
Citation: Juan, P.-H.; Wu, J.-L.

Enhancing Communication Efficiency

and Training Time Uniformity in

Federated Learning through

Multi-Branch Networks and the Oort

Algorithm. Algorithms 2024, 17, 52.

https://doi.org/10.3390/a17020052

Academic Editors: Krzysztof

Ejsmont, Aamer Bilal Asghar, Yong

Wang and Rodolfo Haber

Received: 18 December 2023

Revised: 16 January 2024

Accepted: 17 January 2024

Published: 23 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Enhancing Communication Efficiency and Training Time
Uniformity in Federated Learning through Multi-Branch
Networks and the Oort Algorithm
Pin-Hung Juan 1 and Ja-Ling Wu 1,2,3,*

1 Department of Computer Science and Information Engineering, National Taiwan University,
Taipei 106, Taiwan

2 Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei 106, Taiwan
3 Center for Data Intelligence: Technologies, Applications, and Systems, National Taiwan University,

Taipei 106, Taiwan
* Correspondence: wjl@cmlab.csie.ntu.edu.tw

Abstract: In this study, we present a federated learning approach that combines a multi-branch
network and the Oort client selection algorithm to improve the performance of federated learning
systems. This method successfully addresses the significant issue of non-iid data, a challenge not
adequately tackled by the commonly used MFedAvg method. Additionally, one of the key innovations
of this research is the introduction of uniformity, a metric that quantifies the disparity in training time
amongst participants in a federated learning setup. This novel concept not only aids in identifying
stragglers but also provides valuable insights into assessing the fairness and efficiency of the system.
The experimental results underscore the merits of the integrated multi-branch network with the Oort
client selection algorithm and highlight the crucial role of uniformity in designing and evaluating
federated learning systems.

Keywords: federated learning; uniformity; communication efficiency; client selection; multi-branch
network

1. Introduction

Federated Learning (FL) [1] has emerged as a powerful approach for training machine
learning models on decentralized data without compromising data privacy. It allows
multiple clients to collaboratively train a shared global model while keeping their data
locally. This distributed learning paradigm has gained significant attention and has been
applied to various domains, including healthcare, finance, and the Internet of Things (IoT).

The primary objective of federated learning is to improve communication efficiency
and ensure uniform training times among clients; however, the heterogeneity of data and
systems in federated learning challenges client selection and training processes. Selecting
appropriate clients to participate in training becomes crucial to achieving accurate and
efficient model updates.

In this context, the Oort algorithm has been proposed as a client selection method
that considers the heterogeneity of data and systems. However, implementing the Oort
algorithm (detailed in Section 3.3) revealed temporal discrepancies in training and commu-
nication, leading to inefficient federated learning.

We propose integrating the Multi-Branch Network (MBN) into the existing Oort
architecture to address this issue and enhance communication efficiency and training
uniformity. The MBN construction is inspired by BranchyNet [2] and Triplewins [3], where
additional branch classifiers are incorporated at equidistant points within a given neural
network. This modification allows for model averaging and improved performance without
needing multiple convolutional layers in each branch.

Algorithms 2024, 17, 52. https://doi.org/10.3390/a17020052 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a17020052
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-3631-1551
https://doi.org/10.3390/a17020052
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a17020052?type=check_update&version=2

Algorithms 2024, 17, 52 2 of 16

Furthermore, we introduce a Model Distributor component to allocate different model
branches to clients based on their computational capabilities and communication band-
width. This clustering-based approach ensures that clients receive models tailored to their
specific training requirements, optimizing the effectiveness and efficiency of the federated
learning process.

This work presents the construction of the MBN and the Model Distributor in detail.
We evaluate the performance of our proposed method on benchmark datasets, including
CIFAR-10 and FEMNIST, using the ResNet34 model and the MBN. We measure the training
time to achieve specific accuracy levels and the number of rounds required to reach the
desired performance. Additionally, we analyze the uniformity of the training process and
investigate the impact of different hyperparameters.

The rest of this paper is organized as follows: Section 2 provides background infor-
mation on federated learning and MBN. Section 3 explores the related work in federated
learning. Section 4 describes the construction of the MBN and the Model Distributor.
Section 5 presents the experimental results and discusses the findings. Finally, Section 6
concludes the thesis and outlines potential directions for future research.

2. Preliminary
2.1. Federated Learning

Federated Learning has emerged as a promising approach in machine learning, en-
abling decentralized training while addressing privacy and data ownership concerns. The
Federated Averaging (FedAvg) algorithm proposed by McMahan et al. [1] is widely used
for global aggregation in FL.

FL leverages the power of local devices such as smartphones and tablets to perform
model training while a central server aggregates the locally computed updates [4]. This
distribution of the learning process brings several advantages [5,6]. Firstly, it mitigates
privacy risks by avoiding transferring sensitive data to a central location. Secondly, FL
allows the utilization of device-specific data that would otherwise be challenging to access
due to privacy or logistical constraints [7–9].

However, FL also presents its inherent challenges [6,10]. One such challenge is data
heterogeneity, where the data distribution across different devices may vary significantly.
This heterogeneity can affect the convergence and performance of FL models.

Another challenge is the heterogeneity of computing resources among client devices.
Some clients may have limited computational capabilities or unreliable network connec-
tions, which can lead to stragglers, slowing down the overall FL process.

Moreover, communication efficiency is another crucial factor in FL. Since clients must
frequently communicate with the central server to obtain the latest model updates, efficient
communication protocols and strategies are necessary to reduce communication overhead.

In the upcoming section, we will delve into various research works that aim to
tackle these challenges, including data and computing resource heterogeneity and
communication efficiency.

2.2. Multi-Branch Networks

The concept of multi-branch networks was first introduced in [2] and further devel-
oped in [3]. In contrast to traditional neural networks, which only have a single exit point,
multi-branch networks are designed to incorporate multiple exit points. This architecture
features numerous early-branch output layers and the standard final output layer, enhanc-
ing the network’s capability to capture and leverage diverse intermediate representations
from various branches. As a result, it enhances performance and versatility in handling
intricate tasks.

The early-branch output layers within a multi-branch network facilitate the extraction
of specific features or representations at intermediary stages of network processing. By
offering auxiliary outputs or intermediate predictions, these layers contribute significantly

Algorithms 2024, 17, 52 3 of 16

to guiding the network’s learning process and provide additional regularization to fortify
the network’s stability and generalization.

Considering the benefits of multi-branch networks, it is advantageous to employ them
as the training model in Federated Learning environments [11]. Their architectural features
lend to enhanced learning and adaptability, making them a suitable choice for the diverse
and distributed nature of FL systems.

3. Related Work

Several academic papers have put forth various methodologies to address the chal-
lenges mentioned in the preliminary section regarding Federated Learning. These ap-
proaches can be broadly categorized into homogeneous model FL and heterogeneous
model FL. Table 1 summarizes the characteristics and limitations of each considered related
work. Moreover, a comparison of the reduction in non-iid impacts, alleviation in communi-
cation bandwidth, alleviation in computational capability, and improvement in transfer
speed among the benchmarking works is presented in Table 2.

Table 1. Summarizations of the characteristics and limitations of the benchmarked federated learning
techniques.

Name of
the Method Characteristics Limitations

FedProx [12] Add a proximal term to ensure that the local models of
participants stay close to the global model.

It is challenging to select an appropriate center
point ωc for the proximal term.

FedYogi [13]
Add a gradient correction to further suppress the data
heterogeneity and performance variations among
participants.

The computation cost increases with the
calculation of gradient corrections, ∆ωk .

FedTCR [14] 1. Groups clients by resources.
2. Only the group leader communicates with the server.

3. Only considers the computing resources.
4. Privacy issues arise.

FedTiny [15] Select pruned models by evaluating client datasets and
further sparsify the update parameters.

The pruning procedure incurs additional
computation and transmission costs.

FedDF [16] Utilize knowledge distillation to share information across
different types of models.

It needs a public dataset that is unrealistic for
real-world scenarios.

MFedAvg [11] Distribute models of different sizes to clients, allowing each
client to receive and accommodate a suitable model. It does not consider the scenario of non-iid data.

Table 2. Comparisons of benchmarked federated learning techniques (in which the symbol “O”
denotes the issue that has been addressed in the method).

Method//Issues
Reduce
Non-iid
Impact

Alleviate
Communication

Bandwidth

Alleviate
Computational

Capability

Improve
Transfer Speed

FedProx [12] O

FedYogi [13] O O

FedTCR [14] O O

FedTiny [15] O O

FedDF [16] O O O

MFedAvg [11] O O O

Oort [17] O O O

3.1. Homogeneous Model FL

To address the challenge of non-iid (non-independent and identically distributed)
data in FL, Li et al. proposed FedProx [12]. It introduces a proximal term to the FedAvg

Algorithms 2024, 17, 52 4 of 16

algorithm, a commonly used algorithm in FL for aggregating local model updates from
participant devices. The proximal term in FedProx aims to keep the local models of
participants close to the global model by imposing a penalty if the local data are biased.
This penalty encourages participants to contribute updates that align with the global model.
Building upon FedProx, Reddi et al. proposed FedYogi [13]. FedYogi enhances FedProx by
introducing gradient corrections. These corrections consider the performance variations
among participants and adaptively adjust the importance of each participant’s parameter
updates to the server. By considering the individual participants’ performance, FedYogi
aims to better use the updates from participants with higher reliability or accurate data
while reducing the impact of updates from participants with less reliable data. However,
calculating the gradient corrections in FedYogi can introduce additional computation
overhead, potentially increasing the training time.

By minimizing the variability in total computing resources within each group,
Fed-TCR [14] aims to tackle the challenge of resource heterogeneity among participants
in federated learning. This approach helps ensure that every group can collectively con-
tribute to the training process without significant discrepancies in computing capabilities.
Only the client with the most substantial computing resources in each group can directly
communicate with the server. At the same time, the remaining participants exchange the
model update with the cluster head to alleviate the communication overhead on the server.
While this architecture can reduce communication costs and address the heterogeneity
of computing resources, it may introduce privacy concerns as the trustworthiness of the
cluster head is not guaranteed.

As an intuitive approach to reducing communication costs, FedTiny [15] introduces
a unique method to address the challenge of non-iid data. It achieves this by employing
model pruning techniques. FedTiny creates multiple pruned models and allows partici-
pants to update the batch normalization layer to analyze their data distribution indirectly.
The server can select a model with a minimum bias for each participant from the candidate
model pool. However, this approach still suffers from a decrease in overall accuracy due to
discarding specific parameters during the pruning process.

