)i) (6)

where r1 and r2 are random numbers generated at distinct intervals. This trailing mecha-
nism is proposed in our hybrid as an alternative position update strategy instead of the
PSO update mechanism defined as follows:

x(t+1)
i =

x(t)i + v(t+1)
i if h f < Jr

y(t+1)
i if h f ≥ Jr

(7)

where
v(t+1)

i = v(t)i + c1r1 · (pbest(t)i − x(t)i) + c2r2 · (gbest(t)i − x(t)i) (8)

and y(t+1)
i is calculated using Equation (6). The value of h f (termed the hopping frequency)

determines whether our hybrid algorithm uses the trailing mode (Equation (6)) or the PSO
velocity update equation (Equation (7)). Its value is determined experimentally, and Jr is
calculated using the normal distribution in the range (0, 1). Figure 2 presents a flowchart
describing the complete working mechanism of the PSO-SAO algorithm. The control
parameters, including the swarm size npop (i.e., population size), olfaction capacity (O f),
hopping frequency (h f), coefficient vector, termination criteria Itermax, and initial velocity
c1, c2, are summarized in Table 2. The pseudocode for the hopping frequency trail update
mechanism proposed for use in PSO-SAO is provided in Algorithm 1. The PSO-SAO
algorithm is then evaluated to assess its effectiveness using 37 benchmark test functions
listed in Table 1.

Algorithms 2024, 17, 53 8 of 14

Algorithm 1 Hopping frequency mechanism deployed in the PSO-SAO for position update

1: Input: npop, nVar, c1, c2, w, Itermax, h f , gk, Pk
2: Initial particles’ agent (Pagent) and particles’ worst (Pworst).
3: for k = 1 to npop do
4: if rand() > h f then
5: v(t+1)

k,m = w × v(t)k,m + c1 × r1 × (pk − x(t)k,m) + c2 × r2 × (gk − x(t)k,m)

6: x(t+1)
j,m = x(t)j,m + v(t+1)

j,m
7: else if rand() < h f then
8: Update Pagent and Pworst from the fitness of initial particles.

9: if f (x(t)i,k) < f (Pagent) then

10: Pagent = x(t)i,k

11: else if f (x(t)i,k) > f (Pworst) then

12: Pworst = x(t)i,k
13: end if
14: end if
15: x(t+1)

k,m = x(t)k,m + O f × r4 × (Pagent − x(t)k,m) + O f × r5 × (Pworst − x(t)k,m)

16: end for

Start

Initialize algorithm
parameters of both

PSO and SAO

Generate initial
particles and

velocity

Create initial
positions of pbest

and Gbest

Evaluate fitness of
initial particles While

it < iter_max

Yes

Update pbest
and Gbest

No

If
rand £ Inf

Yes

Determine
particle agent
position and

particles worst
position

No

Update
particles

position using
velocity update

Trail best
particles
position

Update Gbest

it = iter_max
No

Yes

Output
best solution

Stop

Figure 2. Operation of the PSO-SAO algorithm.

Table 2. Proposed algorithm control parameters.

S/N Initialization Parameters Values

1 Wmax 0.9
2 Wmin 0.2
3 C1 2
4 C2 2
5 Olf 0.75
6 hf 0.3

Algorithms 2024, 17, 53 9 of 14

3. Results and Discussion

This section presents the results of evaluating the PSO-SAO algorithm on benchmark
test functions, as well as its comparison with the original PSO [1] and SAO algorithms [27].
Additionally, we report the fitness results of PSO-SAO on the benchmark functions for nine
specified hopping frequencies. These results are essential to demonstrate the efficacy of the
PSO-SAO algorithm’s search process.

Figures 3 and 4 provide the outcomes of running each function 10 times with hopping
frequencies ranging from 0.1 to 0.9, which were transformed to values from 1 to 9 in the
charts. In particular, Figure 3 illustrates the minimization process for the PSO-SAO algorithm
on the first benchmark function (Adjiman function) using varying hopping frequencies.
Notably, PSO-SAO exhibits the fastest convergence at a hopping frequency of 8.