3.2. Heterogeneous Model FL

In contrast to federated learning with homogeneous models, FedDF [16] employs
knowledge distillation to extract logits from participants [18]. By obtaining the logits, the
server can update prototype models on the server side, eliminating the need for participants
to update the parameters of their local models. This approach allows FedDF to accommo-
date the heterogeneity of model settings, enabling variations in model architectures among
participants. However, it should be noted that FedDF requires a proxy dataset to perform
the distillation process, which may be unrealistic in real-world scenarios.

On the other hand, MFedAvg [11] utilizes a multi-branch network to leverage feder-
ated learning with heterogeneous models. By assigning the early exit branch to weak clients
and the whole model to substantial clients, MFedAvg effectively mitigates the discrepancy
in computation capability and communication bandwidth among clients. Unfortunately,
MFedAvg does not address the impact of non-iid data, which is a limitation.

3.3. Oort—Client Selection for FL

As predescribed, the existing FL works optimize for better training accuracy with
fewer training rounds (the so-called statistical model efficiency) or shorter average time
duration per round (the so-called system efficiency), in which the participating clients are
randomly selected for ease of deployment. Nevertheless, as pointed out by [17], a random
selection of participants may lead to poor performances, biased testing sets, and loss of
confidence in FL results.

Unlike previous works that address specific challenges, Oort [17] proposes a client
selection framework (located inside the coordinator of an FL framework and interacting
with the driver of an FL execution) to select high-quality clients for effective participation

Algorithms 2024, 17, 52 5 of 16

in the training job. It utilizes a utility function to measure the clients’ priority based on
three dimensions: data distribution, computing resources, and communication bandwidth.
The system architecture of Oort is depicted in Figure 1.

Algorithms 2024, 17, x FOR PEER REVIEW 5 of 18

among clients. Unfortunately, MFedAvg does not address the impact of non-iid data,

which is a limitation.

3.3. Oort—Client Selection for FL

As predescribed, the existing FL works optimize for better training accuracy

with fewer training rounds (the so-called statistical model efficiency) or shorter aver-

age time duration per round (the so-called system efficiency), in which the partici-

pating clients are randomly selected for ease of deployment. Nevertheless, as pointed

out by [17], a random selection of participants may lead to poor performances, biased

testing sets, and loss of confidence in FL results.

Unlike previous works that address specific challenges, Oort [17] proposes a cli-

ent selection framework (located inside the coordinator of an FL framework and in-

teracting with the driver of an FL execution) to select high-quality clients for effective

participation in the training job. It utilizes a utility function to measure the clients’

priority based on three dimensions: data distribution, computing resources, and

communication bandwidth. The system architecture of Oort is depicted in Figure 1.

To make the extra cost paid for selection affordable, the authors of [17] (Section

4.2) introduced an effective statistical utility measure for each client, which can cap-

ture the heterogeneous data utility across and within categories and samples for various

tasks. In other words, Oort’s selection framework can also consider the non-iid client data

issue by defining an appropriate utility measure. Moreover, [19] presented theoretical

proof of the effectiveness of the adopted utility function in [17] over random sampling

and empirically justified its performance in practice.

However, even if the Oort framework selects preferable clients, there may still

be a significant training time gap among the selected clients. According to our exper-

imental results, as the green numbers in Figure 2 show, the fastest client needed to

wait for the slowest client for nearly 1400 s to complete the whole training, which

significantly burdened the overall training performance. This surprising observation

inspired us to investigate ways to enhance the overall efficacy of FML.

Figure 1. The system architecture of Oort (the indicated numbers represent the sequence order

of the Oort’s execution).

Figure 1. The system architecture of Oort (the indicated numbers represent the sequence order of the
Oort’s execution).

To make the extra cost paid for selection affordable, the authors of [17] (Section 4.2)
introduced an effective statistical utility measure for each client, which can capture the
heterogeneous data utility across and within categories and samples for various tasks. In
other words, Oort’s selection framework can also consider the non-iid client data issue by
defining an appropriate utility measure. Moreover, [19] presented theoretical proof of the
effectiveness of the adopted utility function in [17] over random sampling and empirically
justified its performance in practice.

However, even if the Oort framework selects preferable clients, there may still be a
significant training time gap among the selected clients. According to our experimental
results, as the green numbers in Figure 2 show, the fastest client needed to wait for the
slowest client for nearly 1400 s to complete the whole training, which significantly burdened
the overall training performance. This surprising observation inspired us to investigate
ways to enhance the overall efficacy of FML.

Algorithms 2024, 17, x FOR PEER REVIEW 6 of 18

Figure 2. The overall training time gap among selected clients using Oort (in which the exper-

iment conducted followed the environment settings presented in Section 5.1).

3.4. Federated Machine Learning in Edge Computing and Wireless Communications

As reminded by the anonymized reviewers, besides wireline connected systems

(as considered in our work), FL has also been widely applied in edge computing [20–

23], where users are connected to an edge server via wireless links, to achieve ubiq-

uitous intelligence. However, the limited uplink capacity of wireless channels hand-

icaps the convergence in edge FL’s model aggregation, making a long convergence time

unavoidable. Many effective edge FL designs [24–29] have been proposed to conquer the

abovementioned challenge. For example, [28] offered a Unit-Modulus Over-the-Air

Computation (UMAirComp) framework to facilitate efficient edge FL, which simultane-

ously uploads local model parameters and updates global model parameters via analog

beamforming. Simulation results justified that UMAirComp achieved a minor mean

square error of model parameters’ estimation, training loss, and test error compared with

other benchmark schemes.

Moreover, as addressed in [29], multiple distinct datasets are usually generated

from massive IoT users and correspond to different learning tasks. Therefore, design-

ing parallel and low-complexity algorithms for various learning tasks becomes im-

perative for large-scale IoT networks. Specifically, concurrent transmissions among

massive terminals in large-scale IoT networks will inevitably yield severe Co-Chan-

nel Interference (CCI), greatly degrading system performance. To deal with the CCI,

[29] designed a multi-user scheduling algorithm to mitigate the CCI issue. Moreover,

[29] also developed a parallel algorithm to solve the power allocation for different

tasks. We want to keep the focus of our discussion, so we refer readers interested in

edge FL and task-oriented FL to [28,29] and the references therein, respectively.

4. The Proposed Method

The primary objective of our proposed method is to improve communication

efficiency and ensure as uniform training times as possible during the client selection

process described in [17]. The Oort algorithm accounts for the heterogeneity of data

and systems to identify appropriate participants. However, implementing the Oort

algorithm revealed significant temporal discrepancies in training and communica-

tion. We propose integrating the multi-branch network into the existing Oort archi-

tecture to rectify this issue and promote enhanced communication efficiency along

with uniform training times. As mentioned in Section 3, the MFedAvg method [11]

Figure 2. The overall training time gap among selected clients using Oort (in which the experiment
conducted followed the environment settings presented in Section 5.1).

Algorithms 2024, 17, 52 6 of 16

3.4. Federated Machine Learning in Edge Computing and Wireless Communications

As reminded by the anonymized reviewers, besides wireline connected systems (as
considered in our work), FL has also been widely applied in edge computing [20–23], where
users are connected to an edge server via wireless links, to achieve ubiquitous intelligence.
However, the limited uplink capacity of wireless channels handicaps the convergence in
edge FL’s model aggregation, making a long convergence time unavoidable. Many effective
edge FL designs [24–29] have been proposed to conquer the abovementioned challenge.
For example, [28] offered a Unit-Modulus Over-the-Air Computation (UMAirComp) frame-
work to facilitate efficient edge FL, which simultaneously uploads local model parameters
and updates global model parameters via analog beamforming. Simulation results justified
that UMAirComp achieved a minor mean square error of model parameters’ estimation,
training loss, and test error compared with other benchmark schemes.

Moreover, as addressed in [29], multiple distinct datasets are usually generated from
massive IoT users and correspond to different learning tasks. Therefore, designing parallel
and low-complexity algorithms for various learning tasks becomes imperative for large-
scale IoT networks. Specifically, concurrent transmissions among massive terminals in
large-scale IoT networks will inevitably yield severe Co-Channel Interference (CCI), greatly
degrading system performance. To deal with the CCI, [29] designed a multi-user scheduling
algorithm to mitigate the CCI issue. Moreover, [29] also developed a parallel algorithm to
solve the power allocation for different tasks. We want to keep the focus of our discussion,
so we refer readers interested in edge FL and task-oriented FL to [28,29] and the references
therein, respectively.

4. The Proposed Method

The primary objective of our proposed method is to improve communication effi-
ciency and ensure as uniform training times as possible during the client selection process
described in [17]. The Oort algorithm accounts for the heterogeneity of data and systems to
identify appropriate participants. However, implementing the Oort algorithm revealed sig-
nificant temporal discrepancies in training and communication. We propose integrating the
multi-branch network into the existing Oort architecture to rectify this issue and promote
enhanced communication efficiency along with uniform training times. As mentioned in
Section 3, the MFedAvg method [11] does not explicitly address the impact of non-iid data,
which is considered a limitation of the approach. On the other hand, combining the Oort
algorithm and the multi-branch network, as proposed in this work, can effectively alleviate
the impact of non-iid data [11].

In the rest of this section, we will first explain the construction of a multi-branch
network derived from the original neural network. We will then introduce the model
distributor and receiver we added to the original Oort system.

4.1. Construction of a Multi-Branch Network

Based on the findings of BranchyNet [2] and Triple wins [3], a multi-branch network
can be constructed by incorporating additional branch classifiers at equidistant points
within a given network, thereby facilitating model averaging. Furthermore, it has been
observed that satisfactory performance can be achieved without the addition of multiple
convolutional layers to each branch. For example, we can consider the ResNet34 architec-
ture, a classical neural network (depicted in Figure 3). Our approach incorporates several
additional convolutional layers into the residual blocks at every two blocks (as illustrated
in Figure 4). This modification enhances the architecture by introducing branch classifiers
at equidistant points, allowing for model averaging and improved performance.

Algorithms 2024, 17, 52 7 of 16

Algorithms 2024, 17, x FOR PEER REVIEW 7 of 18

does not explicitly address the impact of non-iid data, which is considered a limita-

tion of the approach. On the other hand, combining the Oort algorithm and the multi-

branch network, as proposed in this work, can effectively alleviate the impact of non-

iid data [11].

In the rest of this section, we will first explain the construction of a multi-branch

network derived from the original neural network. We will then introduce the model

distributor and receiver we added to the original Oort system.

4.1. Construction of a Multi-Branch Network

Based on the findings of BranchyNet [2] and Triple wins [3], a multi-branch net-

work can be constructed by incorporating additional branch classifiers at equidistant

points within a given network, thereby facilitating model averaging. Furthermore, it has

been observed that satisfactory performance can be achieved without the addition of

multiple convolutional layers to each branch. For example, we can consider the ResNet34

architecture, a classical neural network (depicted in Figure 3). Our approach incorporates

several additional convolutional layers into the residual blocks at every two blocks (as

illustrated in Figure 4). This modification enhances the architecture by introducing

branch classifiers at equidistant points, allowing for model averaging and improved per-

formance.

Figure 3. The architecture of the original ResNet34 network.

Figure 4. The architecture of the proposed nine-branch ResNet34 network.

4.2. Model Distributor

Our method presents an alternative to the conventional federated learning par-

adigm, wherein clients are served identical models from the server. Our strategy al-

locates distinct model branches to various clients based on their computational capa-

bilities and communication bandwidth. To facilitate this, we introduce a clustering

Figure 3. The architecture of the original ResNet34 network.

Algorithms 2024, 17, x FOR PEER REVIEW 7 of 18

does not explicitly address the impact of non-iid data, which is considered a limita-

tion of the approach. On the other hand, combining the Oort algorithm and the multi-

branch network, as proposed in this work, can effectively alleviate the impact of non-

iid data [11].

In the rest of this section, we will first explain the construction of a multi-branch

network derived from the original neural network. We will then introduce the model

distributor and receiver we added to the original Oort system.

4.1. Construction of a Multi-Branch Network

Based on the findings of BranchyNet [2] and Triple wins [3], a multi-branch net-

work can be constructed by incorporating additional branch classifiers at equidistant

points within a given network, thereby facilitating model averaging. Furthermore, it has

been observed that satisfactory performance can be achieved without the addition of

multiple convolutional layers to each branch. For example, we can consider the ResNet34

architecture, a classical neural network (depicted in Figure 3). Our approach incorporates

several additional convolutional layers into the residual blocks at every two blocks (as

illustrated in Figure 4). This modification enhances the architecture by introducing

branch classifiers at equidistant points, allowing for model averaging and improved per-

formance.

Figure 3. The architecture of the original ResNet34 network.

Figure 4. The architecture of the proposed nine-branch ResNet34 network.

4.2. Model Distributor

Our method presents an alternative to the conventional federated learning par-

adigm, wherein clients are served identical models from the server. Our strategy al-

locates distinct model branches to various clients based on their computational capa-

bilities and communication bandwidth. To facilitate this, we introduce a clustering

Figure 4. The architecture of the proposed nine-branch ResNet34 network.

4.2. Model Distributor

Our method presents an alternative to the conventional federated learning paradigm,
wherein clients are served identical models from the server. Our strategy allocates distinct
model branches to various clients based on their computational capabilities and communi-
cation bandwidth. To facilitate this, we introduce a clustering algorithm that groups the
clients into K + 1 clusters, where K denotes the number of additional branches incorporated
into the model.

The initial step in the tier clustering algorithm (Algorithm 1) involves assigning
the overall training capability by considering each client’s computation capability and
communication bandwidth. It is worth noting that a coefficient µ is introduced to the
computation capability (Line 3), where µ represents the ratio of computation capability
to communication bandwidth. This coefficient determines the relative importance of
computation capability concerning communication bandwidth, with µ > 1 indicating a
higher emphasis on computation capability and µ < 1 indicating a higher emphasis on
communication bandwidth. When µ is equal to 1, both factors are considered equally
important. Section 5 will explore the diverse outcomes achieved by employing different
values of µ. Furthermore, the clients are sorted (Line 5 in Algorithm 1) based on their
training capability after assigning the overall training ability. They are subsequently
grouped (Line 8 in Algorithm 1) into K + 1 groups, arranged in ascending order according
to their training times, starting from the clients with the lower training capability and
progressing toward those with more substantial training capabilities.

With the clustering set in place, the model distributor can assign different models based
on the individual training capabilities of clients. The branch models {Mi}K+1

i=1 represent the
initial neural network architecture’s early exit points. Each Mi signifies a specific model
configuration, where i = 1 corresponds to the most miniature model denoting the earliest
exit of the network. Conversely, i = k + 1 represents the complete network without any
early exits.

Algorithms 2024, 17, 52 8 of 16

The model distributor systematically dispatches the corresponding model Mi to the
clients within cluster Gi to optimize the training process. This sequential assignment en-
sures that clients receive a model tailored to their specific training requirements, ultimately
maximizing the effectiveness and efficiency of the federated learning process.

Algorithm 1: Tier Clustering Algorithm

Require: Clients set

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 18

algorithm that groups the clients into 𝐾 + 1 clusters, where 𝐾 denotes the number
of additional branches incorporated into the model.

The initial step in the tier clustering algorithm (Algorithm 1) involves assigning
the overall training capability by considering each client’s computation capability
and communication bandwidth. It is worth noting that a coefficient µ is introduced
to the computation capability (Line 3), where µ represents the ratio of computation
capability to communication bandwidth. This coefficient determines the relative im-
portance of computation capability concerning communication bandwidth, with µ >
1 indicating a higher emphasis on computation capability and µ < 1 indicating a
higher emphasis on communication bandwidth. When µ is equal to 1, both factors
are considered equally important. Section 5 will explore the diverse outcomes
achieved by employing different values of µ. Furthermore, the clients are sorted (Line
5 in Algorithm 1) based on their training capability after assigning the overall training
ability. They are subsequently grouped (Line 8 in Algorithm 1) into K + 1 groups,
arranged in ascending order according to their training times, starting from the cli-
ents with the lower training capability and progressing toward those with more sub-
stantial training capabilities.

With the clustering set in place, the model distributor can assign different mod-
els based on the individual training capabilities of clients. The branch models {𝑀௜}௜ୀଵ௄ାଵ represent the initial neural network architecture’s early exit points. Each 𝑀௜
signifies a specific model configuration, where 𝑖 = 1 corresponds to the most minia-
ture model denoting the earliest exit of the network. Conversely, 𝑖 = 𝑘 + 1 repre-
sents the complete network without any early exits.

The model distributor systematically dispatches the corresponding model 𝑀௜
to the clients within cluster 𝐺௜ to optimize the training process. This sequential as-
signment ensures that clients receive a model tailored to their specific training re-
quirements, ultimately maximizing the effectiveness and efficiency of the federated
learning process.

Algorithm 1: Tier Clustering Algorithm
Require: Clients set 𝝒 = {𝝒𝑖}௜ୀଵே , computation capability set P = {𝑷𝑖}௜ୀଵே , communication
bandwidth set S = {𝐒𝑖}௜ୀଵே , clustering set G = ∅, ratio of computation capability
to communication bandwidth 𝝁, number of additional branches K
Ensure: Clustering set G
1: Training capability set T ← ∅
2: for i = 1 to N do
3: Update Training capability set Ti = 𝝁 ∗ 𝑷i + Si
4: end for

5: Sort the set T and obtain the sorted set Tʹ = {T1ʹ < T2ʹ, ..., < TN’) and corresponding
client set 𝝒′ = {𝝒𝑖}௜ୀଵே

6: for t = 1 to K + 1
7: for j = t to t + N/(K + 1) do
8: Sequentially assign 𝜘′j to Gt
9: end for
10: end for

4.3. Overall System Architecture

= {

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 18

algorithm that groups the clients into 𝐾 + 1 clusters, where 𝐾 denotes the number
of additional branches incorporated into the model.

The initial step in the tier clustering algorithm (Algorithm 1) involves assigning
the overall training capability by considering each client’s computation capability
and communication bandwidth. It is worth noting that a coefficient µ is introduced
to the computation capability (Line 3), where µ represents the ratio of computation
capability to communication bandwidth. This coefficient determines the relative im-
portance of computation capability concerning communication bandwidth, with µ >
1 indicating a higher emphasis on computation capability and µ < 1 indicating a
higher emphasis on communication bandwidth. When µ is equal to 1, both factors
are considered equally important. Section 5 will explore the diverse outcomes
achieved by employing different values of µ. Furthermore, the clients are sorted (Line
5 in Algorithm 1) based on their training capability after assigning the overall training
ability. They are subsequently grouped (Line 8 in Algorithm 1) into K + 1 groups,
arranged in ascending order according to their training times, starting from the cli-
ents with the lower training capability and progressing toward those with more sub-
stantial training capabilities.

With the clustering set in place, the model distributor can assign different mod-
els based on the individual training capabilities of clients. The branch models {𝑀௜}௜ୀଵ௄ାଵ represent the initial neural network architecture’s early exit points. Each 𝑀௜
signifies a specific model configuration, where 𝑖 = 1 corresponds to the most minia-
ture model denoting the earliest exit of the network. Conversely, 𝑖 = 𝑘 + 1 repre-
sents the complete network without any early exits.

The model distributor systematically dispatches the corresponding model 𝑀௜
to the clients within cluster 𝐺௜ to optimize the training process. This sequential as-
signment ensures that clients receive a model tailored to their specific training re-
quirements, ultimately maximizing the effectiveness and efficiency of the federated
learning process.

Algorithm 1: Tier Clustering Algorithm
Require: Clients set 𝝒 = {𝝒𝑖}௜ୀଵே , computation capability set P = {𝑷𝑖}௜ୀଵே , communication
bandwidth set S = {𝐒𝑖}௜ୀଵே , clustering set G = ∅, ratio of computation capability
to communication bandwidth 𝝁, number of additional branches K
Ensure: Clustering set G
1: Training capability set T ← ∅
2: for i = 1 to N do
3: Update Training capability set Ti = 𝝁 ∗ 𝑷i + Si
4: end for

5: Sort the set T and obtain the sorted set Tʹ = {T1ʹ < T2ʹ, ..., < TN’) and corresponding
client set 𝝒′ = {𝝒𝑖}௜ୀଵே

6: for t = 1 to K + 1
7: for j = t to t + N/(K + 1) do
8: Sequentially assign 𝜘′j to Gt
9: end for
10: end for

4.3. Overall System Architecture

i}N
i=1, computation capability set P = {Pi}N

i=1, communication
bandwidth set S = {Si}N

i=1, clustering set G = ∅, ratio of computation capability
to communication bandwidth µ, number of additional branches K
Ensure: Clustering set G
1: Training capability set T ← ∅
2: for i = 1 to N do
3: Update Training capability set Ti = µ ∗Pi + Si
4: end for

5: Sort the set T and obtain the sorted set T’ = {T1’ < T2’, ..., < TN’) and corresponding
client set

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 18

algorithm that groups the clients into 𝐾 + 1 clusters, where 𝐾 denotes the number
of additional branches incorporated into the model.