100 200 300 400 500 600 700 800 900 1000

Iteration number

-2

-1.95

-1.9

-1.85

-1.8

-1.75

-1.7

-1.65

F
it
n

e
s
s
 v

a
lu

e
s

Hf=1

Hf=2

Hf=3

Hf=4

Hf=5

Hf=6

Hf=7

Hf=8

Hf=9

2 3 4 5

-2.02

-2

-1.98

-1.96

Figure 3. Fitness values for the PSO-SAO on Adjiman test function showing convergence of all Hf.

Figure 4 presents the average fitness plot for the nine hopping frequencies applied to
the Adjiman function. It is apparent from Figure 4 that hopping frequencies between 0.1
and 0.5 yield identical average fitness values, while a hopping frequency of 0.9 produces
the highest average fitness. This observation explains why the hopping frequency of 9 (on a
scale of 1–10) achieves the best convergence rate in Figure 3. In this figure, the differences in
the fitness values are indeed minimal, primarily because the Adjiman function considered
here served as an easily solvable problem for the PSO-SAO algorithm. Nevertheless, we
included it here because it broadly mirrors how the hopping frequency responds to numer-
ous other functions. Furthermore, this difference in the fitness values only becomes more
prominent when dealing with difficult problems with higher-dimensional and multimodal
characteristics. Extensive analyses were conducted for all of the test functions in Table 1,
with similar outcomes obtained as explained here, but due to space constraints, only the
results for the Adjiman test function were reported.

Algorithms 2024, 17, 53 10 of 14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Hopping Frequency

A
ve

ra
ge

 fi
tn

es
s

va
lu

es

-2.02180678334

-2.02180678332

-2.0218067833

-2.02180678328

-2.02180678326

-2.02180678324

Figure 4. Average fitness performance for the different hopping frequencies on Adjiman function (F1)
for the PSO-SAO algorithm.

Table 3 presents a comprehensive summary of the outcomes pertaining to both the
average and standard deviation values for each algorithm when applied to the set of
37 functions. Notably, the PSO-SAO algorithm emerged as particularly successful in its
ability to converge to global solutions, as highlighted by the use of the bold red font in
Table 3. The ground truth global values, which served as benchmarks for assessing the
performance of the algorithms, can be cross-referenced in Table 1. For instance, functions
F1, F2, and F3, corresponding to the Adjiman, Beale, and Bird functions, respectively,
exhibited true global solutions of −2.0218, 0, and −106.765, respectively, as documented in
Table 1. Strikingly, a comparison of these global values with those attained by the PSO-SAO
algorithm, as indicated in Table 3, revealed a good degree of approximation.

The PSO-SAO algorithm achieved an average global solution of −2.0218 for the
Adjiman function F1 (see Table 3). A similar result was obtained for SAO, with values of
−2.0218 for F1. PSO, on the other hand, obtained an average of −2.0134, thus resulting in a
larger error. These results highlight that both the PSO-SAO and SAO algorithms converged
to the exact global solution with high precision (−2.0218) compared with the PSO algorithm.
Other results can be observed for the other functions in Table 3.

We present a concise summary of algorithm rankings based on the number of func-
tions for which they achieved optimal values in Table 4. It is important to note that the
determination of optimal values was established through the calculation of the absolute
errors between the average fitness values attained by each algorithm and the global so-
lutions for each function, as presented in Table 1. The results indicate that the PSO-SAO
algorithm achieved the highest ranking, demonstrating the best performance in 28 out of
the 37 functions, resulting in a 76% success rate.

Summarily, it is shown that the PSO-SAO algorithm achieved global solutions for 76%
of the standard benchmark test functions considered in our study, performing better than
the SAO (with 62%) and PSO algorithms (with 41%). This demonstrates its potential and
thus it can be deployed for solving engineering problems, for example, hyperparameter
tuning in supervised machine learning models for different applications and problems.

Algorithms 2024, 17, 53 11 of 14

Table 3. The fitness performance across functions 1 to 37. The red values represent the optimal values,
i.e., the smallest absolute error, belonging to the algorithm that exhibits the best performance for each
respective function.

Function F1 F2 F3

Metrics Average Std Error Average Std Error Average Std Error
SAO −2.0218 9.11 × 10−16 0 3.81 × 10−2 1.70 × 10−1 0.0381 −106.75 6.37 × 100 0.0145
PSO −2.0134 6.19 × 10−1 0.0084 7.62 × 10−2 2.35 × 10−1 0.0762 −105.82 4.31 × 100 0.9445

PSO-SAO −2.0218 0.00 × 100 0 1.54 × 10−7 4.73 × 10−6 0.000000154 −106.78 8.63 × 10−15 0.0155

Function F4 F5 F6

Metrics Average Std Error Average Std Error Average Std Error
SAO 0.00 × 100 0.00 × 100 0 4.90 × 10−20 1.22 × 10−15 4.9 × 10−20 0.3979 0.00 × 100 0
PSO 4.59 × 10−20 4.59 × 10−20 4.59 × 10−20 1.52 × 10−15 9.00 × 10−8 1.52 × 10−15 0.3979 0.00 × 100 0

PSO-SAO 0.00 × 100 0.00 × 100 0 0.00 × 100 0.00 × 100 0 0.3979 0.00 × 100 0

Function F7 F8 F9

Metrics Average Std Error Average Std Error Average Std Error
SAO −0.2066 8.26 × 10−2 5.7656 2.88 × 10−78 8.58 × 10−78 2.88 × 10−78 5.10 × 100 1.03 × 10−16 5.1
PSO −0.2058 6.10 × 10−2 5.7648 1.38 × 10−87 4.58 × 10−103 1.38 × 10−87 5.10 × 100 1.03 × 10−16 5.1

PSO-SAO −0.2058 6.10 × 10−2 5.7648 1.38 × 10−87 4.58 × 10−103 1.38 × 10−87 5.10 × 100 1.03 × 10−16 5.1

Function F10 F11 F12

Metrics Average Std Error Average Std Error Average Std Error
SAO 5.10 × 100 1.03 × 10−16 6.1316 −42.2974 42.274 1.0185 −24776.51 7.40 × 10−10 0.49
PSO 5.10 × 100 1.03 × 10−16 6.1316 −42.2974 42.4975 1.0185 −24769.78 1.69 × 10−5 7.22

PSO-SAO 5.10 × 100 1.03 × 10−16 6.1316 −42.2974 42.4975 1.0185 −24776.51 7.40 × 10−10 0.49

Function F13 F14 15

Metrics Average Std Error Average Std Error Average Std Error
SAO −1.00 × 100 0.00 × 100 0 6.36 × 10−82 1.91 × 10−92 6.36 × 10−82 −1.9132 4.56 × 10−16 1 × 10−4

PSO −0.9958 3.07 × 10−1 0.0042 1.67 × 10−7 1.07 × 10−7 0.000000167 −1.9132 4.56 × 10−16 1 × 10−4

PSO-SAO −1.00 × 100 0.00 × 100 0 3.31 × 10−77 1.21 × 10−91 3.31 × 10−77 −1.9132 4.56 × 10−16 1 × 10−4

Function F16 F17 F18

Metrics Average Std Error Average Std Error Average Std Error
SAO −1.9998 6.15 × 10−1 0.1985 −3873.72 0.00 × 100 0.0043 1.31 × 10−9 8.11 × 10−10 1.31 × 10−9

PSO −2 0.00 × 100 0.1987 −3497.13 1.39 × 100 376.5943 2.45 × 10−10 7.11 × 10−10 2.45 × 10−10

PSO-SAO −2 0.00 × 100 0.1987 −3873.72 0.00 × 100 0.0043 2.55 × 10−7 4.10 × 10−7 0.000000255

Function F19 F20 F21

Metrics Average Std Error Average Std Error Average Std Error
SAO −78.3322 1.46 × 10−14 0.0002 1.26 × 102 3.87 × 100 126 0.00 × 100 0.00 × 100 0
PSO −78.3162 2.41 × 10−1 0.0158 1.26 × 102 4.37 × 10−14 126 1.38 × 100 1.39 × 100 1.38