The initial step in the tier clustering algorithm (Algorithm 1) involves assigning
the overall training capability by considering each client’s computation capability
and communication bandwidth. It is worth noting that a coefficient µ is introduced
to the computation capability (Line 3), where µ represents the ratio of computation
capability to communication bandwidth. This coefficient determines the relative im-
portance of computation capability concerning communication bandwidth, with µ >
1 indicating a higher emphasis on computation capability and µ < 1 indicating a
higher emphasis on communication bandwidth. When µ is equal to 1, both factors
are considered equally important. Section 5 will explore the diverse outcomes
achieved by employing different values of µ. Furthermore, the clients are sorted (Line
5 in Algorithm 1) based on their training capability after assigning the overall training
ability. They are subsequently grouped (Line 8 in Algorithm 1) into K + 1 groups,
arranged in ascending order according to their training times, starting from the cli-
ents with the lower training capability and progressing toward those with more sub-
stantial training capabilities.

With the clustering set in place, the model distributor can assign different mod-
els based on the individual training capabilities of clients. The branch models {𝑀௜}௜ୀଵ௄ାଵ represent the initial neural network architecture’s early exit points. Each 𝑀௜
signifies a specific model configuration, where 𝑖 = 1 corresponds to the most minia-
ture model denoting the earliest exit of the network. Conversely, 𝑖 = 𝑘 + 1 repre-
sents the complete network without any early exits.

The model distributor systematically dispatches the corresponding model 𝑀௜
to the clients within cluster 𝐺௜ to optimize the training process. This sequential as-
signment ensures that clients receive a model tailored to their specific training re-
quirements, ultimately maximizing the effectiveness and efficiency of the federated
learning process.

Algorithm 1: Tier Clustering Algorithm
Require: Clients set 𝝒 = {𝝒𝑖}௜ୀଵே , computation capability set P = {𝑷𝑖}௜ୀଵே , communication
bandwidth set S = {𝐒𝑖}௜ୀଵே , clustering set G = ∅, ratio of computation capability
to communication bandwidth 𝝁, number of additional branches K
Ensure: Clustering set G
1: Training capability set T ← ∅
2: for i = 1 to N do
3: Update Training capability set Ti = 𝝁 ∗ 𝑷i + Si
4: end for

5: Sort the set T and obtain the sorted set Tʹ = {T1ʹ < T2ʹ, ..., < TN’) and corresponding
client set 𝝒′ = {𝝒𝑖}௜ୀଵே

6: for t = 1 to K + 1
7: for j = t to t + N/(K + 1) do
8: Sequentially assign 𝜘′j to Gt
9: end for
10: end for

4.3. Overall System Architecture

′ = {

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 18

algorithm that groups the clients into 𝐾 + 1 clusters, where 𝐾 denotes the number
of additional branches incorporated into the model.

The initial step in the tier clustering algorithm (Algorithm 1) involves assigning
the overall training capability by considering each client’s computation capability
and communication bandwidth. It is worth noting that a coefficient µ is introduced
to the computation capability (Line 3), where µ represents the ratio of computation
capability to communication bandwidth. This coefficient determines the relative im-
portance of computation capability concerning communication bandwidth, with µ >
1 indicating a higher emphasis on computation capability and µ < 1 indicating a
higher emphasis on communication bandwidth. When µ is equal to 1, both factors
are considered equally important. Section 5 will explore the diverse outcomes
achieved by employing different values of µ. Furthermore, the clients are sorted (Line
5 in Algorithm 1) based on their training capability after assigning the overall training
ability. They are subsequently grouped (Line 8 in Algorithm 1) into K + 1 groups,
arranged in ascending order according to their training times, starting from the cli-
ents with the lower training capability and progressing toward those with more sub-
stantial training capabilities.

With the clustering set in place, the model distributor can assign different mod-
els based on the individual training capabilities of clients. The branch models {𝑀௜}௜ୀଵ௄ାଵ represent the initial neural network architecture’s early exit points. Each 𝑀௜
signifies a specific model configuration, where 𝑖 = 1 corresponds to the most minia-
ture model denoting the earliest exit of the network. Conversely, 𝑖 = 𝑘 + 1 repre-
sents the complete network without any early exits.

The model distributor systematically dispatches the corresponding model 𝑀௜
to the clients within cluster 𝐺௜ to optimize the training process. This sequential as-
signment ensures that clients receive a model tailored to their specific training re-
quirements, ultimately maximizing the effectiveness and efficiency of the federated
learning process.

Algorithm 1: Tier Clustering Algorithm
Require: Clients set 𝝒 = {𝝒𝑖}௜ୀଵே , computation capability set P = {𝑷𝑖}௜ୀଵே , communication
bandwidth set S = {𝐒𝑖}௜ୀଵே , clustering set G = ∅, ratio of computation capability
to communication bandwidth 𝝁, number of additional branches K
Ensure: Clustering set G
1: Training capability set T ← ∅
2: for i = 1 to N do
3: Update Training capability set Ti = 𝝁 ∗ 𝑷i + Si
4: end for

5: Sort the set T and obtain the sorted set Tʹ = {T1ʹ < T2ʹ, ..., < TN’) and corresponding
client set 𝝒′ = {𝝒𝑖}௜ୀଵே

6: for t = 1 to K + 1
7: for j = t to t + N/(K + 1) do
8: Sequentially assign 𝜘′j to Gt
9: end for
10: end for

4.3. Overall System Architecture

i}N
i=1

6: for t = 1 to K + 1
7: for j = t to t + N/(K + 1) do
8: Sequentially assign

Algorithms 2024, 17, x FOR PEER REVIEW 8 of 18

algorithm that groups the clients into 𝐾 + 1 clusters, where 𝐾 denotes the number
of additional branches incorporated into the model.

The initial step in the tier clustering algorithm (Algorithm 1) involves assigning
the overall training capability by considering each client’s computation capability
and communication bandwidth. It is worth noting that a coefficient µ is introduced
to the computation capability (Line 3), where µ represents the ratio of computation
capability to communication bandwidth. This coefficient determines the relative im-
portance of computation capability concerning communication bandwidth, with µ >
1 indicating a higher emphasis on computation capability and µ < 1 indicating a
higher emphasis on communication bandwidth. When µ is equal to 1, both factors
are considered equally important. Section 5 will explore the diverse outcomes
achieved by employing different values of µ. Furthermore, the clients are sorted (Line
5 in Algorithm 1) based on their training capability after assigning the overall training
ability. They are subsequently grouped (Line 8 in Algorithm 1) into K + 1 groups,
arranged in ascending order according to their training times, starting from the cli-
ents with the lower training capability and progressing toward those with more sub-
stantial training capabilities.

With the clustering set in place, the model distributor can assign different mod-
els based on the individual training capabilities of clients. The branch models {𝑀௜}௜ୀଵ௄ାଵ represent the initial neural network architecture’s early exit points. Each 𝑀௜
signifies a specific model configuration, where 𝑖 = 1 corresponds to the most minia-
ture model denoting the earliest exit of the network. Conversely, 𝑖 = 𝑘 + 1 repre-
sents the complete network without any early exits.

The model distributor systematically dispatches the corresponding model 𝑀௜
to the clients within cluster 𝐺௜ to optimize the training process. This sequential as-
signment ensures that clients receive a model tailored to their specific training re-
quirements, ultimately maximizing the effectiveness and efficiency of the federated
learning process.

Algorithm 1: Tier Clustering Algorithm
Require: Clients set 𝝒 = {𝝒𝑖}௜ୀଵே , computation capability set P = {𝑷𝑖}௜ୀଵே , communication
bandwidth set S = {𝐒𝑖}௜ୀଵே , clustering set G = ∅, ratio of computation capability
to communication bandwidth 𝝁, number of additional branches K
Ensure: Clustering set G
1: Training capability set T ← ∅
2: for i = 1 to N do
3: Update Training capability set Ti = 𝝁 ∗ 𝑷i + Si
4: end for

5: Sort the set T and obtain the sorted set Tʹ = {T1ʹ < T2ʹ, ..., < TN’) and corresponding
client set 𝝒′ = {𝝒𝑖}௜ୀଵே

6: for t = 1 to K + 1
7: for j = t to t + N/(K + 1) do
8: Sequentially assign 𝜘′j to Gt
9: end for
10: end for

4.3. Overall System Architecture

′
j to Gt

9: end for
10: end for

4.3. Overall System Architecture

We implemented our work using FedScale [30], an open-source evaluation platform
and benchmark designed explicitly for federated learning. Figure 5 illustrates the overall
system architecture of our implementation.

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 18

We implemented our work using FedScale [30], an open-source evaluation platform

and benchmark designed explicitly for federated learning. Figure 5 illustrates the overall

system architecture of our implementation.

In this architecture, the user first submits the job, which includes the hyperparame-

ter settings (e.g., clients per round and μ), to the Parameter Aggregator (acting as the

primary server) ○1 .

Additionally, the Parameter Aggregator receives feedback from the clients regard-

ing the previous training round, updates the global model with the clients’ updates, and

collects relevant information from the clients ○2 .

Afterward, the Oort Client Selector will select a certain percentage (k%) of prefera-

ble clients based on their computing capability, communication bandwidth, and data dis-

tribution. The remaining quota will be randomly selected from the pool of unselected

clients ○3 .

 The Model Distributor receives the aforementioned information, including the

updated global model, client information, and the selected clients. It utilizes the Tier

Clustering Algorithm to group the selected clients into several clusters based on their

characteristics. Then, it dispatches the suitable model to each client within their re-

spective cluster, ensuring an efficient and tailored training process ○4 .

The clients receive the assigned models through the Model Receiver and train

with their local data in the Model Trainer ○5 .

After completing the training process, the Client Collector collects the local

model parameters and captures their corresponding status ○6 .

Finally, the collected data, including the model parameters and their status, are

transmitted and updated on the server ○7 .

The entire process is executed iteratively, with periodic testing every few rounds

until the desired number of target rounds is reached.

Figure 5. The overall system architecture and the functional block diagram of our proposed

framework.

Figure 5. The overall system architecture and the functional block diagram of our proposed frame-
work.

In this architecture, the user first submits the job, which includes the hyperparameter
settings (e.g., clients per round and µ), to the Parameter Aggregator (acting as the primary
server)

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 18

We implemented our work using FedScale [30], an open-source evaluation platform
and benchmark designed explicitly for federated learning. Figure 5 illustrates the overall
system architecture of our implementation.

In this architecture, the user first submits the job, which includes the hyperparame-
ter settings (e.g., clients per round and µ), to the Parameter Aggregator (acting as the
primary server) ○1 .

Additionally, the Parameter Aggregator receives feedback from the clients regard-
ing the previous training round, updates the global model with the clients’ updates, and
collects relevant information from the clients ○2 .