PSO-SAO −78.3322 1.46 × 10−14 0.0002 1.26 × 102 4.37 × 10−14 126 0.00 × 100 0.00 × 100 0

Function F22 F23 F24

Metrics Average Std Error Average Std Error Average Std Error
SAO 6.71 × 10−24 0.00 × 100 6.71 × 10−24 4.99 × 10−9 1.43 × 103 4.687700005 1.63 × 10−7 1.61 × 10−2 0.000000163
PSO 3.69 × 10−14 4.35 × 10−9 3.69 × 10−14 −5 0.00 × 100 0.3123 0.00 × 100 0.00 × 100 0

PSO-SAO 1.24 × 10−23 6.50 × 10−7 1.24 × 10−23 −5 0.00 × 100 0.3123 0.00 × 100 0.00 × 100 0

Function F25 F26 F27

Metrics Average Std Error Average Std Error Average Std Error
SAO 0.00 × 100 0.00 × 100 0 −9.9991 3.73 × 10−3 0.3389 −186.73 2.53 × 10−14 0.0009
PSO 0.00 × 100 0.00 × 100 0 −10 0.00 × 100 0.3398 −170.45 5.75 × 10−3 16.2809

PSO-SAO 0.00 × 100 0.00 × 100 0 −10 0.00 × 100 0.3398 −186.73 3.91 × 10−14 0.0009

Function F28 F29 F30

Metrics Average Std Error Average Std Error Average Std Error
SAO 8.88 × 10−16 0.00 × 100 8.88 × 10−16 3.00 × 100 6.93 × 10−117 3 9.93 × 10−155 3.69 × 10−144 9.93 × 10−155

PSO 8.88 × 10−16 0.00 × 100 8.88 × 10−16 1.41 × 10−15 1.48 × 10−5 1.41 × 10−15 7.17 × 10−56 2.21 × 10−12 7.17 × 10−56

PSO-SAO 8.88 × 10−16 0.00 × 100 8.88 × 10−16 7.00 × 100 1.46 × 10−128 7 1.09 × 10−158 4.10 × 10−158 1.09 × 10−158

Function F31 F32 F33

Metrics Average Std Error Average Std Error Average Std Error
SAO 1.02 × 10−38 4.48 × 10−22 1.02 × 10−38 2.38 × 10−294 0.00 × 100 2 1.57 × 10−4 0.00 × 100 0.000157
PSO 0.00 × 100 0.00 × 100 0 6.82 × 102 2.45 × 102 680 1.67 × 10−2 1.40 × 10−3 0.0167

PSO-SAO 0.00 × 100 0.00 × 100 0 9.00 × 100 3.58 × 10−7 7 1.34 × 10−3 0.00 × 100 0.00134

Function F34 F35 F36

Metrics Average Std Error Average Std Error Average Std Error
SAO 0.00 × 100 1.90 × 10−1 0 2.72 × 10−17 5.86 × 10−17 2.72 × 10−17 1.22 × 10−59 4.86 × 10−56 1.22 × 10−59

PSO 1.22 × 10−1 8.83 × 10−1 0.122 1.19 × 100 1.32 × 100 1.19 4.00 × 10−1 1.13 × 10−1 0.4
PSO-SAO 0.00 × 100 0.00 × 100 0 6.48 × 10−25 1.49 × 10−24 6.48 × 10−25 1.11 × 10−60 9.60 × 10−61 1.11 × 10−60

Algorithms 2024, 17, 53 12 of 14

Table 3. Cont.

Function F37

Metrics Average Std Error
SAO 5.00 × 10−152 2.71 × 10−133 5 × 10−152

PSO 5.36 × 101 1.35 × 10−5 53.6
PSO-SAO 1.27 × 10−162 5.35 × 10−152 1.27 × 10−162

Table 4. Ranking of the different algorithms based on the number of functions for which they achieved
optimal values.