Afterward, the Oort Client Selector will select a certain percentage (k%) of prefera-
ble clients based on their computing capability, communication bandwidth, and data dis-
tribution. The remaining quota will be randomly selected from the pool of unselected
clients ○3 .

 The Model Distributor receives the aforementioned information, including the
updated global model, client information, and the selected clients. It utilizes the Tier
Clustering Algorithm to group the selected clients into several clusters based on their
characteristics. Then, it dispatches the suitable model to each client within their re-
spective cluster, ensuring an efficient and tailored training process ○4 .

The clients receive the assigned models through the Model Receiver and train
with their local data in the Model Trainer ○5 .

After completing the training process, the Client Collector collects the local
model parameters and captures their corresponding status ○6 .

Finally, the collected data, including the model parameters and their status, are
transmitted and updated on the server ○7 .

The entire process is executed iteratively, with periodic testing every few rounds
until the desired number of target rounds is reached.

Figure 5. The overall system architecture and the functional block diagram of our proposed
framework.

5. Experiments
In this section, we discuss the experiments we performed on well-known bench-

mark datasets, including CIFAR-10, CIFAR-100 [31], and FEMNIST [32], with the Res-
Net-34 model [33] and the Multi-Branch ResNet-34 (MB_ResNet-34). We present the
experimental results in terms of two metrics: the time taken to achieve a specific

.
Additionally, the Parameter Aggregator receives feedback from the clients regarding

the previous training round, updates the global model with the clients’ updates, and collects
relevant information from the clients

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 18

We implemented our work using FedScale [30], an open-source evaluation platform
and benchmark designed explicitly for federated learning. Figure 5 illustrates the overall
system architecture of our implementation.

In this architecture, the user first submits the job, which includes the hyperparame-
ter settings (e.g., clients per round and µ), to the Parameter Aggregator (acting as the
primary server) ○1 .

Additionally, the Parameter Aggregator receives feedback from the clients regard-
ing the previous training round, updates the global model with the clients’ updates, and
collects relevant information from the clients ○2 .

Afterward, the Oort Client Selector will select a certain percentage (k%) of prefera-
ble clients based on their computing capability, communication bandwidth, and data dis-
tribution. The remaining quota will be randomly selected from the pool of unselected
clients ○3 .

 The Model Distributor receives the aforementioned information, including the
updated global model, client information, and the selected clients. It utilizes the Tier
Clustering Algorithm to group the selected clients into several clusters based on their
characteristics. Then, it dispatches the suitable model to each client within their re-
spective cluster, ensuring an efficient and tailored training process ○4 .

The clients receive the assigned models through the Model Receiver and train
with their local data in the Model Trainer ○5 .

After completing the training process, the Client Collector collects the local
model parameters and captures their corresponding status ○6 .

Finally, the collected data, including the model parameters and their status, are
transmitted and updated on the server ○7 .

The entire process is executed iteratively, with periodic testing every few rounds
until the desired number of target rounds is reached.

Figure 5. The overall system architecture and the functional block diagram of our proposed
framework.

5. Experiments
In this section, we discuss the experiments we performed on well-known bench-

mark datasets, including CIFAR-10, CIFAR-100 [31], and FEMNIST [32], with the Res-
Net-34 model [33] and the Multi-Branch ResNet-34 (MB_ResNet-34). We present the
experimental results in terms of two metrics: the time taken to achieve a specific

.

Algorithms 2024, 17, 52 9 of 16

Afterward, the Oort Client Selector will select a certain percentage (k%) of prefer-
able clients based on their computing capability, communication bandwidth, and data
distribution. The remaining quota will be randomly selected from the pool of unselected
clients

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 18

We implemented our work using FedScale [30], an open-source evaluation platform
and benchmark designed explicitly for federated learning. Figure 5 illustrates the overall
system architecture of our implementation.

In this architecture, the user first submits the job, which includes the hyperparame-
ter settings (e.g., clients per round and µ), to the Parameter Aggregator (acting as the
primary server) ○1 .

Additionally, the Parameter Aggregator receives feedback from the clients regard-
ing the previous training round, updates the global model with the clients’ updates, and
collects relevant information from the clients ○2 .

Afterward, the Oort Client Selector will select a certain percentage (k%) of prefera-
ble clients based on their computing capability, communication bandwidth, and data dis-
tribution. The remaining quota will be randomly selected from the pool of unselected
clients ○3 .

 The Model Distributor receives the aforementioned information, including the
updated global model, client information, and the selected clients. It utilizes the Tier
Clustering Algorithm to group the selected clients into several clusters based on their
characteristics. Then, it dispatches the suitable model to each client within their re-
spective cluster, ensuring an efficient and tailored training process ○4 .

The clients receive the assigned models through the Model Receiver and train
with their local data in the Model Trainer ○5 .

After completing the training process, the Client Collector collects the local
model parameters and captures their corresponding status ○6 .

Finally, the collected data, including the model parameters and their status, are
transmitted and updated on the server ○7 .

The entire process is executed iteratively, with periodic testing every few rounds
until the desired number of target rounds is reached.

Figure 5. The overall system architecture and the functional block diagram of our proposed
framework.

5. Experiments
In this section, we discuss the experiments we performed on well-known bench-

mark datasets, including CIFAR-10, CIFAR-100 [31], and FEMNIST [32], with the Res-
Net-34 model [33] and the Multi-Branch ResNet-34 (MB_ResNet-34). We present the
experimental results in terms of two metrics: the time taken to achieve a specific

.
The Model Distributor receives the aforementioned information, including the updated

global model, client information, and the selected clients. It utilizes the Tier Clustering
Algorithm to group the selected clients into several clusters based on their characteristics.
Then, it dispatches the suitable model to each client within their respective cluster, ensuring
an efficient and tailored training process

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 18

We implemented our work using FedScale [30], an open-source evaluation platform
and benchmark designed explicitly for federated learning. Figure 5 illustrates the overall
system architecture of our implementation.

In this architecture, the user first submits the job, which includes the hyperparame-
ter settings (e.g., clients per round and µ), to the Parameter Aggregator (acting as the
primary server) ○1 .

Additionally, the Parameter Aggregator receives feedback from the clients regard-
ing the previous training round, updates the global model with the clients’ updates, and
collects relevant information from the clients ○2 .

Afterward, the Oort Client Selector will select a certain percentage (k%) of prefera-
ble clients based on their computing capability, communication bandwidth, and data dis-
tribution. The remaining quota will be randomly selected from the pool of unselected
clients ○3 .

 The Model Distributor receives the aforementioned information, including the
updated global model, client information, and the selected clients. It utilizes the Tier
Clustering Algorithm to group the selected clients into several clusters based on their
characteristics. Then, it dispatches the suitable model to each client within their re-
spective cluster, ensuring an efficient and tailored training process ○4 .

The clients receive the assigned models through the Model Receiver and train
with their local data in the Model Trainer ○5 .

After completing the training process, the Client Collector collects the local
model parameters and captures their corresponding status ○6 .

Finally, the collected data, including the model parameters and their status, are
transmitted and updated on the server ○7 .

The entire process is executed iteratively, with periodic testing every few rounds
until the desired number of target rounds is reached.

Figure 5. The overall system architecture and the functional block diagram of our proposed
framework.

5. Experiments
In this section, we discuss the experiments we performed on well-known bench-

mark datasets, including CIFAR-10, CIFAR-100 [31], and FEMNIST [32], with the Res-
Net-34 model [33] and the Multi-Branch ResNet-34 (MB_ResNet-34). We present the
experimental results in terms of two metrics: the time taken to achieve a specific

.
The clients receive the assigned models through the Model Receiver and train with

their local data in the Model Trainer

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 18

We implemented our work using FedScale [30], an open-source evaluation platform
and benchmark designed explicitly for federated learning. Figure 5 illustrates the overall
system architecture of our implementation.

In this architecture, the user first submits the job, which includes the hyperparame-
ter settings (e.g., clients per round and µ), to the Parameter Aggregator (acting as the
primary server) ○1 .

Additionally, the Parameter Aggregator receives feedback from the clients regard-
ing the previous training round, updates the global model with the clients’ updates, and
collects relevant information from the clients ○2 .

Afterward, the Oort Client Selector will select a certain percentage (k%) of prefera-
ble clients based on their computing capability, communication bandwidth, and data dis-
tribution. The remaining quota will be randomly selected from the pool of unselected
clients ○3 .

 The Model Distributor receives the aforementioned information, including the
updated global model, client information, and the selected clients. It utilizes the Tier
Clustering Algorithm to group the selected clients into several clusters based on their
characteristics. Then, it dispatches the suitable model to each client within their re-
spective cluster, ensuring an efficient and tailored training process ○4 .

The clients receive the assigned models through the Model Receiver and train
with their local data in the Model Trainer ○5 .

After completing the training process, the Client Collector collects the local
model parameters and captures their corresponding status ○6 .

Finally, the collected data, including the model parameters and their status, are
transmitted and updated on the server ○7 .

The entire process is executed iteratively, with periodic testing every few rounds
until the desired number of target rounds is reached.

Figure 5. The overall system architecture and the functional block diagram of our proposed
framework.

5. Experiments
In this section, we discuss the experiments we performed on well-known bench-

mark datasets, including CIFAR-10, CIFAR-100 [31], and FEMNIST [32], with the Res-
Net-34 model [33] and the Multi-Branch ResNet-34 (MB_ResNet-34). We present the
experimental results in terms of two metrics: the time taken to achieve a specific

.
After completing the training process, the Client Collector collects the local model

parameters and captures their corresponding status

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 18

We implemented our work using FedScale [30], an open-source evaluation platform
and benchmark designed explicitly for federated learning. Figure 5 illustrates the overall
system architecture of our implementation.

In this architecture, the user first submits the job, which includes the hyperparame-
ter settings (e.g., clients per round and µ), to the Parameter Aggregator (acting as the
primary server) ○1 .

Additionally, the Parameter Aggregator receives feedback from the clients regard-
ing the previous training round, updates the global model with the clients’ updates, and
collects relevant information from the clients ○2 .

Afterward, the Oort Client Selector will select a certain percentage (k%) of prefera-
ble clients based on their computing capability, communication bandwidth, and data dis-
tribution. The remaining quota will be randomly selected from the pool of unselected
clients ○3 .

 The Model Distributor receives the aforementioned information, including the
updated global model, client information, and the selected clients. It utilizes the Tier
Clustering Algorithm to group the selected clients into several clusters based on their
characteristics. Then, it dispatches the suitable model to each client within their re-
spective cluster, ensuring an efficient and tailored training process ○4 .

The clients receive the assigned models through the Model Receiver and train
with their local data in the Model Trainer ○5 .

After completing the training process, the Client Collector collects the local
model parameters and captures their corresponding status ○6 .

Finally, the collected data, including the model parameters and their status, are
transmitted and updated on the server ○7 .

The entire process is executed iteratively, with periodic testing every few rounds
until the desired number of target rounds is reached.

Figure 5. The overall system architecture and the functional block diagram of our proposed
framework.

5. Experiments
In this section, we discuss the experiments we performed on well-known bench-

mark datasets, including CIFAR-10, CIFAR-100 [31], and FEMNIST [32], with the Res-
Net-34 model [33] and the Multi-Branch ResNet-34 (MB_ResNet-34). We present the
experimental results in terms of two metrics: the time taken to achieve a specific

.
Finally, the collected data, including the model parameters and their status, are trans-

mitted and updated on the server

Algorithms 2024, 17, x FOR PEER REVIEW 9 of 18

We implemented our work using FedScale [30], an open-source evaluation platform
and benchmark designed explicitly for federated learning. Figure 5 illustrates the overall
system architecture of our implementation.

In this architecture, the user first submits the job, which includes the hyperparame-
ter settings (e.g., clients per round and µ), to the Parameter Aggregator (acting as the
primary server) ○1 .

Additionally, the Parameter Aggregator receives feedback from the clients regard-
ing the previous training round, updates the global model with the clients’ updates, and
collects relevant information from the clients ○2 .

Afterward, the Oort Client Selector will select a certain percentage (k%) of prefera-
ble clients based on their computing capability, communication bandwidth, and data dis-
tribution. The remaining quota will be randomly selected from the pool of unselected
clients ○3 .

 The Model Distributor receives the aforementioned information, including the
updated global model, client information, and the selected clients. It utilizes the Tier
Clustering Algorithm to group the selected clients into several clusters based on their
characteristics. Then, it dispatches the suitable model to each client within their re-
spective cluster, ensuring an efficient and tailored training process ○4 .

The clients receive the assigned models through the Model Receiver and train
with their local data in the Model Trainer ○5 .

After completing the training process, the Client Collector collects the local
model parameters and captures their corresponding status ○6 .

Finally, the collected data, including the model parameters and their status, are
transmitted and updated on the server ○7 .

The entire process is executed iteratively, with periodic testing every few rounds
until the desired number of target rounds is reached.

Figure 5. The overall system architecture and the functional block diagram of our proposed
framework.

5. Experiments
In this section, we discuss the experiments we performed on well-known bench-

mark datasets, including CIFAR-10, CIFAR-100 [31], and FEMNIST [32], with the Res-
Net-34 model [33] and the Multi-Branch ResNet-34 (MB_ResNet-34). We present the
experimental results in terms of two metrics: the time taken to achieve a specific

.
The entire process is executed iteratively, with periodic testing every few rounds until

the desired number of target rounds is reached.

5. Experiments

In this section, we discuss the experiments we performed on well-known benchmark
datasets, including CIFAR-10, CIFAR-100 [31], and FEMNIST [32], with the ResNet-34
model [33] and the Multi-Branch ResNet-34 (MB_ResNet-34). We present the experimental
results in terms of two metrics: the time taken to achieve a specific accuracy (time to
accuracy) and the number of rounds required to reach a certain level of accuracy (rounds
to accuracy).

5.1. Experimental Setup
5.1.1. Environment Settings

Our experiments were conducted using the FedScale [30] platform, and we ensured
a consistent environment setting across different dataset experiments. The client pool
consisted of 2800 clients, with 100 clients selected in each round of training. We performed
a total of 1000 training rounds. The datasets were divided into non-iid partitions. The
computation capability of clients was predetermined prior to the training process, while
the communication bandwidth of clients varied during the training process. Furthermore,
the client’s online/offline status also fluctuated throughout training.

5.1.2. Model Settings

To construct the multi-branch ResNet-34 architecture, we followed the methodology
described in [3,4]. In our implementation, we incorporated additional branches into the
original ResNet-34 architecture. Specifically, we added three extra branches for the first
group of residual blocks. Each branch consisted of two convolutional layers followed by a
fully connected layer. These additional branches were inserted at regular intervals of every
two consecutive blocks within the first group.

Similarly, we added branches combining one convolutional layer and a fully connected
layer for the second group of residual blocks, following the same pattern of regular intervals.
Finally, we added a single fully connected layer without any convolutional layers for the
last group of residual blocks. The complete network structure, including the additional
branches, is illustrated in Figure 4.

5.2. Training Details

We want to clarify that Section 5.1.1 does not explicitly mention the specific hyper-
parameter settings such as local training steps, batch size, and learning rate. However, it
should be noted that these hyperparameters were consistent with the settings specified in
the Oort [17].

Algorithms 2024, 17, 52 10 of 16

We followed the training process outlined in [17] for training the ResNet-34 model.
However, there was a crucial difference in the training of the multi-branch ResNet-34 model.
After selecting clients using the Oort selection algorithm, we clustered them into ten groups,
corresponding to the nine additional branches and the main branch. We then assigned the
respective branch models to each client group for training. The detailed training process,
including the Tier Clustering Algorithm, can be found in Section 4.3.

5.3. Experimental Results

To evaluate the effectiveness of our approach, we conducted experiments on the FEM-
NIST and CIFAR-10 datasets using different model settings. We assessed the performance
using two primary metrics: time-to-accuracy and rounds-to-accuracy. These metrics pro-
vide insights into the efficiency and effectiveness of our approach in achieving accurate
results within a given time frame and number of training rounds.

5.3.1. Time-to-Accuracy Performance

Our experiments evaluated the time taken to achieve accuracy levels of 60%, 70%,
and 80%. Table 3 presents the experimental results concerning the FEMNIST dataset. The
first row represents the performance of the ResNet34 model without the Oort selection
algorithm. It took approximately 66,761 s to achieve 60% accuracy and 101,072 s to achieve
70% accuracy. In contrast, the MB_ResNet34 model achieved the same level of accuracy in
significantly less time than the original ResNet34 model.

Table 3. Training time versus accuracy for different models on the FEMNIST dataset (in which
the symbol “−” means that accuracy was not achievable due to the impact of non-iid data during
the experiment).

Model Accuracy 60% Accuracy 70% Accuracy 80%

ResNet34 66,761 101,072 —
MB_ResNet34 6,799 13,097 —

ResNet34 + Oort 47,701 68,869 286.324
MB_ResNet34 +Oort 5,555 10,113 36.854

However, it should be noted that the scenarios without the client selection algorithm
faced poor overall accuracy due to the impact of non-iid data. To address this issue, we
integrated the selection algorithm, as shown in the third and fourth rows of the table. It is
evident that, compared to the random selection method, the time to accuracy decreased,
and the overall accuracy exceeded 80%.

For the CIFAR-10 dataset, as shown in Table 4, we observed similar trends to those
in Table 3. This observation further supports the effectiveness of our proposed method in
alleviating the negative impact of non-iid data on the MB_ResNet34 model in [11] (rows
2 and 4) and reducing the training time compared to the original ResNet34 model in [17]
(rows 3 and 4).

Table 4. Training time versus accuracy for different models on the CIFAR-10 dataset (in which
the symbol “−” means that accuracy was not achievable due to the impact of non-iid data during
the experiment).

Model Accuracy 60% Accuracy 70% Accuracy 80%

ResNet34 246,102 837,236 —
MB_ResNet34 23,036 48,558 —

ResNet34 + Oort 225,743 811,432 2,432,746
MB_ResNet34 +Oort 20,365 43,812 124,677

Algorithms 2024, 17, 52 11 of 16

5.3.2. Rounds-to-Accuracy Performance

Figures 6 and 7 display the rounds to accuracy curves during 1000 rounds. These
curves provide a more precise visualization of the overall accuracy trends. It is evident that
the MB_ResNet34 + Oort model, represented by the red line, achieved the highest accuracy
compared to the other models. On the other hand, the models trained without the selection
algorithm, which correspond to blue and orange lines, , exhibited lower accuracy levels.

Algorithms 2024, 17, x FOR PEER REVIEW 12 of 18

5.3.2. Rounds-to-Accuracy Performance

Figures 6 and 7 display the rounds to accuracy curves during 1000 rounds. These

curves provide a more precise visualization of the overall accuracy trends. It is evident

that the MB_ResNet34 + Oort model, represented by the red line, achieved the highest

accuracy compared to the other models. On the other hand, the models trained without

the selection algorithm, which correspond to blue and orange lines, , exhibited lower ac-

curacy levels.

Figure 6. Rounds versus accuracy for different models on the FEMNIST dataset.

Figure 7. Rounds versus accuracy for different models on the CIFAR-10 dataset.

Figure 6. Rounds versus accuracy for different models on the FEMNIST dataset.

Algorithms 2024, 17, x FOR PEER REVIEW 12 of 18

5.3.2. Rounds-to-Accuracy Performance

Figures 6 and 7 display the rounds to accuracy curves during 1000 rounds. These

curves provide a more precise visualization of the overall accuracy trends. It is evident

that the MB_ResNet34 + Oort model, represented by the red line, achieved the highest

accuracy compared to the other models. On the other hand, the models trained without

the selection algorithm, which correspond to blue and orange lines, , exhibited lower ac-

curacy levels.

Figure 6. Rounds versus accuracy for different models on the FEMNIST dataset.

Figure 7. Rounds versus accuracy for different models on the CIFAR-10 dataset.

Figure 7. Rounds versus accuracy for different models on the CIFAR-10 dataset.

5.3.3. Uniformity

We also evaluated the uniformity, as defined in Equation (1), of the original ResNet34
and MB_ResNet34 models. The physical meaning of Equation (1) is similar to that of the
variance but slightly modified to better capture the concept of uniformity.

Uni f ormity ,

(
1
N

N

∑
i=1

(timei −minT)2

) 1
2

(1) (1)

In Equation (1), timei refers to the time the i-th client takes during the training process,
and minT represents the minimum time spent by any client. By calculating the squared
deviation of each client’s time from the minimum time and then averaging them, we

Algorithms 2024, 17, 52 12 of 16

measure the uniformity of the training process across selected clients. Taking the result’s
square root further helps provide a more interpretable value for the uniformity metric.

By utilizing the formula mentioned above, we can gain valuable insights into the con-
sistency and uniformity of the training process for the original ResNet34 and MB_ResNet34
models, as depicted in Figures 8 and 9, respectively. As a reference, we also included the
variance in total training time and the uniformity of computation time and communication
time. Evidently, the uniformity significantly decreased from approximately 532 to 313 when
implementing the multi-branch network. This fact demonstrates the effectiveness of the
multi-branch network in improving the uniformity and consistency of the training process.