Ranking Algorithms Count of Best Values Percentage (%)

1 PSO-SAO 28 76
2 SAO 23 62
3 PSO 15 41

4. Conclusions

This study presents the development of a hybrid modified particle swarm optimization
(PSO-SAO) algorithm, which integrates the trailing mode of the smell agent optimization
(SAO) algorithm to enhance the velocity update process of the original PSO algorithm. This
hybridization aims to address the challenge of suboptimal convergence encountered in the
standard PSO algorithm. The performance of the proposed hybrid PSO-SAO was assessed
using 37 distinct benchmark test functions. Evaluation metrics comprised the determina-
tion of the best, average, worst, and standard deviation values for the different algorithms,
followed by a comparative analysis against the performance of both the original PSO and
SAO algorithms. The experimental results obtained revealed that the PSO-SAO achieved
the best results in 71% of the 37 functions, followed by the SAO with 62% and the standard
PSO with 41%. These findings substantiate the efficacy of the developed PSO-SAO. The
primary challenge of the hybrid mechanism is the introduction of the increased compu-
tational complexity, which can potentially impact the system efficiency and performance.
This challenge necessitates further research to optimize and mitigate the computational
overhead. Nevertheless, our hybrid algorithm enhances existing research in optimization
by demonstrating the combination of functions from two different optimization algorithms,
thus leveraging their individual strengths to achieve improved solutions. This approach
led to a robust and efficient optimization technique, thus offering solutions that may be
superior to those obtained using the individual methods. Furthermore, it is essential to
emphasize that this research serves as a preliminary step towards the establishment of a
robust optimization approach for hyperparameter tuning in supervised machine learning
models and deep learning models, specifically designed for natural language processing
and pathloss modeling. Future investigations will extend the use of the developed PSO-
SAO to address various engineering applications, including hyperparameter optimization
in deep learning models, language translation, path loss modeling, and route planning,
among others.

Author Contributions: conceptualization, A.T.S. (Abdullahi T. Sulaiman), H.B.-S. and A.T.S. (Ahmed T.
Salawudeen); methodology, H.B.-S., A.T.S. (Ahmed T. Salawudeen) and A.J.O.; writing—original draft
preparation, H.B.-S. and A.T.S. (Ahmed T. Salawudeen); writing—review and editing, H.B.-S., A.J.O.
and A.D.A.; supervision, M.B.M. and E.A.A.; funding acquisition, H.B.-S. and A.J.O. All authors have
read and agreed to the published version of the manuscript.

Funding: The authors would like to thank the Tertiary Education Trust Fund (TETFUND), Nigeria, for
funding this research as part of the 2021 National Research Fund (NRF) grant cycle, under the project
titled “A Novel Artificial Intelligence of Things (AIoT) Based Assistive Smart Glass Tracking System for
the Visually Impaired” (TETF/DR&D/CE/NRF2021/SETI/ICT/00140/VOL.1). We would also like to
thank the Image Processing and Computer Vision (IPCV) research group at Ahmadu Bello University
Zaria, Nigeria, for their insightful comments and ideas that aided in the development of this study.

Algorithms 2024, 17, 53 13 of 14

Data Availability Statement: The data presented in this study are available upon request from the
corresponding author. The data are not publicly available due to ethical reasons.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN95—International Conference on Neural

Networks, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; ICNN-95. [CrossRef]
2. Wang, D.; Tan, D.; Liu, L. Particle swarm optimization algorithm: An overview. J. Soft Comput. 2018, 22, 387–408. [CrossRef]
3. Juneja, M.; Nagar, S. Particle swarm optimization algorithm and its parameters: A review. In Proceedings of the 2016 International

Conference on Control, Computing, Communication and Materials (ICCCCM), Allahbad, India, 21–22 October 2016; pp. 1–5.
[CrossRef]

4. Rathod, S.; Saha, A.; Sinha, K. Particle Swarm Optimization and its applications in agricultural research. Food Sci. Rep. 2020, 1,
37–41.

5. Mythili, K.; Rangaraj, R. Deep Learning with Particle Swarm Based Hyper Parameter Tuning Based Crop Recommendation for
Better Crop Yield for Precision Agriculture. Indian J. Sci. Technol. 2021, 14, 1325–1337. [CrossRef]

6. Raji, I.D.; Bello-Salau, H.; Umoh, I.J.; Onumanyi, A.J.; Adegboye, M.A.; Salawudeen, A.T. Simple deterministic selection-based
genetic algorithm for hyperparameter tuning of machine learning models. Appl. Sci. 2022, 12, 1186. [CrossRef]

7. Bello-Salau, H.; Onumanyi, A.; Sadiq, B.; Ohize, H.; Salawudeen, A.; Aibinu, M. An Adaptive Wavelet Transformation Filtering
Algorithm for Improving Road Anomaly Detection and Characterization in Vehicular Technology. Int. J. Electr. Comput. Eng.
(IJECE) 2019, 9, 3664–3670. [CrossRef]