Algorithms 2024, 17, x FOR PEER REVIEW 13 of 18

5.3.3. Uniformity

We also evaluated the uniformity, as defined in Equation (1), of the original Res-

Net34 and MB_ResNet34 models. The physical meaning of Equation (1) is similar to

that of the variance but slightly modified to better capture the concept of uniformity.

𝑈𝑛𝑖𝑓𝑜𝑟𝑚𝑖𝑡𝑦 ≜ (
1

𝑁
∑(𝑡𝑖𝑚𝑒𝑖 − 𝑚𝑖𝑛𝑇)2

𝑁

𝑖=1

)

1
2

 (1) (1)

In Equation (1), 𝑡𝑖𝑚𝑒𝑖 refers to the time the i-th client takes during the training pro-

cess, and 𝑚𝑖𝑛𝑇 represents the minimum time spent by any client. By calculating the

squared deviation of each client’s time from the minimum time and then averaging them,

we measure the uniformity of the training process across selected clients. Taking the re-

sult’s square root further helps provide a more interpretable value for the uniformity

metric.

By utilizing the formula mentioned above, we can gain valuable insights into the

consistency and uniformity of the training process for the original ResNet34 and

MB_ResNet34 models, as depicted in Figures 8 and 9, respectively. As a reference, we

also included the variance in total training time and the uniformity of computation time

and communication time. Evidently, the uniformity significantly decreased from approx-

imately 532 to 313 when implementing the multi-branch network. This fact demonstrates

the effectiveness of the multi-branch network in improving the uniformity and con-

sistency of the training process.

Figure 8. The uniformity of the original ResNet34. Figure 8. The uniformity of the original ResNet34.
Algorithms 2024, 17, x FOR PEER REVIEW 14 of 18

Figure 9. The uniformity of the MB_ResNet34.

5.4. Ablation Studies

5.4.1. Integration with Other Methods

In addition to conducting experiments with ResNet34 and MB_ResNet34 on

CIFAR-10 and FEMNIST datasets, we also explored their performance in combina-

tion with the FedProx method [12] and FedYogi method [13]. These methods were

employed to address the impact of non-iid data, reducing the time required to

achieve the desired accuracy. Table 5 presents the training time-to-accuracy perfor-

mance for the two models combined with different gradient policies. It is important

to note that all experiments in the ablation study were performed with Oort client

selection.

Table 5. Training time versus a certain amount of accuracy for different models on CIFAR-10

and FEMNIST datasets.

Model

Accuracy

CIFAR-10 FEMNIST

60% 70% 80% 60% 70% 80%

ResNet34 225,743 811,432 2,432,746 47,701 68,869 286,324

MB_ResNet34 23,036 48,558 131,692 5,555 10,113 36,854

ResNet34 + Prox 217,639 824,295 2,142,973 29,639 48,454 168,844

MB_ResNet34+ Prox 20,365 43,812 124,677 4,563 6,224 25,192

ResNet34 + Yogi 223,420 803,822 2,342,924 44,845 74,458 253,798

Figure 9. The uniformity of the MB_ResNet34.

5.4. Ablation Studies
5.4.1. Integration with Other Methods

In addition to conducting experiments with ResNet34 and MB_ResNet34 on CIFAR-
10 and FEMNIST datasets, we also explored their performance in combination with the
FedProx method [12] and FedYogi method [13]. These methods were employed to address
the impact of non-iid data, reducing the time required to achieve the desired accuracy.
Table 5 presents the training time-to-accuracy performance for the two models combined
with different gradient policies. It is important to note that all experiments in the ablation
study were performed with Oort client selection.

Algorithms 2024, 17, 52 13 of 16

Table 5. Training time versus a certain amount of accuracy for different models on CIFAR-10 and
FEMNIST datasets.

Model
Accuracy

CIFAR-10 FEMNIST

60% 70% 80% 60% 70% 80%

ResNet34 225,743 811,432 2,432,746 47,701 68,869 286,324

MB_ResNet34 23,036 48,558 131,692 5555 10,113 36,854

ResNet34 + Prox 217,639 824,295 2,142,973 29,639 48,454 168,844

MB_ResNet34+ Prox 20,365 43,812 124,677 4563 6224 25,192

ResNet34 + Yogi 223,420 803,822 2,342,924 44,845 74,458 253,798

MB_ResNet34 + Yogi 55,222 98,168 200,200 4013 5942 16,530

MobileNet_v2 56,950,432 — —

MB_MobileNet_v2 33,457 60,464 138,418

The results indicate that integrating MB_ResNet34 with the FedProx method yielded
the best performance. However, when combined with the FedYogi method, MB_ResNet34
required more time than its standalone version. This additional time can be attributed
to the computation overhead in calculating the gradient corrections. Furthermore, we
extended our experiments to the CIFAR-100 dataset, and the results in Table 6 demonstrate
a reduction in training time due to better uniformity among selected clients.

Table 6. Training time versus a certain amount of accuracy for different models on CIFAR-100 dataset.

Model CIFAR-100 (40%) CIFAR-100 (60%)

ResNet34 1,432,763 —

MB_ResNet34 122,351 256,291

5.4.2. The Effects of Different Communication Bandwidth Ratios (µ)

To better understand the impact of uniformity using different µ values, we conducted
experiments using extreme values in our clustering algorithm. The results are depicted in
Figure 10.

By testing these extreme values, we observed that the uniformity performance im-
proved when the computation capability and communication bandwidth were more bal-
anced. Specifically, the extreme values represented by the bottom left and bottom right
in Figure 10 demonstrated poorer uniformity performance than the ones on the top. The
worst performance case occurred when there was an overindulgence in computation capa-
bility. In most federated learning scenarios, the straggler spent significant time in transit,
transferring data rather than actively performing computations. This imbalance between
computation and communication resulted in a decrease in uniformity performance.

Algorithms 2024, 17, 52 14 of 16Algorithms 2024, 17, x FOR PEER REVIEW 16 of 18

Figure 10. The uniformity measures under different values of μ.

6. Conclusions

This paper presents an approach integrating a multi-branch network with the

Oort client selection algorithm. Our proposed method includes incorporating a

Model Distributor module, which efficiently clusters clients and dispatches appro-

priate models to them. Through extensive experimentation, we have demonstrated

the effectiveness of our approach in mitigating the impact of non-iid data, which is

not considered in the MFedAvg method. Furthermore, our approach surpasses the

performance of the original Oort paper.

Additionally, we introduced the concept of uniformity, which provides a straight-

forward measure of the training time gap among participants and identifies the presence

of stragglers. The concept of uniformity offers valuable insights into the distribution of

training time and facilitates the assessment of fairness and efficiency in the federated

learning process.

Our results showcase the benefits of integrating a multi-branch network and the

Oort client selection algorithm. Furthermore, we have emphasized the significance of

considering uniformity in designing and evaluating federated learning frameworks.

In the future, we will conduct further investigations to enhance the overall ac-

curacy of our approach. We plan to explore various techniques, including model ar-

chitecture modifications, optimization algorithms, and the incorporation of addi-

tional data preprocessing methods. Moreover, we will conduct experiments on larger

datasets to gain insights into the scalability and generalizability of our approach. We

aim to refine and optimize our approach by undertaking these efforts, ultimately

achieving higher accuracy and better performance in federated learning. Moreover,

as mentioned in Section 3.4, FL plays crucial roles in edge-computing- and IoT-re-

lated applications; investigating the applicability of our approach in wireless com-

munication environments is of great interest and will undoubtedly be one of our fu-

ture research directions.

Finally, as one of the anonymized reviewers pointed out, this work took the

bandwidth of the communication channel as one of the criteria for selecting clients;

however, the channel characteristics do affect the adequate bandwidth, too. The

Figure 10. The uniformity measures under different values of µ.

6. Conclusions

This paper presents an approach integrating a multi-branch network with the Oort
client selection algorithm. Our proposed method includes incorporating a Model Dis-
tributor module, which efficiently clusters clients and dispatches appropriate models to
them. Through extensive experimentation, we have demonstrated the effectiveness of our
approach in mitigating the impact of non-iid data, which is not considered in the MFedAvg
method. Furthermore, our approach surpasses the performance of the original Oort paper.

Additionally, we introduced the concept of uniformity, which provides a straight-
forward measure of the training time gap among participants and identifies the presence
of stragglers. The concept of uniformity offers valuable insights into the distribution of
training time and facilitates the assessment of fairness and efficiency in the federated
learning process.

Our results showcase the benefits of integrating a multi-branch network and the
Oort client selection algorithm. Furthermore, we have emphasized the significance of
considering uniformity in designing and evaluating federated learning frameworks.

In the future, we will conduct further investigations to enhance the overall accuracy
of our approach. We plan to explore various techniques, including model architecture mod-
ifications, optimization algorithms, and the incorporation of additional data preprocessing
methods. Moreover, we will conduct experiments on larger datasets to gain insights into
the scalability and generalizability of our approach. We aim to refine and optimize our
approach by undertaking these efforts, ultimately achieving higher accuracy and better
performance in federated learning. Moreover, as mentioned in Section 3.4, FL plays crucial
roles in edge-computing- and IoT-related applications; investigating the applicability of our
approach in wireless communication environments is of great interest and will undoubtedly
be one of our future research directions.

Finally, as one of the anonymized reviewers pointed out, this work took the bandwidth
of the communication channel as one of the criteria for selecting clients; however, the
channel characteristics do affect the adequate bandwidth, too. The anonymized reviewer
also suggested we consider replacing our current bandwidth measure with the client’s
achievable data rate. In response to this precious comment, we are searching for practical

Algorithms 2024, 17, 52 15 of 16

datasets (such as those applied to wireless edge FL scenarios) and planning to re-conduct
our experiments shortly.

Author Contributions: Formal analysis, P.-H.J.; Funding acquisition, J.-L.W.; Investigation, P.-H.J.
and J.-L.W.; Methodology, P.-H.J.; Project administration, J.-L.W.; Resources, J.-L.W.; Software, P.-H.J.;
Supervision, J.-L.W.; Writing—original draft, P.-H.J.; Writing—review & editing, J.-L.W. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the Minister of Science and Technology, Taiwan
(grant number: MOST 111-2221-E-002-134-MY3), National Taiwan University (grant number: NTU-
112L900902), and Taiwan Semiconductor Manufacturing (grant number: TSMC 112H1002-D).

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. McMahan, B.; Moore, E.; Ramage, D.; Hampson, S.; Arcas, B.A. Communication-efficient Learning of Deep Networks from

Decentralized Data. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale,
FL, USA, 20–22 April 2017; pp. 1273–1282.

2. Teerapittayanon, S.; McDanel, B.; Kung, H.-T. BranchyNet: Fast inference via early exiting from deep neural networks. In
Proceedings of the 23rd IEEE International Conference on Pattern Recognition (ICPR), Cancun, Mexico, 4–8 December 2016;
pp. 2464–2469.

3. Hu, T.-K.; Chen, T.; Wang, H.; Wang, Z. Triple Wins: Boosting Accuracy, Robustness and Efficiency Together by Enabling
Input-Adaptive Inference. arXiv 2020, arXiv:2002.10025. [CrossRef]

4. Lim, W.Y.B.; Luong, N.C.; Hoang, D.T.; Jiao, Y.; Liang, Y.-C.; Yang, Q.; Niyato, D.; Miao, C. Federated Learning in Mobile Edge
Networks: A Comprehensive Survey. IEEE Commun. Surv. Tutorials 2020, 22, 2031–2063. [CrossRef]

5. Banabilah, S.; Aloqaily, M.; Alsayed, E.; Malik, N.; Jararweh, Y. Federated learning review: Fundamentals, enabling technologies,
and future applications. Inf. Process. Manag. 2022, 59, 103061. [CrossRef]

6. Zhang, T.; Gao, L.; He, C.; Zhang, M.; Krishnamachari, B.; Avestimehr, A.S. Federated Learning for the Internet of Things:
Applications, Challenges, and Opportunities. IEEE Internet Things Mag. 2022, 5, 24–29. [CrossRef]

7. Antunes, R.S.; da Costa, C.A.; Küderle, A.; Yari, I.A.; Eskofier, B. Federated Learning for Healthcare: Systematic Review and
Architecture Proposal. ACM Trans. Intell. Syst. Technol. 2022, 13, 1–23. [CrossRef]

8. Tu, L.; Ouyang, X.; Zhou, J.; He, Y.; Xing, G. Feddl: Federated Learning via Dynamic Layer Sharing for Human Activity
Recognition. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, Coimbra Portugal, 15–17
November 2021; pp. 15–28.

9. Wu, Q.; He, K.; Chen, X. Personalized Federated Learning for Intelligent IoT Applications: A Cloud-Edge Based Framework.
IEEE Open J. Comput. Soc. 2020, 1, 35–44. [CrossRef]

10. Kairouz, P.; McMahan, H.B.; Avent, B.; Bellet, A.; Bennis, M.; Bhagoji, A.N.; Bonawitz, K.; Charles, Z.; Cormode, G.; Cummings,
R.; et al. Advances and Open Problems in Federated Learning. Found. Trends Mach. Learn. 2021, 14, 1–210. [CrossRef]

11. Wang, C.-H.; Huang, K.-Y.; Chen, J.-C.; Shuai, H.-H.; Cheng, W.-H. Heterogeneous Federated Learning through Multi-Branch
Network. In Proceeding of the 2021 IEEE International Conference on Multimedia and Expo (ICME), Shenzhen, China, 5–9 July
2021; pp. 1–6.

12. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated Optimization in Heterogeneous Networks. In
Proceedings of the 3rd Machine Learning and Systems, Austin, TX, USA, 2–4 March 2020; Volume 2, pp. 429–450. Available
online: https://arxiv.org/pdf/1812.06127 (accessed on 15 January 2024).

13. Reddi, A.; Charles, Z.; Zaheer, M.; Garrett, Z.; Rush, K.; Konečn, J.; Kumar, S.; McMahan, H.B. Adaptive Federated Optimization.
arXiv 2020, arXiv:2003.00295.

14. Li, K.; Wang, H.; Zhang, Q. FedTCR: Communication-Efficient Federated Learning via Taming Computing Resources. Complex
Intell. Syst. 2023, 9, 1–21. [CrossRef]

15. Huang, H.; Zhang, L.; Sun, C.; Fang, R.; Yuan, X.; Wu, D. FEDTiny: Pruned Federated Learning towards Specialized Tiny Models.
arXiv 2022, arXiv:2212.01977. [CrossRef]

16. Lin, T.; Kong, L.; Stich, S.U.; Jaggi, M. Ensemble Distillation for Robust Model Fusion in Federated Learning. In Proceedings
of the 34th Conference on Neural Information Processing Systems (NeurIPS), Vancouver, BC, Canada, 6–12 December 2020;
Volume 33, pp. 2351–2363.

17. Lai, F.; Zhu, X.; Madhyastha, H.V.; Chowdhury, M. Oort: Efficient Federated Learning via Guided Participant Selection. In
Proceedings of the 15th USENIX Symposium on Operating Systems Design and Implementation (OSDI), Virtual event, 14–16 July
2021; pp. 19–35.

18. Li, D.; Wang, J. FEDMD: Heterogenous Federated Learning via Model Distillation. arXiv 2019, arXiv:1910.03581.

https://doi.org/10.48550/arXiv.2002.10025
https://doi.org/10.1109/COMST.2020.2986024
https://doi.org/10.1016/j.ipm.2022.103061
https://doi.org/10.1109/IOTM.004.2100182
https://doi.org/10.1145/3501813
https://doi.org/10.1109/OJCS.2020.2993259
https://doi.org/10.1561/2200000083
https://arxiv.org/pdf/1812.06127
https://doi.org/10.1007/s40747-023-01006-6
https://doi.org/10.48550/arXiv.2212.01977

Algorithms 2024, 17, 52 16 of 16

19. Lai, F.; Zhu, X.; Harsha; Madhyastha, V.; Chowdhury, M. The Appendix A of Oort: Efficient federated learning via guided partici-
pant selection. arXiv 2020, arXiv:2010.06081. Available online: https://arxiv.org/abs/2010.06081 (accessed on 13 January 2024).

20. Wang, S.; Tuor, T.; Salonidis, T.; Leung, K.K.; Makaya, C.; He, T.; Chan, K. adaptive federated learning in resource constrained
edge computing systems. IEEE J. Sel. Areas Commun. 2019, 37, 1205–1221. [CrossRef]

21. Shi, Y.; Yang, K.; Jiang, T.; Zhang, J.; Letaief, K.B. Communication-efficient edge AI: Algorithms and systems. IEEE Commun. Surv.
Tutorials 2020, 22, 2167–2191. [CrossRef]

22. Zhu, G.; Wang, Y.; Huang, K. Broadband analog aggregation for low-latency federated edge learning. IEEE Trans. Wirel. Commun.
2019, 19, 491–506. [CrossRef]

23. Yang, K.; Jiang, T.; Shi, Y.; Ding, Z. Federated learning via over-the-air computation. IEEE Trans. Wirel. Commun. 2020, 19,
2022–2035. [CrossRef]

24. Vu, T.T.; Ngo, D.T.; Tran, N.H.; Ngo, H.Q.; Dao, M.N.; Middleton, R.H. Cell-free massive MIMO for wireless federated learning.
IEEE Trans. Wirel. Commun. 2020, 19, 6377–6392. [CrossRef]

25. Amiri, M.M.; Gu, D. Machine learning at the wireless edge: Distributed stochastic gradient descent over-the-air. IEEE Trans.
Signal Process. 2020, 68, 2155–2169. [CrossRef]

26. Chen, M.; Yang, Z.; Saad, W.; Yin, C.; Poor, H.V.; Cui, S. A joint learning and communications framework for federated learning
over wireless networks. IEEE Trans. Wirel. Commun. 2020, 20, 269–283. [CrossRef]

27. Guo, H.; Liu, A.; Lau, V.K.N. Analog gradient aggregation for federated learning over wireless networks: Customized design and
convergence analysis. IEEE Internet Things J. 2020, 8, 197–210. [CrossRef]

28. Wang, S.; Hong, Y.; Wang, R.; Hao, Q.; Wu, Y.-C.; Ng, D.W.K. Edge Federated Learning via Unit-Modulus Over-The-Air
Computation. IEEE Trans. Commun. 2022, 70, 3141–3156. [CrossRef]

29. Xie, H.; Wang, S.; Wen, W.; Wu, P.; Xia, M. Edge Learning for Large-Scale Internet of Things: Task-Oriented Efficient Communica-
tions. IEEE Trans. Wirel. Commun. 2023, 22, 9517–9532. [CrossRef]

30. Lai, F.; Dai, Y.; Singapuram, S.; Liu, J.; Zhu, X.; Madhyastha, H.; Chowdhury, M. FedScale: Benchmarking Model and System
Performance of Federated Learning at Scale. In Proceedings of the 39th International Conference on Machine Learning, Baltimore,
Maryland, USA, 17–23 July 2022; pp. 11814–11827. Available online: https://proceedings.mlr.press/v162/lai22a/lai22a.pdf
(accessed on 15 January 2024).

31. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images. Ph.D. Thesis, University of Toronto,
Toronto, ON, Canada, 2009. Available online: https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf (accessed on 13
January 2024).

32. Cohen, G.; Afshar, S.; Tapson, J.; van Schaik, A. EMNIST: An Extension of MNIST to Handwritten Letters. arXiv 2017,
arXiv:1702.05373v2. Available online: https://arxiv.org/pdf/1702.05373.pdf (accessed on 12 January 2024).

33. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, CA, USA, 26 June–1 July 2016; pp. 770–778.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://arxiv.org/abs/2010.06081
https://doi.org/10.1109/JSAC.2019.2904348
https://doi.org/10.1109/COMST.2020.3007787
https://doi.org/10.1109/TWC.2019.2946245
https://doi.org/10.1109/TWC.2019.2961673
https://doi.org/10.1109/TWC.2020.3002988
https://doi.org/10.1109/TSP.2020.2981904
https://doi.org/10.1109/TWC.2020.3024629
https://doi.org/10.1109/JIOT.2020.3002925
https://doi.org/10.1109/TCOMM.2022.3153488
https://doi.org/10.1109/TWC.2023.3271665
https://proceedings.mlr.press/v162/lai22a/lai22a.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://arxiv.org/pdf/1702.05373.pdf

	Introduction
	Preliminary
	Federated Learning
	Multi-Branch Networks

	Related Work
	Homogeneous Model FL
	Heterogeneous Model FL
	Oort—Client Selection for FL
	Federated Machine Learning in Edge Computing and Wireless Communications

	The Proposed Method
	Construction of a Multi-Branch Network
	Model Distributor
	Overall System Architecture

	Experiments
	Experimental Setup
	Environment Settings
	Model Settings

	Training Details
	Experimental Results
	Time-to-Accuracy Performance
	Rounds-to-Accuracy Performance
	Uniformity

	Ablation Studies
	Integration with Other Methods
	The Effects of Different Communication Bandwidth Ratios ()

	Conclusions
	References