8. Bello-Salau, H.; Aibinu, A.M.; Wang, Z.; Onumanyi, A.J.; Onwuka, E.N.; Dukiya, J.J. An Optimized Routing Algorithm for
Vehicle Ad-hoc Networks. Eng. Sci. Technol. Int. J. 2019, 22, 754–766. [CrossRef]

9. Bello-Salau, H.; Onumanyi, A.J.; Abu-Mahfouz, A.M.; Adejo, A.O.; Mu’Azu, M.B. New Discrete Cuckoo Search Optimization
Algorithms for Effective Route Discovery in IoT-Based Vehicular Ad-Hoc Networks. IEEE Access 2020, 8, 145469–145488. [CrossRef]

10. Valdez, F.; Vazquez, J.C.; Melin, P.; Castillo, O. Comparative Study of the Use of Fuzzy Logic in Improving Particle Swarm
Optimization Variants for Mathematical Functions Using Co-evolution. Appl. Soft Comput. 2017, 52, 1070–1083. [CrossRef]

11. Zheng, R.Z.; Zhang, Y.; Yang, K. A transfer learning-based particle swarm optimization algorithm for the traveling salesman
problem. J. Comput. Des. Eng. 2022, 9, 933–948.

12. Zhong, Y.; Lin, J.; Wang, L.; Zhang, H. Discrete comprehensive learning particle swarm optimization algorithm with Metropolis
acceptance criterion for the traveling salesman problem. Swarm Evol. Comput. 2018, 42, 77–88. [CrossRef]

13. Song, B.; Wang, Z.; Zou, L. An Improved PSO Algorithm for Smooth Path Planning of Mobile Robots Using Continuous High-Degree
Bezier Curve. Appl. Soft Comput. 2021, 100, 106960. [CrossRef]

14. Song, B.; Wang, Z.; Zou, L. On Global Smooth Path Planning for Mobile Robots Using a Novel Multimodal Delayed PSO Algorithm.
Cogn. Comput. 2017, 9, 5–17. [CrossRef]

15. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A
Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]

16. Yang, X.; Jiao, Q.; Liu, X. Center Particle Swarm Optimization Algorithm. In Proceedings of the 2019 IEEE 3rd Information Tech-
nology, Networking, Electronic and Automation Control Conference (ITNEC), Chengdu, China, 15–17 March 2019; pp. 2084–2087.
[CrossRef]

17. Bansal, J.C. Particle Swarm Optimization. In Evolutionary and Swarm Intelligence Algorithms; Springer International Publishing:
Berlin/Heidelberg, Germany, 2018; pp. 11–23. [CrossRef]

18. You, Z.; Chen, W.; He, G.; Nan, X. Adaptive Weight Particle Swarm Optimization Algorithm with Constriction Factor. In Proceedings
of the 2010 International Conference of Information Science and Management Engineering (ISME), Shaanxi, China, 7–8 August 2010;
IEEE: Piscataway, NJ, USA, 2010; Volume 2, pp. 245–248. [CrossRef]

19. Lu, Y.; Liang, M.; Ye, Z.; Cao, L. Improved Particle Swarm Optimization Algorithm and Its Application in Text Feature Selection.
Appl. Soft Comput. 2015, 35, 629–636. [CrossRef]

20. Wang, F.; Zhang, H.; Li, K.; Lin, Z.; Yang, J.; Shen, X.-L. A Hybrid Particle Swarm Optimization Algorithm Using Adaptive
Learning Strategy. Inf. Sci. 2018, 436, 162–177. [CrossRef]

21. Singh, A.; Sharma, A.; Rajput, S.; Bose, A.; Hu, X. An Investigation on Hybrid Particle Swarm Optimization Algorithms for
Parameter Optimization of PV Cells. Electronics 2022, 11, 909. [CrossRef]

22. Harrison, K.R.; Engelbrecht, A.P.; Ombuki-Berman, B.M.J.S.I. Self-Adaptive Particle Swarm Optimization: A Review and Analysis
of Convergence. Swarm Intell. 2018, 12, 187–226. [CrossRef]

23. Liang, X.; Li, W.; Zhang, Y.; Zhou, M.J.S.C. An Adaptive Particle Swarm Optimization Method Based on Clustering. Soft Comput.
2015, 19, 431–448. [CrossRef]

24. Zhang, Y.; Gong, D.-W.; Cheng, J. Multi-Objective Particle Swarm Optimization Approach for Cost-Based Feature Selection in
Classification. IEEE/ACM Trans. Comput. Biol. Bioinform. 2015, 14, 64–75. [CrossRef]

http://doi.org/10.1109/icnn.1995.488968
http://dx.doi.org/10.1007/s00500-016-2474-6
http://dx.doi.org/10.1109/iccccm.2016.7918233
http://dx.doi.org/10.17485/IJST/v14i17.450
http://dx.doi.org/10.3390/app12031186
http://dx.doi.org/10.11591/ijece.v9i5.pp3664-3670
http://dx.doi.org/10.1016/j.jestch.2019.01.016
http://dx.doi.org/10.1109/ACCESS.2020.3014736
http://dx.doi.org/10.1016/j.asoc.2016.09.024
http://dx.doi.org/10.1016/j.swevo.2018.02.017
http://dx.doi.org/10.1016/j.asoc.2020.106960
http://dx.doi.org/10.1007/s12559-016-9442-4
http://dx.doi.org/10.1109/ACCESS.2022.3142859
http://dx.doi.org/10.1109/ITNEC.2019.8729510
http://dx.doi.org/10.1007/978-3-319-91341-4_2
http://dx.doi.org/10.1109/ISME.2010.234
http://dx.doi.org/10.1016/j.asoc.2015.07.005
http://dx.doi.org/10.1016/j.ins.2018.01.027
http://dx.doi.org/10.3390/electronics11060909
http://dx.doi.org/10.1007/s11721-017-0150-9
http://dx.doi.org/10.1007/s00500-014-1262-4
http://dx.doi.org/10.1109/TCBB.2015.2476796

Algorithms 2024, 17, 53 14 of 14

25. Cui, Y.; Meng, X.; Qiao, J. A Multi-Objective Particle Swarm Optimization Algorithm Based on Two-Archive Mechanism. Appl.
Soft Comput. 2022, 119, 108532. [CrossRef]

26. Lin, Q.; Li, J.; Du, Z.; Chen, J.; Ming, Z. A Novel Multi-Objective Particle Swarm Optimization With Multiple Search Strategies.
Eur. J. Oper. Res. 2015, 247, 732–744. [CrossRef]

27. Salawudeen, A.T.; Mu’azu, M.B.; Yusuf, A.; Adedokun, E.A. A Novel Smell Agent Optimization (SAO): An Extensive CEC Study
and Engineering Application. Knowl.-Based Syst. 2021, 232, 107486. [CrossRef]

28. Mahareek, E.A.; Cifci, M.A.; El-Zohni, H.; Desuky, A.S. Rhizostoma Optimization Algorithm and Its Application in Different
Real-World Optimization Problems. Int. J. Electr. Comput. Eng. (IJECE) 2023, 13, 4317–4338. [CrossRef]

29. Jamil, M.; Yang, X.S. A Literature Survey of Benchmark Functions for Global Optimisation Problems. Int. J. Math. Model. Numer.
Optim. 2013, 4, 150–194. [CrossRef]

30. Salawudeen, A.T.; Mu’azu, M.B.; Yusuf, A.; Adedokun, E.A. From Smell Phenomenon to Smell Agent Optimization (SAO): A
Feasibility Study. In Proceedings of the International Conference on Global and Emerging Trends (ICGET 2018), Abuja, Nigeria,
2–4 May 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.asoc.2022.108532
http://dx.doi.org/10.1016/j.ejor.2015.06.071
http://dx.doi.org/10.1016/j.knosys.2021.107486
http://dx.doi.org/10.11591/ijece.v13i4.pp4317-4338
http://dx.doi.org/10.1504/IJMMNO.2013.055204

	Introduction
	Hybridization of PSO and SAO Algorithms
	Results and Discussion
	Conclusions
	References

